A Kalman Filter for Active Feedback on Rotating External Kink Instabilities in a Tokamak Plasma

Jeremy Mark Hanson

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE GRADUATE SCHOOL OF ARTS AND SCIENCES

Columbia University
2009
ABSTRACT

A Kalman Filter for Active Feedback on Rotating External Kink Instabilities in a Tokamak Plasma

Jeremy M. Hanson

The first experimental demonstration of feedback suppression of rotating external kink modes near the ideal wall limit in a tokamak using Kalman filtering to discriminate the $n = 1$ kink mode from background noise is reported. In order to achieve the highest plasma pressure limits in tokamak fusion experiments, feedback stabilization of long-wavelength, external instabilities will be required, and feedback algorithms will need to distinguish the unstable mode from noise due to other magnetohydrodynamic activity. When noise is present in measurements of a system, a Kalman filter can be used to compare the measurements with an internal model, producing a realtime, optimal estimate for the system’s state. For the work described here, the Kalman filter contains an internal model that captures the dynamics of a rotating, growing instability and produces an estimate for the instability’s amplitude and spatial phase. On the High Beta Tokamak-Extended Pulse (HBT-EP) experiment, the Kalman filter algorithm is implemented using a set of digital, field-programmable gate array controllers with 10 microsecond latencies. The feedback system with the Kalman filter is able to suppress the external kink mode over a broad range of spatial phase angles between the sensed mode and applied control field, and performance is robust at noise levels that render feedback with a classical, proportional gain algorithm ineffective. Scans of filter parameters show good agreement between simulation and experiment, and feedback suppression and excitation of the kink mode are enhanced in experiments when a filter made using optimal parameters from the experimental scans is used.
Contents

1 Introduction .. 1
 1.1 Nuclear Fusion 1
 1.2 Tokamaks and their stability limits 3
 1.3 Feedback control of resistive wall modes 6
 1.4 The HBT-EP experiment 8
 1.5 Principal results 10
 1.6 Outline of this Thesis 11

2 Physics of the tokamak external kink mode 16
 2.1 Ideal magnetohydrodynamics 17
 2.2 Ideal MHD equilibrium 19
 2.3 Stability of ideal MHD equilibria 20
 2.4 The ideal, external kink mode 23
 2.5 The resistive wall mode 25

3 Simulating external kink mode feedback 29
 3.1 Models for the resistive wall mode 29
 3.2 The reduced Fitzpatrick–Aydemir equations 31
 3.3 Simulating feedback and noise 33
3.4 Example simulation results .. 35

4 The Kalman filter ... 38
4.1 The linear control problem ... 39
4.2 Linear observers ... 41
4.3 The Kalman filter ... 42
4.4 Filter matrices for external kink mode control 46
4.5 Feedback simulations with the Kalman filter 50

5 Control system hardware on HBT-EP 53
5.1 Adjustable wall sections ... 53
5.2 Feedback loop hardware ... 55
5.3 Feedback algorithm .. 59

6 Observation of external kink mode activity 64
6.1 Discharge programming ... 64
6.2 Analysis of magnetic fluctuations 68
 6.2.1 Fourier analysis ... 68
 6.2.2 Biorthogonal decomposition analysis 70

7 Closed loop Kalman filter experiments 76
7.1 Experimental method ... 77
7.2 Initial phase angle scan ... 79
7.3 Added noise experiments ... 82
7.4 Optimization of Kalman filter parameters 84
7.5 Phase scan with optimized Kalman filter 88
List of Figures

1.1 Trajectories of cations and electrons in a constant magnetic field \vec{B}. ... 3

1.2 A cutaway schematic of a tokamak showing vertical field (VF), Ohmic heating (OH), and toroidal field (TF) coils, vacuum chamber, and plasma. The OH solenoid is used to drive a plasma current in the toroidal direction, $\hat{\phi}$. The plasma current produces a magnetic field in the poloidal direction, $\hat{\theta}$. .. 4

1.3 A photo of the HBT-EP experiment showing toroidal and vertical field magnets and the vacuum vessel. .. 8

1.4 The arrangement of the stainless steel and aluminum wall sections in the HBT-EP experiment. .. 10

2.1 Cross-sectional sketches of tokamak equilibrium quantities at low β: a) circular flux surfaces, b) poloidal and vacuum toroidal magnetic field profiles, and c) current density and safety factor profiles. 19

2.2 A magnetic field line with a $m/n = 3/1$ helicity makes three toroidal transits for every poloidal transit. .. 20

2.3 An $(m,n) = (3,1)$ perturbation to a toroidal surface, such as might be observed during the onset of an external kink mode. 24
2.4 Normalized growth rates of toroidal mode number \(n = 1 \) and poloidal mode numbers \(m = 1, 2, \) and \(3 \) ideal, external kink modes as a function of the edge-safety factor from Shafranov’s analysis.

3.1 A stability diagram for Eq. 3.1 with \(\psi_c = 0 \). The “+” symbol marks the values \(\bar{s} = 1.0 \) and \(\bar{\alpha} = -1.41 \) used in the simulation.

3.2 Control power and sine poloidal field measurements from feedback simulations with the reduced Fitzpatrick–Aydemir equations for cases with a) no added noise, and b) Gaussian noise added to poloidal field measurements. In the poloidal field measurements for part b), the black trace shows the measurements without added noise. The measurements with added noise (blue) are used to compute the feedback signal.

4.1 The cosine and sine components of a growing, rotating mode.

4.2 Control power and sine poloidal field measurements from feedback simulations with the reduced Fitzpatrick–Aydemir equations for cases without (a) and with (b) a Kalman observer. In part (a), the poloidal field measurements with added noise (blue) are used to compute the feedback signal. In part (b), the poloidal field measurements with added noise are an input for the Kalman filter. The Kalman filter’s output (red) is used to compute the control signal. In both parts, the poloidal field without added noise is overlaid in black.

5.1 The approximate locations of the wall sections and feedback system coils during external kink mode experiments are shown above.
5.2 The arrangement of the control and sensor coils in the $\varphi-\theta$ plane is shown above. The coils are divided into four independent feedback loops (groups a–d), with five sensor coils and five control coil pairs each. 56

5.3 A diagram of one out of four feedback loops. Signals from five sensor coils are filtered using analog components before reaching the field-programmable gate array (FPGA) controller. The outputs of the FPGA are sent to amplifiers that drive five control coil pairs. 57

5.4 Aggregate frequency-dependent amplitude and phase transfer functions for all components in the feedback loop. The red, dashed lines show the uncorrected transfer function. Solid, blue lines show the transfer function when corrected by the phase-lag and phase-lead temporal filters in the feedback algorithm. 58

5.5 A diagram showing the stages of the feedback algorithm. The $n = 1$ mode is computed from a group of five sensor coils using a DFT and optionally mixed with a noise input. The phase-lag, Kalman, and phase-lead filters are then applied, followed by the proportional gain, toroidal rotation, and inverse DFT operators. 61

5.6 Example input and output signals from the feedback algorithm. a) an input signal from a sensor coil for HBT-EP discharge 62335. b) an output of an algorithm employing only the spatial and temporal filtering. c) an output of the Kalman filter algorithm. 62

6.1 Time evolutions of (a) the vertical field coil current, (b) the Ohmic heating coil current, and (c) the toroidal field measured by a pickup coil located at major radius $R = 123$ cm for HBT-EP shot number 62112. 65
6.2 Time evolutions of the (a) plasma current, (b) plasma major radius, (c) plasma minor radius, and (d) edge safety factor for HBT-EP discharge 62112. .. 66

6.3 Time evolution (a) and frequency spectrum amplitude (b) of poloidal field fluctuations measured by a feedback system sensor coil. The frequency spectrum is computed over the highlighted time-window, 1.8–2.8 msec. .. 67

6.4 Spatial Fourier spectrum amplitudes calculated from poloidal field sensor fluctuations for HBT-EP discharge 62112. The colors denote poloidal groupings of five sensors each. The highlighted region marks the time window when $q_a < 3$. .. 69

6.5 Spatial Fourier spectrum phase for the $n = 1$ mode for HBT-EP shot 62112. The colors of the traces denote individual sensor groups as in Fig. 6.4. The highlighted region marks the time when $q_a < 3$. 70

6.6 Energy content of the mode spectrum obtained by applying the biorthogonal decomposition to poloidal field fluctuation data from HBT-EP discharge 62112. .. 71

6.7 The first pair of spatial modes obtained using a biorthogonal decomposition analysis of poloidal field fluctuations from HBT-EP discharge 62112. The peak amplitude of the modes is normalized to 1.0. 72

6.8 The second pair of spatial modes obtained using a biorthogonal decomposition analysis of poloidal field fluctuations from HBT-EP discharge 62112. The peak amplitude of the modes is normalized to 1.0. 73

6.9 Time histories of the first four temporal modes obtained using a biorthogonal decomposition analysis of poloidal field fluctuations from HBT-EP discharge 62112. .. 74
7.1 Shot-averaged time evolutions of the plasma current (a) and edge safety
factor (b) from 462 feedback-off discharges are shown in black. The gray
traces show the means plus and minus one standard deviation.

7.2 This diagram shows the toroidal dependence of the perturbed field of
an \(n = 1 \) mode (dashed, red) overlaid with an \(n = 1 \) feedback field
(solid, black). The spatial phasing between the mode and feedback,
\(\Delta \varphi_f \), is an adjustable control parameter.

7.3 Poloidal field fluctuations measured by a sensor coil 1 cm from the
plasma surface for the case of: (a) no feedback, (b) positive feedback
using the Kalman filter and (c) negative feedback with the Kalman filter.

7.4 The amplitude of the Fourier spectrum of poloidal field fluctuations
measured in HBT-EP during an initial scan of the feedback phase angle,
\(\Delta \varphi_f \). The radial axis marks the frequency of the Fourier spectrum, and
the polar axis marks the setting of \(\Delta \varphi_f \). The peak of the feedback-off
frequency distribution occurs at 4 kHz and is marked on the color-bar.
The blue and red lines mark the locations of slices shown in Fig. 7.10-a.

7.5 Example signals from added noise experiments. Plot (a) shows a sim-
ulation of the \(n = 1 \) cosine mode as calculated in the DFT step in
the algorithm (black) and the sum of this signal with the cosine com-
ponent of the added noise (gray). Plots (b) and (c) show one of five
FPGA outputs to the control coils in the added noise experiments for
algorithms with and without the Kalman filter, phased to excite the
mode.
7.6 A comparison of the Fourier spectrum amplitude of poloidal field fluctuations for added noise experiments, for feedback off (solid, black), Kalman filter feedback (dotted, red), and feedback without the Kalman filter (dashed, blue). Plots (a) and (c) show suppression and excitation experiments with no added noise. Plots (b) and (d) show the suppression and excitation cases with extra noise added to the feedback algorithms.

7.7 RMS-averaged poloidal field fluctuations from scans of the Kalman filter model’s growth rate parameter γ in (a) simulation and (b) experiment. The averages are expressed as percent differences from the feedback-off RMS average.

7.8 RMS-averaged poloidal field fluctuations from scans of the Kalman filter model’s rotation rate parameter ω in (a) simulation and (b) experiment. The averages are expressed as percent differences from the feedback-off RMS average. The scans were performed at two settings for the diagonal terms in the Kalman filter’s plant noise covariance matrix, $Q_{ii} = 1 \times 10^{-5}$ (diamonds), and $Q_{ii} = 1 \times 10^{-4}$ (stars).

7.9 The amplitude of the Fourier spectrum of poloidal field fluctuations measured in HBT-EP during a scan of the feedback phase angle, $\Delta \varphi_f$, is shown above. This scan was done using the Kalman filter parameters obtained from the optimization scans. The radial axis marks the frequency of the Fourier spectrum, and the polar axis marks the setting of $\Delta \varphi_f$. The peak of the feedback off frequency distribution occurs at 4 kHz and is marked on the color-bar. The blue and red lines mark the locations of slices shown in Fig. 7.10-b.
7.10 Fourier spectrum amplitude of poloidal field fluctuations for cases of feedback excitation (red, dashed), no feedback (black, solid), and feedback suppression (blue, dotted) from experiments (a) before and (b) after optimization of Kalman filter parameters.

7.11 A comparison of the Fourier spectrum amplitude of (a) \((m, n) = (3, 1)\) poloidal field fluctuations with (b) \((m, n) = (6, 2)\) fluctuations from the feedback phase angle scan with the optimized Kalman filter parameters. Note that the color-scales for parts (a) and (b) have different ranges.

8.1 Diagram of the planned first wall and feedback system upgrade for HBT-EP.

B.1 A flow chart for the Kalman filter algorithm.
List of Tables

1.1 Device parameters for HBT-EP. 9

3.1 Parameters used for simulations of the external kink mode. 35
Acknowledgments

I started work on initial computer simulations for this thesis in the spring of 2006. The road that brought me to the final experimental results, obtained during 2008, was not an easy one to travel. I will avoid detailing my struggles here; I wish to instead emphasize crucial support from numerous individuals I received throughout the course of my work. Without this support, my progress would have been dramatically slower, perhaps impossible.

I would first like to thank my advisors: Mike Mauel, Dave Maurer, Jerry Navratil, Thomas Pedersen, and Amiya Sen. I have learned quite a bit about plasma physics and feedback under your tutelage, and your patient comments and suggestions have led to exciting discoveries. Your dedication and contagious enthusiasm have made it a pleasure to work with you.

To HBT-EP’s dedicated technical staff: Jim Andrello, Moe Cea, and Nick Rivera, your support has been essential in keeping the experiment operational. Thanks to your knowledge and workmanship, I was able to make thousands of plasma discharges during my years here. You also contribute greatly to the culture of the lab. I will miss our long conversations.

No less important is the courteous assistance I received from the administrative staff in the department of Applied Physics and Applied Mathematics. In particular, I would like to thank Dina Amin, Marlene Arbo, Montserrat Fernandez-Pinkley,
Michael Garcia, Ria Miranda, Christina Rohm, and Darya Shcherbanyuk.

To the other plasma physics graduate students, past and present, with whom I have had the pleasure of sharing this journey: Bryan DeBono, Brian Grierson, Royce James, Matt Lanctot, Jeff Levesque, Yuhong Liu, Oksana Katsuro-Hopkins, Alex Klein, Dave Murphy, Daisuke Shiraki, and Matt Worstell, I have profited greatly from our many conversations, and I wish you well in your continuing endeavors.

I wish to thank the staff at Stone Barns Center for Food and Agriculture for their friendship and hospitality during the course of my work.

My parents, Mark and Anne, my brother, Joe and sister, Laura, and my family and friends have provided constant encouragement and emotional support during these years. Thank you for this. I miss you all greatly.

Finally, to my wife, Erika, you have been with me since the beginning of my work here and supported my efforts in myriad ways. The plots and diagrams in this thesis look splendid thanks to your instruction, advice, and criticism. Much more importantly, you have stood by me through these difficult years with tenderness and good humor. For this I am profoundly thankful.
To
Erika
Chapter 1

Introduction

Many of the results presented in this Thesis have direct relevance to the development of controlled nuclear fusion as an energy source. In this Chapter, the problem of achieving sustainable fusion energy using magnetically confined plasmas is introduced. Substantial progress toward this end has been made over the past five decades with devices that confine the plasma in a toroidal geometry. One such device, the tokamak, is the leading candidate for a fusion reactor. The viability of tokamak reactors is limited by plasma instabilities, and the principal results of this Thesis apply to the feedback control of one of the most restrictive tokamak instabilities, the ideal external kink mode.

1.1 Nuclear Fusion

Nuclear fusion energy production, if it can be developed, will offer significant advantages over present-day fossil fuel and fission energy. Because very light atomic nuclei, such as deuterium, tritium, and helium are involved in fusion, the problems of long-term radioactive waste, catastrophic reactor failure, and proliferation of nu-
nuclear materials are much less severe compared with fission energy. Deuterium, one fuel source for fusion, is abundant and easily accessible on earth. It is present in a concentration of 0.015 mol % in seawater, and it can be economically isolated. Finally, fusion energy will not produce any greenhouse gasses or environmental pollutants, in contrast with present-day fossil fuel energy sources.

In order for atomic nuclei to fuse, they must be made hot enough to overcome the repulsive Coulomb force. A natural medium for achieving this condition is the plasma state, and the sun provides evidence that a fusion reaction may indeed be sustained this way: it is a gravitationally confined plasma that is undergoing a long-term fusion “burn.” Lawson considered power balance requirements for a pulsed fusion reactor for deuterium–deuterium (D–D) and deuterium–tritium (D–T) fusion reactions, taking into account the power of the reactions themselves and losses due to bremsstrahlung radiation, but ignoring any self-heating of the plasma. For example, in a D–T reactor with an energy-recycling efficiency of 30% and ion temperatures near 20 keV, the product of the plasma number density \(n \) and energy confinement time \(\tau \) must satisfy \(n\tau > 3 \times 10^{19} \, \text{m}^{-3}\text{s}^{-1} \). Making a terrestrial fusion reactor that can satisfy Lawson’s condition is an area of ongoing research.

It is impossible to create a gravitationally confined plasma on earth, and a plasma cannot be confined by a solid container because contact with the walls of the container causes the ions and electrons in the plasma to cool and recombine. However, plasmas may be confined by magnetic fields. The Lorentz force causes charged particles to move in helical paths around the magnetic field lines (see Fig. 1.1). In most successful magnetic confinement devices, the plasma is trapped in a torus-shaped volume. The toroidal geometry allows for the plasma to be confined on a nested set of surfaces of

**The effect of heating from fusion \(\alpha \)-particles can be trivially included in the derivation of the Lawson criterion.
constant magnetic flux that do not intersect the vacuum vessel. The leading candidate for a fusion reactor, the tokamak, is one such device.

