
Directed Spectral Graph Theory: Sparsification and
Asymmetric Linear System Solver

Yanlin Duan
Department of Computer Science

Columbia University
yd2380@columbia.edu

Jiahui Liu
Department of Computer Science

Columbia University
jl4161@columbia.edu

Serena Liu
Department of Electrical Engineering

Columbia University
yl2904@columbia.edu

David Pu
Department of Electrical Engineering

Columbia University
sp3396@columbia.edu

May 12, 2017

Abstract

This paper is our report for the Advanced Algorithm class final project. In this report, we
study fast algorithms for solving directed Laplacian linear systems. A recent body of work by
Cohen et al. has focused on introducing a novel notion of spectral approximation for directed
graphs. They provide a general framework for solving asymmetric linear systems using the
notion of spectral approximation and show how to solve directed Laplacian linear systems
associated with Eulerian Graphs in almost-linear-time.

In this final report, we present the general framework for solving linear systems of directed
Laplacian, with focus on the key theorems and algorithms in paper [CKP+16a] and the related
prior work in [CKP+16b]. We hope this project opens the door for our studies and research
into directed spectral graph theory, and that this final project will serve as a brief technical
report for our fellow classmates and researchers in the spectral graph research community.

1 Introduction
Spectral graph theory is the study and exploration of graphs through the eigenvalues and eigenvec-
tors of matrices naturally associated with those graphs. Since its first emergence in the 1950s and
1960s, spectral graph theory, especially the undirected case, has been well studied and has a rich
collection of algorithmic tools, most of which are rigorously analyzed. Despite the extensive and a
successful line of research on the undirected case, there exists a longstanding algorithmic discrep-
ancy between the state of algorithmic spectral graph theory in undirected and directed settings.
The combinatorial properties of graph that are intrinsic to the undirected graph and are used to
accelerate the solution of Laplacian linear systems have remained elusive for directed graphs. It
was until 2016 that, for the first time, fast algorithm for computing the stationary distributions
has been proposed [CKP+16b], which takes less time than is required to find the kernel of a general
matrix.

There are three main reasons for the algorithmic performance gap between directed Laplacian
linear solvers and undirected linear solvers:

Lack of efficient approach to compute the kernel/stationary distribution: The kernel of
a Laplacian plays an important role in solving many problems. We can understand its importance
from two perspectives: from a linear algebraic way, assume we can compute the kernel of L as the
span of ~u1, ~u2, · · · , ~un, then as long as we find one solution for the linear system L~x = ~b, say ~x0,
we immediately know the general solution for L~x = ~b is ~x0 + a1~u1 + a2~u2 + · · · + an~un. (since
L(~x0 + linear combination of{~u1, · · · , ~un}) = L~x0 + ~0 = ~b). Therefore, finding the kernel space of
L helps a lot in the linear system solver.

1

From a Markov chain’s perspective, vectors in the kernel of a Laplacian correspond to stationary
distributions of the corresponding random walk (up to rescaling), and computing the stationary
distribution is essential in the analysis of Markov chains, as persists for many fundamental problems
associated with random walks, such as Google’s famous PageRank algorithm.

Asymmetric, and non-positive semidefiniteness: The fact that directed Laplacians are
asymmetric matrices makes essentially every algorithmic tool for solving undirected Laplacians
unavailable in the directed setting, since we can no longer view L as a sum of semidefinite contri-

butions from each of the edges. Consider a simple example of L =

[
1 0
−1 0

]
, one may wish to solve

the problem by considering the symmetrization of directed graph Laplacian: 1
2 (L+L>). However,

1
2 (L + L>) =

[
1 −1/2
−1/2 0

]
has one eigenvalue 1−

√
2

2 < 0, which means this new matrix is not

even positive semidefinite.

Lack of directed graph sparsification: Because of the nice properties of (cut) sparisification
defined in the undirected setting, it is tempting to generalize it to the directed graphs. But it
can be shown that, such sparsifier does not generally exist, even for a weaker notion of spectral
sparisification. Let’s consider a simple example of a complete bipartite graph G, with four vertices
on each side and all edges going from one side to another, as shown in Fig 1.

If such a sparsifier does exist, it has to work for every cut in G. Now consider a family of cuts
described in Fig 1. Since there is only one outgoing edge from the highlighted partition, omitting
this edge will change the weight from 1 to 0, which is definitely not within a multiplicative factor
of 1 ± ε. Since all such edges need to be preserved for every cut in this family of cuts, it is not
hard to see that we will need Ω(n2) edges, which exceeds the cut sparsification requirement of
O(n log n/2).

Figure 1: An example of the family of cuts described for directed bipartite graph. (Figure 1.1 from
[CKP+16a])

1.1 Problem Definition and Overview
Problem definition: Given a directed Laplacian associated with a graph with n vertices and
m edges, we want to find a directed Laplacian linear system solver, i.e. a solver that can (approx-
imately) solve for L~x = ~b in an efficient way.

In spite of the fundamental differences between the undirected and directed settings, as well as
the general difficulties of applying algorithmic tools of the undirected spectral graph theory to the
directed case, Cohen et al. present in paper [CKP+16a] the first almost-linear-time algorithms for
solving directed Laplacian systems, improved upon the prior work in[CKP+16b]. See Table 1 for
running time comparison.

Cohen et al. split the problem into three steps: reduction (reduce the problem to the special
case of solving Eulerian Laplacians), sparsification (construct sparsifier for directed graph) and
directed Eulerian Laplacian solver.

2

Cohen et al STOC’17[CKP+16a] Cohen et al FOCS’16 [CKP+16b] Le Gall ISSAC’14 [Le 14]
Õ(m+ n2O(

√
log κ log log κ)) Õ(m3/4n+mn2/3) Θ(min(mn, n2.3728639))

Table 1: Time Complexity for Directed Laplacian System Solvers

1.2 Definition
For basic notations used in this report, please refer to Appendix A. Here we present important
definitions used throughout the report:

Definition 1 (Directed Laplacian Matrix). A matrix L ∈ Rn×n is called a directed Laplacian if
Lij ≤ 0 for all i 6= j and Lii = −

∑
j 6=i Lji for all i.

Definition 2 (Decomposition of Directed Laplacian Matrix). We associate a graph GL = (V,E,w)
with each directed Laplacian. We may decompose L = D −A>, where D is the diagonal matrix
that Dii = Lii = out degree of vertex i in the associated graph GL and A is weighted adjacency
matrix of GL with Aij = wij if (i, j) ∈ E and 0 otherwise.

2 Reductions
As mentioned in section 1.1, the first part of the algorithms of [CKP+16b] is to reduce the problem
of solving the general directed Laplacian systems to the special case of solving Eulerian Laplacians
(with preferred condition number). We first introduce the definition of Eulerian directed graph.

Definition 3 (Eulerian directed graph). A directed graph is Eulerian iff every graph vertex has
equal indegree and outdegree.

