
Fully-secure Key Policy ABE on Prime-Order

Bilinear Groups

Luke Kowalczyk, Jiahui Liu, Kailash Meiyappan

Abstract

We present a Key-Policy ABE scheme that is fully-secure under
the Decisional Linear Assumption. The construction is essentially a
translation of the classic scheme of [18] from composite-order bilinear
groups to the prime-order setting.

1 Introduction

Since its conception in [31], attribute-based encryption (ABE) has served
as a demonstrably fertile ground for exploring the possible tradeoffs be-
tween expressibility, security, and efficiency in cryptographically enforced
access control. In addition to the potential applications it has in its own
right, the primitive of attribute-based encryption has been a catalyst for
the definitions and constructions of further cryptographic primitives, such
as functional encryption for general circuits. The rich structure of secret
keys demanded by expressive attribute-based encryption has promoted a
continuing evolution of proof techniques designed to meet the challenges in-
herent in balancing large and complex structures on the pinhead of simple
computational hardness assumptions.

The origins of attribute-based encryption can be traced back to identity-
based encryption [10, 5], where users have identities that serve as public keys
and secret keys are generated on demand by a master authority. A desir-
able notion of security for such schemes ensures resilience against arbitrary
collusions among users by allowing an attacker to demand many secret keys
for individual users and attack a ciphertext encrypted to any user not rep-
resented in the set of obtained keys. Proving this kind of security requires a
reduction design that can satisfy the attacker’s demands without fully know-
ing the master secret key. This challenge is exacerbated in the (key-policy)
attribute-based setting, where user keys correspond to access policies ex-
pressed over attributes and ciphertexts are associated with subsets of these
attributes. Decryption is allowed precisely when a single user’s policy is sat-
isfied by a ciphertext’s attribute set. Thus, the structure of allowable keys
that the attacker can request grows more complex as the scheme is equipped
to express more complex policies.
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As a consequence of this, the intuitive and elegant constructions of
attribute-based encryption in bilinear groups in [17, 33] were only proven
secure in the selective security model: a weakened model of security that
requires the attacker to declare the target of attack in advance, before seeing
the public parameters of the system. This limitation of the model allows
the security reduction to embed the computational challenge into its view
of the public parameters of the scheme in a way that partitions the space of
secret keys. Keys that do not satisfy the targeted ciphertext are able to be
generated under the embedding, while keys that do satisfy the ciphertext
cannot be generated. This approach does not extend well to the full security
model, where this artificial limitation on the attacker is lifted.

The first fully secure ABE schemes appeared in [18], using the dual sys-
tem encryption methodology [32] for designing the security reduction. In a
dual system approach, there are typically multiple (computationally indis-
tinguishable) forms of keys and ciphertexts. There are “normal” keys and
ciphertexts that are employed in the real system, and then are various forms
of “semi-functional” keys and ciphertexts. The core idea is to prove security
via a hybrid argument, where the ciphertext is changed to semi-functional
and keys are changed to semi-functional types one by one, until all the keys
are of a semi-functional type incapable of decrypting the semi-functional
ciphertext (it is important that they still decrypt normal ciphertexts, other-
wise the hybrid transitions could be detected by the attacker who can create
normal ciphertexts for itself using the public parameters). Once we reach a
state where the key and ciphertexts distributions provided to the attacker
are no longer bound by correct decrypt behavior, it is much easier for the
reduction to produce these without knowing the master secret key.

The most critical step of these dual system arguments occurs when a
particular key changes from a type that can decrypt the challenge cipher-
text to a type that cannot - the fact that this change is not detected by
the attacker is where the reduction must use the criterion that the access
policy is not satisfied. The security reductions in [18] and many subsequent
works (e.g. [27, 21]) used an information-theoretic argument for this step.
However, this argument requires a great deal of entropy (specifically, fresh
randomness for each attribute-use in a policy). This entropy was supplied
by parameters in the semi-functional space that paralleled the published
parameters of the normal space. This necessitated a blowup in public pa-
rameter and ciphertext sizes, specifically a multiplicative factor of the the
number of attribute-uses allowed by the scheme within individual policies.

In [24], it was observed that the initial steps of a typical dual system
encryption hybrid argument could be re-interpreted as providing a “shadow
copy” of the system parameters in the semi-functional space that does not
have to be committed to when the public parameters for the normal space
are provided. This perspective suggests that one can embed a computational
challenge into these semi-functional space parameters as semi-functional ob-
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jects are produced. For instance, when a portion of these parameters affect
a single semi-functional key that is queried after the semi-functional ci-
phertext, one can essentially embed the challenge in the same way as the
original selective security arguments in [17]. In the reverse case, where the
semi-functional key is queried before the challenge ciphertext, the embed-
ding can be similar to a selective security proof for a ciphertext-policy ABE
scheme, where keys are associated with attributes and ciphertexts are as-
sociated with access policies. In [24], state of the art selective techniques
for KP-ABE and CP-ABE systems were combined into a full security proof,
avoiding the blowup in parameters incurred by the information-theoretic
dual system techniques.

However, even selective security for CP-ABE systems remains a rather
challenging task, and the state of the art technique in [33] introduces an
undesirable q-type assumption into the fully secure ABE scheme. In the
CP-ABE setting, selectivity means that the attacker declares a target access
policy up front. This can then be leveraged by the security reduction to
design public parameters so that it can create keys precisely for sets of
attributes that do not satisfy this target policy. The q-type assumption in
[33] was a consequence of the need to encode a potentially large access policy
into small public parameters. This leaves us still searching for an ideal KP-
ABE scheme in the bilinear setting that has parameter sizes comparable to
the selectively secure scheme in [17] and a full security proof from a simple
assumption such as the decisional linear assumption (DLIN). A security
reduction for such a scheme must seemingly break outside the mold of using
either a purely information-theoretic or purely computational argument for
leveraging the fact that a requested key policy cannot be satisfied by the
challenge ciphertext.

Our Results We present a KP-ABE construction in the prime-order set-
ting which supports LSSS/MSP access policies. The construction’s full se-
curity is based on DLIN.

1.1 Other Related Work

Additional work on ABE in the bilinear setting includes various construc-
tions of KP-ABE and CP-ABE schemes (e.g. [4, 30, 16]), schemes supporting
multiple authorities (e.g. [6, 7, 29, 21]), and schemes supporting large at-
tribute universes (e.g. [22, 28]). Some of the structure for randomization in
our schemes is inspired by [22].

There are also recent constructions of ABE schemes in the lattice set-
ting. The construction of [15] allows access policies to be expressed as cir-
cuits, which makes it more expressive than any known bilinear scheme. It
was proven selectively secure under the standard LWE assumption. Circuit
policies are also supported by the construction in [12] based on multilin-
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ear maps. This scheme is also proven selectively secure, under a particular
computational hardness assumption for multilinear groups. The very recent
multilinear scheme in [13] achieves full security, relying on computational
hardness assumptions in multilinear groups. The fully secure general func-
tional encryption scheme in [34], which relies on indistinguishability obfus-
cation, can also be specialized to the ABE setting.

Some relationships between ABE and other cryptographic primitives
have also been explored. The work of [2] derives schemes for verifiable com-
putation from attribute-based encryption schemes, while [14] use attribute-
based encryption as a tool in designing more general functional encryption
and reusable garbling schemes. Dual system encryption proof techniques
have also been further studied in the works of [20, 9, 34, 1], applied to
achieve leakage resilience in [23, 19, 11], and applied directly to computa-
tional assumptions in [8].

2 Preliminaries

2.1 Composite Order Bilinear Groups

We construct our system in prime order bilinear groups. We let G denote a
group generator - an algorithm which takes a security parameter λ as input
and outputs a description of a bilinear group G. We define G’s output as
(p,G,GT , e), where p is a prime, G and GT are cyclic groups of order p, and
e : G×G→ GT is a map with the following properties:

1. (Bilinear) ∀g, f ∈ G, a, b ∈ Zp, e(ga, f b) = e(g, f)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order p in GT .

