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Will Advances in Quantum Computing Shed 
Light on Foundational Issues in Quantum 
Mechanics? 
Or more specifically, is it worth getting excited about Deutsch’s “three 
experimental implications” of the Everett interpretation? 
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*************** 
Why am I writing about this topic?  
 While taking a course on philosophical issues in quantum mechanics, I came across a 
1986 article by David Deutsch called “Three experimental implications of the Everett 
interpretation.” On the first page, Deutsch writes: 

“It has come to my attention that there are still some conference participants who 
harbor residual doubts about the Everett interpretation of quantum theory. I 
thought it might be helpful to leave aside for a moment the theoretical arguments 
pro and contra (such as they are) and look at a seldom mentioned but important 
aspect of Everett’s interpretation, namely its connection with experiment.” 
(p.215) 

I was intrigued by this claim, especially after having been taught that Everett’s interpretation 
wasn’t experimentally verifiable. In slight disbelief, I jumped to the end of the paper and came 
across these passages: 

“Experiment 3 is nothing less than a direct, unambiguous experimental test of the 
Everett quantum theory against any theory that has the wave function 
collapsing.” (p. 216)  

There was no doubt that Deutsch was promising experiments. Could quantum computers really 
hold the key to the hidden mysteries of quantum mechanics? I decided to read the entire paper – 
and was immediately intimidated. The paper is filled with mathematical formalism, references to 
concepts in MWI that I had never heard of, and quantum algorithms that I had never learned. 
Nonetheless I resolved to understand what he had to say, and evaluate his claims myself. I asked 
myself the following questions: 

1. Do Deutsch’s experiments make sense? 
2. Do Deutsch’s claims follow from his experiments? 
3. Will quantum computing have anything to say about MWI? 

 
Who is David Deutsch? 
 David Deutsch is a physicist at Oxford who pioneered the field of quantum computation 
in the 1980s and 1990s. He is also an outspoken proponent of the many-worlds interpretation of 
quantum mechanics. 
 
Who is my intended audience?  
 I am writing this for physics and chemistry majors, my peers at Columbia, and my 
professor David Albert (although I suppose that he has presented this material so many times that 
my presentation is dull in comparison). In particular, I have my “physics” friends in mind who 
might have studied quantum mechanics formally but didn’t get a chance to think about some of 
the finer philosophical issues. I am also writing this for myself – I have recently found myself 
struggling to explain what I am studying to friends, and I am thankful for this opportunity to 
solidify my understanding and improve my exposition of all these issues (although I still have 
quite a ways to go). If this paper comes across as overly mathematical, I apologize – I figured 
that if Deutsch took the time to include mathematical formalism, I too should take the time to 
understand it and expound on it. 
 

*************** 
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 There remain, after decades of progress in both theoretical and experimental physics, 
some unresolved foundational issues at the heart of the theory of quantum mechanics. The 
thorniest issue of them all is the ‘measurement problem’ associated with the infamous ‘collapse’ 
of the wave function. Various resolutions to this issue have been proposed; the Many Worlds 
Interpretation, Bohmian mechanics, and ‘objective collapse’ theories are among the more 
familiar and reputable ones. However, the powerful tools that quantum mechanics provides can 
be applied to a vast number of real problems in physics and chemistry without having to pay any 
sort of attention to philosophical problems in the quantum mechanical framework. So until 
recently, these foundational issues were confined to the realm of philosophers of science and a 
handful of curious physicists. How to interpret the collapse of the wave function did not, as far as 
most physicists were concerned, have any experimental implications. 
 The development of quantum computing as a serious area of research has brought 
foundational issues back into the spotlight – for the simple reason that wave function collapse is 
at the heart of quantum computing. But how exactly will developments in quantum computing 
resolve these conflicting theories, if at all? David Deutsch (1986) famously proposed three 
gedanken experiments involving quantum computers that point to the correctness of the Many 
Worlds Interpretation (henceforth MWI). However, in writing his monograph, he treated all 
competing theories as a single entity and avoided any discussion of the subtleties associated with 
distinct non-MWI theories. In addition to explaining and evaluating Deutsch’s claims, this essay 
seeks to explicitly include objective collapse theories in Deutsch’s discussion.  
 Part I reviews the basics of quantum mechanics and the Copenhagen interpretation. This 
section is crucial for the subsequent discussion, and assumes familiarity with quantum mechanics 
and linear algebra. Part II sets up the framework of the Many Worlds Interpretation, and Part III 
establishes the framework of objective collapse theories (how Bohmian mechanics fits in will 
hopefully be explored in a future installment). Part IV introduces basic concepts in quantum 
computing, and finally Part V analyzes all of David Deutsch’s three proposed experiments with 
regards to the Copenhagen interpretation and objective collapse theories.  
 Here is a preview of the experiments: 
Experiment 1: Your state of consciousness is different at time t1 from its state at time t2 
Experiment 2: Run a simple quantum algorithm and explain how a single quantum computer can 
physically act like multiple classical computers running in parallel 
Experiment 3: Use a quantum computer to play the ambiguous role of both observer and 
observed object. Do different theories present different outcomes? 
 