The intuition behind why Eulerian Laplacian systems are much easier to solve is that, for
a Eulerian Laplacian, the kernel is the all-ones vector, and 1

2 (L + L>) is symmetric and positive
semidefinite (PSD). More importantly, for every directed Laplacian L that corresponds to a strongly
connected graph, there is always a vector ~x ∈ R > 0 such that L~x = 0. Therefore, we can construct
a new Laplacian L′ = LX, where X is a diagonal matrix associated with ~x, Then we have L′~1 = 0.

Lemma 4 (Eulerian Scaling, [CKP+16b] Lemma 1). Given a directed Laplacian L = D − A>

whose associated graph is strongly connected, there is a positive vector ~x ∈ Rn such that L·diag(~x)
is an Eulerian Laplacian, where diag(~x) is the diagonal matrix with diag(~x)ii = ~xi. This is called
Eulerian scaling.

Once we can approximately compute the Eulerian Scaling, then the original problem is reduced
to solving Eulerian Laplacian systems. We proceed by introducing the definition of diagonal
dominant matrix.

Definition 5 (Diagonal Dominance). A possibly asymmetric matrix A ∈ Rn×n is called α-row
diagonally dominant (RDD) if Aii ≥ (1 + α)

∑
j 6=i |Aij | for all i ∈ [n], α-column diagonally

dominant (CDD) if Aii ≥ (1+α)
∑
j 6=i |Aji|, and α-row- or column- diagonally dominant (RCDD)

if it is both α-RDD and α-CDD. If α = 0, we say A is RCDD, and α-RCDD if α > 0.

It is not hard to see that a general directed Laplacian (may be disconnected) is a row- or
column-diagonally dominant (RCDD) linear system.

The first reduction There are two reductions involved in the process. The first reduction uses
the following theorem from [CKP+16a] to show that we can solve such linear system by solving a
small number of Laplacian systems in which the graphs are Eulerian:

Theorem 6 (Theorem 42 from [CKP+16b]). Let M be an arbitrary n × n column- or row-
diagonally-dominant matrix with diagonal D. Let ~b ∈ im(M). Then for any ε ∈ (0, 1], one
can compute a vector ~x′ satisfying ||M~x′ −~b||2 ≤ ε||~b||2, with high probability and in time

O(Tsolve log2(
n · κ(D) · κ(M)

ε
))

where Tsolve = (nm3/4 + n2/3m)(log n)3.

3

Proof Sketch. We will only provide a proof sketch here, since the original proof of the theorem
is non-trivial and the theorem is not our main focus in this report. The idea behind the proof of the
theorem above is that one can first convert arbitrary CDD or RDD matrix M to a RCDD matrix
M̂. Take CDD case as an example. M̂ = αI + MD−1, where D is the diagonal matrix. This can
be viewed as first rescaling the matrix by its diagonal and then slightly increase its diagonal. This
gives us an α-RCDD matrix where every off-diagonal entry is non-positive. RDD is very similar,
except that we multiply the inverse of diagonal matrix from left-hand side, and that the rescaling
is computed with respect to M̂>.

Take a n × n strictly α-RCDD matrix M̂, one can then define a (n+1) × (n+1) matrix L =
CM̂C>, where C is a (n+1)×n matrix with top n× n being identity matrix In, stacked with an
all-negative-ones row (−~1>) at the bottom. Then clearly the top left n×n entries of L are a copy
of M̂, and its rows and columns sum to 0 since the columns of C sum to 0. Also L has off-diagonal
entries being negative and diagonal entries being positive. Therefore, it satisfies the definition of
Eulerian Laplacian.

To solve for M̂x = b, it is equivalent to solve L
(
x
0

)
=

(
b
y

)
for some scalar y, since the upper

left block is exactly M̂. A more detailed proof will show that the approximation error introduced
by transforming from M to M̂ is not an intolerably large one, making this reduction plausible.

The second reduction There is another reduction that solves an arbitrarily ill-conditioned
Eulerian Laplacian system (possibly exponential) by solving O(log(nκ)) Eulerian Laplacian whose
condition numbers are polynomial in n. The proof is shown in Appendix F of [CKP+16a]. It is
not the most interesting part of the paper so we will skip it here.

3 Directed Graph Sparsification

3.1 Definition of Directed Graph Sparsifier
We have a very brief review of undirected graph sparsification in Appendix B just to give a
comparison with our directed case.

If we want to directly generalize from the definition for undirected graph, both cut and spectral
notions have serious issues: if using cut notion, good sparsifiers don’t exists for some graphs; if
using spectral notion, since LG is not symmetric in the directed case, but using the quadratic form
x>LGx in the requirement (1 − ε)x>LG′x ≤ x>LGx ≤ (1 + ε)x>LG′x symmetrizes the the thing
and the form is not necessarily PSD.

To avoid these issues, Cohen et al. [CKP+16a] gave original definitions for asymmetric ma-
trix approximation, directed graph approximation and Eulerian sparsifier based on properties of
asymmetric matrices and Eulerian directed graphs.

Definition 7 (Asymmetric Matrix Approximation). A possibly asymmetric matrix matrix Ã is
an ε − approximation of A if: UA is a symmetric PSD matrix with ker(UA) ⊆ ker(Ã − A) ∩
ker((Ã−A)>) and

∥∥∥U+/2
A (Ã−A)U

+/2
A

∥∥∥
2
≤ ε, where UA = 1

2 (A + A>).

The above definition generalizes spectral approximation for both symmetric and asymmetric
approximations and behaves predictably under perturbations. UA and UÃ are symmetrizations
of A and Ã, and UÃ spectrally approximate UA and so does the A and Ã pair. The kernel
requirement ensures that if we write the spectral 2-norm in the form

∥∥∥U+/2
A (Ã−A)U

+/2
A

∥∥∥
2

=

max~x,~y 6=0
~x>(Ã−A)~y√
~x>UA~x·~y>UA~y

, the maximization problem is bounded and thus we can have an equiva-

lent definition using max~x,~y 6=0
~x>(Ã−A)~y√
~x>UA~x·~y>UA~y

≤ ε.
More specifically, there are several facts about the their notion of asymmetric approximation:

• It does not coincide with the standard notion in terms of symmetric matrices; In fact, it is a
stronger notion.

• If Ã is an ε-approximation of A, then (1− ε)UA ≤ UÃ ≤ (1 + ε)UA.

• (Approximation Transitivity) If C is an ε-approximation of B and C is an ε-approximation
of B, then C is an ε(2 + ε)-approximation of A

4

By Lemma 4, we can scale any strongly-connected graph’s Laplacian by a diagonal matrix to
make it the Laplacian of an Eulerian directed graph. It is also shown in [CKP+16b] that we can
find this scaling matrix efficiently.

The directed graph approximation follows that a graph approximates another graph if their
Eulerian scalings are within small multiplicative factors of one another.

Definition 8 (Directed Graph Approximation). Given two Laplacians L, L̃ of directed strongly-
connected graphs G, G̃, the Eulerian scaling L̃X̃ and LX are given as in the definition in lemma
4. G̃ is an ε-approximation of G if:

• (1− ε)X ≤ X̃ ≤ (1 + ε)X

• L̃X̃ is an ε-approximation of LX by definition 7.