1.2 Tokamaks and their stability limits

The announcement of record-breaking temperature, density, and confinement time measurements from tokamak† devices in the mid-1960s caused a stir in the international fusion community. A review of theoretical and experimental results from this time period was written by Artsimovich. Active pursuit of tokamak research has continued since the device’s introduction, and in the 1990s the TFTR and JET experiments obtained D–T fusion power levels exceeding 10 MW for time scales on the order of a second. An upcoming, international tokamak experiment, ITER, will demonstrate reactor-scale, burning plasmas with gigawatt levels of fusion power.

Tokamaks are distinguished from other torus-shaped devices in that the confining magnetic field is provided in part by currents in external coils, and in part by driving

†The tokamak is of Soviet origin and its name is a Russian acronym that translates to “toroidal chamber in magnetic coils.”
Fig. 1.2: A cutaway schematic of a tokamak showing vertical field (VF), Ohmic heating (OH), and toroidal field (TF) coils, vacuum chamber, and plasma. The OH solenoid is used to drive a plasma current in the toroidal direction, \(\dot{\phi} \). The plasma current produces a magnetic field in the poloidal direction, \(\dot{\theta} \).

a toroidal current in the plasma itself. Fig. 1.2 shows the basic components of a tokamak. The largest confining field is the toroidal field, produced by a series of coils that encircle the vacuum vessel. A central solenoid is used to induce a toroidal current in the plasma in a process known as Ohmic heating, creating a poloidaly-directed, secondary magnetic field. A vertical field is added to counteract the tendency of the plasma to expand in the major-radial direction due to the plasma pressure and magnetic hoop forces.

Lawson’s criterion sets minimum values for the plasma densities and energy confinement time scales required by a fusion reactor, but a large part of a reactor’s operating cost will lie in producing the magnetic field needed to confine a high pressure plasma. This tradeoff is commonly expressed in a figure of merit called \(\beta \), the ratio of the volume-averaged plasma pressure to the required magnetic field pressure.
for confinement:

$$\beta = \frac{2\mu_0}{B^2} \int n k_B T dV.$$

In this expression, \(\mu_0 = 4\pi \times 10^{-7} \) Hm\(^{-1} \) is the magnetic permeability of free space, \(k_B = 1.3807 \times 10^{-23} \) JK\(^{-1} \) is Boltzmann’s constant, \(T \) represents the plasma temperature in units of kelvin, and \(B \) is the value of the toroidal field on axis in tesla. The importance of \(\beta \) for a reactor can be seen by considering the scaling of the fusion power density \(P_f \sim n^2 \langle \sigma v_i \rangle E_r \). Here, \(\langle \sigma v_i \rangle \) is the reaction rate, obtained by averaging the first moment of the fusion reaction cross-section \(\sigma \) over the ion velocity distribution function, and \(E_r \) is the energy produced by a single reaction. For D–T fusion in the 5–20 keV temperature range, the reaction rate can be approximated as quadratic in temperature.\(^9\) Assuming constant density and temperature profiles and integrating over the plasma volume, we find that the reactor power scales with \(\beta^2 \). Maximizing \(\beta \) will be critical for an economically viable fusion reactor.

The highest value of \(\beta \) that tokamaks can achieve is limited by the onset of instabilities that cause a loss of plasma confinement. Troyon investigated these limits computationally by varying a test plasma’s shape, pressure, and current profiles and established a scaling law for the \(\beta \)-limit.\(^10\) This scaling law was confirmed by data from experiments,\(^{11,12}\) and is usually expressed as a limit on the normalized beta \(\beta_N = \beta a B / I_p \lesssim 3.5 \). Here, \(B \) is the vacuum magnetic field on axis in tesla, \(a \) is the plasma’s minor radius in meters, and \(I_p \) is the total plasma current in megamperes. In order to increase \(\beta \) in a tokamak much beyond this limit, ways of avoiding or suppressing instabilities are required.

In what are characterized as “advanced tokamak” operating modes, the plasma shape and pressure and current profiles are optimized in attempts to access more stable operating regimes with high fusion performance and \(\beta \)-levels.\(^{13–15}\) Advanced toka-
mak scenarios are characterized by high values of β_N, high fractions of self-driven, or “bootstrap” current, and steep gradients in the temperature and density profiles near the plasma edge. These operating regimes offer stability against so-called ballooning modes with a high toroidal mode number n, but low-n, external kink modes remain unstable.16

The external kink mode is a surface wave instability characterized by a kink-like distortion of the plasma boundary. Its growth rate is inversely proportional to the Alfvén time $\tau_A = a\sqrt{\mu_0\rho}/B$, where a is the plasma’s minor radius and $\rho = m_i n_i + m_e n_e$ is the plasma’s mass density. Under typical fusion power plant conditions, this timescale is on the order of microseconds. However, a conducting wall near the plasma boundary can host eddy currents that interact with the plasma mode. The resulting plasma–wall mode is termed a resistive wall mode (RWM), and its growth rate is proportional to the magnetic flux penetration rate of the wall $1/\tau_w$. It is possible to construct a wall such that $\tau_w \gg \tau_A$, and several experiments have shown that a nearby conducting wall can provide access to β values above the “no-wall” limit.17,18 Numerical modeling, theory and experiments have also shown that the RWM may be stabilized by a combination of a nearby conducting wall and plasma rotation,19–21 but the velocities required for rotational stabilization in a tokamak burning plasma experiment such as ITER may not be easily and consistently attainable.22 The physics of the external kink and resistive wall modes will be discussed in greater detail in Chapter 2.

1.3 Feedback control of resistive wall modes

In the absence of sufficient plasma rotation, the RWM may be stabilized by active feedback using magnetic coils to oppose the perturbed magnetic flux of the mode.23
Magnetic feedback stabilization of the RWM has been achieved on the HBT-EP experiment, first with a “smart shell” scheme in which an array of radial sensor and control coils was used to imitate a perfectly conducting wall, and later using an optimized “mode control” system that employed digital spatial and temporal filtering to detect and suppress the $n = 1$ mode near the ideal wall limit. Success in stabilizing the RWM has also been realized in the DIII-D and NSTX experiments using similar methods.

The mode control feedback schemes typically used spatial filtering to detect low-n components of the perturbed magnetic field, discarding $n = 0$ and higher-order harmonics unrelated to the RWM. However, this filtering is not adequate to address the deleterious effects of measurement noise and sensor pick-up due to other plasma activity, such as edge-localized modes (ELMs).

Several model-based mode identification algorithms, most employing a Kalman observer, have been proposed for tokamak RWM feedback and tested numerically. The Kalman filter produces a dynamic estimate for the state of a system of interest by comparing an internal, linear model for the system with measurements. Neither the internal model nor the measurements need to be perfect for an estimate to be produced. For example, in the case of RWM feedback, simulations that fully account for interaction with eddy-currents in nearby conducting structures require the use of three-dimensional electromagnetic codes such as VALEN or MARS-F. These detailed calculations cannot yet be performed on the time scales necessary for closed loop feedback, but models with reduced physics are used in feedback algorithm designs. In the Kalman filter formulation, the relative emphasis on the internal model versus the measurements can be adjusted.

All of the model-based feedback algorithms cited above use system models that account for the dynamics of the RWM in the presence of control inputs and pas-
sive conducting structures in varying levels of detail, and show promise in increasing feedback robustness in the presence of white noise and/or that due to ELMs. The algorithm of In, et. al.39 was tested on an RWM-unstable DIII-D discharge and was able to reduce pickup due to ELMs in feedback signals. However, none of the algorithms cited above have system models that account for the possibility of a rotating mode. Mode rotation is an important factor to consider when designing RWM feedback algorithms, because feedback that is out of phase with the mode can easily excite and drive the mode, rather than suppress it.25 In cases where the rotation rate of the mode is changing on time scales close to the controller latency, the optimal phasing between applied feedback and the unstable mode may be lost.
CHAPTER 1. INTRODUCTION

Table 1.1: Device parameters for HBT-EP.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major radius</td>
<td>$R = 0.92$ m</td>
</tr>
<tr>
<td>Minor radius</td>
<td>$a = 0.14$ m</td>
</tr>
<tr>
<td>Toroidal field (on axis)</td>
<td>$B_t = 0.33$ T</td>
</tr>
<tr>
<td>Plasma current</td>
<td>$I_p \sim 10$ kA</td>
</tr>
<tr>
<td>Pulse length</td>
<td>$\tau \sim 10$ msec</td>
</tr>
<tr>
<td>Core temperature</td>
<td>$T_e \sim 100$ eV</td>
</tr>
<tr>
<td>Core density</td>
<td>$n_e \sim 10^{19} \text{ m}^{-3}$</td>
</tr>
</tbody>
</table>

1.4 The HBT-EP experiment

The High-Beta Tokamak-Extended Pulse (HBT-EP) experiment is a large aspect ratio device designed to investigate tokamak instabilities.18,44 Fig. 1.3 shows a photo of the experiment and Table 1.1 gives a listing of several device parameters. HBT-EP features a stainless steel vacuum vessel interrupted by quartz breaks at several toroidal locations. The breaks allow for the Ohmic heating field to quickly penetrate the vacuum vessel, enabling an operator to create plasmas with broad current profiles that transiently exceed the Troyon limit.

The experiment also incorporates a segmented, close-fitting wall made from alternating stainless steel and aluminum sections (see Fig. 1.4). The position of each wall section can be independently adjusted in the minor radial direction, providing some control over the growth rate of instabilities that interact with wall eddy currents.

A digital control system is in place for studies in active control of external instabilities. The sensors and actuators of the system are coils that can measure and interact with the instability’s perturbed magnetic field. These are mounted on the stainless steel wall sections, which are fully inserted for feedback studies. Four low-latency, field-programmable gate array (FPGA) devices are used as feedback controllers. The feedback system will be discussed in greater detail in Chapter 5.
1.5 Principal results

In HBT-EP and other tokamak experiments, attempts to control the resistive wall mode with active magnetic feedback are sometimes hampered by system noise. Noise can originate from many sources in tokamak experiments, including the plasma itself. This Thesis details the first successful application of a Kalman filter to the problem of feedback control of rotating external kink instabilities in a tokamak. The Kalman filter algorithm was developed and tested computationally using the reduced Fitzpatrick–Aydemir model,45–47 and implemented on HBT-EP’s mode control system for experiments with external kink-unstable plasmas. With the Kalman filter algorithm, the feedback system was able to suppress and excite external kink modes, even at noise levels that rendered feedback without the Kalman filter ineffective. The system model used for the Kalman filter has only two parameters: the mode’s growth rate and its rotation rate. These parameter settings were optimized in simulations and experiments, and feedback performance was enhanced when a Kalman filter with the optimal settings was used.
1.6 Outline of this Thesis

The remainder of this Thesis is organized as follows. Chapter 2 provides an overview of the theory of the ideal external kink and resistive wall modes. In Chapter 3, computational modeling of the external kink mode feedback problem is discussed, and results for feedback simulations with and without the Kalman filter are presented. Chapter 4 contains a discussion of the general Kalman filter equations and the design of a Kalman filter for the external kink mode control problem in HBT-EP. In Chapter 5, the setup of feedback control hardware on HBT-EP is described, and an overview of the feedback algorithm is given. General observations of external kink mode behavior without feedback are discussed in Chapter 6, and Chapter 7 presents the results of closed-loop Kalman filter feedback experiments.

The appendices cover some details of the implementation of the Kalman filter algorithm on the FPGA controllers. Appendix A discusses general programming considerations for the FPGAs, and Appendix B gives a formal description of the Kalman filter algorithm.

Chapter 1 references

CHAPTER 1 REFERENCES

Chapter 2

Physics of the tokamak external kink mode

The ideal, external kink instability is a helical perturbation to the plasma’s surface and magnetic field that grows on an Alfvénic time scale. The stability of tokamak plasmas to external kink modes can be analyzed using the equations of ideal magnetohydrodynamics (MHD). In general, the stability of an MHD equilibrium can be investigated by determining whether a displacement raises or lowers the potential energy of the equilibrium. In this Chapter, we will see that equilibria with large current density gradients near the plasma’s edge can be unstable to external kink modes. The presence of nearby conducting structures can significantly alter the growth rate of the external kink through eddy current interactions, resulting in a resistive wall mode (RWM). Although the RWM remains a \(\beta \)-limiting instability for tokamaks, it can be stabilized by plasma rotation or feedback with magnetic coils.
2.1 Ideal magnetohydrodynamics

Ideal MHD is the simplest model that describes the macroscopic equilibria of magnetically confined plasmas and the stability of these equilibria. Full derivations of this model and further discussions of its implications for tokamak plasmas are given in a number of textbooks.1–3

The equations of ideal MHD are derived by taking velocity-space moments of the Maxwell-Boltzmann equations and employing a number of simplifying assumptions. They describe the evolution of the plasma’s mass density $\rho \approx m_i n$, scalar pressure $p = n(T_e + T_i) = nT$, mass-flow $\bar{u} \approx \bar{v}_i$, and current density $\bar{j} = en(\bar{v}_i - \bar{v}_e)$, along with the magnetic and electric fields, \vec{B} and \vec{E}.

The mass-continuity and momentum equations,

\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{u}) &= 0 \quad \text{and} \\
\rho(\frac{\partial \bar{u}}{\partial t} + \bar{u} \cdot \nabla)\bar{u} &= \bar{j} \times \vec{B} - \nabla p, \quad (2.2)
\end{align*}

express conservation of mass and force balance for the plasma.

A relationship between the plasma current and the electric field is given by Ohm’s law, for example,

\begin{equation}
\vec{E} + \bar{u} \times \vec{B} = \eta \bar{j}. \quad (2.3)
\end{equation}

However, in ideal MHD, the plasma resistivity η is taken to be zero, so Ohm’s law becomes

\begin{equation}
\vec{E} + \bar{u} \times \vec{B} = 0. \quad (2.3)
\end{equation}

An interesting consequence of making the right-hand side of Eq. 2.3 zero is that the magnetic flux through a surface moving with the plasma must be conserved. (This
can be seen by considering the time rate of change of the flux through such a surface.)

Adding the resistive term or other terms to Ohm’s law frees the magnetic field from having to move with the plasma.

The evolutions of the magnetic and electric fields are represented by Faraday’s law and the low-frequency version of Ampère’s law,

\[
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \text{and} \quad \nabla \times \vec{B} = \mu_0 \vec{j}.
\]

In the low-frequency limit, the characteristic velocities of phenomena under consideration are restricted to being much less than the speed of light.

Equations 2.1–2.5 are a system of 13 relationships for 14 unknowns, so a final assumption is needed for closure. This is commonly taken to be the equation of state,

\[
\left(\frac{\partial}{\partial t} + \vec{u} \cdot \nabla \right) \frac{p}{\rho^\gamma} = 0,
\]

where \(\gamma\) is the ratio of specific heats. Finally, an additional constraint is given by the condition \(\nabla \cdot \vec{B} = 0\).

There are three constraints on the plasma that must be satisfied in order for ideal MHD to be applicable. First, the plasma must be collisional, that is, many collisions must take place on MHD time scales. Secondly, the ion and electron Larmor radii must be small compared to the size of the plasma. Finally, the plasma must have a negligible resistivity. Tokamak fusion plasmas are collisionless, in violation of the first constraint. However, these plasmas are still well described by ideal MHD because the inaccuracies that arise from the collisional nature of the model do not have a large impact on considerations of their equilibrium and stability. \(^2\)
2.2 Ideal MHD equilibrium

Ideal MHD equilibrium states are usually found by setting \(\partial / \partial t \) and \(\vec{u} \) equal to zero (although it is possible to have equilibria with \(\vec{u} \neq 0 \)). From Eqs. 2.1–2.6, two non-trivial relationships remain:

\[
\vec{j} \times \vec{B} = \vec{\nabla} p, \quad \text{and} \quad \vec{\nabla} \times \vec{B} = \mu_0 \vec{j}.
\]

(2.7)

(2.8)

By taking the dot product of Eq. 2.7 with \(\vec{B} \) and \(\vec{j} \), we see that \(\vec{B} \cdot \vec{\nabla} p = 0 \) and \(\vec{j} \cdot \vec{\nabla} p = 0 \). This implies that in MHD equilibrium, the magnetic field lines and lines of current flow lie on contours of constant pressure. In toroidal configurations, these contours form a series of nested toroidal surfaces called flux surfaces (see fig 2.1).

Other quantities of interest include the poloidal field that is generated by the plasma current, current and pressure profiles, and the safety factor profile \(q(r) \).

The safety factor gives the ratio of toroidal to poloidal transits a magnetic field line makes as it maps out a flux surface in the plasma. For most of the magnetic surfaces in a tokamak plasma, \(q \) is either an high-order rational number, implying that many
transits are made before the field line “bites its tail,” or an irrational number, implying that the field line fills the entire surface. However, $q(r)$ is continuous across the plasma, so a small number of surfaces are low-order rationals, such as $q = m/n = 3/1$ (see figure 2.2). These surfaces are associated with tokamak instabilities that are resonant with the helicity of the local magnetic field line.

2.3 Stability of ideal MHD equilibria

The stability of MHD equilibria can be considered by linearizing the ideal MHD equations about an equilibrium and analyzing the effect of a small displacement $\vec{\xi}$. If the change in potential energy associated with a given displacement is negative, then the plasma equilibrium is unstable to that displacement.

To analyze the stability of an equilibrium specified by $\vec{j}_0(\vec{x}), \vec{B}_0(\vec{x}), \vec{p}_0(\vec{x})$, and $\vec{u}_0(\vec{x}) = 0$, we linearize the ideal MHD equations (2.1–2.6) about the equilibrium quantities, assuming that they satisfy Eqs. 2.7, 2.8, and $\nabla \cdot \vec{B}_0 = 0$. A perturbation expansion of the form $Y(\vec{x}, t) = Y_0(\vec{x}) + Y_1(\vec{x}, t)$ is used, where Y represents any of the vector or scalar quantities in the ideal MHD equations. Terms that are second order in the perturbation, such as $\vec{u}_1 \cdot \nabla \vec{u}_1$, are ignored, and the perturbed velocity
is expressed in terms of the displacement $\bar{\xi}$, that is, $\bar{u}_1 = \partial/\partial t \bar{\xi}$.

