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Abstract 
 
In March and April 2020, control measures enforcing social distancing and restricting 
individual movement and contact were adopted across the United States in an effort to 
slow the spread and growth of COVID-19.  However, a number of states have now 
begun to ease these restrictions.  Here, we evaluate the effects of loosening stay-at-
home orders on COVID-19 incidence and related outcomes.  We use a metapopulation 
model applied at county resolution to simulate the spread and growth of COVID-19 
incidence in the United States. We calibrate the model against county-level daily case 
and death data collected from February 21, 2020 to May 2, 2020, and project the 
outbreak in 3,142 US counties for 6 weeks into the future. Projections for daily reported 
cases, daily new infections (both reported and unreported), new and cumulative hospital 
bed demand, ICU bed and ventilator demand, as well as daily mortality, are generated.  
We observe a rebound in COVID-19 incidence and deaths beginning in late May, 
approximately 2 to 4 weeks after states begin to reopen.  Importantly, the lag between 
infection acquisition and case confirmation, coupled with insufficient broader testing and 
contact tracing, will mask any rebound and exponential growth of the COVID-19 until it 
is well underway. 
 
Introduction 
 
Twenty-five states have or plan to partially re-open their economies in the coming week.  
The impact of this increased activity on contact patterns, the transmission of SARS-
CoV-2 and COVID-19 incidence remains highly uncertain, as levels of compliance with 
social distancing, return to work, and consumer willingness to frequent businesses are 
unknown.  While it is certainly possible that strong social distancing practices enforced 
in stores, restaurants and theaters, as well as increased use of face masks, could offset 
any increases in person-to-person contact, congregation in common spaces and 
associated increased opportunities for virus transmission, it is likely that a return to 
greater activity will reverse some of the gains, i.e. reductions of virus transmissibility, 
accrued over the last 6 weeks, particularly if initial re-openings do not produce an 
immediate growth of cases and consumer confidence grows. 
 
Here we project the effects of weak increases of transmissibility, relative to current 
estimates of effective reproduction number, Reff(t), on COVID-19 outcomes over the 



next 6 weeks.  Increased virus transmissibility is only applied to states in which a re-
opening of the economy has or is slated to occur. 
 
 
Projection scenarios 
 
Projections are generated using a county-scale metapopulation model1 optimized to 
daily confirmed COVID-19 cases and deaths from February 21 – May 2, 2020.  The 
model optimization process, described below, results in county specific parameter 
estimates.  We then use these parameter values as starting points for projecting future 
disease transmission. In Pei and Shaman1 we implemented 3 hypothetical control 
scenarios to reflect reduced contact between individuals due to stay-at-home orders, as 
well as reactive personal decisions to limit social contacts: starting from 14 days prior to 
the projection day, we applied 20%, 30% and 40% weekly reductions of the contact rate 
(𝛽) in counties with ≥10 reported cases in a week, until the weekly numbers of new 
confirmed case in those counties decreased (i.e., the curve flattened).  
 
Here, we modify our control scenarios to account for increases in contact rates due to 
loosening restrictions in states that have begun to reopen economically. We project 
three scenarios. In the first two scenarios, for states maintaining or increasing current 
social distancing restrictions, we continue to apply the 20% weekly reductions of contact 
rates, as described above. However, in states that reopen, we apply an increase to the 
contact rate of counties in those states. In the first scenario, we apply a one-time 10% 
increase to the contact rate during the week that the state is scheduled to reopen and 
maintain this new increased rate for the remainder of the projection.  In the second 
scenario, the contact rate is increased by an additional 10% each week to represent 
progressive loosening of restrictions and increased public confidence and frequenting of 
businesses.  A third comparison scenario assumes no effect due to reopening, and 
instead applies 20% weekly reductions in contact rates for all counties meeting the 
criteria described above, and as in Pei and Shaman1.  These 3 scenarios are 
summarized as follows: 
 

 
1. Weekly 20% decrease in places with growing weekly cases and a one-time 10% 

increase in places with return to work (latter supersedes the former) 
 

2. Weekly 20% decrease in places with growing weekly cases and a weekly 10% 
increase in places with return to work (latter supersedes the former) 
 

3. Weekly 20% decrease in places with growing weekly cases 
 
 
The state-by-state reopening schedules used in our projections are shown in Table 1.  
We do not differentiate between the types of business and activities allowed to reopen 
in each state.  We also do not differentiate within a state; increased contact rates are 
applied to all counties in a state with loosening restrictions.  