Especially, if X̃ = X, then we say G̃ is a strict ε-approximation of G

And the directed graph sparsifier follows from a directed graph approximation with constraint
on number of nonzero entries. We denote nnz(A) as the total number of nonzero entries in A.

Definition 9. The directed graph sparsifier G̃ is a an ε-approximation of a graph G and nnz(L̃) ≤
Õ(nε−2), where n is the number of vertices. More importantly here, an Eulerian Laplaian L̃
is an ε-sparsifier of Eulerian Laplacian L if L̃ is a a strict ε-approximation of a graph L and
nnz(L̃) ≤ Õ(nε−2).

3.2 Sampling Procedure
Similar to undirected graph sparsification, we first need a random sampling procedure as a sub-
routine for our whole sparsification algorithm.

The main tool is a concentration bound theorem which shows that by sampling the entries
using a distribution built on size, row sums and column sums of a rectangular matrix, we can
compute a new matrix such that the spectral norm of the differences is bounded and the row sums
and column sums are approximately preserved.

The algorithm applies to any matrix, not necessarily a square matrix.

• A ∈ Rd1×d2 has no column/row with all zeros

• ε, p ∈ (0, 1), s = d1 + d2, ~r = A1(a vector of sums by rows), ~c = A>1(a vector of sums by
columns)

• D is a distribution of Rd1×d2 matrices such that we pick a matrix X from D:

Xij =

(
Aij

pij

)
with probability pij =

Aij

s

[
1

~ri
+

1

~cj

]
for all Aij 6= 0

• We sample for k times(k ≥ 128 s
ε2 log s

p) independently to get A1,Ak and we output the
average Ã = 1

k

∑
i∈[k] Ai

Some intuition: First, we can easily verify that the expectation of row sums and column sums
of any X picked from the distribution are equal to the original graph’s row sums and column sums,
respectively. We can also observe that the entry value Xij is in fact not proportional to the single
value Aij (get canceled out), but is related to the row sum and column sum for the row i and
column j. Moreover, if Aij has a relatively large value, or relatively large portion in its row and
column sums, we have a larger corresponding probability pij and are more likely to pick it.

Concentration bounds: There are three concentration bounds are satisfied by this Ã:

• Pr[‖R−1/2(Ã−A)C−1/2‖2 ≥ ε] ≤ p (spectral norm is roughly preserved)

• Pr[‖R−1(Ã−A)1‖∞ ≥ ε] ≤ p (row sums are roughly preserved)

• Pr[‖R−1(Ã−A)>1‖∞ ≥ ε] ≤ p (column sums are roughly preserved)

5

3.3 Sparsification and Decomposition Algorithm
For the almost-linear time directed Laplacian system solver we will be discussing, only Eulerian
graph sparisification is required. However, we have included the more general case of non-Eulerian
graphs because we believe it is of independent interest and may be useful in other settings.

We can do a subgraph sparsification for a directed Laplacian L in time polynomial to the
number of nonzero entries in L: For the corresponding graph A, first sample a graph according
to the above sampling algorithm; then patch the sparsified graph to make sure that the row sums
and column sums of the sparsified graph Ã are the same as original graph A. Then output Ã’s
Laplacian L̃. More formally, the Subgraph Sparsification algorithm is shown in 1.

The subgraph sparsification algorithm runs in time O(nnz(L) + nnz(L̃)) ([CKP+16a], Lemma
3.13). We provide a proof sketch for the correctness of this sparsification in Appendix C Lemma
17.

Algorithm 1 SpasifySubgraph
1: procedure SparsifySubgraph(L, p, ε)
Input: A directed Laplacian L = D−A> and parameters p, ε ∈ (0, 1)
2: Consider all the not-all-zero rows only
3: Compute ~r = A>1, ~c = A1, and s = nnz(~r) + nnz(~c) is the total number of rows and

columns that are non-zero
4: Do the sampling procedure given by the section above using A> as original matrix for k

times(k = 128 · nε2 log(n/p)) and compute the mean Â
5: Compute a temporary matrix (1+ ε

4)−1Â to make the rows and columns sums smaller than
original A>

6: Compute a nonnegative patching matrix E: greedily set O(n) entries to make the rows and
columns sums of (1 + ε

4)−1Â + E equal to the sums of A>

7: Â := (1 + ε
4)−1Â + E

8: Add the all-zero rows back
9: Return L̃ = diag(Ã>1)− Ã
Output: a sparsified Laplacian L̃
10: end procedure

Finally, the paper showed that we can sparsify any Eulerian Laplacian by decomposing the
graphs and run the subgraph sparsification algorithm on the subgraphs. The decomposition al-
gorithm FindDecomposition that runs in Õ(nnz(L)) is given in some previous works such as
[ShT14].

Therefore, the general procedire of sparsifying an Eulerian Laplacian is shown in 2.

Algorithm 2 SpasifyEulerian
1: procedure SparsifyEulerian(L, p, ε)
Input: A directed Laplacian L = D−A> and parameters p, ε ∈ (0, 1)
2: Decompose the directed Laplacian L in to L(1),L(2)...L(k) ∈ Rn×n where L = L(1) +L(2) +
...+ L(k).(using the FindDecomposition algorithm)

3: Run subgraph sparsification algorithm on each L(i),∀i ∈ [k], we get the subgraph Laplacian
sparsifier L̃(i).

4: Return the sparsifier for L: L̃ =
∑k
i=1 L̃(i)

5: end procedure

Theorem 10. For Eulerian Laplacian L ∈ Rn×n and ε, p ∈ (0, 1) with probability at least 1 − p
the routine SparsifyEulerian(L, p, ε) computes in Õ(nnz(L) + nε2 log(1/p)) time an Eulerian
Laplacian L̃ such that L̃ is an ε-sparsifier of L and in- and out-degrees of the graphs corresponding
to L and L̃ are identical.

We defer a proof sketch of this theorem to Appendix C.

3.4 Sparsification of Squared Eulerian Laplacian
To pave the way for the later discussion on Square-Sparsification chain, we show how to sparsify
implicitly represented Eulerian Laplacians like this: given a directed Eulerian Laplacian L for a

6

strongly connected graph, the goal is to sparsifyM = D−A>D−1A> in nearly linear time of L
without constructingM.