Using the perturbation expansion, the ideal Ohm’s law and Ampère’s law (Eqs. 2.3 and 2.5) can be combined and to yield

$$\bar{B}_1 = \nabla \times (\bar{\xi} \times \bar{B}_0)$$

(2.9)

after integrating in time. Similarly, the mass continuity equation (2.1) and the equation of state (2.6) are combined to produce

$$p_1 = -\gamma p_0 \nabla \cdot \bar{\xi} - \bar{\xi} \cdot \nabla p_0$$

(2.10)

after a time integration.

Using Ampère’s law and Eqs. 2.9 and 2.10, the momentum equation becomes

$$\rho_0 \frac{\partial^2}{\partial t^2} \bar{\xi} = \frac{1}{\mu_0} (\nabla \times \bar{B}_0) \times (\nabla \times (\bar{\xi} \times \bar{B}_0))
+ \frac{1}{\mu_0} \nabla \times (\nabla \times (\bar{\xi} \times \bar{B}_0)) \times \bar{B}_0
+ \nabla (\gamma p_0 \nabla \cdot \bar{\xi} + \bar{\xi} \cdot \nabla p_0).$$

(2.11)

The right-hand side of Eq. 2.11 is commonly referred to as the force operator $\bar{F}(\bar{\xi})$.

Exponential stability (or instability) can be examined by specifying that the time-dependence of the perturbed quantities be $\exp(-i\omega t)$. Equation 2.11 can now be written as an eigenvalue problem

$$-\omega^2 \rho_0 \bar{\xi} = \bar{F}(\bar{\xi})$$

(2.12)

for eigenvalue ω^2 and eigenfunction $\bar{\xi}$. Because the force operator is self-adjoint, ω^2 is strictly real, and perturbations for which $\omega^2 < 0$ are unstable.
CHAPTER 2. PHYSICS OF THE TOKAMAK EXTERNAL KINK MODE

In what is known as the Energy Principle, the stability of an equilibrium can also be evaluated by calculating the change in potential energy associated with a displacement. The potential energy change δW is found by taking the dot-product of $\vec{\xi}$ with Eq. 2.12 and integrating over the plasma,

$$\delta W = -\frac{1}{2} \int \vec{\xi} \cdot \vec{F} (\vec{\xi}) d\vec{x}.$$ \hfill (2.13)

The Energy Principle states that an equilibrium is ideal MHD-stable if $\delta W \geq 0$ for all displacements $\vec{\xi}$.

The potential energy calculation can include a vacuum region surrounding the plasma and can be separated into contributions from the plasma volume, plasma surface, and vacuum region,\(^4\)

$$\delta W = \delta W_p + \delta W_s + \delta W_v,$$ \hfill (2.14)

with

$$\delta W_p = \frac{1}{2} \int_{\text{plasma}} \left[\frac{|B_1|}{\mu_0} - \xi_\perp \cdot (\vec{j} \times \vec{B}_1) + \gamma \rho_0 \nabla \cdot \xi_\perp^2 + (\xi_\perp \cdot \nabla \rho_0) \nabla \cdot \xi_\perp \right] d\vec{x},$$ \hfill (2.15)

$$\delta W_s = \frac{1}{2} \int_{\text{surf}} |\hat{n} \cdot \xi_\perp|^2 \hat{n} \cdot \left[\nabla \left(\rho_0 + \frac{B_0^2}{2 \mu_0} \right) \right]_{\text{surf}} dS,$$ \hfill (2.16)

$$\delta W_v = \frac{1}{2} \int_{\text{vac}} \frac{|B_{1,vac}|^2}{\mu_0} d\vec{x}.$$

Here, $\xi_\perp = \vec{\xi} - \vec{\xi} \cdot \hat{b}_0$ represents the component of the displacement perpendicular to the unit vector of the equilibrium magnetic field \hat{b}_0, \hat{n} is the unit vector normal to the plasma surface, and $[\]_{\text{surf}}$ denotes a jump condition across the plasma surface. Note that δW_v is positive-definite, so its contribution is always stabilizing. The surface contribution δW_s is non-zero if the plasma surface is perturbed, as in the case of an external instability.

By separating \vec{j}_0 and \vec{B}_1 into parts parallel and perpendicular to \vec{B}_0, the contri-
CHAPTER 2. PHYSICS OF THE TOKAMAK EXTERNAL KINK MODE

The distribution from the plasma can be manipulated into what is called the intuitive form,\(^\text{6,7}\)

\[
\delta W_p = \frac{1}{2} \int_{\text{plasma}} \left[\frac{|B_{1,\perp}|^2}{\mu_0} + \frac{B_0^2}{\rho_0} |\nabla \cdot \vec{\kappa}|^2 + 2\vec{\xi}_\perp \cdot \vec{\kappa} |^2 + \gamma p_0 |\nabla \cdot \vec{\xi}|^2 \right. \\
- 2(\vec{\xi}_\perp \cdot \nabla p_0) (\vec{\kappa} \cdot \vec{\xi}_\perp) - j_{0,\parallel} (\vec{\xi}_\perp \times \hat{b}_0) \cdot \vec{B} \left. \right] \, d\vec{x}. \quad (2.17)
\]

Here, \(\kappa = \hat{b}_0 \cdot \nabla \hat{b}_0\) is the curvature vector of the equilibrium magnetic field. The first three terms in Eq. 2.17 are stabilizing and give the energy required to bend and compress magnetic field lines, and the energy required to compress the plasma. The fourth term is destabilizing when the field line curvature \(\kappa\) points in the direction of increasing pressure. This circumstance always arises somewhere in toroidal configurations, such as the tokamak, and instabilities that are caused by this effect are called pressure-driven or “ballooning” instabilities. Parallel equilibrium currents are the destabilizing factor in the last term, and the source of current-driven instabilities. When gradients in the parallel current density occur near rational surfaces, internal or external kink instabilities are the result, depending on the location of the rational surface in question. With non-zero plasma resistivity, gradients in the parallel current that lie inside the plasma can also open magnetic islands in what are known as tearing modes.

2.4 The ideal, external kink mode

The ideal, external kink mode is a helical perturbation to the plasma’s surface and magnetic field (see Fig. 2.3) that can be destabilized by a small irregularity in the plasma’s shape or a magnetic error field if the current density gradient is sufficiently strong near the edge of the plasma. In the absence of nearby conducting structures, external kink modes have growth rates proportional to the Alfvén time \(\tau_A = a\sqrt{\mu_0 \rho / B}\),
on the order of microseconds in most tokamak experiments.

Shafranov completed an analytical analysis of the external kink in a cylindrical geometry with a flat current current density profile, calculating the growth rate as a function of the mode helicity and safety-factor.\(^8\) Fig. 2.4 shows the results of this calculation for \(m = 1, 2,\) and \(3\) modes. More realistic Gaussian and parabolic current density profiles were evaluated numerically, showing that stability was improved as either a) the current density profile became more peaked in the center, or b) an ideally conducting wall was brought closer to the edge of the plasma.

A more detailed analysis can be done for large aspect ratio tokamaks by expanding \(\delta W\) using the inverse aspect ratio \(\epsilon \equiv a/R_0\) as a parameter of smallness. Perturbations may then be written in the form \(\vec{\xi} = \vec{\xi}_r(r) \exp[i(m\theta - n\varphi)].\) Using this expansion, Wesson numerically investigated the stability of parametric current density profiles of the form \(j_\varphi(r) = j_{\varphi 0}[1 - (r/a)^2]^{\nu}.\)\(^9\) In Wesson’s model, the center of the current density profile becomes more sharply peaked with increasing \(\nu,\) and setting \(\nu = 0\) gives a completely flat profile. A region of external kink stability was found for \(q_a > 1\) and \(\nu \gtrsim 1,\) but a portion of this space is unstable to ideal internal modes and (resistive) tearing modes.
At high β, pressure profile effects can impact external kink mode stability as well. The stability of several classes of parametric pressure and current density profiles in the DIII-D tokamak was investigated numerically by Howl, et al.,10 with the finding that the β-limit for the $n = 1$ kink mode was strongly affected by the shaping of both profiles.

2.5 The resistive wall mode

Modern tokamak experiments usually have metal vacuum vessel walls and other conducting structures near the surface of the plasma, and these objects can sustain eddy currents that interact with the external kink mode and slow the mode’s growth rate. The perturbed magnetic flux of the kink mode induces wall eddy currents that in turn create an opposing flux, temporarily preventing the kink mode’s flux from penetrating the wall. However, it is not practical to have a perfectly conducting wall near the edge of a tokamak plasma, so eddy currents in the wall must decay on the time scale $\tau_w = L_w/R_w$. This interaction of wall eddy currents with the external kink is
called the resistive wall mode (RWM), and its growth time is determined by $\tau_w \gg \tau_A$. Without a mechanism for energy dissipation in the plasma, it is not possible to stabilize an equilibrium that is ideally unstable without a conducting wall by adding a wall of finite conductivity.11

Our discussion so far has ignored the physics of equilibrium plasma rotation and energy dissipation, but these effects play an important role in RWM stability. For the case of a rotating plasma with zero dissipation, there are two distinct possibilities: a rotating, quickly growing external kink mode, and a non-rotating mode that grows on the time scale of the wall.12 Modes of the second type are commonly referred to as being “locked” to the wall.

Bondeson and Ward numerically analyzed the combined effects of plasma rotation and dissipation with the finding that both the ideal kink and RWM could be stable up to about 30\% of the no-wall β-limit with rotation velocities around a few percent of the Alfvén velocity and proper radial placement of the wall.13 Rotational stabilization of ideally unstable DIII-D discharges made at comparable rotation velocities was also observed.14 Further theoretical analysis that included various dissipation mechanisms yielded cubic dispersion relations in which all three roots could be stabilized with sufficient rotation and dissipation.15,16

Some dissipative mechanism is required for rotational stabilization of the RWM because dissipation leads to a torque between a rotating plasma and the perturbed magnetic field of the instability. A rotating mode also experiences a torque from wall eddy currents. When the balance between these torques is such that the instability rotates on a time scale that is much faster than τ_w, its flux is not able to penetrate the wall.17

In addition to rotational stabilization, the RWM can be stabilized by feedback with magnetic coils that oppose perturbed flux of the mode. Feedback is made possible by
the fact that the RWM’s growth rate is proportional to \(1/\tau_w\), typically several orders of magnitude slower than the ideal kink’s Alfvénic growth rate. However, the presence of the wall can limit the effectiveness of feedback because control coils, which apply radial magnetic fields, must also push their flux through the wall. Feedback systems can also encounter difficulties with spurious pickup from other ambient magnetic activity, leading to excitation of the system when an RWM instability is not present.\(^{18}\) Additionally, the RWM can change shape when feedback is applied, in what is known as a “non-rigid” response.\(^{19–21}\) The application of techniques from modern control theory to exploit physics knowledge of the RWM in picking optimal feedback gains and discriminating the unstable mode from noise is currently an active area of research. One technique, the Kalman filter, will be discussed in detail in Chapter 4.

Chapter 2 references

Chapter 3

Simulating external kink mode feedback

Simulations play a crucial role in the design and understanding of resistive wall mode (RWM) experiments. In this Chapter, a model for RWM activity in the HBT-EP experiment based on the reduced Fitzpatrick–Aydemir equations is introduced. The model accounts for the interaction of the instability with a resistive wall, plasma rotation and dissipation, and magnetic feedback. Stabilization of the mode is possible with proportional gain feedback, but the addition of noise to measurements used to compute the feedback voltage results in increased control power consumption and poorer suppression of the instability.

3.1 Models for the resistive wall mode

Simulating the interaction of an external kink instability with a nearby conducting wall is a somewhat difficult problem if the wall and plasma have complicated, three dimensional shapes as they do in many experiments. In the case of tokamaks, the
unperturbed plasma can safely be assumed to be symmetric about its vertical axis, but many walls have more complicated symmetries, or no symmetry at all.

Experiments also have arrays of magnetic sensor and control coils for feedback stabilization experiments, and it is desirable to simulate the effect of feedback to aid in understanding the results of present experiments and the design of future ones. The inclusion of feedback in simulations adds another level of complexity because four types of non-trivial interactions between currents in different elements of the system must now be considered: plasma–wall, plasma–coil, wall–coil, and coil–coil.

Boozer has devised a general method1–4 for accounting for the mutual interactions of currents in various conductors in RWM experiments that is implemented in the valen finite-element code.5 In Boozer’s prescription, the interaction between a set of currents on the plasma surface and currents in the wall and coils are characterized by circuit equations. (In actual tokamak plasmas, currents inside the plasma can contribute to the mode as well, but this contribution can be represented with an equivalent set of currents at the surface of the plasma.) Each plasma mode is characterized by a dimensionless stability parameter s_i, and a dimensionless torque parameter α_i. In the case of a single plasma mode, the stability parameter can be written as the normalized energy of the mode, $s = -\delta W/\delta W_v$, where δW and δW_v are defined in Eqs. 2.13 and 2.16.3 In the case of $\alpha = 0$, the RWM is unstable for $s > 0$, and when s is greater than some critical value s_{crit}, the quickly growing external kink mode is unstable. Increasing α has a stabilizing effect.

The magnetic flux of the modes at the plasma surface $\vec{\Phi}$ is expressed in terms of the current in all of the plasma modes \vec{I}, the currents in the wall \vec{I}_w, and the currents in the feedback coils \vec{I}_f,

$$ \vec{\Phi} = L\vec{I} + M_{pw}\vec{I}_w + M_{pf}\vec{I}_f, $$
where L is an inductance matrix for the modes on the plasma surface, M_{pw} is a matrix containing the mutual inductances between the plasma modes and circuit elements in the wall, and M_{pf} contains the mutual inductances between the feedback coils and plasma modes. Similarly, the flux at the wall can be expressed as

$$\Phi_w = M_{wp}I + L_w I_w + M_{wt}I_t.$$

In the scalar, “single-circuit,” limit of these equations, a dimensionless coefficient for expressing the coupling between the plasma and the wall can be defined as $c = M_{pw}M_{wp}(LL_w)^{-1}$. Another dimensionless number $c_f = 1 - M_{pw}M_{wf}(L_wM_{pf})^{-1}$ is used to characterize the coupling between the plasma and feedback control coils.

An analytical theory for the RWM from Fitzpatrick and Aydemir\cite{6,7} differs from the Boozer approach in that it employs a cylindrical plasma and resistive wall. The advantage of this formulation is that the essential physics of the interaction of a rotating external kink mode with a wall and plasma dissipation is captured in an analytic, cubic dispersion relation. Good agreement between the Fitzpatrick–Aydemir model and external kink mode behavior on HBT-EP was found for modes near the marginal stability limit.\cite{8}

3.2 The reduced Fitzpatrick–Aydemir equations

The reduced Fitzpatrick–Aydemir model is obtained by taking a high-dissipation limit, resulting in a system of ordinary differential equations for the flux of the mode at the plasma surface ψ_a and the flux at the wall ψ_w in the presence of a control coil flux ψ_c.\cite{9}
\[
\frac{d\vec{x}}{dt} = A\vec{x} + \vec{b}\psi_c, \tag{3.1}
\]

where
\[
\vec{x} = \begin{pmatrix} \psi_a \\ \psi_w \end{pmatrix}, \quad A = \begin{pmatrix} (1 - \bar{s} - i\bar{\alpha})\frac{\gamma^2_{\text{MHD}}}{\nu_d} & -\frac{\gamma^2_{\text{MHD}}}{\nu_d\sqrt{c}} \\ \frac{\gamma_w\sqrt{c}}{1-c} & -\frac{\gamma_w}{1-c} \end{pmatrix},
\]

and \(\vec{b} = \begin{pmatrix} -c_0\gamma^2_{\text{MHD}} \frac{\nu_d}{\nu_d} \\ \frac{\gamma_w(1-cc)}{1-c} \end{pmatrix}. \)

Equation 3.1 is easily and quickly integrated numerically, providing a convenient testbed for control algorithms. The parameter \(\bar{s} \equiv s/s_{\text{crit}} \) characterizes the energy of the mode as in the Boozer formulation, and the torque parameter is given by \(\bar{\alpha} \equiv -\Omega\nu_d/\gamma^2_{\text{MHD}} \). Here, \(\Omega \) is the angular rotation frequency of the plasma and \(\nu_d \) is the rate of plasma energy dissipation due to interaction with the magnetic field of the mode. Frequencies in the model are normalized to the growth rate of ideal MHD instabilities, \(\gamma_{\text{MHD}} \), and \(\gamma_w = 1/\tau_w \) is the eddy current decay rate of the wall.

The scalar plasma–wall and plasma–feedback coupling coefficients, \(c \) and \(c_f \), were obtained by fitting the results of a \textsc{valen} model for HBT-EP to a dispersion relation from Ref. 10 that accounted for a wall like that of HBT-EP, that is, a wall with two characteristic time constants.

The impact of \(\bar{s} \) and \(\bar{\alpha} \) can be understood by considering the stability properties of Eq. 3.1 with \(\psi_c = 0 \). If the real part of one the eigenvalues of \(A \) is greater than zero, then an unstable, rotating mode exists with a complex growth rate equal to that eigenvalue, \(\gamma_k \). Fig. 3.1 shows the transition between \(\text{Re}\gamma_k < 0 \) and \(\text{Re}\gamma_k > 0 \) as a function of \(\bar{s} \) and \(\bar{\alpha} \). For a given value of the torque \(\bar{\alpha} \), the growth rate increases with increasing mode energy \(\bar{s} \), eventually becoming greater than zero. As the torque is
increased, modes of increasingly higher energy can be rotationally stabilized. For the simulation results presented in this Chapter, values of $\bar{s} = 1.0$ and $\bar{\alpha} = -1.41$ were used, corresponding to a growth rate of $\gamma_k = 1.27 + 2\pi i \times 4.26 \text{ msec}^{-1}$. This growth rate roughly matches observations of external kink mode activity in HBT-EP, which are discussed in greater detail in Chapter 6. A full list of parameter values used in the simulation is given in Table 3.1.