Part I – Traditional Quantum Mechanics 
 The wave function lies at the core of quantum mechanics. The tension between the 
mathematical properties of the wave function (linear superposition) and certain aspects of 
physical experience (the absence of linear superposition) give rise to the measurement problem 
and the idea of wave function collapse. The traditional ‘Copenhagen’ interpretation of quantum 
mechanics dealt with the measurement problem in a philosophically unsatisfactory manner, 
essentially creating a dichotomous theory of physical systems and observers. As quantum 
mechanics matured, a handful of auxiliary theories sought to reinterpret the measurement 
problem and therefore the mathematical framework of quantum mechanics. But before jumping 
to these theories, it is important to review the mathematical framework of quantum mechanics 
and describe the infamous measurement problem. 
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 The wave function is a complete description of the quantum state of a particle, and the 
Schrödinger equation (not shown) describes the behavior of the wave function in space and time. 
The Schrödinger equation is a mathematical “wave equation,” i.e. a second-order linear partial 
differential equation.  The set of all possible wave functions forms an abstract mathematical 
vector space called a “Hilbert space.” It is possible to add multiple distinct wave functions 
together to form a linear superposition that is also a wave function in the Hilbert space. This is 
represented mathematically as:  

|Ψ⟩=α|φ⟩+β|ϕ⟩  (I.1) 
 

where |Ψ⟩,|φ⟩, and |ϕ⟩ are quantum states, α and β are complex numbers. While this 
simple property has important effects on the theory of quantum mechanics, it is also the source 
of some tension. 
 Traditional quantum mechanics is sometimes presented in an axiomatic manner (see 
Vaidman 2002); this is perhaps the most appropriate way to lay bare the mathematical structure 
that is the basis of all interpretations of quantum mechanics: 
 

Axiom 1 – States of physical systems are modeled by normalized vectors 
in a Hilbert space. In this Hilbert space, linearity holds as in (I.1). 
In addition, the state evolution is linear such that if at time t0 the 
wave function is represented by 

 
 |Ψ(t0)⟩=α|φ(t0)⟩+β|ϕ(t0)⟩  (I.2) 

 
 at time t1 the wave function is still a superposition 
 

 |Ψ(t1)⟩=α|φ(t1)⟩+β|ϕ(t1)⟩  (I.3) 
 
 The wave function is also assumed to be the most accurate model 

of the state of a physical system. It follows from the mathematics 
that when particles interact, the quantum state of each particle must 
subsequently be described relative to the others and the particles 
become “entangled.” This is mathematically written for two states 
|φ⟩ and |ϕ⟩ as |φ⟩|ϕ⟩ or |φ,ϕ⟩ 

 
  

Axiom 2 – Observable quantities are represented by mathematical 
operators on the Hilbert space. Operators acting on wave functions 
form eigenvalue equations, and the eigenstates associated with a 
particular operator are the only possible measurable states. The 
probability of obtaining a particular eigenstate is associated with 
the absolute square of the eigenvalue (this is called the Born Rule). 
For example, the probability of obtaining the |φ⟩ eigenstate from 
(I.1) is |α |2 (See Deutsch 1985 for a slightly different set of 
axioms). 
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 But where and what exactly is the tension? The problem, of course, is that while it might 
be powerful to treat microscopic particles as wave functions with linear superpositions, this 
description doesn’t seem to work for macroscopic objects. Intuitively there are no linear 
superpositions in the macroscopic world!  
 The tension is best illustrated by the following example: How is a measurement process 
modeled according to the theoretical framework outlined above? Presumably there are two 
objects, a macroscopic measuring device and a simple particle. When the particle passes through 
the device, the device indicates whether the particle has a particular property – say whether it is 
in the |φ⟩ eigenstate or the|ϕ⟩ eigenstate. However, according to Axiom 1, it is clearly 
possible to describe a particle as a superposition of eigenstates, as in (I.2). So what happens 
when a particle described by (I.2) passes through the device? If the measuring device is treated 
as a large quantum system that is in a single, observable “ready” state |dR⟩, and the particle is 
also in a single state |φ⟩, the measurement interaction is simply: 
 

|dR⟩|φ⟩ becomes|dφ⟩|φ⟩   (I.4) 
 

where |dφ⟩ represents the device as being in the state of “having measured” |φ⟩. However, if 
the particle entering the device is in a superposition of both states, then the interaction is 
mathematically represented as: 
 

|dR⟩{α|φ⟩+β|ϕ⟩} →α|dφ⟩|φ⟩+β|dϕ⟩|ϕ⟩  (I.5) 
 