The idea is decomposing M into directed Laplacians corresponding to each vertex: L(i) =
diag(Ai,:)− 1

Di,i
A:,iA>i,:, where Ai,: is row i of A and A:,i is column i of A(in- and out-edges for

the vertex) and sparsify each decomposed component using a SparsifyProduct algorithm.
The SparsifyProduct algorithm is almost the same as the SparsifySubgraph algorithm except

using a slightly different distribution for sampling.
On input vectors ~x, ~y which have the same l1 norm r, s = nnz(~x) + nnz(~y), the Laplacian we

want to sparsify is diag(~y)− 1
r~x~y

>. The distribution D is over Rn×n such that X ∼ D is:

X =

(
~xi ~yj
r · pij

)
~1i~1j , with probability pij =

1

s

[
~xi

r − ~xi
+

~yj
r − ~yj

]
for i 6= j and ~xi ~yj 6= 0

This is actually equivalent to the distribution used in SparsifySubgraph: takeX = diag(~x),Y =
diag(~y),A> = 1

r [~x~y −XY]. It follows that D = Y − 1
rXY and the Laplacian we sparsify is

L = D − A>. Then we let ~r = A>1 and ~c = A1. So for i 6= j with Aij = ~xi~yj we have:
Aij

s

[
1
~ri

+ 1
~cj

]
=

~xi~yj
r·s

[
1

xi− 1
r ~xi~yj

+ 1
yj− 1

r ~xi~yj

]
= 1

s

[
~xi

r− ~xi +
~yj

r− ~yj

]
. Therefore the output L̃ is the

output of SpasifySubgraph from L.
We then use this SparsifyProduct algorithm as a subroutine for the following SparsifySquare

to obtain ε-sparsifier for implicitly represented Eulerian LaplacianM = D−AD−1A.

Algorithm 3 SpasifySquare
1: procedure SparsifySquare(A, p, ε)
Input: A ∈ Rn×n≥0 with A1 = A>1 that implicitly represents a directed Laplacian M = D −
AD−1A where D = diag(A1) and parameters p, ε ∈ (0, 1)

2: for i = 1 · · ·n do
3: Let Ai,: be row i of A and A:,i be column i of A.
4: L̃(i) ← SparsifyProduct(Ai,:,A:,i, p/2n, ε/6)
5: end for
6: Let M̂ =

∑n
i=1 L̃(i)

7: M̃ ← SparsifyEulerian(M̂, p/2, ε/3)
8: Return D− M̃
9: end procedure

4 Solving Directed Laplacian Systems

4.1 Overview
In this section we present an overview of the approach for using the sparsifier construction to solve
the polynomially well-conditioned Eulerian Laplacian Systems in almost-linear-time.

The almost-linear-time solver can be split into two key components:

1. preconditioned Richardson iteration which allows us to build a pseudoinverse and to
improve the quality of such approximate pseudoinverse;

2. square-sparsification chain which breaks down a pseudoinverse to a product expansion of
a series of matrices and decrease the computational cost due to the sparse nature.

The square-sparsification chain allows us to find the pseudoinverse of a matrix by performing
some matrix-vector multiplications and solving a sparse linear system. However, the problem is
the approximation error from the sparsification accumulates quickly. That’s where the precondi-
tioned Richardson iterations come into play. Combining both approaches, we can formally bound
the accumulated error and ensure Richardson will quickly produce a high quality approximate
pseudoinverse.

7

4.2 Preconditioned Richardson Iteration
The solver is based on a key iterative method called preconditioned Richardson iteration.We
interpret it here in the form of "Gradient Descent" algorithm introduced in class.

Given the following unconstrained optimization problem:

minimize
x

F (x) =
1

2
||Ax− b||22

Since l2 norm is convex and differentiable, we can use gradient descent to find the optimality:

x(k+1) = xk − η∇F (x) = xk − η(A>Axk −A>b) = xk + η(b̃− Ãxk)

where η is the step size, Ã = A>A and b̃ = A>b. We can then use an iterative method to solve
Ãx = b̃: start with x(0) = 0, and repeatedly move toward the direction of the residual (i.e. b̃−Ãx)
for some step size η, until convergence. This is exactly the Richardson Iteration method.

As discussed in class, the quality of such iterations is highly dependent on the condition number
of the matrix and thus can be unideal for our purpose in some cases. To fix this problem, we intro-
duce a pre-conditioner Z, to update x(k+1) = xk+ηZ(b̃−Ãxk). This gives us the preconditioned
Richardson iteration. Note that if Z is exactly the pseudo-inverse of Ã, and η = 1, then we can
obtain the exact solution in one iteration.

The preconditioned Richardson implements a linear operator: xk = Zk~b, for some Zk that
depends on Z, Ã, η, k only. Below is the algorithm that finds Zk.

Algorithm 4 Preconditioned Richardson Iteration
1: procedure PreconditionedRichardson(M,Z, η,N)
Input: n× n matrix M, preconditioning linear operator Z, step size η, iteration count N
Output: (Implicit) matrix ZN that corresponds to the routine that applies a linear operator to a

vector.
2: for k = 1 · · ·N do
3: ZN = ZN + (Iim(M) − ηZM)k−1

4: end for
5: return η · ZN · Z
6: end procedure

Furthermore, the preconditioned Richardson gives us the following bound on how close our
result after iteration k and the optimal solution is:

Lemma 11. (Lemma 4.2 from [CKP+16a]) Let ~b ∈ Rn and M,Z,U ∈ Rn×n such that U is
symmetric positive semidefinite, ker(U) ⊆ ker(M) = ker(M>) = ker(Z) = ker(Z>), and b ∈
im(M). Then N ≥ 0 iterations of preconditioned Richardson with step size η > 0, results in a
vector ~xN = PRECONRICHARDSON(M,Z,~b, η,N) such that∣∣∣∣~xN −M+~b

∣∣∣∣
U
≤ ||Iim(M) − ηZM||NU→U

∣∣∣∣M+~b
∣∣∣∣
U

Furthermore, preconditioned Richardson implements a linear operator, in the sense that ~xN = ZN~b,
for some matrix ZN only depending on Z,M, η, and , N .

The above lemma shows that if ηZÃ is sufficiently close to the identity, then preconditioned
Richardson converges quickly when solving a linear system. This highlights a precise way to
quantify how good a matrix is as a preconditioner for the Richardson iteration. Indeed,
we will define approximate pseudoinverse in the exact same way:

Definition 12. Matrix Z is an ε-approximate pseudoinverse of matrix M with respect to a symetric
PSD matrix U, if ker(U) ⊆ ker(M) = ker(M>) = ker(Z) = ker(Z>), and

||Iim(M) − ZM||U ≤ ε

.

The purpose of introducing preconditioned Richardson iteration is because it can improve our
pseudoinverse. Roughly speaking, this will guarantee the U-norm of the error to decrease by a
factor of ε in each iteration:

8

Lemma 13 (Lemma 4.4 from [CKP+16a]). If Z is an ε-approximate pseudoinverse of M with
respect to U, for ε ∈ (0, 1), and N ≥ 0, then PRECONRICHARDSON (M,Z, 1, N) computes ZN , which
only depends on Z,M, N , such that ZN is an ε-approximate pseudoinverse of M with respect to
U.

Proof. (Partial) We first examine ~xk+1 and ~xk in one preconditioned Richardson iteration.
Consider some vector ~b ∈ im(M) which we are solving M~x = ~b for.