3.3 Simulating feedback and noise

In order to simulate the closed-loop feedback problem, models for the control and sensor coils are required as well. A model for the dynamics of a control coil set in the
reduced Fitzpatrick–Aydemir framework is given by12

\[
\frac{d\psi_c}{dt} + \frac{R_c}{L_c}\psi_c = \frac{M_c}{L_c}V_c, \tag{3.2}
\]

where \(R_c \) and \(L_c \) represent the resistance and inductance of the control coils, \(M_c \) is the coil–coil mutual inductance, and the control voltage \(V_c \) is determined from \(\psi_a \) and \(\psi_w \) according to a feedback rule. When these quantities are specified, the coils’ magnetic flux \(\psi_c \) can be obtained. Eq. 3.2 is approximate in that the direct coupling between the control coils and the wall is neglected. However, this coupling is small for HBT-EP in the frequency range of interest because the wall sections on which the coils are mounted have negligible eddy current decay times (see Chapter 5). Eqs. 3.1 and 3.2 are integrated to obtain \(\psi_a, \psi_w, \) and \(\psi_c \) at each time step in the model.

Digital feedback algorithms currently in place on HBT-EP use a Discrete Fourier Transform (DFT) to decompose toroidal sets of 5 poloidal-field sensor coil signals into \(\sin \varphi \) and \(\cos \varphi \) \(n = 1 \) modes. In the model, the poloidal magnetic field is computed from the plasma and wall fluxes12

\[
B_p = \frac{3}{r_w(1-c)}[2\sqrt{c},-(c+1)] \cdot \vec{x}, \tag{3.3}
\]

and similarly decomposed into sine and cosine modes.

\[
B_p^{\cos} = \text{Re}[B_p + v]
\]

\[
B_p^{\sin} = \text{Re}[e^{-i\pi/2}(B_p + v)] \tag{3.4}
\]

Here, \(r_w \) is the minor radius of the wall, and \(v \) represents white-spectrum, Gaussian measurement noise. In the simulation, it is added as a complex-valued random number at each time step. Eq. 3.3 neglects a contribution from the control flux \(\psi_c \). However,
CHAPTER 3. SIMULATING EXTERNAL KINK MODE FEEDBACK

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode energy</td>
<td>$\bar{s} = 1.0$</td>
</tr>
<tr>
<td>Plasma–mode torque</td>
<td>$\bar{\alpha} = -1.41$</td>
</tr>
<tr>
<td>Inverse wall time</td>
<td>$\gamma_w = 5.0 \text{ msec}^{-1}$</td>
</tr>
<tr>
<td>Wall radius</td>
<td>$r_w = 0.16 \text{ m}$</td>
</tr>
<tr>
<td>Plasma–wall coupling</td>
<td>$c = 0.17$</td>
</tr>
<tr>
<td>Plasma–control coil coupling</td>
<td>$c_f = 0.5$</td>
</tr>
<tr>
<td>Ideal MHD growth-rate</td>
<td>$\gamma_{\text{MHD}} = 100.0 \text{ msec}^{-1}$</td>
</tr>
<tr>
<td>Dissipation parameter</td>
<td>$\nu_d/\gamma_{\text{MHD}} = 4.5$</td>
</tr>
<tr>
<td>Control coil mutual ind.</td>
<td>$M_c/L_c = 0.3$</td>
</tr>
<tr>
<td>Control coil resistance</td>
<td>$R_c/L_c = 10.0 \text{ msec}^{-1}$</td>
</tr>
</tbody>
</table>

Table 3.1: Parameters used for simulations of the external kink mode.

this contribution is small for the case of HBT-EP, because the control and sensor coils are separated spatially and point in mutually orthogonal directions.

The control coil voltage V_c is calculated by applying proportional gain to the measurements from Eq. 3.4, closing the feedback loop.

3.4 Example simulation results

Two examples obtained from numerical integration of the reduced Fitzpatrick–Aydemir equations are useful for understanding how feedback behaves in the presence of noise. The case of proportional gain feedback with zero measurement noise ($v = 0$) is considered first. Fig. 3.2-a shows the time evolutions of feedback power and the sine component of the poloidal magnetic field measurement for this case. In this example, the mode is quickly stabilized, with most of the control power being consumed in the first millisecond after feedback is turned on.

The case of feedback stabilization with added noise is shown in Fig. 3.2-b. The sum of the poloidal field measurements with white spectrum, Gaussian noise v is used to compute the control signal, resulting in noisy feedback. The blue signal in Fig. 3.2-b
CHAPTER 3. SIMULATING EXTERNAL KINK MODE FEEDBACK

Fig. 3.2: Control power and sine poloidal field measurements from feedback simulations with the reduced Fitzpatrick–Aydemir equations for cases with a) no added noise, and b) Gaussian noise added to poloidal field measurements. In the poloidal field measurements for part b), the black trace shows the measurements without added noise. The measurements with added noise (blue) are used to compute the feedback signal.

shows the sine component of poloidal field measurements plus noise. For comparison, the poloidal field measurements without noise are overlaid in black. Here, feedback retains its ability to suppress the unstable mode, but at the expense of increased control power consumption compared with the noise-free case.

Because the simulation equations are linear, proportional gain feedback can suppress the instability with arbitrary amounts of added noise. However, nonlinear effects such as controller saturation and latency can impair the ability to do successful feedback under noisy conditions. The impact of controller latency on feedback is less obvious than that of saturation. Latency introduces a temporal phase-shift between the output and input of the controller that is linear in frequency. If there is white-spectrum noise in measurements, the phase-shift due to latency implies that some
frequency components of the noise will be phased for positive feedback.

In the next Chapter, an advanced tool for estimating the state of a noisy system, the Kalman filter, will be introduced. The Kalman filter compares an internal model for a system with measurements to produce an estimate that is optimal if the uncertainties in the model and measurements have Gaussian probability distributions.

Chapter 3 references

Chapter 4

The Kalman filter

The ability to control a physical system depends critically on knowledge of the system’s state. For example, the controller in an oven must be able to determine the oven’s temperature and engage a heating mechanism if the temperature is lower than a prescribed reference. Uncertainties in measurements of the temperature would result in poor control. However, it is not difficult to imagine feedback control scenarios in which measurements are less than perfect. In the case of RWM control, there may be electrical pickup in sensor coils and cabling from external sources, including wall currents and plasma activity not related to the mode. It is possible for the coils to be misaligned or poorly calibrated. Additionally, sensor coils can be damaged during plasma disruptions if they are not sufficiently shielded.

In light of these measurement difficulties, it is desirable to implement feedback control algorithms that can compare measurements with internal knowledge of the system dynamics. The Kalman filter provides a formalism for doing exactly this. Given a linear model and measurements, the Kalman filter produces a dynamic estimate for the state of a system that is optimal if uncertainties in the model and measurements are Gaussian. In this Chapter, the Kalman filter is introduced and filter matrices for
observing the external kink mode in HBT-EP are given. In simulations with added noise, we will see that using the Kalman filter can dramatically reduce the amount of control power required to suppress the instability.

4.1 The linear control problem

The results from modern control theory discussed in this Chapter apply to physical systems whose time evolution can be characterized by first-order, linear ordinary differential equations (ODEs) of the form

\[
\frac{d}{dt} \tilde{x}(t) = A\tilde{x}(t).
\]

The matrix \(A\) characterizes the dynamics of the system state \(\tilde{x}(t)\). The state vector contains information needed to observe and control the system. For example, in simple mechanical systems, the state might be a vector containing the position and momentum of an object, \(\tilde{x} = [q, p]\). In the previous Chapter, the system state in the reduced Fitzpatrick–Aydemir model (Eq. 3.1) consisted of the magnetic flux at the plasma surface and at the wall \(\tilde{x} = [\psi_a, \psi_w]\).

In the discussion of feedback control problems, models for measurements of the system state and for the response of the system to a control input are needed. The system model equations then become

\[
\frac{d}{dt} \tilde{x}(t) = A\tilde{x}(t) + \tilde{B}\tilde{u}(t) \quad \text{and} \quad \tilde{y}(t) = C\tilde{x}(t),
\]

with the matrix \(\tilde{B}\) characterizing the response of the system to inputs \(\tilde{u}\) and the
matrix C mapping the system state to an ensemble of measurements \tilde{y}. Because it is possible for there to be an arbitrary number of control actuators (dictating the size of \tilde{u}) and an arbitrary number of sensors (determining the size of \tilde{y}), the \tilde{B} and C matrices need not be square. Here, a stationary system is assumed; the matrices A, \tilde{B}, and C are assumed to be constant in time.*

One additional relationship is required to fully characterize the control problem: a control law for determining \tilde{u}. In the feedback algorithm used to obtain the results in this Thesis (discussed in greater detail in Chapter 5), the control output is proportional to the system state, that is,

$$\tilde{u} = GC\tilde{x}. \quad (4.3)$$

A control law of this form is referred to as a proportional gain control law, with the gain given by the matrix G. In general, terms proportional to the time-integral and derivative of \tilde{x} can be included as well, forming what is known as a proportional-integral-derivative (PID) controller.† Controllers of this sort are typically designed using Laplace transform methods, with frequency response of the system in mind. As an alternative, modern control theory provides state-space methods for picking gains to optimize system response characteristics (see, for example, Chapter 9 of Ref. 2), and several optimal controllers have been proposed for RWM feedback.³,⁴

Digital processors that sample time-varying signals at discrete intervals are frequently used to implement control algorithms, so it is useful to recast Eq. 4.1 in discrete form. Let the digital processor sample at even time intervals of length δt, and

*The Kalman filter equations may be written for a non-stationary system with little added difficulty.¹ However, the stationary case is most relevant to the external kink mode control problem on HBT-EP, and leads to simpler notation.

†There is a sense in which the controller used in this Thesis also includes derivative and integral action. This matter will be addressed further in Chapter 5.
let the current time step be designated $t_k \equiv t_0 + k\delta t$. Subscripts will also be used to refer to values of signals at various time steps, as in $x_{k-1} \equiv x(t_{k-1})$. Supposing that the control inputs \bar{u} remain constant from one time step to another, Eq. 4.1 becomes

$$\tilde{x}_k = \phi \tilde{x}_{k-1} + B\tilde{u}_{k-1}. \quad (4.4)$$

Here, the state-transition matrix is given by $\phi = \exp(A\delta t)$, and the input response matrix is given by

$$B = \int_{t_{k-1}}^{t_k} \exp[A(t_k - \tau)]d\tau \tilde{B},$$

with the exponential of a matrix M defined by the series $\exp(M) = \sum_{n=0}^{\infty} M^n/n!$. Equations 4.2 and 4.3 do not change in this discrete formulation.

4.2 Linear observers

In most feedback control situations, two important pieces of information are known. Usually, some model for the system dynamics is available, in the form of Eq. 4.1. In addition, the feedback controller is usually equipped with sensors that measure the system regularly. However, both sources of information may be flawed or incomplete. The system dynamics model may have missing physics or incorrect parameters, and the sensors may be tainted by noise or unable to measure all elements of the system state. The linear observer2,5,6 is a method for combining a linear model for the dynamics of a system with measurements to obtain a more accurate estimate of the system state.

A linear observer for a system of the form of Eq. 4.4 can be found by supposing
CHAPTER 4. THE KALMAN FILTER

that the observer’s estimate \hat{x} takes a similar form,

$$\hat{x}_k = \phi \hat{x}_{k-1} + \hat{B}u_{k-1} + K \tilde{y}_{k-1}. \quad (4.5)$$

By writing down an expression for the observer’s estimation error $\tilde{e}_k = x_k - \hat{x}_k$ and specifying that the error approach zero, the matrices $\hat{\phi} = \phi - KC$ and $\hat{B} = B$ can be obtained, resulting in the dynamical equation

$$\tilde{e}_k = \hat{\phi} \tilde{e}_{k-1} \quad (4.6)$$

for the error. The observer’s estimate can then be written

$$\hat{x}_k = \phi \hat{x}_{k-1} + B\tilde{u}_{k-1} + K(\tilde{y}_{k-1} - C\tilde{x}_{k-1}). \quad (4.7)$$

The quantity in the last term $\tilde{y}_{k-1} - C\tilde{x}_{k-1} = C\tilde{e}_{k-1}$ must approach zero with the error, meaning that the estimated measurements $C\tilde{x}$ approach the true ones \tilde{y}.

Note that Eq. 4.7 still has a single free parameter, the matrix K. The choice of K determines the convergence properties of the observer through the eigenvalues of $\hat{\phi}$. For simple systems, it might be possible to choose the terms in K so that Eq. 4.6 converges favorably. As an alternative, the Kalman filter provides a method for choosing K dynamically, using estimates of the uncertainty in the system model and the measurements. This method will be presented in the next Section.

4.3 The Kalman filter

The Kalman filter1,2,7,8 can be thought of as a linear observer for a system whose estimate is optimal when uncertainties in the measurements and the system model
have Gaussian probability distributions. A more precise statement addressing in what sense the estimate is optimal will be given later in this Section.

In the derivation of the Kalman filter equations, sources of noise with white frequency spectra and Gaussian probability distributions \vec{w} and \vec{v} are added to the system and measurement models (Eqs. 4.4 and 4.2), giving

$$\vec{x}_k = \phi \vec{x}_{k-1} + B \vec{u}_{k-1} + \vec{w}_k \quad \text{and}$$

$$\vec{y}_k = C \vec{x}_k + \vec{v}_k. \quad (4.9)$$

It is not important to know the exact time histories of \vec{w} and \vec{v}, but a statistical property called the covariance matrix must be known for each process. The covariance matrix for a random variable \vec{z} is defined by

$$\text{Cov}(\vec{z}_j, \vec{z}_k) = E[\vec{z}_j - E\vec{z}_j][\vec{z}_k - E\vec{z}_k]'$$

where the prime symbol ($'$) denotes a matrix or vector transpose and E is the expectation value operator. In this definition, the indices j and k are not indices for the rows and columns of the covariance matrix; they denote the value of \vec{z} at times t_j and t_k. A rigorous definition for the expectation value of a random variable can be found in many textbooks on statistics; see, for example, Ref. 9. We stipulate that the noise processes are zero mean and uncorrelated with each other or anything else, that is,

$$E\vec{w}_k = E\vec{v}_k = 0, \quad \text{for all } k,$$

$$E\vec{w}_j \vec{w}_k' = E\vec{v}_j \vec{v}_k' = 0, \quad \text{for all } j \neq k, \quad \text{and}$$

$$E\vec{w}_j \vec{z}_k' = 0, \quad \text{for all } j, k, \vec{w} \neq \vec{z}. $$
CHAPTER 4. THE KALMAN FILTER

Therefore, the covariance matrices for \vec{w} and \vec{v} are given simply by

\begin{align*}
Q_k &= \mathbb{E}[\vec{w}_k \vec{w}_k'] \\
R_k &= \mathbb{E}[\vec{v}_k \vec{v}_k'].
\end{align*}

The noise processes \vec{w} and \vec{v} are theoretical constructions used in the derivation of the Kalman filter equations, and in practical situations, the best way to determine their covariance matrices is not always clear. However, these matrices may be viewed as tuning parameters for the Kalman filter that control to what extent the filter’s estimate depends on measurements versus its internal model. Increasing the absolute value of the terms in \vec{w} adds uncertainty to the internal model, so the measurements will be relied upon more strongly. Doing the same for the terms in \vec{v} places more emphasis on the internal model.

One additional covariance matrix is needed for the Kalman filter, and that is the covariance of the estimation error,

\begin{equation}
P_k = \mathbb{E}(\vec{x}_k - \hat{\vec{x}}_k)(\vec{x}_k - \hat{\vec{x}}_k)'.
\end{equation}

The estimate $\hat{\vec{x}}$ provided by the Kalman filter is optimal in that the expected quadratic error given by the trace of P is minimized.\(^1\)

The equations needed to obtain the Kalman filter’s estimate can be broken up into two processes.\(^8\) The first is a “predictor” step in which an initial guess \vec{x}_k^* for the system state is made based on the Kalman filter’s previous estimate $\hat{\vec{x}}_{k-1}$ using the system model equation. In the second, “corrector” step, the initial guess is corrected based on measurements \vec{y}_k resulting in the optimal estimate $\hat{\vec{x}}_k$. The asterisk superscript (*) will be used to refer to terms associated with the initial guess, and a circumflex
(•) will indicate terms associated with the correction and final estimate. The initial prediction is

\[
\bar{x}^*_k = \phi \hat{x}_{k-1} + B \bar{u}_{k-1}, \quad (4.13)
\]

and it has an error covariance

\[
P^*_k = \phi \hat{P}_{k-1} \phi' + Q_k. \quad (4.14)
\]

The correction (and optimal estimate) is written

\[
\hat{x}_k = \bar{x}^*_k + K_k (\bar{y}_k - C \bar{x}^*_k), \quad (4.15)
\]

with the dynamic observer gain and corrected error covariance matrices given by

\[
K_k = P^*_k C' (CP^*_k C' + R_k)^{-1}, \quad \text{and} \quad (4.16)
\]

\[
\hat{P}_k = (I - K_k C) P^*_k. \quad (4.17)
\]

Here, \(I\) is the identity matrix. Together, Eqs. 4.13–4.17 form a complete implementation of the Kalman filter.