 
 
Model 
 
We use a metapopulation SEIR model1 to simulate the transmission of COVID-19 
among 3,142 US counties. This model has been described previously in Pei and 
Shaman1 and has been used since March 13, 2020 to make biweekly projections of 
COVID-19 incidence, hospitalizations and deaths.  The model represents two types of 
movement: daily work commuting and random movement.  Information on county-to-
county work commuting is publicly available from the US Census Bureau2, which is 
used to determine rates of intercounty movement prior to March 15, 2020. We assume 
the number of random visitors between two counties is proportional to the average 
number of commuters between them. After March 15, 2020, we use SafeGraph 
estimates of the reduction of inter-county visitor numbers in points of interest (POI) 
(e.g., restaurants, stores, etc.) to inform the decline of inter-county movement on a 
county-by-county basis. For instance, if the number of out-of-county visitors was 
reduced by 30% in a county on a given day comparing with the baseline on March 15, 
2020, the size of subpopulations traveling to this county would be reduced by 30% 
accordingly. During projection into the future, we maintained the most recent level of 
inter-county movement. 

As population present in each county is different during daytime and nighttime, we 
model the transmission dynamics of COVID-19 separately for these two time periods. 
We formulate the transmission as a discrete Markov process during both day and night 
times. The daytime transmission lasts for 𝑑𝑡! day and the nighttime transmission 𝑑𝑡" 
day (𝑑𝑡! + 𝑑𝑡" = 1). Here, we assume daytime transmission lasts for 8 hours and 
nighttime transmission lasts for 16 hours, i.e., 𝑑𝑡! = 1/3 and 𝑑𝑡" = 2/3. The 
transmission dynamics are depicted by the following equations. 
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Nighttime transmission: 
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Here, 𝑆#$, 𝐸#$, 𝐼#$& , 𝐼#$(  and 𝑁#$ are the susceptible, exposed, reported infected, unreported 
infected and total populations in the subpopulation commuting from county 𝑗 to county 𝑖 
(𝑖 ← 𝑗); 𝛽 is the transmission rate of reported infections; 𝜇 is the relative transmissibility 
of unreported infections; 𝑍 is the average latency period (from infection to 
contagiousness); 𝐷 is the average duration of contagiousness; 𝛼 is the fraction of 
documented infections; 𝜃 is a multiplicative factor adjusting random movement; 𝑁4#$ =
(𝑁#$ + 𝑁$#)/2 is the average number of commuters between counties 𝑖 and 𝑗; and 𝑁#' 
and 𝑁#+ are the daytime and nighttime populations of county 𝑖. We integrate Eqs. 1-10 
using a Poisson process to represent the stochasticity of the transmission process. A 
similar model has been used to generate forecasts for influenza in the United States3. 



To account for reporting delay, we mapped simulated documented infections to 
confirmed cases using a separate observational delay model. In this delay model, we 
account for the time interval between a person transitioning from latent to contagious 
(i.e. E à 𝐼#&) and observational confirmation of that individual infection. To estimate this 
delay period, 𝑇,, we examined line-list data from early-confirmed cases in China4. Prior 
to January 23, 2020, the time-to-event distribution of the interval (in days) from 
symptom onset to confirmation is well fit by a Gamma distribution5 (𝑎 = 1.85, 𝑏 =
3.57, 𝐿𝐿 = −252.24). Consequently, we adopted a Gamma distribution to model 𝑇,, but 
tested longer mean periods (𝑎𝑏) as symptom onset often lags the onset of 
contagiousness. Our analysis indicates that an average delay of 9 days supports better 
fitting to the daily incidence data. As a result, we adopted 𝑇, = 9 days in the projection. 
To map the simulated infections (both documented and undocumented) to death, we 
used the age-stratified infection fatality rate (IFR) reported in Verity et al6. The IFR in 
each county was computed as a weighted average using demographic information on 
age structure. Based on observations for the US, the national death curve has a 7-day 
lag with respect to the incidence curve. As a result, we used a gamma distribution with a 
mean of 16 days (𝑎 = 1.85) to represent the delay between a person transitioning from 
latent to contagious and death. 
We used the hospitalization data in COVID-NET7 to estimate rates of hospitalization for 
confirmed cases. State-level COVID-19 hospitalization rates are available for 14 states. 
Applying these rates to case data, we computed the percentage of COVID-19 confirmed 
patients that are hospitalized in these states. For states without hospitalization data, the 
national average value was used. The county-level hospitalization rate for confirmed 
cases is defined using state-level estimate. We modeled the time from contagiousness 
to hospitalization using a gamma distribution (𝑇,=6 days, a=4, b=1.5), based on 
information from New York City. 
 
