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Here we use a metapopulation model applied at county resolution to simulate the 
spread and growth of COVID-19 incidence in the continental United States. We 
calibrate the model against county-level incidence data collected between February 21, 
2020 and March 24, 2020, and project the outbreak in the continental US for 4 weeks 
after March 24, 2020. Projections for daily reported cases, hospital bed demand, ICU 
bed demand and mortality are generated. We also evaluate the effects of social 
distancing on the outbreak. 
 
Model 
 
We use a metapopulation SEIR model1 to simulate the transmission of COVID-19 
among 3,108 US counties. In this model, we consider two types of movement: daily 
work commuting and random movement. Information on county-to-county work 
commuting is publicly available from the US Census Bureau2. We further assume the 
number of random visitors between two counties is proportional to the average number 
of commuters between them. As population present in each county is different during 
daytime and nighttime, we model the transmission dynamics of COVID-19 separately 
for these two time periods.  
We formulate the transmission as a discrete Markov process during both day and night 
times. The daytime transmission lasts for 𝑑𝑡! day and the nighttime transmission 𝑑𝑡" 
day (𝑑𝑡! + 𝑑𝑡" = 1). Here, we assume daytime transmission lasts for 8 hours and 
nighttime transmission lasts for 16 hours, i.e., 𝑑𝑡! = 1/3 and 𝑑𝑡" = 2/3. The 
transmission dynamics are depicted by the following equations. 
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Nighttime transmission: 
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Here, 𝑆#$, 𝐸#$, 𝐼#$& , 𝐼#$(  and 𝑁#$ are the susceptible, exposed, reported infected, unreported 
infected and total population in the subpopulation commuting from county 𝑗 to county 𝑖 



(𝑖 ← 𝑗); 𝛽 is the transmission rate of reported infections; 𝜇 is the relative transmissibility 
of unreported infections; 𝑍 is the average latency period (from infection to 
contagiousness); 𝐷 is the average duration of contagiousness; 𝛼 is the fraction of 
documented infections; 𝜃 is a multiplicative factor adjusting random movement; 𝑁4#$ =
(𝑁#$ + 𝑁$#)/2 is the average number of commuters between counties 𝑖 and 𝑗; and 𝑁#' 
and 𝑁#+ are the daytime and nighttime populations of county 𝑖. We integrate Eqs. 1-10 
using a Poisson process to represent the stochasticity of the transmission process. A 
similar model has been used to generate forecasts for influenza in the United States3. 
To account for reporting delay, we mapped simulated documented infections to 
confirmed cases using a separate observational delay model. In this delay model, we 
account for the time interval between a person transitioning from latent to contagious 
(i.e. E à 𝐼#&) and observational confirmation of that individual infection. To estimate this 
delay period, 𝑇,, we examined line-list data from early-confirmed cases in China4. Prior 
to January 23, 2020, the time-to-event distribution of the interval (in days) from 
symptom onset to confirmation is well fit by a Gamma distribution1 (𝑎 = 1.85, 𝑏 =
3.57, 𝐿𝐿 = −252.24). Consequently, we adopted a Gamma distribution to model 𝑇,, but 
tested longer mean periods (𝑎𝑏) as symptom onset often lags the onset of 
contagiousness. 
From February 21 – March 13, 2020 there was no heterogeneity in the parameters 𝛽 
and 𝛼 across counties. However, after March 13, 2020, we introduced separate 
estimates for 𝛽 and 𝛼 in certain counties in order to represent the variability in contact 
rates and reporting rates.  
For the contact rate, we defined a separate 𝛽# for each of the 16 counties with the most 
cumulative confirmed cases as of March 24 2020. The contact rates in these counties 
were scaled based on their population density using the following relation:  

𝛽# =
0.8 × 𝑙𝑜𝑔10(𝑃𝐷#)

𝑚𝑒𝑑𝑖𝑎𝑛R𝑙𝑜𝑔10(𝑃𝐷)S
× 𝛽. 