We refer to G as the source group and GT as the target group. We assume
that the group operations in G and GT and the map e are computable in
polynomial time with respect to λ, and the group descriptions of G and GT
include a generator of each group.

2.2 Complexity Assumptions

We now present the complexity assumptions we will use to prove the security
of our system. We use the notation x← S to express that element x is chosen
uniformly at random from the finite set S.

2-Linear Assumption (DLIN) The 2-Linear problem is stated as fol-
lows: given a cyclic groupG of prime order p, g, gy1 , gy2 , gy1c1 , gy2c2 , gc1+c2+r ∈
G (where y1, y2, c1, c2 are distributed uniformly in Zp and r is either a uni-
form random element of Zp or 0), output “yes” if r is a random element of
Zp and “no” otherwise.
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Definition 1. 2-Linear Assumption in G: no polynomial time algorithm
can achieve non-negligible advantage in deciding the 2-Linear problem in G.

2.3 Background for ABE

We now give required background material on Linear Secret Sharing Schemes,
the formal definition of a KP-ABE scheme, and the security definition we
will use.

2.3.1 Linear Secret Sharing Schemes

Our construction uses linear secret-sharing schemes (LSSS). We use the
following definition (adapted from [3]). In the context of ABE, attributes
will play the role of parties and will be represented as indexes i ∈ [k] for a
fixed k.

Definition 2. 2(Linear Secret-Sharing Schemes (LSSS)) A secret sharing
scheme Π over a set of attributes is called linear (over Zp) if

1. The shares belonging to all attributes form a vector over Zp.

2. There exists an `× n matrix Λ called the share-generating matrix for
Π. The matrix Λ has ` rows and n columns. For all i = 1, . . . , `,
the ith row of Λ is labeled by an attribute i. When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be
shared and r2, . . . , rn ∈ Zp are randomly chosen, then Λv is the vector
of ` shares of the secret s according to Π. The share (Λv)i = λi belongs
to attribute i.

We note the linear reconstruction property: we suppose that Π is an
LSSS. We let S denote an authorized set. Then there is a subset S∗ ⊆ S
such that the vector (1, 0, . . . , 0) is in the span of rows of Λ indexed by S∗,
and there exist constants {ωi ∈ Zp}i∈S∗ such that, for any valid shares {λi}
of a secret s according to Π, we have:

∑
i∈S∗

ωiλi = s. These constants {ωi}

can be found in time polynomial in the size of the share-generating matrix
Λ [3]. For unauthorized sets, no such S∗, {ωi} exist.

2.3.2 KP-ABE Definition

A key-policy attribute-based encryption system consists of four algorithms:
Setup, Encrypt, KeyGen, and Decrypt.

Setup(λ,U) → (PP,MSK) The setup algorithm takes in the security pa-
rameter λ and the attribute universe description U . It outputs the public
parameters PP and a master secret key MSK.
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Encrypt(PP,M, S) → CT The encryption algorithm takes in the public
parameters PP, the message M , and a set of attributes S. It will output a
ciphertext CT. We assume that S is implicitly included in CT.

KeyGen(MSK,PP,A) → SK The key generation algorithm takes in the
master secret key MSK, the public parameters PP, and an access structure
A over the universe of attributes. It outputs a private key SK which can
be used to decrypt ciphertexts encrypted under a set of attributes which
satisfies A. We assume that A is implicitly included in SK.

Decrypt(PP,CT, SK)→M The decryption algorithm takes in the public
parameters PP, a ciphertext CT encrypted under a set of attributes S, and
a private key SK for an access structure A. If the set of attributes of the
ciphertext satisfies the access structure of the private key, it outputs the
message M .

2.3.3 Full Security for KP-ABE Systems

We define full security for KP-ABE Systems in terms of the following game:

Setup The challenger runs the Setup algorithm and gives the public pa-
rameters to the attacker.

Phase 1 The attacker queries the challenger for private keys corresponding
to access structures.

Challenge The attacker declares two equal length messages M0,M1 and
a set of attributes A ⊆ U where U is the attribute universe such that A
does not satisfy the access structure of any of the keys requested in Phase
1. The challenger flips a random coin β ∈ {0, 1}, encrypts Mβ under S to
yield ciphertext CTβ and gives CTβ to the attacker.

Phase 2 The attacker queries the challenger for private keys corresponding
to access structures that are not satisfied by S.

Guess The attacker outputs a guess β′.

Definition 3. The advantage of an attacker A in this game is defined as
AdvKP−ABEA (λ) = Pr[β = β′]− 1

2 .

Definition 4. A key-policy attribute based encryption scheme is fully secure
if no polynomial time algorithm can achieve a non-negligible advantage in
the above security game.
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2.3.4 Transformation from One-Use to Multiple Use KP-ABE

Given a KP-ABE scheme which is fully-secure when attributes are used at
most once in access policies, we can obtain a KP-ABE scheme which is fully-
secure when each attribute is used at most some constant number of times
in access policies using a standard transformation. Essentially, multiple uses
of an attribute are treated as new “attributes” in the one-use system. For
example, if we want an attribute x to be able to be used up to kx times in
access policies, we will instantiate our one-use system with kx “attributes”
x : 1, ..., x : kx. Each time we want to label a row of an access matrix Λ
with x, we label it with x : i for a new value of i. Each time we want to
associate a subset S of attributes to a ciphertext, we instead use the set
S′ = {x : 1, ..., x : kx | x ∈ S}. We can then employ the one-use KP-ABE
scheme on this new larger set of “attributes” and retain its full security and
functionality.

Clearly, this transformation comes at a cost. Typically, the ciphertext
and public parameter size of the KP-ABE scheme resulting from the trans-
formation now scale linearly with the number of attribute-uses allowed in
access policies, not just the number of attributes.

3 Prime Order KP-ABE

We will now present a one-use KP-ABE scheme built with prime order bilin-
ear groups and proven secure based on the Decisional Linear Assumption.
We remind the reader that the same generic transformation from section
2.3.4 can be used to obtain a version of the scheme that works for multiple
uses of attributes in access policies. First we present some additional tools
used:

3.1 Prime Order Bilinear Groups

We now let G denote a bilinear group of prime order p, with bilinear map
e : G × G → GT . In addition to referring to individual elements of G, we
will also consider “vectors” of group elements. For ~v = (v1, ..., vn) ∈ Znp and

g ∈ G, we write g~v to denote the n-tuple of elements of G:

g~v := (gv1 , ..., gvn)

We can also perform scalar multiplication and exponentiation in the expo-
nent. For any a ∈ Zp and ~v, ~w ∈ Zp, we have:

ga~v :=(gav1 , ..., gavn)

g~v+~w =(gv1+w1 , ..., gvn+wn)
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We define en to denote the product of the component wise pairings:

en(g~v, g ~w) :=
n∏
i=1

e(gvi , gwi) = e(g, g)~v·~w

Here, the dot product is taken modulo p.

We will use the notation ~b1, = g
~b1 , ..., ~b6,j = g

~b6,j (and similarly for the
starred vectors), where scalar multiplication of bold vectors denotes expo-
nentiation and addition denotes the normal component-wise group opera-

tion; i.e: a~b1,j + b~b1,j = g(a+b)~b1,j . This notation allows us to avoid having
to write large sums in exponents.