Which seems to imply that the device is also in a superposition of states. But macroscopic 
measuring devices measure particles as single eigenvalues and not as superpositions. The Born 
Rule states that the probability of observing the particle in the |φ⟩ eigenstate – i.e. of the device 
being in the state |dφ⟩ – is |α|2. So how does the device get from the superposition in (I.5) to 
detecting that the particle is only in one eigenstate?  
 Paul Dirac famously proposed adding a postulate to the quantum mechanical framework 
that “a measurement always causes a system to jump into an eigenstate of the observed 
quantity.” However, this hardly resolves the issue: this postulate breaks the linear nature of the 
theory and renders it useless for describing the physical world beyond the microscopic domain. 
In addition, just what a measurement is – i.e. where and at what point the system “jumps” into an 
eigenstate – is entirely ambiguous with no scientifically precise definition. Does the device cause 
the “jump” even though it is just an ensemble of particles? If so, how small does a device have to 
be in order for it not to cause a “jump?” And a measurement cannot simply be an interaction 
between ensembles of particles, as superposition does quite a good job at modeling ensembles of 
particles! Alternatively, claiming that the measuring device is in a superposition until a human 
observer looks at it is just as imprecise. Are humans therefore exempt from physical theory? And 
if a cat looks at the measuring device (or is somehow implicated, as in the Schrodinger’s cat 
paradox), are the cat and the measuring device in a superposition until a human observes both of 
them? Without a clear definition of what counts as an observer, it is impossible to even describe 
a collapse mechanism.  
 And while the mathematical property of superposition and the related phenomenon of 
entanglement are mostly responsible for this philosophical mess, it is also the key to the success 
of quantum mechanics. This tension between the mathematical property of superposition and 
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common sense observation that macroscopic objects are not in superpositions is the infamous 
measurement problem. However, despite the serious objections mentioned above, the idea that a 
measurement causes a system to jump into an eigenstate of the observed quantity became an 
accepted feature of traditional quantum mechanics. 
 What exactly a linear superposition is, besides the fact that it is a mathematical construct, 
is actually quite unclear as well. Is |Ψ⟩ simultaneously both|φ⟩ and|ϕ⟩? Is it spread between 
the two? The general consensus at the time these issues were first debated was that nothing could 
be said about the physical reality of the system until it was measured.  While a particle might be 
modeled mathematically by a superposition before measurement, talking about the physical 
properties of the particle before measurement was meaningless.  
 These instrumentalist/positivist attitudes towards measurement and the physical meaning 
of superposition are features of the so-called “Copenhagen” interpretation, the school of thought 
associated with Niels Bohr and Werner Heisenberg. It is precisely the Copenhagen interpretation 
that MWI and objective collapse theories sought to replace. 
 
Part II – The Many Worlds Interpretation 
  MWI is based on the simple assumption that the entire universe can be modeled by a 
universal wave function that obeys a deterministic wave equation. Just like a particle, the 
universe can be thought of as a superposition of real, existing, worlds. It follows that “our” world 
is one of an extraordinarily large plethora of similar and dissimilar worlds. Since an “observer” 
has no special status in MWI, there is no such thing as a wave collapse – instead, the world that 
the wave exists in splits into multiple worlds such that all the possible outcomes of a quantum 
interaction are realized. A measurement is therefore just an interaction, usually irreversible, 
between subsystems of the universal wave function that correlates the value of a quantity in one 
subsystem with the value of a quantity in the other subsystem.  Such interactions cause a  
decoherence of the universal wave function into mutually unobservable but equally real worlds. 
According to Vaidman (2002), MWI is both a mathematical theory that addresses the time 
evolution of the universal wave function and a philosophical, metatheoretical framework that 
tries to match the mathematics of the universal wave function to everyday experience.  
 Interpreting the example of Schrodinger’s cat according to MWI helps clarify some of the 
claims mentioned above. The cat is isolated from its environment in a sealed box with a device 
that might or might not release a lethal dose of cyanide, depending on the quantum state of the 
device. According to the Copenhagen interpretation, it is not possible to say whether the cat is 
alive or dead until a measurement is made, namely by opening the box. Mathematically, the cat 
is entangled with the lethal device and is in a superposition of dead and alive states. Schrodinger 
meant to highlight the absurdity of this interpretation – according to everyday intuitions, the cat 
is either alive or dead, but not both. MWI handles the situation in a slightly different way – 
according to MWI, the device was split into two states. In one world, the device releases the 
cyanide and the cat is alive, and in the other world, the device does not release the cyanide and 
the cat is alive. The cat itself was also split into two worlds, both of which are real (the cat that is 
alive occupies a different world from the cat that is dead). However, the observer exists in both 
worlds and only transfers the split to herself when the box is opened. MWI thus avoids the 
paradox. It is important to note that all the splits are actual physical processes governed by 
precise laws. 
 There are of course many issues with MWI that haven’t been mentioned (such as issues 
with probability), as well as some other attractive features (the preservation of local interactions). 
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And while some aspects of MWI come across as counterintuitive or even absurd, the purpose 
here is to mention some of its fundamental ideas in order to understand the content of Deutsch’s 
experiments. For an extensive treatment of MWI, see Vaidman (2002). 
 
Part III – Objective Collapse theories 
 Objective collapse theories deal with the measurement problem by positing that wave 
functions naturally and stochastically collapse. There are generally two approaches – the first 
treats the collapse as originating from the wave function itself, while the second models the 
collapse as an external process. Collapse from “within” models modify wave equations by 
introducing non-linear terms, and are considered the most promising of collapse theories 
(Ghirardi-Rimini-Weber (GRW) theory is one well known example). Originally these models 
treated collapse simply as a function of individual particles, while more contemporary models tie 
frequency of collapse as a function of particle mass (referred to as the mass density ontology). 
The key advantage is that the wave functions of individual particles can behave like linear 
superpositions – as in traditional quantum mechanics – with a very low probability of collapsing. 
However, in a large ensemble of particles, if the wave function of a single particle in the 
ensemble collapses, the wave function of the entire ensemble collapses. So if the frequency of 
spontaneous collapse for a single particle is, say f = 10−16 s−1, the frequency of spontaneous 
collapse for a system that consists of 1023 particles is f = 107 s−1. Thus microscopic particles can 
still be in linear superpositions, while macroscopic objects cannot (i.e. with very high 
probability). In objective collapse theories, the observer does not have any special status. Similar 
to the Copenhagen interpretation, objective collapse theories treat individual particles as 
radically non-classical. However, unlike the Copenhagen interpretation, there is a clear trigger 
mechanism for wave function collapse that puts macroscopic objects back in the realm of 
classical physics (see Ghirardi (2002) and Bacciagaluppi (2003) for an extensive treatment of 
collapse theories). 
 While objective collapse theories might seem ad hoc – in that they posit new fundamental 
processes – they are for the most part coherent and not particularly counterintuitive. Most 
importantly, they are experimentally verifiable. All researchers need to do is create large 
entangled ensembles and check how long it takes for them to collapse! 
 