Estimate parameters on March 13 2020 
To derive an estimate of prior parameters on March 13 2020, we calibrated the 
transmission model against county-level incidence data reported from February 21, 
2020 through March 13, 20208. Specifically, we estimated model parameters using an 
iterated filtering (IF) framework9,10. The metapopulation model is high dimensional with 
60,232 subpopulations. We therefore applied an efficient data assimilation algorithm – 
the Ensemble Adjustment Kalman Filter (EAKF)11, which is applicable to high 
dimensional model structures, in multiple iterations to infer parameters 𝛽, 𝜇, 𝑍, 𝐷, 𝛼 and 
𝜃. This iterated filtering (IF)-EAKF framework has previously been used to infer 
parameters in a large-scale agent-based model for antimicrobial-resistant pathogens12, 
as well as a metapopulation model depicting the spread of SARS-CoV-2 in China5. 
Details of its implementation can be found in Ref. 5. 
The prior ranges of model parameters were set as: 𝛽 ∈ [0.3, 1.5], 𝜇 ∈ [0.2, 1.0], 𝑍 ∈
[2, 6], 𝐷 ∈ [2, 6], 𝛼 ∈ [0.02, 1.0], and 𝜃 ∈ [0.01,0.3]. In the inference, we fixed the shape 
parameter of the Gamma distribution for 𝑇, as 𝑎 = 1.85, and vary the mean value of the 
distribution. We tested a range of mean 𝑇, values from 6 days to 10 days, and found 
that 𝑇, = 9 days supports the best fitting. 



To initialize the model, we seeded exposed individuals (𝐸) and unreported infections 
(𝐼() in counties with at least one confirmed case. Unlike the situation in China, where 
the outbreak originated from a single city, there was importation to multiple locations in 
the US that could have initiated community transmission. To reflect this potential 
ongoing community transmission before the reporting of the first local infection, for each 
county with confirmed cases, we randomly drew 𝐸 and 𝐼( from uniform distributions 
[0, 12𝐶] and [0, 10𝐶] 8 days prior to the reporting date (𝑇-) of the first case. Here 𝐶 is the 
total number of reported cases between day 𝑇- and 𝑇- + 4.  
The rationale for this seeding strategy is as follows. If an average reporting delay of 8 
days is assumed, we can estimate 𝐼& on day 𝑇- − 8 by .

/
× 𝐷, where .

/
 is the average 

number of daily cases during the first five days with reporting (𝑇- to 𝑇- + 4). If we use 
the upper bound of the prior for D (i.e., 5 days), 𝐼& is estimated as 𝐶, which is also an 
upper bound. Using parameters obtained from China1, we assume the mean 𝐼( on day 
𝑇- − 8 is 5𝐶, implying a reporting rate of 1/6=16.7%. Drawing 𝐼( from [0, 10𝐶] leads to a 
broader prior range of the reporting rate. As both 𝐼& and 𝐼( were evolved from the 
exposed population 𝐸, we draw 𝐸 from the range [0, 12𝐶]. This crude calculation gives 
an estimate of seeding in US counties. During inference, this seeding can be adjusted 
up or down by the filter, and best-fitting models produce simulations that capture 
observed outcomes. 
 
Model calibration after March 13 2020 
In order to represent variability in contact rates and reporting rates through space and 
time, starting from March 13, we introduced separate estimates for 𝛽 and 𝛼 in each 
county. The prior ranges for the other model parameters were taken from the posterior 
estimate for March 13, 2020 as described above. 
We defined a separate set of parameters 𝛼# and 𝛽# for each county, which were 
estimated by the EAKF for each county after March 13, 2020. The prior contact rates in 
all counties were scaled based on their population density using the following relation:  

𝛽# =
0.8 × 𝑙𝑜𝑔10(𝑃𝐷#)

𝑚𝑒𝑑𝑖𝑎𝑛V𝑙𝑜𝑔10(𝑃𝐷)W
× 𝛽. 

Here 𝑃𝐷# is the population density in county 𝑖, 𝑚𝑒𝑑𝑖𝑎𝑛V𝑙𝑜𝑔10(𝑃𝐷)W is the median value 
of log-transformed population density among all counties, and 𝛽 is the contact rate 
estimated before March 13 2020. 
From March 13 2020 through May 2, 2020, we performed EAKF inference each day 
using both incidence and death data. To account for reporting delays of confirmed 
cases and deaths, we used incidence and death numbers 6 days ahead to constrain 
model states variables and parameters. The latest estimates of parameters (i.e. for May 
2, 2020) were then used to generate projections for 6 weeks onwards. 
 