Dual Pairing Vector Spaces We will employ the concept of dual pairing
vector spaces from [25, 26]. We will choose two random sets of vectors:

B := {~b1,~b2,i,~b3,~b4,i,~b5,~b6,i}i∈[k]

and

B∗ := {~b∗1,~b∗2,i,~b∗3,~b∗4,i,~b∗5,~b∗6,i}i∈[k]

of Z3+3k
p subject to the constraint that they are “dual orthonormal” in the

following sense:

~bi ·~b∗i = 1 (mod p), ~bi is orthogonal to all other vectors in B∗ for i = 1, 3, 5

~bi,j ·~b∗i,j = 1 (mod p), ~bi,j is orthogonal to all other vectors in B∗ for i = 2, 4, 6, j ∈ [k]

We note that choosing sets (B,B∗) at random from sets satisfying these
dual orthonormality constraints can be realized by choosing a set of 3 + 3k
vectors B uniformly at random from Z3+3k

p (these vectors will be linearly
independent with high probability), then determine each vector of B∗ from
its orthonormality constraints. We will denote choosing random dual or-
thonormal sets this way as: (B,B∗)← Dual(Z3+3k

p )

3.2 Prime Order KP-ABE Construction

In a typical execution of a dual system encryption proof strategy in the
prime-order setting, we use orthogonal subspaces in the exponents to play
the role of normal and semi-functional components. Since the semi-functional
vectors are never published, they can serve as “hidden parameters” that sup-
ply fresh entropy, even conditioned on the public parameters. We take the
classic approach of using a fresh pair of vectors for each (one-time) attribute
to supply enough entropy to make an information-theoretic switch from a
nominal semi-functional key (one that has semi-functional components but
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still manages to correctly decrypt the semi-functional ciphertext) to a real
semi-functional one (a key that no longer decrypts the semi-functional ci-
phertext correctly).

Again, we identify the attribute universe U for this single-use KP-ABE
with the set [k].

Setup(λ,U) → PP,MSK The setup algorithm chooses a bilinear group
G of prime order p. It then chooses random group element g ∈ G and
exponents α, α′ ← Zp. For i ∈ [k] where k = |U| it chooses values ai ← Zp
and generates a random dual orthonormal set:

(B,B∗) = ({~b1,~b2,i,~b3,~b4,i,~b5,~b6,i}

{~b∗1,~b∗2,i,~b∗3,~b∗4,i,~b∗5,~b∗6,i})← Dual(Z3+3k
p )

The public parameters PP are:

p, g, e(g, g)α, e(g, g)α
′
,

{~b∗1, ~b∗3}

{ai~b∗2,i, ai~b∗4,i}i∈[k]

(We use the bolded vector notation to denote the vector in the exponent, as
detailed in subsection 3.1.) The MSK is:

α, α′, {~b1, ai~b1, ~b2,i, ~b3, ai~b3, ~b4,i : i ∈ [k]}

Such a construction is equipped to create keys for access policies which
include attributes i ∈ U .

KeyGen(MSK,Λ, PP ) → SK The key generation algorithm takes in
the public parameters, master secret key, and LSSS access matrix Λ. First,
the key generation algorithm generates {λi, λ′i}: linear sharings of α and
α′ according to policy matrix Λ (the reader is referred to section 2.3.1 for
details). For each attribute i labeling a row in the policy matrix Λ, it then
chooses exponents yi, y

′
i ← Zp and outputs the secret key:

SKΛ = {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i}i labels ∈Λ

Encrypt(M,S, PP )→ CT The encryption algorithm first draws s, s′ ←
Zp.

CT = Me(g, g)αs+α
′s′ , {s~b∗1 − sai~b∗2,i

+s′~b∗3 − s′ai~b∗4,i}i∈S
(This implicitly includes S)
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Decrypt(CT, SK,PP ) → M We let S∗ correspond to the set of at-
tributes associated to ciphertext CT , and Λ be the policy matrix. If S∗ satis-

fies Λ, the decryption algorithm computes constants ωi such that
∑
i∈S∗

ωiλi =

α and
∑
i∈S∗

ωiλ
′
i = α′ (recall section 2.3.1). It then computes:

∏
i∈S∗

en

(
s~b∗1 − sai~b∗2,i + s′~b∗3 − s′ai~b∗4,i,

λi~b1 + yiai~b1 + yi~b2,i + λ′i
~b3 + y′iai

~b3 + y′i
~b4,i

)ωK

=
∏
i∈S∗

(
e(g, g)sλi

~b1·~b∗1e(g, g)syiai
~b1·~b∗1

e(g, g)−syiai
~b2,i·~b∗2,i

e(g, g)s
′λ′i
~b3·~b∗3e(g, g)s

′y′iai
~b3·~b∗3

e(g, g)−s
′y′iai

~b4,i·~b∗4,i
)ωi

=
∏
i∈S∗

(e(g, g)sλie(g, g)s
′λ′i)ωi

= e(g, g)

s

∑
i∈S∗

ωiλi + s′
∑
i∈S∗

ωiλ
′
i

= e(g, g)sα+s′α′

The message can then be recovered by computing: Me(g, g)αs+α
′s′/e(g, g)αs+α

′s′ =
M . This also shows correctness of the scheme.

4 Prime Order KP-ABE Security Proof

Our security proof uses a hybrid argument over a sequence of games. We
let Gamereal denote the real security game. The rest of the games use semi-
functional keys and ciphertexts, which we will now describe.

Semi-functional Ciphertext We will use 2 types of semi-functional ci-
phertexts. To produce a semi-functional ciphertext for an attribute set S,
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one first calls the normal encryption algorithm to produce a normal cipher-
text consisting of:

Me(g, g)αs+α
′s′ , {s ~b∗1 − sai~b

∗
2,i

+s′~b∗3 − s′ai~b∗4,i
:(∀i ∈ S)}

One then chooses s′′ ← Zp. For all i ∈ [k], ãj ← Zp are drawn and
fixed if they do not already exist (in a semi-functional key, for instance).
The remaining composition of the semifunctional ciphertext depends on the
type of ciphertext desired:

Type 0 The semi-functional ciphertext of Type 0 is formed as:

Me(g, g)αs+α
′s′ , {s~b∗1 − sai~b∗2,i

+s′~b∗3 − s′ai~b∗4,i
+s′′~b∗5 − s′′ai~b∗6,i}i∈S

Notice that in this type, the ãi are unused (instead, the normal ai are re-used
in the semifunctional space).

Type 1 The semi-functional ciphertext of Type 1 is formed as:

Me(g, g)αs+α
′s′ , {s~b∗1 − sai~b∗2,i

+s′~b∗3 − s′ai~b∗4,i
+s′′~b∗5 − s′′ãi~b∗6,i}i∈S

Notice that in this type, the ãi in the semifunctional space have been decou-
pled from the ai in the normal space (they are chosen independently of the
ai in the normal space and public parameters and exist nowhere else except
possibly in a semifunctional key of Type 1Z or 1R (to be defined)).

Semi-functional Keys We will use 5 types of semi-functional keys. To
produce a semi-functional key for an access policy Λ, one first calls the
normal key generation algorithm to produce a normal key consisting of:

SKΛ = {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i}i labels ∈Λ

The first 4 types of keys fall under 2 classes: a “Z” class and an “R” class.
For Z-class keys one computes a linear sharing of 0 under access policy
Λ, creating shares λ′′i . For R-class keys one computes a linear sharing of a
random element u of Zp which is fixed and used in all R type keys. u is shared
under access policy Λ, creating shares λ′′i . For each i ∈ [k], ãi ← Zp are
drawn and fixed if they do not already exist (in a semifunctional ciphertext,
for instance). The next steps depend on the type of the key:
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Type 0 For each i in the normal key, one chooses a new y′′i ← Zp and
forms the semi-functional key of type 0Z or 0R (depending on the sharing
λ′′i ) as:

SK ′Λ = {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i

+λ′′i
~b5 + y′′i ai

~b5 + y′′i
~b6,i}i labels ∈Λ

Notice that in this type, the ãi are unused (instead, the normal ai are re-used
in the semifunctional space).

Type 1 For each i in the normal key, one chooses a new y′′i ← Zp and
forms the semi-functional key of type 0Z or 0R (depending on the sharing
λ′′i ) as:

SK ′Λ = {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i

+λ′′i
~b5 + y′′i ãi

~b5 + y′′i
~b6,i}i labels ∈Λ

Notice that in this type, the ãi in the semifunctional space have been decou-
pled from the ai in the normal space (they are chosen independently of the
ai in the normal space and public parameters and exist nowhere else except
possibly in a semifunctional ciphertext of Type 1).