By assuming that the control signal \(\bar{u}\) is determined from the optimal estimate \(\hat{x}\) using the proportional gain control law (Eq. 4.3), the Kalman filter equations (Eqs. 4.13–4.17) can be written in a more compact form,

\[
\hat{x}_k = \Phi_k \hat{x}_{k-1} + K_k \bar{y}_k, \quad (4.18)
\]
with

\[\Phi_k = (I - K_k C)(\phi + BGC), \quad \text{and} \]
\[K_k = (\phi P_{k-1} \phi' + Q_k)C'[C(\phi P_{k-1} \phi' + Q_k)C' + R_k]^{-1}. \]

The estimation error covariance matrix is given by the relation

\[P_k = (I - K_k C)(\phi P_{k-1} \phi' + Q_k). \]

A further simplification is possible under the “steady-state” assumption that the observer gain and estimation error covariance matrices converge to constants, that is \(K_k \to K \) and \(P_k \to P \). In this limit, the matrices \(\Phi_k, Q_k, \) and \(R_k \) also become constants. By substituting the relation for \(K \) from Eq. 4.20 into Eq. 4.21, \(P \) is found to be the solution of the discrete, algebraic Riccati equation,

\[E'_R P E_R = \phi'_R P \phi_R - (\phi'_R PB_R + S_R)(B'_R PB_R + R_R)^{-1}(\phi'_R PB_R + S_R)' + Q, \]

with the definitions \(E_R \equiv I, \phi_R \equiv \phi', B_R \equiv \phi'C', S_R \equiv QC', \) and \(R_R \equiv CQC' + R \).

Eq. 4.22 is non-linear in \(P \) and is usually solved numerically.

4.4 Filter matrices for external kink mode control

The physics basis for the Kalman filter used in this work comes from the reduced Fitzpatrick–Aydemir model discussed in Chapter 3 and observations of external kink mode behavior in HBT-EP (discussed in Chapter 6). The modes targeted here have toroidal mode number \(n = 1 \) and rotate at frequencies near 3–5 kHz. The Kalman filter must be able to track the rotating mode using measurements of the poloidal
CHAPTER 4. THE KALMAN FILTER

In the formulation used here, the state vector \vec{x} contains the $\cos n\phi$ and $\sin n\phi$ Fourier components of the instability’s poloidal magnetic field, B_p^{\cos} and B_p^{\sin}. Knowing the cosine and sine Fourier components is equivalent to knowing the mode’s amplitude and toroidal phase. Additionally, the flux in the control coils ψ_c is simulated by the Kalman filter because it cannot be measured directly in experiments. The complete state vector is

$$\vec{x} = [\psi_c^{\cos}, \psi_c^{\sin}, B_p^{\cos}, B_p^{\sin}] .$$

The ϕ matrix is responsible for advancing the state vector in the absence of feedback and comes from the insight that the kink mode exhibits two basic behaviors: exponential growth and rigid rotation. This activity is easily represented using a model of the form

$$\begin{pmatrix} B_p^{\cos} \\ B_p^{\sin} \end{pmatrix}_k = \exp(\gamma \delta t) \begin{pmatrix} \cos(\omega \delta t) & -\sin(\omega \delta t) \\ \sin(\omega \delta t) & \cos(\omega \delta t) \end{pmatrix} \begin{pmatrix} B_p^{\cos} \\ B_p^{\sin} \end{pmatrix}_{k-1} = \tilde{\phi} \begin{pmatrix} B_p^{\cos} \\ B_p^{\sin} \end{pmatrix}_{k-1},$$

(4.23)

where γ and ω represent the expected growth and rotation rates of the instability. Fig. 4.1 shows the time evolution of a mode governed by Eq. 4.23. It is more convenient to put the control coil dynamics in the G matrix (see Eq. 4.27), so the state transition matrix is simply

$$\phi = \begin{pmatrix} 0_{22} & 0_{22} \\ 0_{22} & \tilde{\phi} \end{pmatrix},$$

(4.24)

with 0_{22} a 2×2 null matrix. The impact of the growth and rotation rate parameter values on feedback performance was investigated in simulations with the reduced Fitzpatrick–Aydemir model and in experiments with unstable external kink modes in HBT-EP. These are described in more detail in Chapter 7. For initial experiments and
Fig. 4.1: The cosine and sine components of a growing, rotating mode.

Simulations, the \(\gamma \) and \(\omega \) parameters were picked to match the open-loop growth and rotation rate of the reduced Fitzpatrick–Aydemir model (Eq. 3.1): \(\gamma = 1.27 \text{ m sec}^{-1} \) and \(\omega = 2\pi \times 4.26 \text{ m sec}^{-1} \).

In prior work,\(^{10,11}\) measurements of the \(n = 1 \) mode were obtained from sensor coil signals using a spatial Fourier transform filter and a temporal, phase-lead phase-lag filter. These filters are retained in the present feedback algorithm, so the \(C \) matrix needed for the Kalman filter is taken to be the identity transformation. The feedback algorithm is described more fully in Chapter 5.

The \(B \) matrix characterizes the response of the plasma to a control input. This response is found by first calculating the reaction of the reduced Fitzpatrick–Aydemir system to a steady state control flux \(\psi_c \) as in Ref. 12. Then, the resulting poloidal magnetic field is found as in Eq. 3.4, giving

\[
B\tilde{u} = \frac{6\delta t}{r_w(1 - c)} \text{Re}\left\{ [(2\sqrt{c}, -(1 + c)) \cdot \tilde{\xi}_j](\Xi^{-1} \cdot \vec{b})_j \left(\frac{1}{e^{-i\pi/2}} \right) \psi_c \right\}. \tag{4.25}
\]

Here, \(\Xi \) is a matrix containing eigenvectors of the reduced Fitzpatrick–Aydemir system in its columns, and \(\xi_j \) is the eigenvector corresponding to the unstable eigenvalue, with \(j \) the index of that eigenvalue. The vector \(\vec{b} \) characterizes the coupling between the
feedback flux and the plasma as in Eq. 3.1.

The control coils are represented using the discretized solution to Eq. 3.2,

\[
\psi_{c,k} = \epsilon \psi_{c,k-1} + \frac{M_c}{R_c} (1 - \epsilon) V_{c,k-1},
\]

(4.26)

where \(\epsilon \equiv \exp(-R_c/L_c \delta t)\).

Using Eqs. 4.25 and 4.26, the product of the control input response and gain matrices is written as

\[
BG = \frac{M_c}{R_c} (1 - \epsilon) \text{Re} \left[\begin{pmatrix} I_{22} & 0_{22} \\ \sigma & 0_{22} \\ 0 & \sigma \end{pmatrix} \begin{pmatrix} \frac{\epsilon R_c}{M_c (1 - \epsilon)} & 0 \\ 0 & \frac{\epsilon R_c}{M_c (1 - \epsilon)} \end{pmatrix} \begin{pmatrix} g_p & ig_p \\ -ig_p & g_p \end{pmatrix} \right]
\]

(4.27)

where \(g_p\) is a proportional gain parameter, \(\sigma \equiv 6\delta t[(2\sqrt{c}, -(1+c)) \cdot |\xi_j^c| \Xi^{-1} \bar{b}_j]/r_w (1 - c)\) from Eq. 4.25, and \(I_{22}\) and \(0_{22}\) are \(2 \times 2\) identity and null matrices. The \(G\) matrix in Eq. 4.27 applies proportional gain to the \(B_p\) elements of the state vector, and calculates new \(\psi_c\) values. The \(B\) matrix simply calculates the poloidal field resulting from the plasma’s response to \(\psi_c\).

Two more matrices are needed for the Kalman filter, the noise covariance matrices \(Q\) and \(R\). For modeling and experiments on HBT-EP, these matrices are taken to be constant in time and are both represented by scalar coefficients times the identity matrix, \(Q = 1 \times 10^{-5} I\) and \(R = 0.01 I\). As discussed in the previous Section, these matrices can be used to tune the relative dependence of the Kalman filter’s estimate on the measurements versus the internal model. This tuning was investigated in simulations and experiments by adjusting the coefficient for \(Q\), and the results are discussed in Chapter 7.
4.5 Feedback simulations with the Kalman filter

The addition of the Kalman filter to the simulation introduced in Chapter 3 brings about a dramatic change in feedback performance. Fig. 4.2 shows feedback control power and poloidal field measurements from the simulation for cases with and without the Kalman filter. In both cases, proportional gain feedback is used and identical amounts of noise have been added to the poloidal field measurements used to compute the control signal. For the case in Fig. 4.2-b, however, the steady-state Kalman filter has been used to remove noise from the measurements before the control signal is calculated.

When the cosine and sine components of the mode are estimated from the noisy
measurements using the Kalman filter, the expended control power becomes close to that of the noise-free case shown in Fig. 3.2-a, and a 50 percent reduction in peak control power is attained compared with the case of feedback with noise but no Kalman filter. When a “steady-state” time interval far from the transient response to the feedback is considered, in this case 3.0–4.0 msec, using the Kalman filter brings about a 92 percent reduction in the mean control power compared with the noisy, unfiltered case.

Chapter 4 references

Chapter 5

Control system hardware on HBT-EP

The HBT-EP experiment is uniquely equipped to study feedback control of resistive wall modes. A close fitting, hybrid conducting wall can be adjusted to change the growth rate of external instabilities. Feedback experiments are performed with an array of 20 poloidal field sensor coils and 20 pairs of radial field control coils. The control and sensor coils are well coupled to the plasma, but only minimally coupled with each other. Low latency field-programmable gate array controllers are used to implement a feedback algorithm that contains spatial and temporal filtering, plus a Kalman filter.

5.1 Adjustable wall sections

The HBT-EP experiment incorporates a segmented, close-fitting wall made from alternating stainless steel and aluminum sections that can be adjusted radially to impact the growth rate of external modes. The wall sections are evenly spaced around the outboard edge of HBT-EP (see Fig. 5.1), and may be independently positioned in the minor radial direction between \(r = 15 \text{ cm} \) and \(r = 23 \text{ cm} \). There are 10 wall
sections above the toroidal mid-plane and 10 below. Each of the 10 toroidal locations has either a pair of stainless steel shells or a pair of aluminum shells. The aluminum shells are 1.4 cm thick and have an eddy current decay time of 60 msec. By contrast, the stainless steel shells have a thickness of 0.2 cm and an eddy-current decay time of 300 μsec. By changing the radial positions of the less resistive aluminum shells and keeping the stainless steel shells fully inserted, the combined eddy current decay rate of the wall for $(m, n) = (3, 1)$ external kink modes can be adjusted between 6.3 and 2.3 msec$^{-1}$.²

For the experiments described in this Thesis, the stainless steel wall sections were positioned at $r = 15$ cm, 1 cm away from the surface of the plasma. A single pair of aluminum sections is instrumented with a high-density poloidal array of magnetic pickup loops, and was placed at $r = 15$ cm as well. The remaining aluminum sections were retracted to $r = 18$ cm. In this configuration, the growth rate of external kink instabilities without feedback was observed to be near 5 msec$^{-1}$, close to the eddy-current decay rate of the stainless steel sections.
5.2 Feedback loop hardware

HBT-EP’s mode control system employs an array of twenty poloidal magnetic pickup coils as sensors, and twenty pairs of radial coils serve as actuators. Both the sensor and control coils are well coupled to the plasma, by virtue of being mounted on thin, stainless steel walls that can be positioned up to 1 cm from the plasma edge. Coupling between the sensor and control coils is minimal because the field produced by a given control coil is orthogonal to that measured by nearby sensor coils.

Two sensor coils are mounted on the plasma facing side of each stainless steel shell. The coils are aligned in the poloidal direction at angles of $\theta = \pm 27^\circ$ and $\pm 83^\circ$ from the midplane and centered toroidally on the shell. Each sensor coil has 15 turns of Kapton-coated copper wire and an area of 7 cm2. The sensor coils have measured inductances and resistances of $L \approx 10 \mu$H and $R \approx 1$ Ω, so they can be assumed to ideally measure the time-derivative of magnetic field fluctuations in the frequency range of interest, 1–10 kHz.

The control coils are organized in series pairs and mounted on wings of stainless steel shim-stock on the right and left-hand edges of the stainless steel shells. The shim-stock used is 0.254 mm thick and transparent to magnetic fields in the frequency range of interest. Two pairs of control coils straddle each shell. Each individual control coil is made from 20 turns of Kapton-coated wire and has an area of 194 cm2. Fig. 5.1 shows the arrangement of control and sensor coils on the stainless steel shells. The control coils cover about 15% of the plasma surface. Each control coil pair has a measured inductance and resistance of $L \approx 300 \mu$H and $R \approx 6$ Ω.

The control and sensor coils are divided into four independent feedback loops, each consisting of five sensor coils and control coil pairs driven by a dedicated National Instruments (NI) 7831-R field-programmable gate array (FPGA) controller. Fig. 5.2
Fig. 5.2: The arrangement of the control and sensor coils in the $\varphi-\theta$ plane is shown above. The coils are divided into four independent feedback loops (groups a–d), with five sensor coils and five control coil pairs each.

shows how the groups are organized: the coils in each group are spaced evenly in the toroidal direction at a predetermined poloidal angle. With this configuration, Fourier methods can be used in the feedback algorithm to isolate the $n = 1$ instability from $n = 0$ and $n = 2$ activity. However, because each feedback loop is independent of the others, there is no constraint on the poloidal structure of instabilities for feedback control, save that the structure of very short wavelength modes will alias on the coils. This flexibility is important: in tokamaks and other toroidal devices, instabilities usually cannot be characterized in terms of a single poloidal Fourier harmonic.

The NI 7831-R modules feature 8 differential analog inputs, 8 single-ended analog outputs, and 96 digital input–output channels. The analog channels have a voltage limit of ± 10 V and 16-bit resolution. Five analog inputs and outputs are connected to the sensor and control coil circuits in each loop. One of the digital channels is used as a gate for the feedback algorithm. The analog to digital (A/D) convertors at the analog inputs operate in parallel with latencies of 4 μsec, and the D/A conversion at the analog outputs consumes an additional 1 μsec. The A/D and D/A conversion times set the minimum latency for feedback algorithms at 5 μsec. The 7831-R modules have a Xilinx Virtex II FPGA, which is clocked at 40 MHz and has 8 kB of embedded random access memory. Algorithm design for the NI 7831-R modules is done using the LabVIEW programming language. Specific LabVIEW programming considerations
Analog filtering FPGA analog amplification

Fig. 5.3: A diagram of one out of four feedback loops. Signals from five sensor coils are filtered using analog components before reaching the field-programmable gate array (FPGA) controller. The outputs of the FPGA are sent to amplifiers that drive five control coil pairs.

for the NI 7831-R modules are discussed in Appendix A.

Fig. 5.3 shows a diagram of a single feedback loop. Analog RC-filters3,4 are used in both low and high-pass configurations to process signals from the sensor coils before they reach the FPGA controllers. The low-pass filters, with $R = 0.75 \text{ k}\Omega$ and $C = 23 \text{ nF}$, eliminate frequencies above the Nyquist frequency of the FPGA controllers, which is set by their A/D conversion rate of 250 kHz. The high-pass filters, with $R = 1 \text{ k}\Omega$ and $C = 220 \text{ nF}$, eliminate quasi-dc offsets that arise from the plasma’s equilibrium poloidal magnetic field. Poloidal field fluctuations from the rotating external kink modes produced for feedback control experiments in HBT-EP have frequencies near 5 kHz.2 Audio frequency range amplifiers following the FPGA can drive a maximum of $\pm 5 \text{ Amperes}$ at 5 kHz in each control coil pair; this corresponds to about 30 W of cycle-averaged power per coil pair.

A numerical model for the open-loop transfer function of the feedback hardware was created by Klein,5 taking into account the frequency-dependent impedances of the sensor coils, control coils, and analog filtering components, and controller latency. The accuracy of the model was checked against measurements of the transfer functions
of each component in the loop, and Klein added a second-order, lead–lag temporal filter to the FPGA algorithm to optimize the transfer function for a flat amplitude and phase response in the 1–10 kHz range. Figure 5.4 shows the model of the total transfer function before and after this optimization. The large change in the uncorrected phase transfer between 1–10 kHz could impair the ability to do feedback. For example, the uncorrected phase transfer at 1.5 kHz is about $\pi/4$ rad. It is possible to do negative feedback on a mode rotating at this frequency by adjusting the toroidal phasing of the control signals (see Eq. 5.2). However, any activity at frequencies near 7 kHz has a phase transfer of $-\pi/4$ rad, and will be phased to excite, rather than suppress, the 1.5 kHz instability.

Experiments that measured the response of an unstable external kink mode to feedback applied with different temporal filters demonstrated the importance of compensating for the open-loop transfer function properly: feedback with the filter that resulted in the smallest amount frequency-dependent amplitude and phase variation in the combined transfer function was the most successful at suppressing the external kink instability.²
5.3 Feedback algorithm

For initial experiments performed by Klein,\(^2\) an algorithm with spatial and temporal filtering was implemented on the FPGA controllers. These filters are retained for use in the present algorithm. The Kalman filter described in Section 4.4 is also included. This Section provides an overview of the feedback algorithm. A more detailed description is given in Appendix B.

The spatial filter uses a discrete Fourier transform (DFT) to separate a toroidal \(n = 1\) mode from any \(n = 0\) and \(n = 2\) activity in a group of five sensor inputs \(s_1, \ldots, s_5\), giving the cosine and sine components of the poloidal field fluctuations,

\[
\begin{pmatrix}
B_p^{\cos} \\
B_p^{\sin}
\end{pmatrix} = D_{n=1} \begin{pmatrix}
s_1 \\
\vdots \\
s_5
\end{pmatrix}.
\tag{5.1}
\]

The inverse DFT is used in conjunction with a rotation operator \(R_{\Delta \varphi_f}\) that adjusts the toroidal phasing of feedback about a predetermined angle \(\Delta \varphi_f\) and a proportional gain matrix \(G\) to compute the control coil outputs \(c_1, \ldots, c_5\) in the final stage of the algorithm,

\[
\begin{pmatrix}
c_1 \\
\vdots \\
c_5
\end{pmatrix} = D_{n=1}^{-1} R_{\Delta \varphi_f} G \begin{pmatrix}
B_p^{\cos} \\
B_p^{\sin}
\end{pmatrix}.
\tag{5.2}
\]

The matrices \(D_{n=1}\) and \(D_{n=1}^{-1} R_{\Delta \varphi_f} G\) are calculated prior to run time and stored in memory on the NI 7831-R modules.