 
 



Results 
The estimated values of the effective reproductive number (Reff) as of May 2, 2020 are 
shown in Figure 1 for counties in states with scheduled re-openings.  Many counties are 
near or above 1, which is the value above which we expect to observe increasing 
infections. As such, even a small increase in the contact rate can drive Reff greater than 
1, which would then lead to a rebound in transmission and a lagged increase of 
confirmed cases, hospitalizations and deaths. These findings indicate that most states 
are not well-positioned to re-open their economies and simultaneously control the 
spread of COVID-19 infections. 
 

 
Figure 1:  Effective reproduction number for counties in reopening states as of 
May 2, 2020. Each data point is the mean estimated Reff for each county within the 
state. Boxes show Reff for the median, 25th and 75th percentile counties.  The red line 
indicates an effective reproduction number of 1. 
 
Both scenarios with increasing contact rates in reopening states resulted in a rebound in 
COVID-19 incidence, hospitalizations, and deaths at the national scale (Figure 2).  The 
rebound was faster and stronger for the weekly-increase scenario.  Notably, the 
increase in cases and deaths is not apparent at the national scale until two to four 
weeks after the first states begin to reopen. 
Projections of COVID-19 incidence are shown in Supplemental Figures 1 and 2 for 
reopening states, and Supplemental Figures 3 and 4 for states that remain closed.  With 
few exceptions, reopening states are projected to experience exponential growth of both 
cases and deaths; the exceptions correspond with the states with the lowest values of 
Reff (Figure 1).  States with restrictions remaining in place are projected to have 
decreasing or stable numbers of cases and deaths under all three scenarios. 



  

 
Figure 2: Effect of reopening states in 20% reduction scenario. Daily projected and 
observed new cases, hospitalizations and deaths.  The shaded regions show the 95% 
credible intervals. 
 
 
The projection results are available at GitHub: https://github.com/shaman-lab/COVID-
19Projection. 
 
 
Interpretation Considerations 
 
Several qualifications with respect to these projections must be noted and considered 
during interpretation.  Firstly, the model is optimized using observations through May 2, 
2020; however, those observations, i.e. confirmed cases and deaths by county, 
represent infections that were acquired by individuals 1-3 weeks earlier. Because of this 
long delay, the effects of changes in social distancing and contact patterns over the last 
3 weeks on virus transmission have yet to be fully observed.    
 
Secondly, the landscape to which this model has been optimized is highly variable in 
space and time, due to differences in contact behavior, population density, control 
measures and testing practices. These differences in space and time make the fitting of 
any model of this scale challenging.  
 
Finally, we expect that the response to COVID-19 transmission will be adaptive at both 
the government and the individual level.  We expect that if states begin to experience a 
rise in infections and deaths as shown in these projections (following a 2-4 week delay), 
further restrictions on contacts will be put into place to counter such a trajectory.    
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Table 1. Reopening schedule as of 5/02/2020 
state date 
South Carolina 4/20/20 

Alaska 4/24/20 

Oklahoma 4/24/20 

Montana 4/26/20 

Colorado 4/27/20 

Georgia 4/27/20 

Tennessee 4/27/20 

Mississippi 4/28/20 

South Dakota 4/28/20 

Alabama 5/1/20 

Idaho 5/1/20 

Iowa 5/1/20 

Maine 5/1/20 

North Dakota 5/1/20 

Texas 5/1/20 

Utah 5/1/20 

Wyoming 5/1/20 

Indiana 5/2/20 

Florida 5/4/20 

Kansas 5/4/20 
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Supplemental Figure 1. Projected infections in states with restrictions remaining in place.  The dashed 
vertical line indicates the date of reopening.  Shaded regions indicate 95% credible intervals.   

 



 
Supplemental Figure 2. Projected deaths in states with restrictions remaining in place.  The dashed 
vertical line indicates the date of reopening.  Shaded regions indicated 95% credible intervals. 

 



 

Supplemental Figure 3. Projected infections in states with restrictions remaining in place.  Shaded regions 
indicate 95% credible intervals.  The three scenarios result in overlapping projections, as no increase in 
contact rate is applied to these states. 



 
Supplemental Figure 4. Projected deaths in states with restrictions remaining in place. Shaded regions 
indicate 95% credible intervals.  The three scenarios result in overlapping projections, as no increase in 
contact rate is applied to these states. 

 