Since ~xk+1 = ~xk + ηZ(~b−M~xk), we know that:

~xk+1 −M+~b = ((Iim(M) − ηZM)~xk + ηZ~b)−M+~b

= (Iim(M) − ηZM)~xk + ηZMM+~b−M+~b

= (Iim(M) − ηZM)(~xk −M+~b)

Then:

||~xk+1 −M+~b||U = ||(Iim(M) − ηZM)(~xk −M+~b)||U ≤ ||(Iim(M) − ηZM)||U||(~xk −M+~b)||U

By induction:

||~xN −M+~b||U ≤ ||(Iim(M) − ηZM)||NU||M+~b||U ≤ εN ||M+~b||U
where the last inequality holds because Z is an ε-approximate pseudoinverse, and we plug the

definition in.
Since ~xN = ZN~b, we have:

||(Iim(M) − ZNM)M+~b||U = ||~xN −M+~b||U ≤ εN ||M+~b||U

which holds for ~b ∈ im(M). Equivalently, this means that

||Iim(M) − ZNM||U ≤ εN

.
To complete the whole proof, we should also show ker(U) ⊆ ker(ZN) = ker(Z>N) = ker(Z).

This can be done using proof by contradiction (assume ker(Z) is a strict subset of ker(ZN); assume
ker(Z) is a strict subset of ker(Z>N)). We will omit here because of space reason.

4.3 Square-sparsification chain: Definition and Construction
In order to solve for Lx = b, we decompose L = D − A> = D1/2(I − A)D1/2, where A =
D−1/2A>D−1/2 and ||A||2 = 1, and reduces the problem to solving linear systems in L = I−A.

Although Peng-Spielman’s solver cannot be directly applied to directed graph’s case, it suggest
a good algorithm for solving a system Lx = b: transform the problem to “performing a series of
(nice) matrix-vector multiplication (and possibly a bit of something more)”. This motivates the
square-sparsification chain, which is formally defined as below:

Definition 14 (Square Sparsifier Chain). We call a sequence of matrices A0, A1, ...Ad ∈ Rn×n

a square-sparsifier chain of length d with parameter 0 < α < 1/2 and error ε ≤ 1/2 (or a (d, ε,
α)-chain for short) if under the definitions Li = I − Ai and A(α)

i = αI + (1 − α)Ai for all i the
following hold:

1. ||Ai||2 ≤ 1 for all i,

2. I−Ai is an ε approximation of I− (A(α)
i−1)2 for all i ≥ 1,

3. ker(Li) = ker(L>i) = ker(Lj) = ker(L>j) = ker(ULi) = ker(ULj) for all i, j.

Lemma 15. (Correctness of BuildChain procedure) Let L = D −A> be an Eulerian Laplacian
that is associated with a strongly connected graph, let α, ε, p ∈ (0, 1), and let d ≥ 1. Then in
Õ(nnz(L) + nε−2d) time the routine BUILDCHAIN(L, d, α, ε, p) produces A0, . . . ,Ad ∈ Rn×n that
with probability 1− p

9

Algorithm 5 BuildChain
1: procedure BuildChain(L, d, α, ε, p)
Input: Eulerian Laplacian L, parameters α, ε, p ∈ (0, 1).
Output: A series of matrix (A0, · · · ,Ad)
2: L0 ← SparsifyEulerian((L, p/(d+ 1), 1/20))
3: A0 = I−D−1/2L0D

−1/2.
4: for i = 0, · · · d− 1 do
5: A(α)

i ← αI + (1− α)Ai
6: Ai+1 ← SparsifySquare(D1/2A(α)

i D1/2, p/(d+ 1), ε)
7: Ai+1 = D−1/2Ai+1D

−1/2.
8: end for
9: return A0, · · · ,Ad

10: end procedure

1. A0, . . . ,Ad is a (d, α, ε)-chain,

2. nnz(Ai) = Õ(nε−2) for all i, and

3. I−A0 is a (1/20)-approximation of D−1/2LD−1/2.

Proof: We will skip the proof of correctness because of space reason. Please refer to Lemma
4.8 from [CKP+16a].

4.4 Square-sparsification chain: Properties and Error Bound
We will introduce a few properties of the chain we just constructed. We do not intend to prove every
single one of them; Instead, we would like to prove the main theorem based on those properties.

• (Constant factor change, Lemma 4.9 from [CKP+16a]) κ(I − UAi , I − UAi−1
) ≤ 21,∀i ∈

[d], α = 1/4, d ≥ 1.

• (Triangle inequality of approximate pseudoinverse, Lemma 4.10 from [CKP+16a]) If matrix
Z is an ε-approximate pseudoinverse of M with respect to U, and M̃+ is an ε′-approximate
pseudoinverse of Z+ with respect to U, and has the same left and right kernels as M and Z,
then M̃+ produces an (ε+ ε′ + εε′)-approximate pseudoinverse for M with respect to U.

• (Pseudoinverse of approximation is good approximate pseudoinverse of original, Lemma
4.11 from [CKP+16a]) Let M be any matrix with UM positive semidefinite, such that
ker(M) = ker(M>) = ker(UM). Suppose that M̃ is M’s ε−approximation, then M̃+ is
an 2ε− approximate pseudoinverse for M with respect to UM

• (Preserved under right multiplication, Lemma 4.12 part 1 from [CKP+16a]) Let C ∈ Rn×n

such that both C and C> are invariant on ker(M), then Z is an ε-approximate pseudoinverse
for CM with respect to U if and only if ZC is an ε-approximate pseudoinverse for M with
respect to U.

• (Approximately preserved under norm change, Lemma 4.12 part 2 from [CKP+16a]) If Z
is an ε-approximate pseudoinverse for M with respect to U, then for any symmetric PSD

matrix Ũ, such that ker(Ũ) = ker(U), Z is an (ε ·
√
κ(Ũ,U))-approximate pseudoinverse of

M with respect to Ũ

Equipped with the above property, we can then prove the lemma below which formally bound
the amount of error accumulated:

Lemma 16. (Lemma 4.13 from [CKP+16a]) Let the sequence A0,A1, · · · ,Ad be a (d, ε, α)-chain
as specified in Definition 14, with ε ≤ 1/2 and α = 1/4. Using the notation from Definition 14,
consider the matrix

¯Zi,i+∆ = (1− α)∆(I−Ai+∆)+(I +A(α)
i+∆−1) · · · I +A(α)

i ,

for any i,∆ ≥ 0. Then ¯Zi,i+∆ is an (exp(5∆) · ε)-approximate pseudoinverse of IIbf − Ai with
respect to I−UAi .

10

Proof. Let’s prove by induction on ∆.
Base Case: ∆ = 0, it’s trivial since Z̄i,i+0 = (I−A+

i), so it is 0-approximation.
Induction Hypothesis: Assume that the claim is true for ∆− 1, i.e.

Z̄i+1,i+∆ = (1− α)∆−1(I−Ai+∆)+(I +A(α)
i+∆−1) · · · (I +A(α)

i+1)

is an (exp(5(∆− 1))ε)-approximate pseudoinverse of I−Ai+1 with respect to I−UAi+1
.

