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Introduction

I Review of IC vs CC
I Hidden Layers Game
I Upper Bound of IC
I Intuition for lower bound of CC



Communication Complexity and Information Complexity

Communication Complexity
CC (f ; ε) is the smallest number of bits that Alice and Bob need to
exchange to compute f with error probability ε.

Information Complexity

I The protocol π on the pair of (random) inputs (X ;Y ) ∼ µ
gives the transcript Π = Π(X ;Y )

I The information cost of a protocol Π is the amount of
information that the protocol reveals to Alice and Bob about
their input.

I the amount revealed to Alice – who knows X – about Y is
given by the conditional mutual information I (Y ; Π|X ).

information cost of Π is given by:

ICµ(π) = I (Y ; Π|X ) + I (X ; Π|Y )



Information Complexity

(continued) The task of finding information complexity of f is the
task of minimizing the information complexity of the protocol for f :

ICµ = infprotocol π performing fICµ(π)

IC vs CC
Information complexity can be viewed as the interactive analogue of
Shannon’s entropy.
Equality between information and communication complexity is
equivalent to compression theorem in the interactive setting:
whether it is possible to compress an interactive conversation into
its information content like we compress a single message.



A problem with large CC and small IC

Hidden Layers Game problem
Conjectured in [Bra13] with lower bound proved in[GKR16]

I k is a parameter used in the problem
I IC upper bound = O(logk)

I CC Lower Bound = Ω(k)

Exponential separation!
In fact proved separation with external IC(stronger result)
Using embedding of set disjointness inputs.



Hidden Layers Game

Hidden Layers Game is a sampling problem.
Parameters:

I strings over an alphabet Σ of size k

I another parameter N = 2n. fix N = 2n = 22k .
Input:

I Alice and Bob are given a pair of numbers
a, b ∼ {0, ...,N − 1} (i.e. two n-bit numbers that take Ω(logn)
communication to compare)

I Alice is given a uniformly random function FA : Σ2a → Σ (the
function is only known to Alice)

I Bob is given a uniformly random function FB : Σ2b+1 → Σ
(the function is only known to Bob)



Hidden Layers Game
Alice and Bob need to sample a uniformly random string s ∈ Σ2N

subject to the constraints:
I s2a+1 = FA(s1...2a)

I s2b+2 = FB(s1...2b+1)

In other words, they want a 2N-symbol string over the alphabet,
where its first 2a-symbols substring can be mapped to its (2a+ 1)th
symbol by Alice’s function and its first (2b + 1)-symbols substring
can be mapped to its (2b + 2)th symbol by Bob’s function.



Naive Protocol and IC upper bound

Naive Protocol π0 for hidden layers game H

I in odd rounds Alice samples the next symbol of s and in even
rounds Bob does.

I In rounds i 6= 2a + 1, Alice just sends a uniformly random
si ∼ Σ. In round i = 2a + 1, Alice computes and sends
si = FA(s1..2a).

I Bob does the similar thing for even rounds
Communication complexity = Θ(N log k) = Θ(22k log k) (2N
rounds, we can view the encoding of each char si as log k since the
alphabet has size k).



Naive Protocol and IC upper bound

s is sampled uniformly from the subset S of strings which satisfy
the two constraints.
The size of S , |S | = k2N−2; uniformly random except (2a + 1)th
and (2b + 2)th symbols.
Thus the KL-divergence between s and the uniform distribution on
Σ2N is 2 log k .



Naive Protocol and IC upper bound

The transcript of π0 is distributed exactly as the output s of H
given a,FA, b,FB .
Denote µ as the distribution of the inputs a,FA, b,FB to H.

ICµ(H) = ICµ(π0) = Iµ(s; a,FA, b,FB)

= ED(s|a;FA, b,FB ||s) = 2logk



CC Lower Bound Intuition 1: Disjointness

I A randomly selected string t ∈ Σ2N has a probability of
exactly 1/k of being consistent with Alice’s input:
t just needs its (2a + 1)th symbol happen to satisfy
t2a+1 = FA(t1..2a)
Same for Bob.

I So t has probability 1/k2 to be consistent with both Alice and
Bob



CC Lower Bound Intuition 1: Disjointness

Protocol 1:
I Using public randomness and no communication;

sample k2 strings s1, ...sk2 drawn uniformly at random from
Σ2N

I Let A be the subset (of approximately k) strings satisfying
Alice’s constraint

I Let B be the subset satisfying Bob’s constraint
I Alice and Bob communicate to determine whether A ∩ B = ∅,

if not, they output the first element of A ∩ B ; otherwise they
repeat the entire process.



CC Lower Bound Intuition 1: Disjointness

Correctness
I the first string in the intersection between A and B must

satisfy distribution of s
I The probability that A ∩ B 6= ∅ is approximately 1− 1/e, and

the process will terminate after an expected constant number
of iterations.

Lower bound
I CC upper bound for disjointness of two sets with size k is

O(k).
I if we can reduce to Disjointness...
I CC lower bound for disjointness of two sets with size k is Ω(k).



CC Lower Bound Intuition 2: Greater Than(GT)

Protocol 2:
I find a c such that a ≤ c ≤ b or a ≥ c ≥ b,

wlog assume that a ≤ c ≤ b

I Use public randomness and no communication, generate
strings t1, t2.. ∈ Σ2c+1 uniformly randomly

I Alice sends Bob the index of the fist string s0 satisfying her
constraint

I Using public randomness and no communication, generate
strings r1, r2.. ∈ Σ2N which extend s0 with uniformly random
symbols

I Bob sends Alice the index of the first string s satisfying his
constraint. This s is the output.



CC Lower Bound Intuition 2: Greater Than(GT)

The first step of comparing a, b requires CC of the Greater Than
function.
As discussed above, the probability of a string to be acceptable is
1/k , and therefore communicating the index of the first acceptable
string requires O(log k) bits.

Lower bound for GT
a and b are n − bit numbers.
n = logN. Therefore the lb for GT here is
Ω(log n) = Ω(log logN) = Ω(k).



Sampling vs Decision?

I Can this sampling problem be generalized to to a decision
problem?

I if no such decision problem exists, what property makes
protocols for decision problems easier to compress?

I Sampling problems require a lot of public randomness.
Decision problems protocols: the answer is determined by
messages sent by Alice and Bob.



Sampling vs Decision?

I Exponential separation of IC and CC for Boolean functions has
been shown in [GKR15].

I With the introduction of a lower bound method: Relative
discrepancy method.

I But is Relative discrepancy method to separate all boolean
functions?

I Actually No! More in my report.



Questions?
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