We now have defined 4 types of keys: 0Z, 0R, 1Z, 1R, where the number
denotes the class and the letter (Z/R) describes whether the λ′′i share zero
or a random element of Zp respectively. There is one final type of key: type
2R:

Type 2R Using shares λ′′i of u (which is randomly chosen from Zp and
fixed if it has not already been fixed), one forms the semi-functional key of
type 2R as:

SK ′Λ = {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i

+λ′′i
~b5}i labels ∈Λ

Proof Structure Our hybrid proof takes place over a series of games
defined as follows: Letting Q denote the total number of key queries that the
attacker makes, we define Game`0 , Game`1 , Game`2 , Game`3 , and Game`4
for ` = 0, ..., Q. In each game, the first ` keys are semi-functional of type
2R, and all other keys are normal. They differ in the construction of the `th
key and the ciphertext as follows:
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Game`0 In this game, the `th key is type 0Z and the ciphertext is type 0.

Game`1 In this game, the `th key is type 1Z and the ciphertext is type 1.

Game`2 In this game, the `th key is type 1R and the ciphertext is type 1.

Game`3 In this game, the `th key is type 0R and the ciphertext is type 0.

Game`4 In this game, the `th key is type 2R and the ciphertext is type 0.
Note that under this definition, we have that in Game04 , the ciphertext

given to the attacker is type 0 and the keys are all normal.
The outer structure of our hybrid argument will progress as follows.

First, we transition from Gamereal to Game04 , then to Game10 , next to
Game11 , next to Game12 , next to Game13 , next to Game14 and then to
Game20 and so on. We then arrive at GameQ4 , where the ciphertext is
semifunctional of type 0 and all of the keys given to the attacker are semi-
functional of type 2R.

There are two more games in the security proof: Gamepenultimate and
Gamefinal. We transition from GameQ4 to Gamepenultimate and lastly to
Gamefinal which will complete our proof. The games are defined as follows:

Gamepenultimate In this game, all keys are semi-functional of type 0R and
the ciphertext is semi-functional of type 0.

Gamefinal uses a semi-functional ciphertext of a new type: type X, which
we will now define:

Type X The semi-functional ciphertext of Type X is formed as:

Me(g, g)αs+α
′s′ , {x~b∗1 − xai~b∗2,i

+s′~b∗3 − s′ai~b∗4,i
+s′′~b∗5 − s′′ai~b∗6,i}i∈S

for an x← Zp.

Gamefinal In this game, all keys are semi-functional of type 0R and the
ciphertext is semi-functional of type X.

Note that a ciphertext of type X information-theoretically hides its mes-
sage M because the e(g, g) blinding factor is raised to an exponent s which
is unused anywhere else. So, in Gamefinal, no polynomial time adversary
will be able to achieve advantage in the security game, completing our proof.

Our hybrid argument is accomplished in the following lemmas:
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Lemma 5. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between Gamereal and
Game04.

Proof. If an algorithm A has non-negligible difference in advantage between
Gamereal and Game04 , then we could use A to achieve non-negligible ad-
vantage in the 2-Linear Problem as follows:

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0
or is a uniform random element of Zp, consider the following simulator B in
the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, ai ←
Zp, and generating orthonormal sets (D,D∗)← Dual(Z3+3k

p ).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1 = y1
~d∗1, + y1c1

~d∗5
~b∗2,i = y1

~d∗2,i + y1c1
~d∗6,i

~b∗3 = y2
~d∗3 + y2c2

~d∗5
~b∗4,i = y2

~d∗4,i + y2c2
~d∗6,i

~b∗5 = ~d∗5
~b∗6,i = ~d∗6,i

~b1 = y−1
1
~d1

~b2,i = y−1
1
~d2,i

~b3 = y−1
2
~d3

~b4,i = y−1
2
~d4,i

~b5 = ~d5 − c1
~d1 − c2

~d3
~b6,i = ~d6,i − c1

~d2,i − c2
~d4,i

(The distribution of the sets (B,B∗) produced this way is identical to that
produced by Dual(Z3+3k

p ), since there is a one to one mapping between any

sets produced this way and the sets produced by the Dual(Z3+3k
p ) proce-

dure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1, ~b∗3}

{ai~b∗2,i, ai~b∗4,i}i∈[k]

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can

be made by the simulator by taking combinations of g, gy1 , gy2 , gy1c1 , gy2c2

raised to the appropriate vectors.)
The simulator then gives the public parameters to A. To respond to key

requests for policies Λ (all keys are honest in both games), the simulator first
computes λ̃i, λ̃

′
i: sharings of α̃, α̃′ respectively. For each i attribute label in

Λ, it generates ỹi, ỹ
′
i ← Zp and outputs:

SKΛ = {λ̃iy1
~b1 + ỹiaiy1

~b1 + ỹiy1
~b2,i

+λ̃′iy2
~b3 + ỹ′iaiy2

~b3 + ỹ′iy2
~b4,i

:(∀i labels ∈ Λ)}

14



Note that the simulator cannot make any of the ~bx in this honest key alone
(because of the y−1

1 , y−1
2 terms). However, the simulator is able to make

y1
~b1 = ~d1, for example, so it can construct keys as described above. The

distribution of keys constructed this way is identical to the distribution of
normal honest keys where yi = ỹiy1 and y′i = ỹ′iy2, which are uniformly
distributed elements of Zp. The shares λi = λ̃iy1 and λ′i = λ̃′iy2 are then
shares of α̃y1 and α̃′y2 respectively, which are uniformly distributed elements
of Zp and appropriately matching in the public parameters.

To return the challenge ciphertext for a set of attributes S, The following
ciphertext is then constructed and provided:

Me(g, g)y1α̃se(g, g)y2α̃
′s,

{g~d∗1g~d∗3T ~d∗5

(g
~d∗2,ig

~d∗4,iT
~d∗6,i)−ai}i∈S

which, using the definition of our sets (B,B∗)s equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{y−1
1
~b∗1 − y−1

1 ai~b
∗
2,i

+y−1
2
~b∗3 − y−1

2 ai~b
∗
4,i

+r~b∗5 − rai~b∗6,i}i∈S

Notice that for T = gc1+c2+r, if r = 0, then the distribution of ciphertexts
formed is identical to the honest case where s = y−1

1 , s′ = y−1
2 , which are

distributed as uniformly random elements of Zp, so the simulator’s behavior
is exactly that of Gamereal.

If r is a uniform randomly chosen element of Zp, the ciphertext formed is
distributed exactly like a semi-functional ciphertext of type 0 where s = y−1

1 ,
s′ = y−1

2 , s′′ = r, which are all distributed as uniformly random elements of
Zp, so the simulator’s behavior is exactly that of Game04 .

Therefore, any adversary with non-negligible difference in advantage
between Gamereal and Game04 could be used to achieve the same non-
negligible advantage in deciding the 2-Linear Problem. By assumption this
is not possible, so such an adversary cannot exist.

Lemma 6. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between Game(`−1)4 and
Game`0 for any ` from 1 to Q.

Proof. If an algorithm A has non-negligible difference in advantage between
Game(`−1)4 and Game`0 for some ` in {1, ..., Q}, then we could use A to
achieve non-negligible advantage in the 2-Linear Problem as follows:
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Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0
or is a uniform random element of Zp, consider the following simulator B in
the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, ai ←
Zp, and generating orthonormal sets (D,D∗)← Dual(Z3+3k

p ).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1 = ~d∗1
~b∗2,i = ~d∗2,i

~b∗3 = ~d∗3
~b∗4,i = ~d∗4,i

~b∗5 = ~d∗5 − c1
~d∗1 − c2

~d∗3
~b∗6,i = ~d∗6,i − c1

~d∗2,i − c2
~d∗4,i

~b1 = ~d1 + c1
~d5

~b2,i = ~d2,i + c1
~d6,i

~b3 = ~d3 + c2
~d5

~b4,i = ~d4,i + c2
~d6,i

~b5 = ~d5
~b6,i = ~d6,i

(The distribution of sets (B,B∗) produced this way is identical to that pro-
duced by Dual(Z3+3k

p ), since there is a one to one mapping between any sets

produced this way and the sets produced by the Dual(Z3+3k
p ) procedure.)