The second order phase-lag, phase-lead temporal filter used previously\(^2\) is broken
into two first order filters, each of the form

\[y_k = a_0 x_k + a_1 x_{k-1} + b_1 y_{k-1}. \]

Here, the filtered output \(y \) at time step \(k \) is given in terms of an input \(x_k \) and the value of the filter’s input and output at the previous time step. The coefficients \(a_0 \), \(a_1 \), and \(b_1 \) are chosen to provide the correction to the system transfer function shown in Fig. 5.4.

The Kalman filter is implemented using the steady-state limit described in Section 4.3; that is, the filter’s estimate \(\hat{x} \) is given by

\[\hat{x}_k = \Phi \hat{x}_{k-1} + K \hat{y}_k. \tag{5.3} \]

The matrices \(\Phi \) and \(K \) (defined in Eqs. 4.19 and 4.20) are calculated prior to run time and stored in memory on the NI 7831-R controllers, leaving only Eq. 5.3 to be solved by the feedback algorithm.

The Kalman filter is sandwiched between the phase-lag and phase-lead portions of the temporal filter (see Fig. 5.5). The lag compensator has a large amount of integral action and corrects for the transfer functions of the nearly-ideal magnetic pickup coils used as sensors and of analog filtering components on the input leg of the feedback loop. The lead compensator follows the Kalman filter and corrects for the integrating nature of the control coils. Together, the temporal filters insure that the Kalman filter sees a signal that is proportional to the perturbed magnetic field (and not, say, its time derivative), and that the field applied by the control coils will be proportional to the Kalman filter’s estimate when the feedback loop is closed. That is, the Kalman filter is designed to use a measurement with units of magnetic field to produce a
Fig. 5.5: A diagram showing the stages of the feedback algorithm. The $n = 1$ mode is computed from a group of five sensor coils using a DFT and optionally mixed with a noise input. The phase-lag, Kalman, and phase-lead filters are then applied, followed by the proportional gain, toroidal rotation, and inverse DFT operators.

A refined estimate of that field.

Additionally, the capacity of this Kalman filter to produce estimates of the amplitude and phase of a rotating, growing $n = 1$ mode makes it ideally suited to operate on the Fourier domain of the spatial DFT. The temporal filters are placed inside the forward and inverse DFT operations simply because the DFT step brings about a reduction in the number of signals that must be filtered, allowing for the algorithm to be implemented using fewer arithmetical operations.

Two additional capabilities are useful for comparing algorithms in experiments. First, the Kalman filter stage of the algorithm can be bypassed, resulting in a conventional algorithm that is identical to that used in earlier experiments.2,5 Figure 5.6-a
Fig. 5.6: Example input and output signals from the feedback algorithm. a) an input signal from a sensor coil for HBT-EP discharge 62335. b) an output of an algorithm employing only the spatial and temporal filtering. c) an output of the Kalman filter algorithm.

shows a typical sensor coil signal during the onset of a rotating external kink mode. Ambient noise from sensor signals is present in the output of an FPGA controller algorithm that uses only the spatial and temporal filtering (figure 5.6-b). When the Kalman filter is added to the FPGA algorithm, high-frequency noise is eliminated and only the signal from the kink mode (at about 5 kHz) remains in the output (figure 5.6-c). This output is consistent with the results of other methods, such as analyzing fast Fourier transforms of the sensor coil data, used to isolate the behavior of the mode from noise in post-processing. Secondly, noise inputs can be mixed with the output of the DFT operator (see Fig. 5.5) to test the robustness of control algorithms under noisy conditions. Example plots showing the output of the algorithm with added noise are given in Chapter 7.

Special care was taken in designing the Kalman filtering algorithm to minimize latency. This is because controller latency has a two-fold impact on feedback performance where rotating modes are concerned. First, latency creates an information
delay between the plasma and controller; the controller must be fast enough to keep pace with changes in the plasma equilibrium and quickly growing modes. Secondly, latency impacts the system transfer function by adding a phase-shift that is linear in frequency. In the case of HBT-EP, controller latencies greater than 30 μsec create sufficient phase shift (even with digital compensation) to allow for the possibility of the feedback suppressing a low-frequency instability while simultaneously exciting a high-frequency one.

Chapter 5 references

Chapter 6

Observation of external kink mode activity

External kink instabilities are created in HBT-EP discharges by establishing a gradient in the current density profile near the edge of the plasma. In this Chapter, the programming of external kink unstable discharges is discussed in detail, and poloidal magnetic field fluctuations from an example discharge are examined. Two analysis techniques, a spatial Fourier transform and the biorthogonal decomposition, are used to analyze data from multiple poloidal field sensor coils and provide information about the structure and evolution of the instability.

6.1 Discharge programming

In HBT-EP, tokamak plasma discharges are produced and sustained through careful programming of current waveforms in the Ohmic heating (OH), vertical field (VF), and toroidal field (TF) coils. The coils are powered by ignitron-switched capacitor banks, and the operator specifies the charging voltage for each bank as a means of
controlling the current in the accompanying coil set. Representative waveforms from HBT-EP shot number 62112 are shown in Fig. 6.1. Two capacitor banks are used for the VF coil set: a start bank fires at time $t = 0.85$ msec, followed by a power crowbar bank at $t = 1.07$ msec. The OH banks fire in three phases: a negative bias at $t = 0.02$ msec is followed by the positive-going “start” phase at $t = 0.85$ msec and the power crowbar at $t = 1$ msec. The TF bank is a single stage with a longer discharge length, so the toroidal field is nearly constant during the lifetime of the plasma. Further details pertaining to the design of HBT-EP’s capacitor banks can be found in Ref. 1.

The VF and OH timing parameters have been optimized, taking into account the time it takes for their fields to penetrate the vacuum vessel and wall sections, so that a plasma equilibrium is quickly established, near $t = 1.0$ msec in Fig. 6.1. In order to develop a target discharge for experiments, the operator typically adjusts the charging voltages for the OH banks to obtain the desired plasma current evolution, and then tunes the charging voltages for the VF banks to balance the radial forces on
External kink unstable discharges are created by ramping the plasma current \(I_p \), as is shown in Fig. 6.2-a. In this discharge, the plasma current is ramped at \(\sim 3 \) MA/sec. At this rate, current density is added at the plasma edge more quickly than it can diffuse inward, resulting in a broad current density profile with a large gradient near the plasma edge. Current density gradients are a source of free energy that can drive external kink instabilities (see the discussion in Section 2.4).

The plasma’s major radius \(R_0 \) (Fig. 6.2-b) is calculated using the signal from a poloidal Rogowski coil\(^2\) with a winding density proportional to \(\cos \theta \). Corrections are included for pickup in the Rogowski coil from the VF and OH fields. The plasma
minor radius a (Fig. 6.2-c) is then obtained from the minimum distance between R_0 and the locations of four fixed plasma limiter blades: inboard, outboard, upper, and lower. The safety factor at the edge of the plasma (Fig. 6.2-d) is obtained using the high aspect ratio approximation

$$q_a = \frac{aB_t(R_0)}{R_0 B_p}, \quad (6.1)$$

with the equilibrium poloidal field $B_p \approx \mu_0 I_p / 2\pi a$. The toroidal field on axis $B_t(R_0)$ is estimated from the value measured at $R = 123$ cm by assuming a $1/R$ dependence.

A numerical equilibrium reconstruction and MHD stability analysis was performed by Klein4 for a discharge created in the same fashion as shot 62112. This analysis yielded a negative value of δW for a mode with an $(m, n) = (3, 1)$ helicity. If $\delta W < 0$ for a given perturbation, the plasma is linearly MHD unstable to that perturbation (see Eq. 2.13). A calculation of the normalized stability parameters s and s_{crit} (discussed in Section 3.1) showed that $s \approx s_{\text{crit}}$ for this instability, indicating that the quickly growing, ideal external kink branch of the RWM dispersion relation5–7 is unstable.
In ideal MHD theory, the value of the edge safety factor plays an important role in determining the stability of external modes. In particular, the ideal external kink is expected to be unstable when q_a is slightly below a rational number, that is, when a rational surface lies just outside the plasma edge. Fig. 6.3-a shows poloidal field fluctuations measured by one of HBT-EP’s feedback sensor coils for shot 62112. During the time window when $q_a < 3$, about 1.8–2.8 msec, the poloidal field fluctuations measured by the sensor coil are consistent with those of an instability rotating at 3–4 kHz. The amplitude of the frequency spectrum of these oscillations is shown in Fig. 6.3-b. Analysis methods that combine information from more than one sensor coil (described in the next Section) can be used to determine the spatial structure of the instability.

6.2 Analysis of magnetic fluctuations

In total, about 36 independent point measurements of poloidal magnetic field fluctuations in HBT-EP are available. The poloidal field coils are mounted on the wall sections described in Chapter 5. There are several ways to combine these measurements to obtain a global view of the fluctuations. In the first method described here, signals from the feedback system sensors are Fourier analyzed to obtain a toroidal mode number. The second method involves using a singular value decomposition to analyze all the measurements at once. The results of both techniques show a dominant $(m, n) = (3, 1)$ instability for HBT-EP shot 62112.

6.2.1 Fourier analysis

Because the feedback system sensor coils are arranged in groups of five coils evenly spaced in the toroidal direction (see, for example, Figs. 5.1 and 5.2), signals from each
Fig. 6.4: Spatial Fourier spectrum amplitudes calculated from poloidal field sensor fluctuations for HBT-EP discharge 62112. The colors denote poloidal groupings of five sensors each. The highlighted region marks the time window when $q_a < 3$.

group can be Fourier analyzed to determine the toroidal mode number n of poloidal field fluctuations for $n = 0$, 1, and 2. A discrete Fourier transform is performed on each group of poloidal field fluctuation measurements at every time step. Then, a time-dependent amplitude and phase can be calculated for each n-number and coil group. Fig. 6.4 shows the amplitude results for each group, organized by n-number for shot 62112. During the 1.8–2.8 msec time window in which the plasma is external kink mode unstable, small amount of activity is detected in the $n = 0$ and $n = 2$ harmonics. The $n = 1$ harmonic, however, shows an exponentially growing mode in all four sensor groups, indicating that the instability has an odd toroidal mode number.*

The time-dependent phase for the $n = 1$ mode is shown for each sensor coil group

*Toroidal mode numbers greater than $n = 2$ cannot be detected using five evenly spaced measurements, leaving open the possibility that the $n = 1$ signal could be created by a higher order odd harmonic aliasing on the coils. However, the energy required to apply a harmonic perturbation to a plasma increases with the square of n. This can be seen by evaluating the first term in Eq. 2.17 for a perturbation of the form $\xi = \xi_0 \exp(in\varphi)$. Thus, the mode is most likely $n = 1$.

Eq. 2.17: \ldots
CHAPTER 6. OBSERVATION OF EXTERNAL KINK MODE ACTIVITY

Fig. 6.5: Spatial Fourier spectrum phase for the $n = 1$ mode for HBT-EP shot 62112. The colors of the traces denote individual sensor groups as in Fig. 6.4. The highlighted region marks the time when $q_a < 3$.

in Fig. 6.5. As the mode develops, the phases are seen to increase linearly in time and then jump from π to $-\pi$ rad at regular intervals, indicating that the $n = 1$ mode is rotating. During this time, about 2.0–2.8 msec, signals from poloidally adjacent groups are out of phase by about π rad, and signals from alternating groups are in phase. This pattern is consistent with that of an instability with poloidal mode number $m = 3$. Thus, we can identify the helicity of the mode as $(m, n) = (3, 1)$. The instability is resonant with the $q = 3/1$ magnetic surface, which (by the evolution of q_a shown in Fig. 6.2–d) is just outside the plasma edge. Therefore, it is an external mode.

6.2.2 Biorthogonal decomposition analysis

In addition to the feedback system sensor coils, HBT-EP is equipped with a high density poloidal array of 16 poloidal field pickup coils. The positions of all the coils are overlaid in Figs. 6.7 and 6.8. All the stainless steel wall sections plus the aluminum wall sections on which the poloidal array is mounted were fully inserted for the external kink mode experiments described here, providing a total of 34 poloidal field measurements at the same minor radius. (Two coils were inoperable at the time of this work.) Because the coils are not evenly spaced, they cannot be analyzed in
ensemble fashion using Fourier transforms. However, a technique called the biorthogonal decomposition\(^9\) (BD) can be used to analyze and extract information from the group of measurements.

To implement the BD, a collection of measurements at \(N\) time points \(t_i\) and \(M\) spatial locations \(x_j\) is assembled into an \(N \times M\) matrix \(Y\), with each column in \(Y\) holding the time series at the \(j\)th spatial location. For the poloidal magnetics measurements described above, each \(x_j\) represents the coordinates of a sensor coil in the \(\varphi-\theta\) plane. By performing a singular value decomposition (SVD) on \(Y\), the data can be decomposed into separate spatial modes \(u_k(x_j)\) and temporal modes \(v_k(t_i)\),

\[
Y_{ij} = \sum_{k=0}^{K-1} A_k u_k(x_j) v_k(t_i). \tag{6.2}
\]

The number of modes \(K\) provided by the SVD is the minimum of \(M\) and \(N\). The weights \(A_k\) are all greater than zero, and the spatial and temporal modes are orthogonal, that is,

\[
\sum_{j=0}^{M-1} u_k(x_j) u_l(x_j) = \sum_{i=0}^{N-1} v_k(t_i) v_l(t_i) = \delta_{kl}.
\]

An advantage in using the BD is that, unlike in Fourier analysis or other meth-
ods of fitting data to prescribed functions, nothing is assumed about the spatial or temporal structure of the data. The BD naturally reveals orthogonal sets of modes that describe what is measured. However, it can be difficult to interpret or assign a physical meaning to the modes.

The squares of the weights are interpreted as the amount of “energy” in each mode. Fig. 6.6 shows the energy of the first 20 modes from a BD analysis of the poloidal magnetics for HBT-EP shot 62112 over the time window 1.8–2.8 msec. For this data set, modes $k = 0$ and $k = 1$ represent about 85% of the total energy, and the next pair of modes represents 6%.

It is interesting that a pair of modes is set apart from the rest by about an order of magnitude in energy. The corresponding spatial structures, $u_0(x)$ and $u_1(x)$, are pictured in Fig. 6.7. The spatial mode plots were made by positioning each $u(x_j)$ in the $\varphi-\theta$ plane and interpolating the data between measurement points. The structures shown in Fig. 6.7 are quite similar: when the amplitude is considered along a line of constant θ, the toroidal wave number can clearly be identified as $n = 1$ in each. Looking along a line of constant φ, there are about 1.5 wavelengths in a 180° poloidal
span, consistent with $m = 3$. These two spatial modes are roughly identical to within a phase-shift of a quarter wavelength in either θ or ϕ. Therefore, the u_0 and u_1 modes can be interpreted as if they were a cosine–sine quadrature pair.

Spatial modes u_2 and u_3 are shown in Fig. 6.8. Their structure is more difficult to interpret, but a toroidal mode number $n = 2$ can clearly be identified. There is little variation in the poloidal direction, except for at the right-hand edge of each contour plot, where the sampling density is higher. At the right-hand edge, there are three wavelengths over a span of 180° in the θ-direction, consistent with $m = 6$. So, we can interpret the second pair of modes as an $(m, n) = (6, 2)$ cosine–sine pair that is aliased in areas where the coil coverage is not dense enough to resolve $m = 6$.

Time histories of the first four temporal modes are shown in Fig. 6.9. The modes are multiplied by their respective weights so that the most significant modes stand out. The v_0 and v_1 modes clearly form a quadrature pair for an instability rotating at about 3–4 kHz. The relationship between v_3 and v_4 is less obvious; the phase-shift between them changes in time.

The spatial and temporal modes corresponding to $k > 3$ represent about 9% of the

Fig. 6.8: The second pair of spatial modes obtained using a biorthogonal decomposition analysis of poloidal field fluctuations from HBT-EP discharge 62112. The peak amplitude of the modes is normalized to 1.0.
energy in the spectrum, combined. These modes have high or broadband temporal frequencies and unusual spatial structures. They are difficult to interpret physically, and do not always occur in quadrature pairs. The modes may arise from signal noise or calibration errors in the poloidal field measurements.

The results of the BD analysis of the ensemble of 34 poloidal field measurements confirm the main conclusion drawn from the Fourier analysis of the feedback system sensor coil groups by themselves: that the instability observed during the time window 1.8–2.8 msec in HBT-EP discharge 62112 is an \((m, n) = (3, 1)\) mode, rotating near 3–4 kHz. In addition, the BD results show some evidence of low-amplitude \((m, n) = (6, 2)\) activity.

Chapter 6 references

Chapter 7

Closed loop Kalman filter experiments

The most important tests of the Kalman filter algorithm presented in Chapter 5 are in experiments with external kink mode-unstable plasmas. The experimental results presented in this Chapter show clear enhancements in feedback performance when the Kalman filter is used. In particular, feedback with the Kalman filter remains effective even when large amounts of noise are added to input signals. The results of feedback experiments that investigated the impact of various algorithm parameter settings are described here as well. The spatial phasing between the feedback and the instability was investigated, as well as the Kalman filter’s growth rate, rotation rate, and noise covariance parameters. Feedback performance was improved when optimal values for these parameters were used.
CHAPTER 7. CLOSED LOOP KALMAN FILTER EXPERIMENTS

77

Fig. 7.1: Shot-averaged time evolutions of the plasma current (a) and edge safety factor (b) from 462 feedback-off discharges are shown in black. The gray traces show the means plus and minus one standard deviation.

7.1 Experimental method

The conditions that lead to the appearance of the external kink instability can only be maintained for time scales of order 1 msec in HBT-EP plasmas (see, for example, Figs. 6.2–6.4 and the accompanying discussion). Given the latency of the feedback algorithm, about 10 μsec, and the L/R time of the control coils, about 50 μsec, a 1 msec window of external kink instability is sufficiently long to measure the effect of feedback on the mode. However, there is not enough time to adjust feedback parameters during a plasma discharge. For this reason, the effect of feedback parameters such as gain, toroidal phasing, and the Kalman filter matrices must be investigated by changing one parameter per discharge and comparing the results of many feedback-off and feedback-on discharges.