Inductive Step: By “constant factor change” property, we know that when α = 1/4, I−UAi
and I − UAi−1

will not differ too much – actually, the relative condition number is less than
21. Then following “Approximately preserved under norm change” property, Z̄i+1,i+∆ is also a
(
√

21 exp(5(∆−1))ε)-approximate pseudoinverse of I−Ai+1 with respect to the new norm, I−UAi .
Then, since I − Ai+1 is an ε-approximation of I − (A(α)

i)2, using the property “Pseudoinverse
of approximation is good approximate pseudoinverse of original”, the pseudoinverse of I − Ai+1,
(I−Ai+1)+, is a 2ε-approximate pseudoinverse of I− (A(α)

i)2 with respect to I−U
(A(α)

i)2 .
Now, to make the norm the same, we need to change the norm again and find the relative

condition number between old norm I −U
(A(α)

i)2 and expected new norm I −UAi . Some linear
algebra tricks tell us :

κ(I−U
(A(α)

i)2 , I−UAi) ≤
28

3
≤ 7

so we know that (I − Ai+1)+ is a 7ε-approximation pseudoinverse of I − (A(α)
i)2 with respect

to I−UAi .
Now: (I − Ai+1)+ (Denote as Z) is a 7ε-approximation pseudoinverse of I − (A(α)

i)2(Denote
as M), Z̄i+1,i+∆(Denote as M̃+) is a (

√
21 exp(5(∆ − 1))ε)-approximate pseudoinverse of I −

Ai+1(Denote as Z+), both with respect to I−UAi , we can use the “Triangle inequality of approx-
imate pseudoinverse” to conclude that Z̄i+1,i+∆ is an ε′-approximate pseudoinverse of I− (A(α)

i)2

with respect to I−UAi where

ε′ = (
√

21 exp(5(∆− 1))ε) + 7ε+ (
√

21 exp(5(∆− 1))ε) · 7ε ≤ 50 exp(5(∆− 1))ε

.
Finally, note that I − (A(α)

i)2 = (1 − α)(I + A(α)
i) · (I − Ai). Then by “Preserved under right

multiplication”, we move (1− α)(I +A(α)
i) to the right hand side of Z̄i+1,i+∆ and conclude that

Z̄i+1,i+∆ · (1− α) · (I +A(α)
i) = Z̄i,i+∆

is a 50 exp(5(∆−1))ε ≤ exp(5∆)ε-approximate pseudoinverse of I−Ai with respect to I−UAi ,
completing the proof. �

4.5 Combining Richardson Iteration with Square-Sparsification Chain
In this subsection, we finally combine the preconditioned Richardson iteration and the square-
sparsification chain to obtain an almost-linear time solver for Eulerian Laplacians. As discussed
above, blindly apply square-sparsification will accumulate error too fast. Therefore, we need to
reduce the error somehow using preconditioned Richardson iteration. To achieve so, we break the
d iterations to ∆-size chunks.

Let’s expand the product expansion from i to i+ ∆:

(I−Ai)+ ≈ (1−α)∆ (I−A(α)
i+∆)+︸ ︷︷ ︸

Recursive call to find approx. pseudoinverse with εlo

∆ items, each has # of nnz at most Õ(n/ε2)︷ ︸︸ ︷
(I +A(α)

i+∆−1)(I +A(α)
i+∆−2)...(I +A(α)

i)

We utilize the last lemma in the previous section to turn an approximate pseudoinverse of
(I − A(α)

i+∆)+ into an approximate pseudoinverse for (I − A(α)
i)+ (with larger error). The error

accumulated in this process is then removed via preconditioned Richardson iteration. Our base case
would be (I−A(α)

d)+, which is well-conditioned, so we can approximately apply its pseudoinverse
using a standard iterative method.

Below we provide the pseudocode for the “core” of our recursive solver: the Solve function and
the complete algorithm:

11

Algorithm 6 Solve

1: procedure Solve((Ai · · · Ad), λ̂, ε)
Input: Matrices Ai · · · Ad forming a subsequence of a (d, ε̂, 1/4)-chain, a lower bound λ̂ on

λ∗(D
−1/2LD−1/2), accuracy ε

Output: (Implicit) matrix that is an ε-approximate pseudoinverse of I−Ai with respect to I−UAi

2: if i = d then
3: l← min (1/4, 1.125d · 0.9 · λ̂)
4: return PreconRichardson(I−Ad, l4Iim(I−Ad), 1,

8
l2 log 1/ε)

5: end if
6: ∆← min (

√
d log d, d− i)

7: Z̃i ← (1− α)∆ · Solve((Ai+∆ · · · Ad), λ̂, exp(−5∆)/30) · (I +A(1/4)
i+∆−1) · · · (I +A(1/4)

i)

8: PreconRichardson(I−Ai, Z̃i, 1, log(1/ε))
9: end procedure

Algorithm 7 SolveEulerian

1: procedure SolveEulerian(L, ε,~b)
Input: Eulerian Laplacian L = D−A>, accuracy ε, vector ~b ⊥ 1
Output: An approximate solution x to Lx = b in the sense that ||x− L+b||UL ≤ ε||L+b||UL .
2: Computer estimate λ̂ of the second eigenvalue of UD−1/2LD−1/2

3: d← 6 log(1/λ̂)
4: ε̂ = exp(−5

√
d log d)/30

5: (A0, · · · ,Ad)← BuildChain(L, d, 1/4, ε̂, 1/n2)

6: Atmp ← Solve((A0, · · · ,Ad), λ̂, ε̂)
7: Z̃← PreconRichardson(D−1/2LD−1/2,Atmp1, 10 log(1/ε))

8: return D−1/2Z̃D−1/2~b
9: end procedure

Runtime: Following the Lemma 15, it first takes

Õ(m+ nd · eO(
√
d log d))

to build the square-sparsification chain of length d = O(log κ).
Then we examine the recursion part. We know that in each iteration, we first use the square

sparsification chain to obtain the approximate pseudoinverse (with high error accumulated) in
time:

Ti,εhi = Ti+∆,εlo + Õ(∆nε−2
spar)

Since it comprises of finding low-error approximate pseudoinverse for i + ∆, plus ∆ sparse
matrix vector multiplication which has at most nε−2

spar non-zero entries each.
The second part is to run preconditioned Richardson iteration to lower the error. We know

that preconditioned Richardson will guarantee the U-norm of the error to decrease by a factor of
ε in each iteration. To decrease from εhigh to εlo, we will then need O(log εlo

log εhi
) iterations. Since we

need to apply this error lowering technique once in each iteration, it takes time:

Ti,εlo = O(
log εlo
log εhi

)Ti,εhi = O(
log εlo
log εhi

)(Ti+∆,εlo + Õ(∆nε−2
spar))

Setting εlo = 1/10, εspar+εlo = 2−Ω(∆), εspar = εlo = 2−Θ(∆), we can simplify the above equation
to:

Ti,εlo = O(∆)Ti+∆,εlo + Õ(n2Θ(∆))

.
Note that the time used to find base case I − A(α)

d using a standard iterative method is less
than Õ(n2Θ(∆)) which can be absorbed into the additive term, so it does not affect the time bound
much.