Part IV - Quantum Computing 
 A quantum computer is a device that performs operations on units of data called qubits 
by manipulating quantum-mechanical phenomena mentioned above, such as superposition and 
entanglement. While a classical bit can be in either the 0 state or the 1 state, a qubit can be in a 
superposition of the 0 and 1 states. Mathematically, a qubit is represented by the wave function: 
 

|ψ⟩= α|0⟩ + β|1⟩  (IV.1) 
 

The implications are quite powerful – instead of manipulating two values, quantum computers 
can manipulate an entire range of values. The catch, of course, is that quantum computers aren’t 
exempt from the measurement problem. When the qubit |ψ⟩ is measured, the wave function is 
collapsed into either the |0⟩ or |1⟩ state with respective probabilities of |α|2 and |β|2 as 
dictated by the familiar Born Rule. As expected, the values of α and β can be determined by 
repeating the qubit manipulation and measurement a statistically significant number of times. 
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The interpretation of a computation therefore depends on the associated probabilities of the 
outcomes.  
 Quantum computers are made up of quantum circuits, which in turn consist of quantum 
logic gates. Quantum gates map q input qubits onto q output qubits (by doing a unitary 
transformation).1 There is reason to believe that quantum computers will be able to solve certain 
problems much more quickly than classical computers. One promising algorithm is Shor’s 
algorithm, which deals with integer factorization. Shor’s algorithm has already been 
implemented on a very small number of qubits. It is also widely believed that quantum 
computers will be able to better simulate quantum behavior in certain physical systems than 
classical computers. 
 One important requirement is that quantum systems are isolated from the environment; 
that they are called closed systems. The mathematical formalism requires that state 
transformations of closed quantum systems are unitary, and that linear superpositions are 
maintained during the evolution of closed systems. The mathematics also require that all the 
qubits of the closed system evolve simultaneously. This is one of Deutsch’s motivations for 
setting up experiment 2.  
 The small successes in quantum computing have also raised questions about what is 
actually going on when a qubit in a linear superposition is being manipulated. Hagar (2006) 
writes: 

“Theoretical as it may seem, the question ‘what is quantum in quantum 
computing?’ has an enormous practical consequence ... It is almost certain that 
one of the reasons for this scarcity of quantum algorithms is related to the lack of 
our understanding of what makes a quantum computer quantum.” 

This is just the question that Deutsch asks in experiment 2; his argument, of course, is that MWI 
is the only theory capable of giving a reasonable description of the manipulation process.  
 
Part V – The Three Experiments  
 David Deutsch was one of the first physicists to claim that certain experiments involving 
quantum computers might favor MWI above all other interpretational theories. These 
experiments are featured in his essay “Three connections between Everett’s Interpretation and 
Experiment” (Deutsch, 1986). Admittedly, what he calls ‘experiments’ are really gedanken 
experiments in the sense that they explore the potential consequences of particular assumptions, 
but may or may not be possible to implement. Throughout his discussion he vehemently attacks 
“non-MWI” theories, but he does little to elaborate on what exactly he means by “non-MWI.”  If 
he is simply referring to the Copenhagen interpretation, it would seem odd to not mention the 
Copenhagen interpretation explicitly, as he does in Deutsch (1985). In addition, there is a general 
consensus among both physicists and philosophers that the Copenhagen interpretation fails to 
specify precisely where collapse occurs and is therefore an imprecise theory. It is likely that he 

                                                
1 There are a number of one-qubit gates – for example the identity gate “I” leaves a qubit unchanged, and the NOT 
gate “X” transposes the components of an input qubit. The Hadamard gate  “H” is also a one-qubit gate with the 
following transformations: 

|0⟩→[1/√2](|0⟩+|1⟩)  
|1⟩→[1/√2](|0⟩-|1⟩)  

The three-qubit Fredkin gate “F” has three inputs (including one or two control inputs) and three outputs. The F gate 
is reversible and can simulate the AND and NOT gates. The H and F gates feature in Deutsch’s experiment 2. 
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includes Bohmian mechanics and objective collapse theories in his “non-MWI” category. Is it 
problematic, then that he doesn’t address the very objects of his criticism in any detail? As a way 
of evaluating his gedanken experiments – and the conclusions he draws – I decided to explicitly 
treat his “non-MWI” theories as the Copenhagen interpretation and the objective collapse 
theories (alas, not Bohmian mechanics).  
 The general purpose of Deutsch’s essay is to counter the widely held belief that MWI is 
simply an interpretation of the mathematical formalism of quantum mechanics with no 
experimental implications. The hope is that MWI is a theory that actually has experimental 
implications. He begins by asserting that all non-MWI theories attempt to modify the 
mathematical formalism of quantum mechanics by implicitly making the following (intuitive) 
assumption:  
 

‘Superpositions of distinct states of consciousness do not occur in nature.’ (V.1) 
 
 This, of course, is certainly true for the Copenhagen interpretation, as it follows from the 
assumption that superpositions of macroscopic objects do not exist in nature, and the idea that 
measurement causes a collapse of the wave function. Similarly for objective collapse theories, 
(V.1) follows from the fact that the brain is a large ensemble of particles, and large ensembles 
are statistically very unlikely to be in superpositions of distinct states. 
 According to MWI, however, superpositions of distinct states of consciousness do occur 
in nature. This follows from the assumption that the universal wave function is a superposition of 
an extraordinarily large set of real, existing worlds. Past distinct states of consciousness as well 
as current distinct states of consciousness are subsystems of these superpositioned worlds, and 
are therefore superpositions as well (even though they might be in separate branches). While this 
comes across as a purely rhetorical and interpretational feature of MWI, Deutsch claims that 
(V.1) can be experimentally verified, and he proposes three experiments to do just that. 
 