For the experiments described in this Chapter, 3–5 feedback-on plasma discharges were made to test each parameter setting, and reference feedback-off discharges were made after every few feedback-on shots. Conclusions about the impact of these pa-
Parameter settings were then drawn by comparing shot-averaged fluctuation amplitude levels from the feedback-on and reference discharges. Because conditions that are not directly controlled by the operator, such as vacuum impurity levels, can greatly impact the plasma equilibrium, equilibrium-related quantities such as the plasma current I_p and edge safety factor q_a were closely monitored during experiments. Data from discharges for which the evolutions of I_p and q_a differed significantly from those of a reference before or during the time window of external kink instability were discarded. In the event that a large number of discharges began to disagree with the reference, the experiment was suspended temporarily and small adjustments to the capacitor bank charging parameters (see Section 6.1) were made until good agreement was obtained.

Fig. 7.1 shows the shot-averaged evolutions of I_p and q_a for the feedback-off discharges made during experiments described here. The means plus and minus a standard deviation (indicated by the gray traces) characterize the level of variation that was tolerated during experiments. The equilibrium of these plasmas is not significantly impacted by feedback control of the external kink mode, so the feedback-on discharges were held to the standard shown in Fig. 7.1 as well.

For the initial feedback phase angle scan and added noise experiments described in Sections 7.2 and 7.3, the open-loop growth and rotation rate parameters for the Kalman filter’s internal model (see Eq. 4.23) were set equal those from the reduced Fitzpatrick–Aydemir model for HBT-EP (Eq. 3.1): $\gamma = 1.3 \text{ msec}^{-1}$ and $\omega = 2\pi \times 4.3 \text{ msec}^{-1}$. The diagonal terms of the Kalman filter’s noise covariance matrices were set to $Q_{ii} = 1.0 \times 10^{-5}$ and $R_{ii} = 0.01$. The impact of changing these parameters was addressed by the parameter scan and phase angle scan experiments that are described in Sections 7.4 and 7.5.
7.2 Initial phase angle scan

An important parameter in the feedback control algorithm is the spatial phasing of the feedback signal relative to that of the sensed mode. The feedback system sensor coils measure the poloidal magnetic field, but the control coils are radially directed. From ideal MHD theory, it is expected that the radial and poloidal fields of the external kink mode will have a spatial phase-shift of 90° (see, for example, Chapter 6 in Ref. 1). Thus, a 90° phase-shift is needed between the sensed and the applied fields in order to do negative feedback. Because the external kink modes in HBT-EP always rotate, any temporal phase-shifts in the system produce additional spatial phase-shifts during feedback. Filtering in the control algorithm helps correct for temporal phase-shifts in the system (see Chapter 5), but this correction is not perfect. For these reasons, it is useful to have the ability to adjust the spatial phasing between the sensed mode and applied feedback field, $\Delta \varphi_f$. This concept is illustrated in Fig. 7.2.

One might expect that there should exist a setting of $\Delta \varphi_f$ for which the control field is exactly aligned with the mode, resulting in excitation of the instability. Furthermore, a setting of $\Delta \varphi_f$ offset 180° from where excitation was observed ought to
Fig. 7.3: Poloidal field fluctuations measured by a sensor coil 1 cm from the plasma surface for the case of: (a) no feedback, (b) positive feedback using the Kalman filter and (c) negative feedback with the Kalman filter.

suppress the mode’s amplitude. In initial experiments with the Kalman filter algorithm, this behavior was observed as expected. In Fig. 7.3, poloidal field fluctuation measurements from feedback with two settings of settings of $\Delta \varphi_f$ are compared with a feedback-off reference. Excitation of the fluctuations is observed for $\Delta \varphi_f = -90^\circ$, and suppression is observed when $\Delta \varphi_f = 90^\circ$.

An optimum value for $\Delta \varphi_f$ was determined by scanning this parameter through 360° in 10° increments. The contour plot in Fig. 7.4 shows the amplitude of the Fourier spectrum of poloidal magnetic field fluctuations from this scan. The plot’s polar axis marks the setting of $\Delta \varphi_f$, and the radial axis marks the frequency of the spectrum. The averaged Fourier spectrum amplitude from feedback-off discharges made during this experiment has a single peak at 4 kHz (see Fig. 7.10), and this peak is marked on the color-bar in Fig. 7.4. As $\Delta \varphi_f$ is scanned, regions of feedback suppression and excitation (at 4 kHz) are observed in the contour plot. The feedback phase setting
that resulted in the clearest suppression of the instability (marked with the blue line) is near 90°.

The spiraling quality of the peak of the contour plot is caused by residual variation in the phase-transfer of the feedback system (see Fig. 5.4). Klein removed the spiral (from the results of previous experiments done with the same temporal filter as that used here) by correcting for this variation in post-experiment analysis. However, in comparing the results of this experiment with those from previous experiments without the Kalman filter, less feedback excitation is seen at high frequencies. For some phasings, the previous results showed evidence of feedback excitation in the 10–15 kHz range. Here, there is little excitation at any phasing above about 8 kHz. This difference is attributed to the Kalman filter’s ability to damp frequencies far from its
internal parameter setting for the rotation rate of the instability (see Eq. 4.23).

7.3 Added noise experiments

In order to demonstrate the Kalman filter’s ability to produce reliable estimates of the mode’s amplitude and phase with noisy inputs, additional noise was mixed with the sensor coil measurements in the feedback algorithm. The noise had an approximately Gaussian probability distribution with zero mean and a flat frequency spectrum. It was introduced after the DFT stage in the algorithm (see Fig. 5.5), effectively adding a random amplitude and spatial phase to the measured $n = 1$ mode. The amplitude of the added noise was chosen so that its RMS level was close to that of the signals from the sensor coils. The noise covariance matrices in the Kalman filter were not adjusted for these experiments.

Fig. 7.5 shows a calculation of the cosine component of the $n = 1$ mode with the added noise and example output from the feedback algorithm with and without the Kalman filter. The waveforms shown in Fig. 7.5-a are calculated using an emulator for the FPGA algorithm because it is not possible to measure the signals in the FPGA at this stage. The traces in Figs. 7.5-b and 7.5-c are measured directly at one of the five outputs from the FPGA to the control coils. When the Kalman filter is included in the algorithm (Fig. 7.5-b), the added noise is mostly removed from the output, while the signal from the instability (near 5 kHz) remains. Fig. 7.5-c shows the case with the Kalman filter removed from the algorithm: the added noise is now clearly present in the output, obscuring the signal from the plasma instability. When the Kalman filter is absent from the feedback algorithm, the spatial and temporal filters remain, and the algorithm is then equivalent to that used in prior work.2,3

Fig. 7.6 shows the shot-averaged Fourier spectrum amplitude in the sensor coils
Fig. 7.5: Example signals from added noise experiments. Plot (a) shows a simulation of the $n = 1$ cosine mode as calculated in the DFT step in the algorithm (black) and the sum of this signal with the cosine component of the added noise (gray). Plots (b) and (c) show one of five FPGA outputs to the control coils in the added noise experiments for algorithms with and without the Kalman filter, phased to excite the mode.

from feedback experiments with and without the Kalman filter, and with and without added noise. Experiments were done at both $\Delta \varphi_f = 100^\circ$ and $\Delta \varphi_f = -80^\circ$; these settings corresponded to the clearest cases of feedback suppression and excitation from the phase-angle scan described above. Without any extra noise (Figs. 7.6-a and 7.6-c), the performance of both filters in exciting and suppressing fluctuations near 5 kHz is comparable. When the noise is added (Figs. 7.6-b and 7.6-d), however, the Kalman filter algorithm retains its ability to excite and suppress the mode while the algorithm without the Kalman filter does not.
Fig. 7.6: A comparison of the Fourier spectrum amplitude of poloidal field fluctuations for added noise experiments, for feedback off (solid, black), Kalman filter feedback (dotted, red), and feedback without the Kalman filter (dashed, blue). Plots (a) and (c) show suppression and excitation experiments with no added noise. Plots (b) and (d) show the suppression and excitation cases with extra noise added to the feedback algorithms.

7.4 Optimization of Kalman filter parameters

The sensitivity of feedback results to settings in the Kalman filter’s internal model was investigated by scanning the growth and rotation rate parameters, γ and ω, independently in both simulations with the reduced Fitzpatrick–Aydemir model and in experiments with external-kink unstable discharges on HBT-EP. All scans were performed with the phase difference between the feedback signal and sensed field, $\Delta \varphi_f$, set for optimum feedback suppression. Scans of the rotation rate parameter were completed for two settings of the diagonal terms in the Kalman filter’s plant noise covariance matrix, Q. The Q matrix characterizes the amount of uncertainty in the Kalman filter’s internal model.
Fig. 7.7: RMS-averaged poloidal field fluctuations from scans of the Kalman filter model’s growth rate parameter γ in (a) simulation and (b) experiment. The averages are expressed as percent differences from the feedback-off RMS average.

To facilitate comparisons between simulation and experiment, poloidal field fluctuations from each were RMS-averaged over a time window of 1 msec and an RMS-averaged feedback off signal was subtracted. This quantity was then divided by the feedback off average and is expressed as a percentage in Figs. 7.7 and 7.8. Percentages greater than zero indicate feedback excitation relative to the no feedback case, and percentages less than zero imply feedback suppression. For the simulation results, the exact value of the poloidal field (without added noise) was used in the averages. The experimental results were averaged over four discharges per scan point, and ambient noise was reduced before averaging by retaining only frequencies in the approximate bandwidth of the mode, 2.0 to 7.0 kHz. As can be seen from Figs. 7.4 and 7.6, suppressive feedback with the Kalman filter appears to have very little effect on frequencies outside this band.

The results of the growth rate parameter scans are shown in Fig. 7.7. In the simulation, a weak dependence on γ is observed. In experiments the dependence is stronger, and a setting of $\gamma = 2.0$ msec$^{-1}$ appears to be optimal for feedback
Fig. 7.8: RMS-averaged poloidal field fluctuations from scans of the Kalman filter model’s rotation rate parameter, ω, for settings of the diagonal terms in the plant noise covariance matrix of $Q_{ii} = 1 \times 10^{-5}$ and $Q_{ii} = 1 \times 10^{-4}$. In both simulation and experiment, feedback is most effective when the rotation rate parameter is set near that of the natural rotation frequency of the $n = 1$ mode, about 4 msec$^{-1}$. Feedback performance decreases as ω is adjusted in either direction from the optimal value, but the scans performed at the larger value of Q_{ii} exhibit less sensitivity to this setting. This result is consistent with the interpretation of Q as the amount of uncertainty in the Kalman filter’s internal model.

While good agreement between simulations made with the reduced Fitzpatrick–Aydemir model and experimental results is observed, there are several important differences between the simulation and experiments. In the reduced Fitzpatrick–Aydemir model, which is linear, external kink instabilities grow infinitely large in the absence of feedback suppression.

Fig. 7.8 shows the results of scans of the Kalman filter’s rotation rate parameter, $\omega/2\pi$, for settings of the diagonal terms in the plant noise covariance matrix of $Q_{ii} = 1 \times 10^{-5}$ and $Q_{ii} = 1 \times 10^{-4}$. In both simulation and experiment, feedback is most effective when the rotation rate parameter is set near that of the natural rotation frequency of the $n = 1$ mode, about 4 msec$^{-1}$. Feedback performance decreases as ω is adjusted in either direction from the optimal value, but the scans performed at the larger value of Q_{ii} exhibit less sensitivity to this setting. This result is consistent with the interpretation of Q as the amount of uncertainty in the Kalman filter’s internal model.

While good agreement between simulations made with the reduced Fitzpatrick–Aydemir model and experimental results is observed, there are several important differences between the simulation and experiments. In the reduced Fitzpatrick–Aydemir model, which is linear, external kink instabilities grow infinitely large in the absence of feedback suppression.
Fig. 7.9: The amplitude of the Fourier spectrum of poloidal field fluctuations measured in HBT-EP during a scan of the feedback phase angle, $\Delta \varphi_f$, is shown above. This scan was done using the Kalman filter parameters obtained from the optimization scans. The radial axis marks the frequency of the Fourier spectrum, and the polar axis marks the setting of $\Delta \varphi_f$. The peak of the feedback off frequency distribution occurs at 4 kHz and is marked on the color-bar. The blue and red lines mark the locations of slices shown in Fig. 7.10-b.

of feedback, and have unique, fixed growth and rotation rates. External kink instabilities in HBT-EP, on the other hand, exhibit growth rates in an approximate range of 3–7 msec$^{-1}$ and rotation rates in a range of 3–5 kHz, even when discharge parameters and the evolutions of equilibrium-related quantities such as the plasma current and edge safety factor are carefully controlled. These estimates were obtained from consideration of magnetics data from feedback-off reference discharges made during Kalman filter feedback experiments. This variability in behavior may account for the more dramatic improvement in Kalman filter feedback suppression in experiments versus the simulation as the diagonal terms in Q are increased (see Fig. 7.8).
An optimized Kalman filter was constructed based on the results of the parameter scans described above, with $\gamma = 2.0 \text{ msec}^{-1}$, $\omega = 2\pi \times 4.0 \text{ msec}^{-1}$, and $Q_{ii} = 1.0 \times 10^{-4}$. Fig. 7.9 shows the Fourier spectrum amplitude of poloidal field fluctuations observed in an experiment with the optimal Kalman filter settings in which the feedback phase angle is scanned. The results may be directly compared to those from the original parameter settings, shown in Fig. 7.4. As with the previous results, distinct regions of feedback suppression and excitation are observed for settings of the feedback phase angle separated by 180°.

Performance differences between the original and optimized filters become more obvious when slices of the contour plots made in the regions of clearest feedback excitation and suppression are compared with the feedback-off average (see Fig. 7.10). Choosing more optimal parameters results in enhanced feedback suppression and excitation.

Further insight into the results of the phase angle scan with the optimized Kalman filter was obtained using the biorthogonal decomposition (BD) technique described in Chapter 6. To analyze the phase scan results, $(m, n) = (3, 1)$ and $(m, n) = (6, 2)$.
spatial mode structures were computed using the BD for a feedback-off reference discharge. Then, these mode structures were fit to magnetics data from the feedback-on discharges in the phase scan using a least squares fit at every time point. The fit coefficients obtained using this method can then be interpreted as time-dependent cosine and sine modes, like the temporal modes from the BD. For comparison with Fig. 7.9, the time-dependent fit coefficients were Fourier analyzed and the amplitude of the Fourier spectra were plotted as a function of $\Delta \phi_f$.

Fig. 7.11 shows the results of the Fourier analysis for the fit coefficients of the $(m, n) = (3, 1)$ and $(m, n) = (6, 2)$ modes. The effect of feedback is clearly observed in the $(3, 1)$ fluctuations, and a trend nearly identical to that from the analysis of the aggregate fluctuations (Fig. 7.9) is observed. Turning to the $(6, 2)$ results, we note that the peak of the contour plot is smaller than that of the $(3, 1)$ plot by nearly an order of magnitude, as might be expected from the preliminary analysis results in Chapter 6. The frequency peak of the $(6, 2)$ fluctuations occurs near 6–8 kHz, roughly double the dominant frequency of the $(3, 1)$ mode. This is consistent with
the two modes rotating together rigidly. From the point of view of a sensor coil at a fixed location, oscillations from the higher spatial harmonic are observed at twice the frequency of those from the lower harmonic because structure of the higher harmonic has twice the number of maxima and minima. The effect of feedback on the (6, 2) mode appears to be weaker than on the (3, 1). However, any activity with \(n \neq 1 \) is explicitly eliminated from feedback signals by the algorithm (see Section 5.3), so it is expected that feedback will have a negligible effect on the (6, 2) mode.

Chapter 7 references

Chapter 8

Conclusions and future work

The results of simulations and experiments presented in this Thesis show that using a Kalman filter can improve feedback control of ideal external kink instabilities in the presence of noise. Remaining questions about optimal feedback algorithm design, kink mode rigidity, and the impact of control coil size and area coverage will be answered in future experiments with HBT-EP.

8.1 Conclusions

Simulations and experiments have been used to design, test, and optimize a Kalman filter for magnetic feedback control of the ideal external kink instability. Successful control of this instability will improve the energy output and economic viability of a tokamak fusion reactor. Magnetic feedback systems currently encounter difficulties with noise in sensor coil measurements, but an optimal filtering method called the Kalman filter can remove noise from signals. The Kalman filter compares the results of an internal model for the dynamics of a system with measurements of the system’s state, producing a realtime estimate of the state that is optimal if the measurements
are tainted by Gaussian noise. For the work presented here, the Kalman filter’s internal model is derived from the insight that the external kink mode exhibits two basic behaviors: rigid rotation and exponential growth.

The reduced Fitzpatrick–Aydemir model was used to simulate external kink mode feedback in HBT-EP. The model is a straightforward set of ordinary differential equations, but it captures the physics required to simulate external kink mode feedback in the high plasma dissipation limit. The effects of the plasma equilibrium, plasma rotation, plasma energy dissipation, plasma–wall coupling, and plasma–feedback coupling impact the stability of the external kink mode and are included in the simulation.

In simulations with the reduced Fitzpatrick–Aydemir equations, the Kalman filter removed added noise from the measurements used to compute the feedback signal. In time-dependent simulation runs, using the Kalman filter brought about a 50% reduction in peak control power compared with results from the case of noisy measurements with no Kalman filter. In addition, a 92% reduction in mean control power was achieved in the time interval after the mode had been stabilized by feedback.

The Kalman filter algorithm was implemented on a set of low-latency field programmable gate array controllers for feedback studies on the HBT-EP experiment. The controllers are coupled to the plasma via an array of 20 poloidal field sensors and a corresponding array of 20 pairs of radial control coils. The control coils are small and localized, covering about 15% of the plasma surface.