The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1, ~b∗3}

{ai~b∗2,i, ai~b∗4,i}i∈S

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can

be easily made by the simulator from the ~d∗ vectors)
The simulator then gives the public parameters to A.
To return the challenge ciphertext for a set of attributes S when it is

requested, first, s′′ ← Zp is chosen. The following ciphertext is then con-
structed and provided:

Me(g, gy1α̃)s
′′
e(g, gy2α̃

′
)s
′′
,

{(g~d∗5)s
′′

(g
~d∗6,i)−s

′′ai}i∈S
which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{c1s
′′~b∗1 − c1s

′′ai~b
∗
2,i

+c2s
′′~b∗3 − c2s

′′ai~b
∗
4,i

+s′′~b∗5 − s′′ai~b∗6,i}i∈S
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Which is properly distributed as a semi-functional ciphertext of type 0 (ap-
propriate for both games) where s = c1s

′′, s′ = c2s
′′ are both independently

and uniformly randomly distributed in Zp.
To respond to key requests for policies Λ, the simulator first computes an

honest key by creating λ̃i, λ̃
′
i: sharings of α̃, α̃′ under policy Λ respectively.

SKΛ = {
(

(gy1)
~d1(gy1c1)

~d5
)λ̃i (

(gy2)
~d3(gy2c2)

~d5
)λ̃′i

(
(gy1)

~d1(gy1c1)
~d5
)ỹiai (

(gy2)
~d3(gy2c2)

~d5
)ỹ′iai

(
(gy1)

~d2,i(gy1c1)
~d6,i
)ỹi (

(gy2)
~d4,i(gy2c2)

~d6,i
)ỹ′i}i labels ∈Λ

which, using the definition of our sets (B,B∗), is equal to:

SKΛ = {λ̃iy1
~b1 + ỹiy1ai~b1 + ỹiy1

~b2,i

+λ̃′iy2
~b3 + ỹ′iy2ai~b3 + ỹ′iy2

~b4,i}i labels ∈Λ

The distribution of keys constructed this way is identical to the distribution
of normal honest keys where yi = ỹiy1 and y′i = ỹ′iy2, which are uniformly
distributed. The shares λi = λ̃iy1 and λ′i = λ̃′iy2 are then shares of α = α̃y1

and α′ = α̃′y2 respectively, which are appropriately matching in the public
parameters. The simulator responds to all honest key requests (after the
`th request) in this way.

The simulator additionally chooses and fixes u ← Zp. For key requests
up to the (`− 1)th request, the simulator generates shares λ′′i of u. It then

creates a semi-functional key of type 4R by adding λ′′i
~b5 to each term in the

secret key set (it can create these using its knowledge of ~b5 = ~d5):

SKΛ = {λ̃iy1
~b1 + ỹiy1ai~b1 + ỹiy1

~b2,i

+λ̃′iy2
~b3 + ỹ′iy2ai~b3 + ỹ′iy2

~b4,i

+λ′′i
~b5}i labels ∈Λ

On the `th key request, for each i attribute label in policy Λ, the simula-
tor first creates sharings λ̃i, λ̃

′
i of α̃, α̃′ respectively. It then creates a sharing

λ̃′′i of 0 under Λ, then generates ỹi, ỹ
′
i, ỹ
′′
i ← Zp and outputs:

SKΛ = {
(
g
~d1g

~d3T
~d5
)λ̃′′i

(
(gy1)

~d1(gy1c1)
~d5
)λ̃i (

(gy2)
~d3(gy2c2)

~d5
)λ̃′i

(
g
~d1g

~d3T
~d5
)ỹ′′i ai (

(gy1)
~d1(gy1c1)

~d5
)ỹiai (

(gy2)
~d3(gy2c2)

~d5
)ỹ′iai

(
g
~d2,ig

~d4,iT
~d6,i
)ỹ′′i (

(gy1)
~d2,i(gy1c1)

~d6,i
)ỹi (

(gy2)
~d4,i(gy2c2)

~d6,i
)ỹ′i}i labels ∈Λ
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which, using the definition of our sets (B,B∗), is equal to:

{(λ̃′′i + λ̃iy1)~b1 + (ỹiy1 + ỹ′′i )ai~b1 + (ỹiy1 + ỹ′′i )~b2,i

+(λ̃′′i + λ̃′iy2)~b3 + (ỹ′iy2 + ỹ′′i )ai~b3 + (ỹ′iy2 + ỹ′′i )~b4,i

+rλ̃′′i
~b5 + ỹ′′i rai

~b5 + ỹ′′i r
~b6,i}i labels ∈Λ

Since the λ̃′′i are a sharing of zero and the λ̃i, λ̃
′
i are sharings of α̃, α̃′ respec-

tively, then the λi = λ̃′′i + λ̃iy1 and λ′i = λ̃′′i + λ̃′iy2 are sharings of α = α̃y1

and α′ = α̃′y2 respectively, which are appropriately matching in the public
parameters.

Notice that for T = gc1+c2+r, if r = 0, then this `th key is distributed
exactly like an honest key where yi = ỹiy1 + ỹ′′i , and y′i = ỹ′iy2 + ỹ′′i which
are all distributed as uniformly random elements of Zp, so the simulator’s
behavior is exactly that of Game(`−1)6 .

If r is a uniform randomly chosen element of Zp, the `th key is distributed
exactly like a semi-functional key of type 0Z where yi = ỹiy1 + ỹ′′i , y′i =
ỹ′iy2 + ỹ′′i , and y′′i = ỹ′′i r, which are all distributed as uniformly random
elements of Zp. Since the λ̃′′i are a sharing of zero, the shares λ′′i = rλ̃′′i are
also a sharing of zero, as is appropriate for a semi-functional key of type 0Z.
So, if r is a uniform randomly chosen element of Zp, the simulator’s behavior
is exactly that of Game`0 .

Therefore, any adversary with non-negligible difference in advantage
between Game(`−1)4 and Game`0 could be used to achieve the same non-
negligible advantage in deciding the 2-Linear Problem. By assumption this
is not possible, so such an adversary cannot exist.

Lemma 7. No polynomial time attacker can achieve a non-negligible dif-
ference in advantage between Game`0 and Game`1 for any ` from 1 to Q.

Proof. The distributions of Game`0 and Game`1 are actually identical, due
to the way the sets (B,B∗) are chosen. Namely, since not all of the vectors
are used in the public parameters, there is a invertible linear function that
can be used to produce an identical distribution of sets, but decorrelates the
ai in the semi-functional space.

Consider the following simulation of the ABE security game: first use
the normal Dual(Z3+3k

p ) procedure to generate orthonormal sets (D,D∗)←
Dual(Z3+3k

p ).
Consider two scenarios: in the first, the sets (B,B∗) used in the scheme’s

simulation are defined via the identity transformation on (D,D∗). That is,
each ~b = ~d and ~b∗ = ~d∗. A simulator can clearly simulate Game`0 exactly
by following the procedures using these (D,D∗) = (B,B∗) to create public
parameters, semi-functional ciphertexts of type 0 and keys which are semi-
functional of type 2R up to the `th key, which is made semi-functional of
type 0Z, after which all keys are made honestly.
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In the second scenario, the sets (B,B∗) are implicitly defined as follows:

~b∗1 = ~d∗1
~b∗2,i = ~d∗2.i

~b∗3 = ~d∗3
~b∗4,i = ~d∗4,i

~b∗5 = ~d∗5 + a′i
~d∗6,i

~b∗6,i = ~d∗6,i

~b1 = ~d1
~b2,i = ~d2,i

~b3 = ~d3
~b4,i = ~d4,i

~b5 = ~d5
~b6,i = ~d6,i − a′i~d5

(The distribution of all sets (B,B∗) produced this way is identical to the set
created using the identity transformation since there is a one to one mapping
between both sets).

So, the (B,B∗) formed using this alternative transformation have the
same distribution as the sets straight from the Dual(Z3+3k

p ) procedure. Fur-

thermore, since this transformation only causes differences in the ~d∗5, and~b6,i
vectors, using this set of (D,D∗) in the same simulation described above will
result in the same of public parameters, the first (` − 1) keys of type 2R,
and all honest keys (since no ~d∗5, and ~b6,i are used in these objects). The
only difference is seen in the `th key and the challenge ciphertext, where
the transformation causes the ai in the semifunctional space to lose their
correlation with the ai in the normal space.