Experiment 1 – Let |Ψuniverse⟩ be the Heisenberg representation of the 
universal wave function. Since it is constant in time, it can be 
represented as:  

|Ψuniverse⟩ = ∫dt c(t)|t⟩|λ(t)⟩ (V.2) 
where |t⟩|λ(t)⟩ is the simultaneous eigenstate of physical time 
observable t and a suitable observable λ(t) representing a 
“classical history” of the universe (|t⟩ and |λ(t)⟩ are non-
separable subsystems – see Deutsch (1985) for a justification of 
this formalism). When you note that you are conscious, say at t1, 
your observation is part of the classical history of the universe and 
can be written as  

|λ(t1)⟩ = “I am conscious, observing t1” (V.3) 
At a second time t2, you are presumably in a second conscious 
state: 

|λ(t2)⟩ = “I am conscious, observing t2” (V.4) 
Equation (V.2) can now be written as: 
|Ψuniverse⟩ = ∫dt c(t1)|t1⟩|λ(t1)⟩ + ∫dt c(t2)|t2⟩|λ(t2)⟩ (V.5) 
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for the range of t1 – ∆ < t < t1 + ∆,  t2 – ∆ < t < t2 + ∆. This 
represents a superposition of quantum states. Therefore distinct 
states of consciousness do occur in nature. 

 
 Despite the mathematical formalism, it is clear that this is simply an example of how the 
MWI paradigm can be manipulated to make such counterintuitive statements as ‘distinct states of 
consciousness do occur in nature.’ A MWI detractor might call this a meaningless rhetorical 
maneuver – Deutsch himself admits that this first experiment is really “a trick.” One reason he 
uses it as his first experiment, though, is to underscore the fact that non-MWI theories are 
somewhat awkward to express in the Heisenberg formulation of the wave function.2 He writes: 
“…all it shows is that conventional (non-Everett) ‘interpretations’ are very awkward indeed to 
express in the Heisenberg picture” (p. 224). But is this something that we should be worried 
about?  Since the Schrodinger and Heisenberg formulations are unitarily equivalent, this does not 
seem to be a pressing issue. 
 The first question to ask is why the Heisenberg representation is so important. Deutsch 
(1985 p. 4) argues that it is more natural for both general relativity and quantum field theory. But 
while this might be the case, it also seems to imply that the Schrödinger representation is 
awkward (interpretation wise) for general relativity and quantum field theory! Clearly the claim 
that the Heisenberg representation is somehow better than the Schrödinger representation implies 
that the Heisenberg representation is somehow more philosophically fundamental (despite the 
fact that they are unitary transforms of one another). This in turn is because MWI requires that 
the entire universe be described by a universal wave function. And since the Schrödinger 
representation privileges time above all other variables, but MWI does not, the Heisenberg 
representation is more philosophically (and mathematically) fundamental. But this seems to be 
begging the question.  
 Even more implicit to this entire discussion is the matter of universality. So the second 
question to ask is – how does universality come into the picture? MWI applies the entire 
mathematical apparatus of quantum mechanics to the universe, whereas both the Copenhagen 
interpretation and objective collapse theories are essentially limited to the microscopic domain. 
And while modeling the universe with quantum mechanical tools is possible with the 
Copenhagen interpretation and objective collapse theories – |Ψuniverse⟩ is just a single, collapsed 
state – it isn’t particularly useful or insightful. So while the Heisenberg representation might be 
awkward for non-MWI theories with regards to |Ψuniverse⟩, so is the Schrödinger representation, 
and so is the entire mathematical apparatus of quantum mechanics, for that matter.  
 So what it boils down to whether the mathematics of linear superposition in quantum 
mechanics can be applied to the universe – and this is not to be taken for granted. For example, 
quantum cosmology is a field of study that investigates the consequences of applying quantum 
                                                
2 At this point it is important to mention that there are two main ways of representing the wave function, the 
Schrödinger representation and the Heisenberg representation. According to the Schrödinger representation, 
operators are constant and the wave function develops over time. According to the Heisenberg representation, 
operators (observables and others) have a time dependency, but the state vectors are time-independent, and have an 
arbitrary fixed basis. The two pictures only differ by a basis change in Hilbert space (with respect to time-
dependency), and are therefore unitarily equivalent. While the Schrödinger representation is more commonly used in 
traditional quantum mechanics, the Heisenberg representation is more natural to general relativity and field theories, 
which is one of the reasons that Deutsch mentions in experiment 1. Most of what has been discussed so far assumes 
the Schrödinger representation. 
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mechanics on the formation of the universe. Despite many attempts to pair quantum mechanics 
with general relativity, such as the Wheeler-deWitt equation, the field is mostly speculative. So 
non-MWI theories don’t necessarily have to be theories that apply to the entire universe in order 
to be serious contenders – they just have to resolve issues in the traditional domain of quantum 
mechanics, i.e. the microscopic domain. It is therefore not unquestionably beneficial for the 
measurement problem to be resolved by a quantum theory that also makes novel claims about the 
universe. And it seems that the discussion has devolved into just the “theoretical [philosophical] 
arguments pro and contra” that Deutsch promised to avoid. 
 His final passage dealing with experiment 1 seems to confirm this: 
 