Here 𝑃𝐷# is the population density in county 𝑖, 𝑚𝑒𝑑𝑖𝑎𝑛R𝑙𝑜𝑔10(𝑃𝐷)S is the median value 
of log-transformed population density among all counties, and 𝛽 is the contact rate 
shared by other counties. 
For reporting rate, we observed a surge of testing in certain counties in New York State. 
To account for this surge, we introduced four levels of reporting rate: 𝛼! defined for New 
York County NY; 𝛼" defined for Nassau County NY, Suffolk County NY, Westchester 
County NY and Orange County NY; 𝛼- defined for other US counties with cumulative 
cases >=10 as of March 24 2020; and 𝛼. defined for counties with cumulative cases 
lower than 10 as of March 24 2020. On March 13 2020, we set 𝛼! = 6𝛼, 𝛼" = 4𝛼, 𝛼- =
2𝛼 and 𝛼. = 𝛼 as priors. 
 
Estimate prior parameters on March 13 2020 
 
To derive an estimate of prior parameters on March 13 2020, we calibrated the 
transmission model against county-level incidence data reported from February 21, 



2020 through March 13, 20205. Specifically, we estimated model parameters using an 
iterated filtering (IF) framework6,7. The metapopulation model is high dimensional with 
59,998 subpopulations. We therefore applied an efficient data assimilation algorithm – 
the Ensemble Adjustment Kalman Filter (EAKF)8, which is applicable to high 
dimensional model structures, in multiple iterations to infer parameters 𝛽, 𝜇, 𝑍, 𝐷, 𝛼 and 
𝜃. This iterated filtering (IF)-EAKF framework has previously been used to infer 
parameters in a large-scale agent-based model for antimicrobial-resistant pathogens9, 
as well as a metapopulation model depicting the spread of SARS-CoV-2 in China1. 
Details of its implementation can be found in Ref. 1. 
The prior ranges of model parameters were set as: 𝛽 ∈ [0.3, 1.5], 𝜇 ∈ [0.2, 1.0], 𝑍 ∈
[2, 5], 𝐷 ∈ [2, 5], 𝛼 ∈ [0.02, 1.0], and 𝜃 ∈ [0.01,0.3]. In the inference, we fixed the shape 
parameter of the Gamma distribution for 𝑇, as 𝑎 = 1.85, and vary the mean value of the 
distribution. We tested a range of mean 𝑇, values from 6 days to 10 days.  
To initialize the model, we seeded exposed individuals (𝐸) and unreported infections 
(𝐼() in counties with at least one confirmed case. Unlike the situation in China, where 
the outbreak originated from a single city, there was importation to multiple locations in 
the US that could have initiated community transmission. To reflect this potential 
ongoing community transmission before the reporting of the first local infection, for each 
county with confirmed cases, we randomly drew 𝐸 and 𝐼& from uniform distributions 
[0, 12𝐶] and [0, 10𝐶] 8 days prior to the reporting date (𝑇/) of the first case. Here 𝐶 is the 
total number of reported cases between day 𝑇/ and 𝑇/ + 4.  
The rationale for this seeding strategy is as follows. If an average reporting delay of 8 
days is assumed, we can estimate 𝐼& on day 𝑇/ − 8 by 0

1
× 𝐷, where 0

1
 is the average 

number of daily cases during the first five days with reporting (𝑇/ to 𝑇/ + 4). If we use 
the upper bound of the prior for D (i.e., 5 days), 𝐼& is estimated as 𝐶, which is also an 
upper bound. Using parameters obtained from China1, we assume the mean 𝐼( on day 
𝑇/ − 8 is 5𝐶, implying a reporting rate of 1/6=16.7%. Drawing 𝐼( from [0, 10𝐶] leads to a 
broader prior range of the reporting rate. As both 𝐼& and 𝐼( were evolved from the 
exposed population 𝐸, we draw 𝐸 from the range [0, 12𝐶]. This crude calculation gives 
us an estimate of seeding in US counties. During inference, this seeding can be 
adjusted up or down by the filter, and best-fitting models produce simulations that 
capture observed outcomes. 
 
Model calibration after March 13 2020 
 
Due to changes of control measures and laboratory testing performed, both of which 
vary on a county-by-county basis as well as through time, certain model parameters 
(e.g., 𝛽 and 𝛼) are unlikely to remain constant. As a result, instead of using IF-EAKF to 
estimate a single set of constant parameters, we applied the EAKF to adjust model 
states and parameters sequentially after March 13. This fluid adjustment of state 
variables and parameters allows variations over time and grants the system more 
flexibility to fit observation. 