12

After getting the recurrence equation, we need to get the depth of the recursion tree. We can
think of the whole algorithm as producing a recursion tree with O(∆)dd/∆e nodes in total, and at
each we add Õ(n2Θ(∆)) (from the recurrence relations), and set ∆ =

√
d log d =

√
log κ log log κ,

we get the final bound:

Õ(m+ nd · eO(
√
d log d)) + T0,εlo = Õ(m+ nd · eO(

√
d log d)) +O(∆)dd/∆eÕ(n2Θ(∆))

= Õ(m+ nd · eO(
√
d log d)) + nO(∆)O(d/∆)2O(∆)

= Õ(m+ nd · eO(
√
d log d)) + n2O(∆+ d log ∆

∆)

= Õ(m) + n2O(
√

log κ log log κ)

which is exactly the almost-linear-time bound we are looking for.

5 Open Questions and Conclusions
We conclude this report with analysis of the bottlenecks of the algorithms and tentatively propose
alternative methods as open questions for future research.

Bottlenecks:

• From lemma 15, we know that it takes Õ(nnz(L) + nε−2d) time to BUILDCHAIN(L, d, α, ε, p)
which produces A0, . . . ,Ad ∈ Rn×n that with probability 1 − p. So the running time here
is dependent on the number of nonzero entries in the graph sparsifier L̃. But according to
Definition 9, nnz(L̃) is upper bounded by Õ(nε−2). That means the sparsity of the the
Eulerian sparsifier is the bottleneck of the running time.

• For the reduction part, while the technique the author uses is sufficient to improve the
running time bounds, there are discussions that better reduction can be done. More specif-
ically, the second reduction we did not go into detail (as it is not the central of the paper)
removes the exp(log κ) dependencies in the algorithms and replaces with terms in n, which
performs O(log nκ) calls to approximate Eulerian Laplacian solver and involves O(m log(nκ))
additional work. However, the author believes that better reduction can be done to lower
the overhead for reducing condition number to be as low as O(1), since the different scales
would only have minimal overlap, and processing could occur in parallel. More discussion is
available in Appendix F of [CKP+16a].

Open Questions:

• The key success of [CKP+16a] is because instead of figuring out how to properly neglect the
directed structure like previous papers do, this new solver tries to intrinsically work with
asymmetric (directed) objects, and build up the whole framework to properly
capture those characteristics. Then it is tempting to ask: are there any other properties
of asymmetric objects that we can utilize to come up with a better solver?

• The cut sparisification, though very intuitive, does not work well for directed graph case. Do
we have a ‘unified’ definition of sparsification that is natural and intuitive for both undirected
and directed graph?

• A method of sampling edges is sampling by effective resistance by [SS11], which have many
fewer edges than the sparsifier in [ST08]. Can we modify this procedure to do sampling on
directed Eulerian Laplacians? (there may exist difficulties since the spectral sparsifiers in
[SS11] are similar to cut sparsifiers.)

• To speed up sparsification, we normally use decomposition and local clusterings. In the local
clustering problem, one is given a vertex and cluster size as input, and one tries to find a
cluster of low conductance near that vertex of size at most the target size, in time proportional
to the target cluster size. Besides decomposition which has already been used, since the local
clustering coefficient for vertices in directed networks is well-defined, is it possible to apply
local clustering to directed Eulerian graphs?

13

• Besides the parallel solver by [PS14] this paper mostly resembles in method, there exist many
other linear system solvers(for both symmetric and asymmetric), is it possible to construct
a different framework inspired by other methods?

• Systematically developing strong versions of “condition number reducing reductions” is an
important and relevant direction. Can we have better ways to do so? E.g: As highly ill-
conditioned systems often arise under floating point arithmetic (due to the exponent), can
we develop reductions that are robust to floating point arithmetics?

References
[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2)

time. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 47–55, New York, NY, USA, 1996. ACM.

[BSST13] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral
sparsification of graphs: Theory and algorithms. Commun. ACM, 56(8):87–94, August
2013.

[CKP+16a] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup Rao, Aaron
Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains and new
spectral primitives for directed graphs. CoRR, abs/1611.00755, 2016.

[CKP+16b] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Aaron Sidford,
and Adrian Vladu. Faster algorithms for computing the stationary distribution, sim-
ulating random walks, and more. CoRR, abs/1608.03270, 2016.

[Le 14] F. Le Gall. Powers of Tensors and Fast Matrix Multiplication. ArXiv e-prints, January
2014.

[PS14] Richard Peng and Daniel A. Spielman. An efficient parallel solver for sdd linear
systems. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of
Computing, STOC ’14, pages 333–342, New York, NY, USA, 2014. ACM.

[ShT14] Daniel A. Spielman and Shang hua Teng. Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems, 2014.

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, December 2011.

[ST08] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. CoRR,
abs/0808.4134, 2008.

A Notation
Matrices and Vectors: We use bold to denote matrices and I to denote identity matrix. We
use the vector notation when we want to highlight that a certain variable is a vector. Furthermore,
we use ~0, ~1 to represent all zeros and ones vectors, respectively. In = I ∈ Rn×n. For a matrix A, we
use nnz(A) to denote the number of non-zero entries in it. We use im(A) and ker(A) to denote
its image space and kernel respectively. We let A+ denote the (Moore-Penrose) pseudoinverse
of A. For a symmteirc positive semidefinite matrix B, let B1/2 denote the square root of B.
We use κ(A) = ||A||2 · ||A+||2 to represent its condition number and κ(A,B) = κ(A+/2BA+/2)
for their relative condition number. Note that if X ∈ Rn×n is a nonzero diagonal matrix, then
κ(X) =

maxi∈[n] |Xii

mini∈[n] |Xii
. Note that if αB � A � βB, then κ(A,B) ≤ β/α. Let λ∗(A) denote the

smallest non-zero eigenvalue of A.

Positive Semidefinite Ordering: For symmetric matrices A, B ∈ Rn×n, we use A � B to
denote the condition that x>Ax ≤ x>Bx, for all x. We define �, ≺, and � analogously. We
call a symmetric matrix A ∈ Rn×n positive semidefinite (PSD) if A � 0. For vectors x, we
let ||x||A

def
=
√
x>Ax. For asymmetric A ∈ Rn×n, we let UA

def
= 1

2 (A + A>) and note that
x>Ax = x>A>x = x>UAx for all x ∈ Rn×n.

14

Operator Norms: For any norm ||.|| defined on vectors in Rn, we define the seminorm it induces
on Rn×n by ||A|| = maxx 6=0

||Ax||
||x|| for all A ∈ Rn×n. When we wish to make clear that we are

considering such a ratio we use → symbol; e.g., ||A||H→H = maxx 6=0
||Ax||H
||x||H . But we may also

simply write ||A||H
def
= ||A||H→H in this case. For symmetric positive definite H we have that

||A||H→H can be equivalently expressed in terms of ‖.‖2 as ||A||H→H = ||H1/2AH−1/2||2. Also
note that ||A||1 is the maximum l1 norm of a column of A and ||A||∞ is the maximum l1 norm of
a row of A.