“…we have in performing experiment 1 used successfully a formulation of 
quantum theory in which different states of consciousness do coexist in the state 
vector, and we have had no trouble in explaining our experimental observations 
in terms of it. We are so used to the phenomenon of ‘time passing’ that we do not 
normally regard it as an indictment of the whole of physics that all values of t 
occur on an equal footing, that the different instants they refer to are all equally 
real, but that ‘we are only aware of one of them’ (at a time!).” (p. 224) 
 

 Suddenly Deutsch confesses that the purpose of experiment 1 is to explain how MWI 
matches our everyday experiences while also claiming that states of consciousness are in 
superposition. In the end, experiment 1 isn’t an experiment at all – it is a clarification of a 
particular aspect of MWI that features in experiment 3 (as we shall soon see). And while it is 
certainly interesting, it is not the irrefutable “experimental implication” I was looking for. 
 The second experiment is lengthier and somewhat more promising. It is also the first time 
that Deutsch explicitly deals with quantum computing algorithms. The first part of the argument 
introduces the concept of quantum parallelism (which was quite novel in 1985/6), while the 
second part implements quantum parallelism to solve a simple problem (now known as 
“Deutsch’s Problem”) more efficiently than any known classical algorithm. He then raises the 
question of interpretation. 
 Before delving into experiment 2, it is important to clarify what quantum parallelism 
exactly is. Assume that a classical circuit can compute the values of the function f(x) for a given 
input x in a single time step T. If x is a binary string of length n, one could compute the value of 
f(x) for the 2n possible values of the argument x in two ways – either by using a single copy of 
the circuit repeatedly for 2n time steps (2nT) with different input values of x at each step, or by 
using 2n copies of the circuit, each with different input values of x, and obtaining all the values in 
a single time step T. Quantum circuits can compute the values of the function f(x) for all possible 
values of the input x in a single time step and with a single copy of the circuit. The first part of 
experiment 2 shows this explicitly. 
 

Experiment 2: Quantum Parallelism – We are interested in constructing a 
circuit whose input is x and whose output is f(x) with probability 1, 
while also computing f(x) more efficiently than a classical circuit. 
A single qubit |x⟩ has two possible values, |0⟩ and |1⟩. The 
possible values of the function are |f(x)⟩ = |0⟩ or |f(x)⟩ = |1⟩. 
The Fredkin gate transforms two qubits in the following way: 
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|x⟩|y⟩→|x⟩|y ⊕ f(x)⟩  (V.5) 
 

 Where |x⟩|y⟩ is a suitable input observable, and |x⟩|y ⊕ f(x)⟩ 
is a suitable output observable. Note that the third input f(x) is 
hardwired into the circuit (this is one of the properties of Fredkin 
gates). If the second qubit is set to |y⟩=|0⟩, then the 
transformation carried out by the Fredkin gate is: 

|x⟩|0⟩→|x⟩|0 ⊕ f(x)⟩ (V.6) 
 

 Where ⊕ is addition mod 2. This transformation (V.6) is therefore 
equivalent to: 

 
|x⟩|0⟩→|x⟩|f(x)⟩  (V.7) 

 
 Note that we have just obtained |f(x)⟩ from |x⟩. Also note that 

nothing particularly exciting has happened yet – (V.7) takes x and 
spits out f(x), just like any classical circuit might. 

 However, things change when |x⟩ is in a superposition of two 
output qubits:3 

 
|x⟩ = [1/√2](|0⟩+|1⟩)  (V.8) 

 
 This means that |f(x)⟩ has the following value: 
 

f{ [1/√2](|0⟩+|1⟩) } = [1/√2](|f(0)⟩+|f(1)⟩)  (V.9) 
 

 Already we can see that the Fredkin gate will process information 
about both |f(0)⟩ and |f(1)⟩! Mathematically (V.7) turns into: 

 
|x⟩|0⟩→|x⟩|f(x)⟩  (V.7) 

 
 [1/√2](|0⟩+|1⟩) |0⟩→[1/2](|0⟩+|1⟩) (|f(0)⟩+|f(1)⟩)  (V.10) 

 
 [1/2](|0⟩|f(0)⟩+|1⟩|f(0)⟩+|0⟩|f(1)⟩+|1⟩|f(1)⟩) (V.11) 

 
 The output therefore contains information both about |f(0)⟩ and 

|f(1)⟩. This is quantum parallelism, and it can mathematically be 
extended to n qubits (see Marinescu (2005, pp.205-206) for a 
simple proof). Thus quantum parallelism allows us to construct the 
entire truth table of a quantum gate array with 2n entries in a single 
time step! 

 The trouble, of course, is that when we measure the output, we can 
only observe one value of (V.11) i.e. one value of the truth table. 
So in order to actually exploit quantum parallelism, clever 

                                                
3 This can be prepared using a Hadamard gate with transformation (IV.2) 
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algorithms need to manipulate the probabilities associated with 
each value. “Deutsch’s Problem” is one such algorithm. 