 
Estimation of hospitalization, ICU admission and mortality 
We estimated daily numbers of hospitalizations, ICU admissions and mortality using the 
probabilities reported in Table 1, which were compiled using data from the Diamond 
Princess cruise10. For each county, we generated average values of these probabilities 
based on demographic information. In addition, we modeled the duration of events, 
including hospital length of stay, ICU length of stay, time from onset to hospitalization, 
time from onset to death and time from onset to ICU using gamma distributions. 
Parameters for those distributions are reported in Table 211-13. Using the event duration 
generated from these gamma distributions, we were able to compute the numbers of 
daily admission and discharge from hospital and ICU beds, and thus represent the daily 
demand for hospital and ICU beds. 
  
Results 
 
We generated projections of daily demand for hospital and ICU beds, as well as 
mortality for the 4 weeks after March 24 2020 under three scenarios: 1) no further 
intervention after March 24 2020, 2) a 25% reduction of contact rates based on the 
values estimated as of March 24 2020, and 3) a 50% reduction of contact rates based 
on the values estimated as of March 24 2020. 
 
Projections for national hospital bed demand, ICU demand and mortality are reported in 
Figs. 1-3. We also display the projections for the same targets in the New York City 
metropolitan area in Figs. 4-6. The New York metropolitan area in the figures includes 
11 counties: Kings County NY, Queens County NY, New York County NY, Bronx 
County NY, Richmond County NY, Westchester County NY, Bergen County NJ, Hudson 
County NJ, Passaic County, NJ, Putnam County NY, Rockland County NY. 
 
Model output and movies are posted at: https://github.com/shaman-lab/COVID-
19Projection_0324 
 
Interpretation Considerations 
 
Several qualifications with respect to these projections must be noted and considered 
during interpretation.  Firstly, the model is optimized using observations through March 
24, 2020; however, those observations, i.e. confirmed cases by county, represent 
infections that were acquired by individuals 1-2 weeks earlier during a time prior to the 
implementation of many of the social distancing and isolation measures in place on 
March 24, 2020. Because of this long delay between infection acquisition and case 
confirmation, any flattening of the curve due to these effects is not yet apparent in 
observations nor communicated to the model during optimization. Consequently, the no 
intervention scenario roughly represents the transmission potential of the virus around 
March 12th projected forward.  As many new control policies were effected after March 
12, 2020, the 25% and 50% contact reduction projections may depict paths that some 



counties are already following and thus may be more representative of future activity.  In 
this fashion, the 3 scenarios provide references against which the effectiveness of 
control measures already enacted can be assessed.  We also ask readers to note the 
cones of uncertainty associated with each scenario projection, which broaden into the 
future. 
 
Secondly, the landscape to which this model has been optimized is highly variable in 
space and time, due to differences in contact behavior, population density, control 
measures and testing practices. These differences in space and time make the fitting of 
any model of this scale challenging. In this shifting landscape, it is very important to 
reiterate that it will take 10-14 days before the effects of real-world interventions—any 
flattening of the curve weeks—become apparent. 
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Table 1. Probabilities of infected persons being hospitalized, admitted to ICU and dying. 
Age group P(Hosp|Infection) P(ICU|Infection) P(Death|Infection) 

0-9 0.017 0.006 0.002 
10-19 0.0271 0.0078 0.0022 
20-29 0.0565 0.0161 0.0022 
30-39 0.0754 0.0215 0.002 
40-49 0.078 0.0222 0.0032 
50-59 0.0601 0.0171 0.0382 
60-69 0.0816 0.0232 0.0155 
70-79 0.3221 0.0889 0.0262 
80-89 0.1267 0.0352 0.0191 

 
Table 2. Parameters of gamma distributions for event duration. 

  Mean SD Max 
ICU length of stay, days 21 5.9 30 

Hospital length of stay, days 24 5.2 30 
Time from onset to hospitalization, days 7 3 12 

Time from onset to death, days 18.5 5.2 30 
Time from onset to ICU, days 11 5 20 

 
  



 

Fig. 1. Projections of hospital bed demand in the continental US. 
 

 
 

Fig. 2. Projections of ICU demand in the continental US. 
 

 
Fig. 3. Projections of mortality in the continental US. 



 
Fig. 4. Projections of hospital bed demand in New York metropolitan area. 
 

 
Fig. 5. Projections of ICU demand in New York metropolitan area. 

 
Fig. 6. Projections of mortality in New York metropolitan area. 
 