The `th key, which is now semi-functional of type 1Z:

{λi~d1 + yiai~d1 + yi~d2,i

+λ′i
~d3 + y′iai

~d3 + y′i
~d4,i

+λ′′i
~d5 + y′′i ai

~d5 + y′′i
~d6,i}i labels ∈Λ

= {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i

+λ′′i
~b5 + y′′i ai

~b5 + y′′i (~b6,i + a′i
~b5)}i labels ∈Λ

= {λi~b1 + yiai~b1 + yi~b2,i

+λ′i
~b3 + y′iai

~b3 + y′i
~b4,i

+λ′′i
~b5 + y′′i (ai + a′i)

~b5 + y′′i
~b6,i}i labels ∈Λ

where here, the decoupled ãi = ai + a′i .
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The challenge ciphertext, which is now semi-functional of type 1:

Me(g, g)αs+α
′s′ , {s~d∗1 − sai~d∗2,i

+s′~d∗3 − s′ai~d∗4,i
+s′′~d∗5 − s′′ai~d∗6,i}i∈S

Me(g, g)αs+α
′s′ , {s~b∗1 − sai~b∗2,i

+s′~b∗3 − s′ai~b∗4,i
+s′′(~b∗5 − a′i~b∗6,i)− s′′ai~b∗6,i}i∈S

= Me(g, g)αs+α
′s′ , {s~b∗1 − sai~b∗2,i

+s′~b∗3 − s′ai~b∗4,i
+s′′~b∗5 − s′′(ai + a′i)

~b∗6,i}i∈S

where again, the ãi = ai + a′i are now independent of the ai in the normal
space and appropriately match with the elements used in the `th key. So
the game simulated in this scenario is exactly that of Game`1 .

Since the only difference between these two scenarios is the definition
of the sets (B,B∗), and we showed that both definitions result in the same
distribution of sets upon generation, then we have shown that Game`0 and
Game`1 are actually identical, and therefore no attacker can achieve a non-
negligible difference in advantage between them.

Lemma 8. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between Game`1 and
Game`2 for any ` from 1 to Q.

Proof. Recall that in both Game`1 and Game`2 , the ciphertext is semi-
functional of type 1, all keys after the `th key request are normal, and
the first ` − 1 keys are semi-functional of type 2R. The only difference is
the `th key (either semi-functional of type 1Z or 1R). In Game`1 , the shares
λ′′i are a sharing of 0, while in Game`2 , they are a sharing of the u used in
R-type keys. The transition between these two modes of operation is accom-
plished using an information-theoretic argument. Namely, the distribution
of elements seen by an attacker in both games is the same.

To see this, note that for any attribute i not included in the ciphertext,
then the distributions of the elements of the key indexed by i are identical
in both cases, since the λ′′i are masked by a ãiy

′′
i in the exponent of the

~b5 vector, where the ãi are chosen uniformly at random and used nowhere
else (they do not appear in keys other than the `th key and only appear at
most once in the `th key because of our single-use restriction, and further
do not appear in the public parameters or the challenge ciphertext since we
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are considering the case that i is not included in the challenge ciphertext),
therefore the value of all such λ′′i is hidden information-theoretically.

For attributes i used in the ciphertext, this argument does not apply
(since these ãi do appear elsewhere - in the challenge ciphertext). For these,
note that in the security game the attacker is not allowed to request a
key that is able to decrypt the challenge ciphertext. So, for this key with
policy Λ, the rows of the policy matrix Λ corresponding to the attributes the
challenge ciphertext is encrypted under do not contain (1, 0, ..., 0) in their
span (modulo p). Therefore, there exists some vector ~w ∈ Znp orthogonal to
the span of these rows which is not orthogonal to (1, 0, ..., 0) modulo p (since
Zp is a finite field). By scaling this vector we can have ~w = (1, w2, ..., wn)
for some collection of wi. Now notice that whether the shares λ′′i which

comprise ~λ′′ were generated by taking Λ~r = ~λ′′ where ~r = (0, r2, ..., rn) (that
is, a valid sharing of zero) or taking Λ(~r+u~w) where (that is, a valid sharing
of the u used in R-type keys), then the distributions of shares λ′′i that are
not information-theoretically hidden by the previous argument are the same.
All that is seen are λ′′i created by taking dot products with rows of Λ - for
the shares that are not information-theoretically hidden, we have that the
u~w contributes 0 modulo p to the share so the distribution of these shares
is the same as those produced by an honest sharing of zero.

Since the distributions of elements of the key given the ciphertext are
identical whether the λ′′i are formed by taking a sharing of zero or a random
element of Zp, then no algorithm can tell the difference between the two
games, and so we have proven the lemma.

Lemma 9. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between Game`2 and
Game`3 for any ` from 1 to Q.

Proof. This information-theoretic argument is the same as Lemma 7 in re-
verse, with the only difference being that the λ′′i are generated as shares of
a random element of Zp instead of zero. This doesn’t affect the argument
since again the simulator is able to generate the λ′′i either way.

The last step in the hybrid is to change the `th key from semi-functional
of type 0R to 2R (losing its semifunctional space ai):

Lemma 10. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between Game`3 and
Game`4 for any ` from 1 to Q.

Proof. If an algorithm A has non-negligible difference in advantage between
Game`3 and Game`4 for some ` in {1, ..., Q}, then we could use A to achieve
non-negligible advantage in the 2-Linear Problem as follows:
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Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0
or is a uniform random element of Zp, consider the following simulator B in
the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, ai ←
Zp, and generating orthonormal sets (D,D∗)← Dual(Z3+3k

p ).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1 = ~d∗1
~b∗2,i = ~d∗2,i

~b∗3 = ~d∗3
~b∗4,i = ~d∗4,i

~b∗5 = ~d∗5 − c1
~d∗1 − c2

~d∗3
~b∗6,i = ~d∗6,i − c1

~d∗2,i − c2
~d∗4,i

~b1 = ~d1 + c1
~d5

~b2,i = ~d2,i + c1
~d6,i

~b3 = ~d3 + c2
~d5

~b4,i = ~d4,i + c2
~d6,i

~b5 = ~d5
~b6,i = ~d6,i

(The distribution of all sets (B,B∗) produced this way is identical to that
produced by Dual(Z3+3k

p ), since there is a one to one mapping between any

sets produced this way and the sets produced by the Dual(Z3+3k
p ) proce-

dure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1, ~b∗3}

{ai~b∗2,i, ai~b∗4,i}i∈[k]

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can

be easily made by the simulator from the ~d∗ vectors)
The simulator then gives the public parameters to A.
To return the challenge ciphertext for a set of attributes S when it is

requested, first, s′′ ← Zp is chosen. The following ciphertext is then con-
structed and provided:

Me(g, gy1c1)α̃s
′′
e(g, gy2c2)α̃

′s′′ ,

{(g~d∗5)s
′′

(g
~d∗6,i)−s

′′ai}i∈S
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which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{c1s
′′~b∗1 − c1s

′′ai~b
∗
2,i

+c2s
′′~b∗3 − c2s

′′ai~b
∗
4,i

+s′′~b∗5 − s′′ai~b∗6,i}i∈S

Which is properly distributed as a semi-functional ciphertext of type 0 (ap-
propriate for both games) where s = c1s

′′, s′ = c2s
′′ are independently and

uniformly randomly distributed in Zp.
To respond to key requests for policies Λ, the simulator first computes an

honest key by creating λ̃i, λ̃
′
i: sharings of α̃, α̃′ under policy Λ respectively.