 
Experiment 2: “Deutsch’s Problem” – Let’s say that a programmer is 

interested in calculating f(0) ⊕ f(1) instead of just f(x). By modular 
arithmetic:  

 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0   (V.12) 
 

 So if f(0) = f(1), then f(0) ⊕ f(1) = 0, and if f(0) ≠ f(1), then f(0) ⊕ 
f(1) = 1. Classically, calculating f(0) ⊕ f(1) requires calculating 
both f(0) and f(1) with a total time of 2T. A quantum algorithm can 
reduce that time to T. All we need to do is create the state: 

[1/√2](|0⟩|f(0)⟩+|1⟩|f(1)⟩) (V.13) 
 
 And find the inner product (this is simple but tedious – see 

Appendix) with a new output observable in the following non-
degenerate basis: 

 
|zero⟩=|0⟩|0⟩-|0⟩|1⟩+|1⟩|0⟩-|1⟩|1⟩ (V.14) 

 
|one⟩=|0⟩|0⟩-|0⟩|1⟩-|1⟩|0⟩+|1⟩|1⟩ (V.15) 

 
|fail⟩=|0⟩|0⟩+|0⟩|1⟩+|1⟩|0⟩+|1⟩|1⟩ (V.16) 

 
|error⟩=|0⟩|0⟩+|0⟩|1⟩-|1⟩|0⟩-|1⟩|1⟩ (V.17) 

 
 (each pair on the RHS has a normalization coefficient of ½). The 

surprising result is that if the observed value is |zero⟩, then it 
must be the case that f(0) = f(1), and if the observed value is 
|one⟩, then it must be the case that f(0) ≠ f(1). The probability of 
measuring a value for f(0) ⊕ f(1)  (either |zero⟩ or |one⟩) is ½, 
and the probability of not measuring a value (i.e. |fail⟩) is also ½. 
Thus the quantum algorithm computes f(0) ⊕ f(1) in a single step.4 

  
 The point of experiment 2 is to show that MWI is the only realistic interpretation of 
quantum parallel processing. So how exactly does MWI describe what is going on? Deutsch 
explains that according to MWI, two algorithms (one for f(0) and another for f(1)) are 
simultaneously executed by different instances of the same processor in distinct Everett 
branches. The observer then “transfers information depending on the whole graph of f into a 
single branch,” and erases all information from the other branch (Deutsch, 1986 p. 219). 
 Deutsch then asserts that all non-MWI theories cannot explain the processes internal to a 
quantum circuits as an objective sequence of phenomena. He doesn’t claim that when quantum 

                                                
4 It is worth studying Marinescu (2005, pp. 207-209) for a more rigorous and detailed solution (Deutsch’s Problem 
is solved with two Hadamard gates, a Fredkind gate, and a final Hadamard gate). 
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parallelism is achieved experimentally the conventional interpretation will be refuted 
empirically. Rather, the conventional interpretation will be useless while the MWI explanation 
will be insightful and intuitive. When a complex algorithm with multiple parallel branches is 
being calculated, where are the calculations being done? If there is a bug in the “code” of one of 
the parallel branches, then the entire computation will not work. If all the parallel branches don’t 
exist in reality, how can a bug in one of the branches supervene on the entire computational 
process? 
 The Copenhagen interpretation of course fails to provide much comfort – nothing can be 
said about what functionally happens between the preparation of the input and the observation of 
the output. For complicated and lengthy circuits, all the steps can be represented mathematically, 
but one cannot say that they actually occurred. The only thing that occurred was the overall 
computation. Objective collapse theories don’t provide much comfort either, as they focus on 
resolving the microscopic/macroscopic divide. An objective collapse mechanism doesn’t  
describe what actually occurs on the microscopic scale. In this respect objective collapse theories 
are similar to the Copenhagen interpretation. 
 Is there any way for non-MWI theories to interpret quantum parallel processing? If we 
claim that we are dealing with new fundamental rules for microscopic particles, the mathematics 
say that a particle can partially be in two states simultaneously, so at the microscopic level, the 
particles is partially in two states simultaneously. This might seem rhetorical, but it depends on 
how seriously one wants to take the mathematics. If there is a clear theory that explains where to 
make the macro/micro cut – as in objective collapse theories – then this kind of description could 
seem to work. Instead of claiming that there are many worlds, one might claim that physics 
fundamentally changes at the microscopic scale. But this once again seems to have more of a 
philosophical nature than an experimental nature, that is decided based on personal philosophical 
leanings more than on hard data. 
 Deutsch also admits that experiment 2 is a glorified two-slit experiment.5 In the two-slit 
experiment, a single photon hits two slits to form an interfering wave pattern on a distant screen. 
According to the Copenhagen interpretation, it is undesirable to say whether the particle went 
through one slit or the other or both, and nothing can be said about the process other than the 
mathematical description. According to MWI, the photon simultaneously goes through both slits 
in parallel worlds. The insight that Deutsch is trying to convey with quantum parallelism is that it 
is impossible to avoid wondering what is physically going on when algorithms involve many 
steps and calculation times are lengthy.   
 Ultimately, however, the Copenhagen interpretation and objective collapse theories 
predict the same experimental results as MWI, but have different conceptual frameworks. 
Whether they are more or less desirable frameworks is more a philosophical question than an 
experimental one. Deutsch’s second experiment therefore feels slightly underwhelming.6  
 We finally move on to experiment 3, explores the nuances of quantum collapse in the 
Copenhagen interpretation. According to Deutsch, it is crucial for MWI to determine 
experimentally whether or not the superposition principle holds for states of distinct 
consciousness. In MWI, the same dynamical rules apply to all physical systems, including 

                                                
5  At this point I began to question whether all the time I spent studying the nitty gritty details of quantum 
parallelism was worthwhile.  
6 Armond Duwell has a more lofty critique of experiment 2 and argues that any other interpretation that treats the 
state vector as representing real ontological features of a system can explain quantum speed up as well; see Duwell 
(2007). 