Misc: The definition of Õ notation in this report is a bit different to what we discussed in class:
here we suppress terms that are polylogarithmic in n, the natural condition number of the problem
κ, and the desired accuracy ε.

B Review of Undirected Graph Sparsification
Graph sparsification is the approximation of an arbitrary graph by a sparse graph. The sparsifier
for a graph has fewer edges(degrees) but also has similarities in properties to the original graph.
The definitions of "sparse" and "similar" matter a lot: they are given according to what properties
we are looking for about the graphs and probably depend on how we use them in the algorithms.

Notions of Similarities

• Cut similarity [BK96]: When considering weighted graphs, if we want to develop fast algo-
rithms for the minimum cut and maximum flow problems, then we will be interested in the
sum of the weights of edges that are cut when one divides the vertices of a graph into two
pieces. Two weighted graphs on the same vertex set are cut-similar if the sum of the weights
of the edges cut is approximately the same in each such division. Given any weighted undi-
rected graph G, Benczur and Karger showed that one could construct a new graph H with
at most O(n log n/2) edges such that the value of every cut in G is within a multiplicative
factor of 1± ε of its value in H.

• Spectral similarity [BSST13]: Given a weighted graph G = (V,w), the Laplacian quadratic
form of G is defined as the function QG from Rv to R : QG(x) =

∑
(u,v)∈E w(u,v)(x(u)−x(v))2.

If S is a set of vertices and x is the characteristic vector of S (1 inside S and 0 outside). We
say two graphs G = (V,w) and G′ = (V ′, w′) are σ-spectrally similar if QG′(x) ≤ QG(x) ≤
σ ·QG′(x). This definition of spectral similarity is in fact a special case of cut similarity.
For the problem of solving systems of linear equations in Laplacian matrices, if two graphs
are spectrally similar, then through the technique of preconditioning one can use solutions
to linear equations in the Laplacian matrix of one graph to solve systems of linear equations
in the Laplacian of the other.

• Spectral similarity of matrices: For two symmetric matrices A, B are σ-spectrally similar if
B/σ � A � σ · B where A � B is defined as x>Ax ≤ x>Bx for all x ∈ Rn. It implies that
the two matrices have similar eigenvalues. By Courant-Fisher Theorem that

λi(A) = maxS:dim(S)=iminx∈S
x>Ax

x>x

And therefore we can deduce from the above property: LG′/σ � LG � σ · LG′ , i.e. two
graphs are σ-spectrally similar if their Laplacian matrices are.

• Distance Similarity: An alternative to cut- and spectral-similarity if we assign a length to
every edge in a graph.

Undirected Sparsifier For undirected graph G, its (d, σ)-sparsifier G′ is defined to satisfy:

• G′ is σ-spectrally similar to G

• The edges of G′ consist of reweighted edges of G

• G′ has at most d|V | edges

15

Sampling and Decomposition Random sparse graphs are usually good expanders (see Bol-
lobás9 and Friedman17). Therefore, we can obtain a good spectral sparsifier of the complete graph
by random sampling. Spielman and Teng in [ST08] gave the sampling procedure:

• Assign a probability pu,v to each edge (u, v) ∈ G

• select edge (u, v) to be in the graph G′ with probability pu,v

• if edge (u, v) is chosen to be in the graph, multiply its weight by 1/pu,v

This sampling method guarantees E[LG′] = LG. The most important thing is balancing between
a smaller pu,v to generate a sparser graph and a larger pu,v for better approximation.

And [ST08] also gave a theorem that says every graph G has an Ω(log−2 n)-spectral decompo-
sition with a boundary size of at most |E|/2 edges, where boundary of a decomposition is the set
of edges between different vertex sets in the partition.

C Analysis of Sparsification Algorithm
Here we give a analysis sketch of the SparsifyEulerian algorithm.

After the FindDecomposition algorithm which runs in time Õ(nnz(L)), we apply SparsifySub-
graph to each L(i).

For a directed Laplacian L = D−A>, denote its graph symmetrization is SL is SL = diag(UA ·
1)−UA. And diag(SL) denotes the diagonal matrix having same diagonal as SL.

Lemma 17 (Subgraph Sparsification, [CKP+16a] Lemma 3.13). Given a directed Laplacian L
and undirected Laplacian U with spectral gap at least α, v nonzero rows. diag(SL) � diag(U). For
δ ≤ αε/2, SparsifySugraph(L, p, δ) can compute a Laplacian L̃ such that ‖U+/2(L− L̃)U+/2‖2 ≤ ε
and nnz(L̃) = O(vδ−2 log(v/p)), in time O(nnz(L) + vδ−2 log(v/p)).

Proof Sketch. The above lemma follows from the sampling procedure that gives ‖R−1/2(Ã −
A)C−1/2‖2 ≤ ε with probability at least 1−p and the definition of asymmetric matrix approxima-
tion. We can obtain ‖D−1/2

in (L− L̃)D
−1/2
out ‖2 ≤ ε where Din = diag(A>1) and Dout = diag(A1).

So here we can have ‖D−1/2
in (L − L̃)D

−1/2
out ‖2 = ‖D−1/2

in (A − Ã)D
−1/2
out ‖2 ≤ δ with probability

at least 1 − p. By the equivalent form of asymmetric matrix approximation ([CKP+16a] Lemma
3.5), we can deduce ‖U+/2(L − L̃)U+/2‖2 = ~x′(L−L̃)~y′√

(~x′)>U~x′·(~y)>U~y′
≤ 1

α
~x′(L−L̃)~y′√

(~x′)>D~x′·(~y)>D~y′
≤ 2

α‖A −

Ã)D
−1/2
out ‖2 ≤ 2

αδ since Din,Dout � 2D and using ~x′, ~y′ that give max~x,~y 6=0
~x(L−L̃)~y√

(~x)>U~x·(~y)>U~y
.

The running time is easy to see form the steps of SparsifySubgraph. �

Theorem 10 hence follows from the above lemma by taking v = O(n), α = Õ(1) (which is also
a requirement for the FindDecomposition routine) and δ = ε.

16

	Introduction
	Problem Definition and Overview
	Definition

	Reductions
	Directed Graph Sparsification
	Definition of Directed Graph Sparsifier
	Sampling Procedure
	Sparsification and Decomposition Algorithm
	Sparsification of Squared Eulerian Laplacian

	Solving Directed Laplacian Systems
	Overview
	Preconditioned Richardson Iteration
	Square-sparsification chain: Definition and Construction
	Square-sparsification chain: Properties and Error Bound
	Combining Richardson Iteration with Square-Sparsification Chain

	Open Questions and Conclusions
	Notation
	Review of Undirected Graph Sparsification
	Analysis of Sparsification Algorithm