SKΛ = {
(

(gy1)
~d1(gy1c1)

~d5
)λ̃i (

(gy2)
~d3(gy2c2)

~d5
)λ̃′i

(
(gy1)

~d1(gy1c1)
~d5
)ỹiai (

(gy2)
~d3(gy2c2)

~d5
)ỹ′iai

(
(gy1)

~d2,i(gy1c1)
~d6,i
)ỹi (

(gy2)
~d4,i(gy2c2)

~d6,i
)ỹ′i}i labels ∈Λ

which, using the definition of our sets (B,B∗), is equal to:

SKΛ = {λ̃iy1
~b1 + ỹiy1ai~b1 + ỹiy1

~b2,i

+λ̃′iy2
~b3 + ỹ′iy2ai~b3 + ỹ′iy2

~b4,i}i labels ∈Λ

The distribution of keys constructed this way is identical to the distribution
of normal honest keys where yi = ỹiy1 and y′i = ỹ′iy2, which are uniformly
distributed. The shares λi = λ̃iy1 and λ′i = λ̃′iy2 are then shares of α = α̃y1

and α′ = α̃′y2 respectively, which are appropriately matching in the public
parameters. The simulator responds to all honest key requests (after the
`th request) in this way.

The simulator additionally chooses and fixes u ← Zp. For key requests
up to the (`− 1)th request, the simulator generates shares λ′′i of u. It then

creates a semi-functional key of type 2R by adding λ′′i
~b5 to each term in the

secret key set (it can create these using its knowledge of ~b5 = ~d5):

SKΛ = {λ̃iy1
~b1 + ỹiy1ai~b1 + ỹiy1

~b2,i

+λ̃′iy2
~b3 + ỹ′iy2ai~b3 + ỹ′iy2

~b4,i

+λ′′i
~b5}i labels ∈Λ

On the `th key request, for each i attribute label in Λ, the simulator first
creates sharings λ̃i, λ̃

′
i of α̃, α̃′ respectively. It then creates a sharing λ′′i of
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u under Λ, then generates uniformly random ỹi, ỹ
′
i, ỹ
′′
i ∈ Zp and outputs:

SKΛ = {
(
g
~d5
)λ′′i

(
(gy1)

~d1(gy1c1)
~d5
)λ̃i (

(gy2)
~d3(gy2c2)

~d5
)λ̃′i

(
g
~d1g

~d3T
~d5
)ỹ′′i ai (

(gy1)
~d1(gy1c1)

~d5
)ỹiai (

(gy2)
~d3(gy2c2)

~d5
)ỹ′iai

(
g
~d2,ig

~d4,iT
~d6,i
)ỹ′′i (

(gy1)
~d2,i(gy1c1)

~d6,i
)ỹi (

(gy2)
~d4,i(gy2c2)

~d6,i
)ỹ′i}i labels ∈Λ

which, using the definition of our sets (B,B∗), is equal to:

{λ̃iy1
~b1 + (ỹiy1 + ỹ′′i )ai~b1 + (ỹiy1 + ỹ′′i )~b2,i

+λ̃′iy2
~b3 + (ỹ′iy2 + ỹ′′i )ai~b3 + (ỹ′iy2 + ỹ′′i )~b6,i

+λ′′i
~b5 + ỹ′′i rai

~b5 + ỹ′′i r
~b6,i}i labels ∈Λ

Since the λ̃i, λ̃
′
i are sharings of α̃, α̃′ respectively, then the λi = λ̃iy1 and

λ′i = λ̃′iy2 are sharings of α = α̃y1 and α′ = α̃′y2 respectively, which are
appropriately matching in the public parameters.

Notice that for T = gc1+c2+r, if r = 0, then this `th key is distributed
exactly like a semi-functional key of type 2R where yi = ỹiy1 + ỹ′′i , and
y′i = ỹ′iy2 + ỹ′′i , which are all distributed as uniformly random elements of
Zp, so the simulator’s behavior is exactly that of Game`4 .

If r is a uniform randomly chosen element of Zp, the `th key is distributed
exactly like a semi-functional key of type 0R where yi = ỹiy1 + ỹ′′i , y′i =
ỹ′iy2 + ỹ′′i , and y′′i = ỹ′′i r, which are all distributed as uniformly random
elements of Zp. So, if r is a uniform randomly chosen element of Zp, the
simulator’s behavior is exactly that of Game`3 .

Therefore, any adversary with non-negligible difference in advantage be-
tween Game`3 and Game`4 could be used to achieve the same non-negligible
advantage in deciding the 2-Linear Problem. By assumption this is not
possible, so such an adversary cannot exist.

This set of hybrids takes us to GameQ4 : where the semi-functional ci-
phertext is of type 0 and all keys are semi-functional of type 2R. We take two
more steps to get to our final game where the distribution of the ciphertext
is independent of the message - a game in which the adversary cannot have
any advantage:

Lemma 11. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between GameQ4 and
Gamepenultimate.

Proof. If an algorithm A is able to achieve a non-negligible difference in
advantage between GameQ4 and Gamepenultimate, then we could use A to
break the 2-Linear Assumption as follows:
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Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0
or is a uniform random element of Zp, consider the following simulator B in
the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, ai ←
Zp, and generating orthonormal sets (D,D∗)← Dual(Z3+3k

p ).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1 = ~d∗1
~b∗2,i = ~d∗2,i

~b∗3 = ~d∗3
~b∗4,i = ~d∗4,i

~b∗5 = ~d∗5 − c1
~d∗1 − c2

~d∗3
~b∗6,i = ~d∗6,i − c1

~d∗2,i − c2
~d∗4,i

~b1 = ~d1 + c1
~d5

~b2,i = ~d2,i + c1
~d6,i

~b3 = ~d3 + c2
~d5

~b5,i = ~d4,i + c2
~d6,i

~b5 = ~d5
~b6,i = ~d6,i

(The distribution of the sets (B,B∗) produced this way is identical to that
produced by Dual(Z3+3k

p ), since there is a one to one mapping between any

sets produced this way and the sets produced by the Dual(Z3+3k
p ) proce-

dure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1, ~b∗3
{ai~b∗2,i, ai~b∗4,i}i∈[k]

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can

be easily made by the simulator from the ~d∗ vectors)
The simulator then gives the public parameters to A.
To return the challenge ciphertext for a set of attributes S when it is

requested, first, s′′ ← Zp is chosen. The following ciphertext is then con-
structed and provided:

Me(g, gy1c1)α̃s
′′
e(g, gy2c2)α̃

′s′′ ,

{(g~d∗5)s
′′

(g
~d∗6,i)−s

′′ai

:(∀i ∈ S)}
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which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{c1s
′′~b∗1 − c1s

′′ai~b
∗
2,i

+c2s
′′~b∗3 − c2s

′′ai~b
∗
4,i

+s′′~b∗5 − s′′ai~b∗6,i}i∈S
Which is properly distributed as a semi-functional ciphertext of type 0 (ap-
propriate for both games) where s = c1s

′′, s′ = c2s
′′ are all independently

and uniformly randomly distributed in Zp.
To respond to key requests for policies Λ, the simulator first creates

sharings λ̃i, λ̃
′
i, and λ′′i of α̃, α̃′, and u respectively (where u is a random

element of Zp which is fixed the first time it is created). It then generates
uniformly random ỹi, ỹ

′
i, ỹ
′′
i ∈ Zp and outputs:

SKΛ = {
(

(gy1)
~d1(gy1c1)

~d5
)λ̃i (

(gy2)
~d3(gy2c2)

~d5
)λ̃′i

(
g
~d1g

~d3T
~d5
)ỹ′′i ai (

(gy1)
~d1(gy1c1)

~d5
)ỹiai (

(gy2)
~d3(gy2c2)

~d5
)ỹ′iai

(
g
~d2,ig

~d4,iT
~d6,i
)ỹ′′i (

(gy1)
~d2,i(gy1c1)

~d6,i
)ỹi (

(gy2)
~d4,i(gy2c2)

~d6,i
)ỹ′i

gλ
′′
i
~d5}i labels ∈Λ

which, using the definition of our sets (B,B∗), is equal to:

{λ̃iy1
~b1 + (ỹiy1 + ỹ′′i )ai~b1 + (ỹiy1 + ỹ′′i )~b2,i

+λ̃′iy2
~b3 + (ỹ′iy2 + ỹ′′i )ai~b3 + (ỹ′iy2 + ỹ′′i )~b4,i

+λ′′i
~b5 + ỹ′′i rai

~b5 + ỹ′′i r
~b6,i}i labels ∈Λ

Since the λ̃i, λ̃
′
i are sharings of α̃, α̃′ respectively, then the λi = λ̃iy1 and

λ′i = λ̃′iy2 are sharings of α = α̃y1 and α′ = α̃′y2 respectively, which are
appropriately matching in the public parameters.