Jacob Portes  Final Draft 
 

 15 

conscious systems, whereas according to the Copenhagen interpretation, conscious systems have 
a privileged status. Deutsch’s experiment 3 consists of three two-state systems and one quantum 
computer with an ‘artificial intelligence’ program, which plays the dual role of observer and 
observed object.  
 
 

Experiment 3: Quantum Artificial Intelligence – Subsystem 1 is a silver 
atom in the state: |→⟩ = [1/√2](|↓⟩ + |↑⟩). Subsystems 2 and 3 
are the “sense organ” for the quantum observer. They are prepared 
in a receptive state |↓⟩|↓⟩. 

Step 1 – The silver atom passes through the apparatus. If the |↑⟩ 
component of the silver atom passes close to system 2, the state of 
system 2 is flipped to |↓⟩|↑⟩, and if the |↓⟩ component of the 
silver atom passes close to system 3, the state of system 3 is 
flipped to |↑⟩|↓⟩ 

Step 2 – Subsystem 4, the quantum observer, examines subsystems 2 and 
3 and can tell whether the sense organ recorded spin up, spin 
down, or whether it is in the ready state. The observer’s experience 
can be rephrased in terms of P and Q, two observables (if Q = 1 
and P = 1, then the particle had spin |↑⟩ and if Q = –1 and P =1, 
the particle had spin |↓⟩). At this point, according to MWI the 
state of the observer is a superposition of Q = 1 and P = 1 and Q = 
–1 and P = 1, while according to the Copenhagen interpretation, 
the wave function of the silver atom has been collapsed. 

Step 3 – Having experienced this “state of consciousness,” the quantum 
observer makes a public record of whether it has observed a 
definite spin value or not without revealing what exactly it learned.  

Step 4 – The next step is to undo, by reversing the dynamical evolution, 
Steps 2 and 1. This is in principle possible, because “the steps 
involve only the quantum computer which can effect any desired 
unitary transformation upon the state of a subsystem of itself” (p. 
223) 

Step 5 – Finally the horizontal component of the spin of the silver atom is 
measured 

 
 Any interpretation that involves the collapse of the wave function should measure |→⟩ 
or |←⟩ with equal probability, while MWI should invariably measure |→⟩. This is because, 
according to non-MWI theories, a collapse occurred when the observer viewed the result without 
revealing what exactly it observed at Step 2. Once it collapsed to either |↑⟩ or |↓⟩, all 
information about the original wave function superposition was lost. According to MWI, 
however, the final state of the observer at Step 3 (i.e. before reversing the process) is a 
superposition of states! Deutsch writes that the quantum computer “experiences the splitting and 
reemergin of its own consciousness by observing physical evidence for which there is no 
alternative realistic interpretation” (p. 225).  
 Deutsch’s third experiment is really a critique of the Copenhagen interpretation, namely 
the lack of definition of measurement and the mystery of the wave collapse. According to the 



Jacob Portes  Final Draft 
 

 16 

Copenhagen interpretation, Deutsch’s artificially intelligent quantum computer would probably 
count as a macroscopic observer, although as mentioned many times already, the Copenhagen 
interpretation does not give a precise description of when exactly collapse occurs. This is a 
known issue in the Copenhagen interpretation, and one of the primary reasons that so many 
physicists and philosophers don’t see it as the “final word.” But did we need this gedanken 
experiment to point this out? 
 Granted Experiment 3 would be a definitive test of the Copenhagen interpretation, which 
is a theory riddled with issues. But would it prove MWI? Objective collapse theories treat the 
issue in an entirely different manner. If the quantum computer is large enough, then it will 
collapse and the resulting measurement will be |→⟩ or |←⟩. If the quantum computer is small 
enough to have a low chance of collapsing, objective collapse theories predict the same results as 
MWI. So the deciding factor is the associated parameter of the quantum computer, something 
that is (theoretically) testable without “quantum artificial intelligence” or complicated 
manipulations. 
 One might also wonder whether he is begging the question by assuming that an 
artificially intelligent quantum computer could be built. Would the Copenhagen interpretation 
even allow for a large, artificially intelligent quantum computer? 
 

******** 
 
 Although thought provoking, his three experiments are somewhat underwhelming. 
Experiment 1 is a rhetorical exercise, while experiment 2 is interesting to think about but hardly 
an experiment. Finally, experiment 3 does deal decidedly with the Copenhagen interpretation, 
but not in a particularly elegant or necessary way. For Deutsch to claim that his three 
experiments should dispel any doubts about MWI is a form of sensationalism. I spent all this 
time trying to understand what he says, and after all this research and writing I am a little 
disappointed. I must also confess that I am secretly relieved that MWI isn’t the incontrovertible 
theory of the universe. 
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******** 
For my physics friends – When someone “begs the question,” they are using circular reasoning 
by assuming the conclusion of an argument.  
 
 