External kink unstable plasma discharges were prepared in HBT-EP for experimental testing of the Kalman filter algorithm. In these discharges, external kink modes were observed to last for about 1 msec. A dominant \((m, n) = (3, 1)\) structure, resonant with the value of the safety factor just outside the plasma edge, was observed. The modes had an average growth rate of 5 msec\(^{-1}\), and rotation rates ranging between 3–5 kHz.
In experimental scans of the spatial phasing between the instability and feedback, the Kalman filter algorithm suppressed the mode over a broad range of phase angles. In contrast to the results of prior experiments performed without the Kalman filter, excitation of frequencies above the natural rotation frequency of the external kink mode was minimal at all phasings.

Additional noise with a white frequency spectrum and Gaussian probability distribution was added to measurements inside the feedback algorithm for feedback suppression and excitation experiments with and without the Kalman filter. The Kalman filter was found to remove much of this noise from output signals. In these experiments, the algorithm with the Kalman filter retained its ability to suppress and excite the external kink under noise levels that impaired feedback without the Kalman filter.

Scans of the Kalman filter’s growth and rotation rate parameters were performed in both simulations and experiments to determine their optimal values. The simulation results were in qualitative agreement with those from the experiments. Scans of the rotation rate parameter were performed at two values of the uncertainty parameter for the Kalman filter’s internal model, with the finding that increasing this uncertainty improved feedback suppression and weakened the dependence on the rotation rate parameter. The results of the scans were used to construct an optimized Kalman filter that was tested in a feedback phase angle scan. A comparison of the feedback phase angle scan results for the original and optimized Kalman filters led to the conclusion that the optimized parameter values improved both feedback suppression and excitation.

Further analysis of the phase scan results showed some evidence of magnetic activity with an \((m, n) = (6, 2)\) harmonic and coexisting with the dominant \((m, n) = (3, 1)\) activity. The \((6, 2)\) mode had about twice the rotational frequency of the \((3, 1)\) mode. The \((6, 2)\) mode was found to be largely unaffected by feedback, probably because the
CHAPTER 8. CONCLUSIONS AND FUTURE WORK

feedback algorithm was designed to explicitly remove $n \neq 1$ activity from feedback signals.

8.2 Future work

The results presented in this Thesis have shown that using a Kalman filter can improve feedback control of external kink instabilities. However, several more questions must be answered about external kink mode feedback before it can confidently be applied in tokamak fusion reactors. The areas where the HBT-EP experiment can contribute to outstanding feedback problems fall into two categories: advanced algorithm design and hardware optimization.

Using a method that is mathematically similar to the Kalman filter formulation, physical knowledge of the system of interest can be exploited to pick an optimal feedback gain, in what is known as an optimal controller.1,2 Using a combination of a Kalman filter and optimal controller in simulations of resistive wall mode feedback in the planned ITER experiment, Katsuro-Hopkins predicts that feedback stabilization of the RWM will work up to 86\% of the ideal wall limit.3 In contrast, feedback with a proportional-derivative gain controller is only predicted to work as far as 68\% of the ideal wall limit. Using the Kalman filter/optimal controller combination is also expected to bring about a ten-fold reduction in control power compared with the proportional-derivative gain controller. The implementation of an optimal controller in the external kink mode feedback algorithm for HBT-EP should be straightforward.

At the time of this writing, a major upgrade to HBT-EP’s conducting wall and control and diagnostic coil arrays is in the fabrication stage. The new wall and coils are pictured in Fig. 8.1. The new wall sections will be made from stainless steel and plated with copper to lengthen their eddy-current decay times. The planned eddy-
current decay timescale will be close to that of the hybrid stainless steel and aluminum wall presently in place.

A total of 40 poloidal field coils will enhance the sensory ability of the feedback system and lead to improved understanding of the spatial structure of instabilities. Previous experiments\(^4\) have indicated that the external kink mode can respond non-rigidly to feedback. The increased diagnostic coverage installed as part of the wall upgrade will help quantify this behavior.

The impact of control coil coverage and modularity will be addressed by experiments with 60 new control coils at 10 toroidal locations. Small, modular, internal MHD control coils similar to these are now planned for the ITER experiment.\(^5\) The new control coil set planned for HBT-EP will answer questions about whether the response of the external kink mode to feedback is rigid under changes in the area coverage of the control coils and changes in control coil size. A numerical analysis of the vacuum spectra of these coils performed by Klein\(^6\) showed that the relative

Fig. 8.1: Diagram of the planned first wall and feedback system upgrade for HBT-EP.
magnitude of sideband harmonics unrelated to the specified control field increases as progressively smaller coils are used.

Chapter 8 references

Appendix A

FPGA programming considerations

Circuit design for the NI 7831-R FPGA controllers is done using a special subset of the National Instruments LabVIEW programming language that is restricted to integer operations. Mathematical precision is retained by casting the 16-bit integers obtained from the FPGAs’ analog-to-digital convertors as 32-bit and by rescaling during numerical operations by powers of 2 to make good use of the 32-bit range. Small constants, such as the DFT coefficients, are scaled up before they are used in the algorithm. For example, the operation $y = 0.5x$ might be implemented as $y = (512x) \times 2^{-10}$.

An automatic compile process maps a program written in LabVIEW to relatively low-level Hardware Description Language (HDL) code, and subsequently maps the HDL to a design for the actual FPGA. The compile process is iterative and the user has some control over how the design is optimized. For example, the compiler can be instructed to optimize a design either to conserve physical resources on the FPGA or to minimize execution time. Another parameter dictates the amount of “effort” the compiler puts into the optimization; increasing the effort can significantly increase the compile time. In order to reduce loop latency, a speed optimization with relatively
high effort was chosen for the algorithm described in Chapter 5. Estimates of the latency were obtained by sending a known input into the FPGA at a specified time and measuring the time required for the FPGA to produce the expected output.

Additional reductions in latency were achieved by making adjustments to the LabVIEW code for the control algorithm and compiling and measuring the latency of the design after every adjustment. Subroutines in the LabVIEW code can be either specified as “reentrant,” meaning that a physical copy of the subroutine is made on the FPGA for each instance where it is required by the algorithm, or “non-reentrant,” meaning that only a single copy of the subroutine is made, and calls to this subroutine from the algorithm must be arbitrated. Furthermore, different portions of an algorithm can be specified to execute either in series or in parallel. When minimizing algorithm latency is a priority, it is best to use reentrant subroutines and execute pieces of large algorithms in parallel. However, the extent to which reentrant subroutines can be used is limited by the size of the subroutines and the number of copies required due to the finite number of components in the FPGA. The compiler provides a detailed report on the FPGA resource usage for a particular design. These and additional optimization techniques are discussed in greater detail in Ref. 1.

To optimize the algorithm described here, the algorithm was first broken into small stages that were compiled and benchmarked individually. Stages that had larger latencies were then designated to execute in parallel with one another, and reentrant subroutines were employed when possible to maximize usage of the FPGA’s components. An iterative application of these techniques was used to obtain a latency of 12 \(\mu \text{sec} \) for the feedback algorithm, a five-fold reduction compared with the original.

Further documentation and optimization advice are available on the National Instruments website.²
Appendix A references

Appendix B

Feedback algorithm

This Appendix provides a more exact discussion of the feedback algorithm outlined in Chapter 5. A detailed explanation of all the steps in the feedback algorithm is given, followed by a step-by-step description of how the algorithm is implemented.

The FPGA controllers do not support floating-point operations, so all the calculations described below are done using integers. To retain precision in multiply operations involving coefficients with magnitudes of order unity or smaller, the coefficients are scaled up by a power of 2 before being stored in memory on the FPGA controllers. The result of the multiply operation is then divided by the same power of 2.

B.1 Equations solved

The first step in the algorithm is a spatial filter that selects the $n = 1$ component of a five-element vector of sensor coil inputs \vec{s} using a discrete Fourier transform (DFT)
matrix multiply. The $n = 1$ cosine and sine modes, y^{cos} and y^{sin}, are given by

$$
\begin{pmatrix}
 y^{\text{cos}} \\
 y^{\text{sin}}
\end{pmatrix}
= DS \times 2^{-10},
$$

(B.1)

where the matrix D is a 2×5 matrix containing the $n = 1$ rows of a DFT times the Kalman gain and a factor of 2^{20},

$$
D = 2 \begin{pmatrix}
 \cos 0 & \cos 2\pi/5 & \cos 4\pi/5 & \cos 6\pi/5 & \cos 8\pi/5 \\
 \sin 0 & \sin 2\pi/5 & \sin 4\pi/5 & \sin 6\pi/5 & \sin 8\pi/5
\end{pmatrix}K \times 2^{20}.
$$

The Kalman gain, $K = 0.01614$, is “pre-multiplied” with the DFT matrix in order to save multiply operations on the FPGAs. Generally, K is a matrix (see Eq. 4.20), but, for the case of the matrices chosen to describe the external kink mode feedback problem (see Section 4.4), K can be written as a scalar times the identity matrix. Note that Eq. B.1 contains a scale factor of 2^{-10} while the matrix D is scaled up by 2^{20}. The remaining factor of 2^{10} is propagated through until Eq. B.3, to retain precision in that calculation.

A first order, phase-lag temporal filter follows the spatial filter. The first order temporal filter is a recursive equation in which the filter’s output z_i at time step i depends on an input y_i, as well as the previous output and input, z_{i-1} and y_{i-1}. It is notationally more convenient to keep track of these terms in a vector $\vec{p} = [y_i, y_{i-1}, z_{i-1}]$. The first term in \vec{p}, the filter’s input, is set equal to one of y^{cos} or y^{sin}. The filter’s output is then given by

$$
z_i = \sum_{0 \leq k < 3} p[k] a_{\text{lag}}[k].
$$

(B.2)

Some reassignment of the terms in \vec{p} is then required for the next time step, namely,
$p[1] = p[0]a_{\text{lag}}[0] \times 2^{-10}$, and $p[2] = z_i \times 2^{-10}$. In this notation, square brackets are used to subscript a vector starting from index 0, that is, $p[0]$ denotes the first element of \vec{p}. The vector of filter coefficients is given by $a_{\text{lag}} = [1.0743, -0.83008, 0.9922] \times 2^{10}$. The components of a_{lag} were calculated by manually adjusting their effect on the combined transfer function of the hardware elements preceding the FPGA controllers in the feedback loop.

The form of the phase-lead temporal filter is identical to Eq. B.2, except for the fact that a different vector of coefficients is used: $a_{\text{lead}} = [2.051, -0.889, -0.0977] \times 2^{10}$. These coefficients are chosen to compensate for the transfer function of hardware components following the FPGA controllers in the feedback loop.

The Kalman filter’s estimate \hat{x} for the current time step is given by the recursive equation

$$
\hat{x}_i = (\Phi \hat{x}_{i-1} + \vec{z}_i) \times 2^{-10}.
$$

The four-element measurement vector \vec{z} is formed using the output of the lag filter after it has acted on both y^cos and y^sin. The first two elements of \vec{z} correspond to the cosine and sine modes of the control flux and are always null because this flux is simulated by the Kalman filter but not measured directly. Usually, Eq. B.3 is written with a factor of the Kalman gain K appearing in front of \vec{z}. In this case, however, the Kalman gain is pre-multiplied with the D matrix (see Eq. B.1). The Φ matrix is calculated as in Eq. 4.19, using the terms defined in Section 4.4,

$$
\Phi = \begin{pmatrix}
0.960693 & 0 & 0.017643 & 0 \\
0 & 0.960693 & 0 & 0.017643 \\
-0.147091 & 0 & 0.980510 & 0.100003 \\
0 & -0.147091 & -0.100003 & 0.980510
\end{pmatrix} \times 2^{10}.
$$
APPENDIX B. FEEDBACK ALGORITHM

The final stage of the algorithm involves mapping the filtered cosine and sine modes back to real space using an inverse DFT. Given the cosine and sine modes, \(y^\cos \) and \(y^\sin \) obtained from the forward DFT and filtered by the phase-lag, Kalman, and phase-lead filters, the five-element vector of outputs for the control coils is given by

\[
\vec{c} = D^{-1} \begin{pmatrix} y^\cos \\ y^\sin \end{pmatrix}.
\]

(B.4)

Here, \(D^{-1} \) not strictly the inverse of \(D \) from Eq. B.1. It is a \(5 \times 2 \) matrix consisting of the \(n = 1 \) columns of an inverted, \(5 \times 5 \) DFT matrix, pre-multiplied with a rotation operator and a proportional gain coefficient \(G \),

\[
D^{-1} = \begin{pmatrix}
\cos 0 & \sin 0 \\
\cos 2\pi/5 & \sin 2\pi/5 \\
\cos 4\pi/5 & \sin 4\pi/5 \\
\cos 6\pi/5 & \sin 6\pi/5 \\
\cos 8\pi/5 & \sin 8\pi/5
\end{pmatrix} \begin{pmatrix}
\cos \Delta \varphi_f & -\sin \Delta \varphi_f \\
\sin \Delta \varphi_f & \cos \Delta \varphi_f
\end{pmatrix} G \times 2^{10}.
\]

The toroidal phase angle \(\Delta \varphi_f \) is chosen at run time. Setting \(\Delta \varphi_f \) has the effect of shifting the toroidal phase of feedback with respect to that of the instability. The proportional gain setting \(G = 4 \) was experimentally determined to be optimal for feedback suppression of the external kink instability.

B.2 Description of the algorithm

Here is a description of how to perform the feedback algorithm that closely follows the actual implementation on the NI 7831-R FPGA controllers. Because the controllers a programmed using a “visual” language called LabVIEW, it is difficult to represent
the implementation of the algorithm using words. Loosely speaking, programming in LabVIEW involves drawing a block diagram for the program. However, the diagramming symbols used in LabVIEW are non-standard, and pictures of the LabVIEW code are difficult for those unacquainted with the language to understand. Thus a step-by-step description of the algorithm is provided, accompanied by a high-level flow chart (Fig. B.1).

In the exposition that follows, a left-pointing arrow (←) is used to denote the assignment of a number to a variable, as in $x ← 3$. Pairs of numbers in brackets are used to subscript the matrix Φ; for example, $\Phi[0, 1]$ indicates the element at the first row and second column of Φ. Also, the inputs from the sensor coils, \vec{s}, are assumed to be assigned by the FPGA controller for every iteration, so they are not explicitly assigned below.

All the variables below are taken to be 32-bit integers. In the event that any of the calculations overflow the 32-bit range, given by $[-2^{31}, 2^{31} - 1]$, the results are “wrapped around” to the other side of the range. For example, the result of $-2^{31} - 1$ is $2^{31} - 1$.

K0. [Initialize.] Set all the state variables for the phase-lag, phase-lead, and Kalman filters to zero: for $1 \leq k < 3$, set $p^{\text{cos}}_{\text{lag}}[k], p^{\text{sin}}_{\text{lag}}[k], p^{\text{cos}}_{\text{lead}}[k], \text{ and } p^{\text{sin}}_{\text{lead}}[k] ← 0$, and for $0 \leq k < 4$, set $x[k] ← 0$. Assign to $D, \vec{a}_{\text{lag}}, \Phi, \vec{a}_{\text{lead}},$ and D^{-1} the values given in Section B.1, rounded to the nearest integer.
APPENDIX B. FEEDBACK ALGORITHM

K1. [Forward spatial filter.] Set $p^\text{cos}_\text{lag}[0] \leftarrow 0$ and $p^\text{sin}_\text{lag}[0] \leftarrow 0$. For $0 \leq k < 5$ set $p^\text{cos}_\text{lag}[0] \leftarrow p^\text{cos}_\text{lag}[0] + (s[k]D[0,k]) \times 2^{-10}$, and set $p^\text{sin}_\text{lag}[0] \leftarrow p^\text{sin}_\text{lag}[0] + (s[k]D[1,k]) \times 2^{-10}$.

K2. [Lag temporal filter.] Do the operations $\text{temporalFilter}(\vec{p}^\text{cos}_\text{lag}, \vec{a}_\text{lag})$ and $\text{temporalFilter}(\vec{p}^\text{sin}_\text{lag}, \vec{a}_\text{lag})$.

The operation $\text{temporalFilter}(\vec{p}, \vec{a})$ is defined as follows for the three-element vectors \vec{p} and \vec{a}. Set a temporary variable $z \leftarrow 0$. For $0 \leq k < 3$, set $z \leftarrow z + p[k]a[k]$. Now, reassign and rescale the elements in \vec{p}: set $p[1] \leftarrow (p[0]a[0]) \times 2^{-10}$ and $p[2] \leftarrow z \times 2^{-10}$.

K3. [Kalman filter.] Multiply the Φ matrix by \vec{x}: for $0 \leq j < 4$, set $x[j] \leftarrow \sum_{0 \leq k < 4} \Phi[j, k] x[k]$. Now, mix in the lag-filtered measurements: set $x[2] \leftarrow (x[2] + p^\text{cos}_\text{lag}[2]) \times 2^{-10}$ and $x[3] \leftarrow (x[3] + p^\text{sin}_\text{lag}[2]) \times 2^{-10}$.

K4. [Lead temporal filter.] Set $p^\text{cos}_\text{lead}[0] \leftarrow x[2]$ and $p^\text{sin}_\text{lead}[0] \leftarrow x[3]$. Now do the operations $\text{temporalFilter}(\vec{p}^\text{cos}_\text{lead}, \vec{a}_\text{lead})$ and $\text{temporalFilter}(\vec{p}^\text{sin}_\text{lead}, \vec{a}_\text{lead})$.

K5. [Reverse spatial filter.] For $0 \leq k < 5$, set $c[k] \leftarrow (D^{-1}[0,k] p^\text{cos}_\text{lead}[3]) \times 2^{-10} + (D^{-1}[1,k] p^\text{sin}_\text{lead}[3]) \times 2^{-10}$.

K6. [Repeat.] Return to K1.