Notice that for T = gc1+c2+r, if r = 0, then each key is distributed
exactly like a semi-functional key of type 2R where yi = ỹiy1 + ỹ′′i , and
y′i = ỹ′iy2 + ỹ′′i which are all distributed as uniformly random elements of Zp,
so the simulator’s behavior is exactly that of GameQ4 .

If r is a uniform randomly chosen element of Zp, each key is distributed
exactly like a semi-functional key of type 0R where yi = ỹiy1 + ỹ′′i , y′i =
ỹ′iy2 + ỹ′′i , and y′′i = ỹ′′i r, which are all distributed as uniformly random
elements of Zp, so the simulator’s behavior is exactly that of Gamepenultimate
.

Therefore, any adversary with non-negligible difference in advantage be-
tween GameQ4 and Gamepenultimate could be used to achieve the same non-
negligible advantage in deciding the 2-Linear Problem. By assumption this
is not possible, so such an adversary cannot exist.
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Lemma 12. Under the 2-Linear Assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between Gamepenultimate
and Gamefinal.

Proof. If an algorithm A is able to achieve a non-negligible difference in
advantage between Gamepenultimate and Gamefinal, then we could use A to
break the 2-Linear Assumption as follows:

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0
or is a uniform random element of Zp, consider the following simulator B in
the security game:

The public parameters are formed by using the given g, choosing α̃′, aj , bj ←
Zp, and generating orthonormal sets (D,D∗)← Dual(Z3+3k

p ).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1 = ~d∗1
~b∗2,i = ~d∗2,i

~b∗3 = y1
~d∗3 + y1c1

~d∗1
~b∗4,i = y1

~d∗4,i + y1c1
~d∗2,i

~b∗5 = y2
~d∗5 + y2c2

~d∗1
~b∗6,i = y2

~d∗6,i + y2c2
~d∗2,i

~b1 = ~d1 − c1
~d3 − c2

~d5
~b2,i = ~d2,i − c1

~d4,i − c2
~d6,i

~b3 = y−1
1
~d3

~b4,i = y−1
1
~d4,i

~b5 = y−1
2
~d5

~b6,i = y−1
2
~d6,i

(The distribution of the sets (B,B∗) produced this way is identical to that
produced by Dual(Z3+3k

p ), since there is a one to one mapping between any

sets produced this way and the sets produced by the Dual(Z3+3k
p ) proce-

dure.)
The public parameters are constructed as:

p, g, e(g, gy1) = e(g, g)y1 , e(g, gy1)α̃
′
e(gy1 , gy1c1) = e(g, g)y1α̃

′+y21c1 ,

{~b∗1, ~b∗3}

{ai~b∗2,i, ai~b∗4,i}i∈[k]

implicitly defining α = y1, α′ = y1α̃
′+αy1c1. (Note that all the ~b∗ terms can

be easily made by the simulator from combinations of the challenge terms
raised to the appropriate ~d∗ vectors)

The simulator then gives the public parameters to A.
To respond to key requests for policies Λ, the simulator generates λ̃′i, and

λ̃′′i : sharings of α̃′, and α̃′′ (chosen uniformly at random from Zp upon the
first key request and fixed for each key thereafter) respectively under policy
Λ. It then generates gλi where the λi are a sharing of y1 under Λ. Note that
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the simulator does not have the value of y1 directly. Instead, it has gy1 from
the 2-LIN challenge. It can still generate gλi where the λi are a sharing of
y1 by performing the same share-generation procedure “in the exponent” by
choosing random ri, computing gri , and raising these elements along with
gy1 to appropriate exponents from the policy matrix / computing products
to get the desired dot product in the exponent.

Next, the simulator draws yi, ỹ
′
i, ỹ
′′
i ← Zp and constructs:

SKΛ = {gλi ~d1gλ̃′i ~d3gλ̃′′i ~d5

gyiai
~d1gỹ

′
iai

~d3gỹ
′′
i ai

~d5

gyi
~d2,igỹ

′
i
~d4,igỹ

′′
i
~d6,i}i labels ∈Λ

which, using the definition of our sets (B,B∗), is equal to:

SKΛ = {λi~b1 + yiai~b1 + yi~b2,i

+ (λ̃′iy1 + λiy1c1)~b3 + (ỹ′iy1 + yiy1c1)ai~b3 + (ỹ′iy1 + yiy1c1)~b4,i

+ (λ̃′′i y2 + λiy2c2)~b5 + (ỹ′′i y2 + yiy2c2)ai~b5 + (ỹ′′i y2 + yiy2c2)~b6,i}i labels ∈Λ

which is distributed as a semi-functional key of type 0R (which is appropriate
for both games) where y′i = ỹ′iy1 + yiy1c1, and y′′i = ỹ′′i y2 + yiy2c2 which are
independent uniformly distributed elements of Zp. Also, λ′i = λ̃′iy1 + λiy1c1

and λ′′i = λ̃′′i y2 +λiy2c2 are shares of α′ = α̃′y1 +y2
1c1 and u = α̃′′y2 +y1y2c2

where u is a fixed uniform random element of Zp because the λi are a sharing
of α = y1. Note also that the shared α and α′ match appropriately with the
public parameters.

To return the challenge ciphertext for a set of attributes S when it is
requested, first, s, s̃′ ← Zp are chosen. The following ciphertext is then
constructed and provided:

M(e(g, g)α)se(g, g)α̃
′s̃′e(g, gy1c1)s̃

′
,

{gs~d∗1

gs̃
′ ~d∗3gs̃

′ ~d∗5T s̃
′ ~d∗1

g−sai
~d∗2,i

g−s̃
′ai ~d∗4,ig−s̃

′ai ~d∗6,iT−s̃
′ai ~d∗2,i}i∈S

which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)αs+(α̃′y1+y21c1)s̃′y−1
1 ,

{(s+ rs̃′)~b∗1 − (s+ rs̃′)ai~b
∗
2,i

+s̃′y−1
1
~b∗3 − s̃′y−1

1 ai~b
∗
4,i

+y−1
2 s̃′~b∗5 − y−1

2 s̃′ai~b
∗
6,i}i∈S
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Notice that for T = gc1+c2+r, if r = 0, then this ciphertext is distributed
exactly like a semi-functional ciphertext of type 0 where s′ = s̃′y−1

1 and
s′′ = y−1

2 s̃′ are both independently and uniformly randomly distributed in
Zp. So, the simulator behaves exactly as in Gamepenultimate.

However, if r is a uniform random element of Zp then the ciphertext
is distributed exactly like a semi-functional ciphertext of type X where
s′ = s̃′y−1

1 and s′′ = y−1
2 s̃′ are both independently and uniformly randomly

distributed in Zp and x = s + rs̃′ is an independent randomly distributed
element of Zp . So, the simulator behaves exactly as in Gamefinal.

Therefore, any adversary with non-negligible difference in advantage be-
tween Gamepenultimate and Gamefinal could be used to achieve the same
non-negligible advantage in deciding the 2-Linear Problem. By assumption
this is not possible, so such an adversary cannot exist.

We have now proven the following theorem

Theorem 13. Under the 2-Linear Computational Hardness Assumption,
our prime order KP-ABE scheme is fully secure.

Proof. If the 2-Linear Computational Hardness Assumption holds, then by
the previous lemmas, we have shown that the real security game is compu-
tationally indistinguishable from Gamefinal, in which the challenge cipher-
text’s message is information-theoretically hidden from the attacker. Hence,
no attacker can achieve a non-negligible advantage in breaking the KP-ABE
scheme.

5 Concluding Remarks

We have presented a prime order KP-ABE scheme fully secure under the
DLIN assumption. An interesting question for future work is whether the
ciphertext sizes can be significantly reduced (our schemes have ciphertexts
still growing linearly with the number of attribute-uses, and therefore have
a dependence on the set of allowed policies).
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