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Abstract

Is it possible to implement a fully controllable, unambiguously quantum computer? While most
in the field believe that the answer is in the affirmative, uncertainty and skepticism still exist
among academics and industry professionals. In particular, decoherence is often spoken of as an
insurmountable challenge. This thesis argues that there are no fundamental mathematical or physical
properties that would preclude the possibility of implementing a fully controllable quantum computer
using superconducting qubits. The proof is in key results from the past 30 years in math, physics and
computer science; this thesis is a sketch of these results. It begins with the well known theoretical
results that have motivated the field - namely quantum algorithmic speed up and efficient error
correction - and continues with an overview of the well developed theory of decoherence, arguing
that decoherence has been and can still be significantly reduced. These theoretical results are related
to superconducting qubits throughout. The thesis concludes with a summary of recent experimental
progress with superconducting qubit circuits.
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Preface

This work is a synthesis of well established material from various subfields of quantum computing.
Equations, mathematical derivations, and experimental results from published papers and books
are carefully referenced. This work was submitted in partial fulfillment of the requirements for the
degree of Master of Arts in Philosophical Foundations of Physics at Columbia University.
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Chapter 1

Introduction

The spirit of quantum computing - the motivating questions, fundamental issues, and suggestions
for future goals - is contained in Feynman’s keynote speech and subsequent paper from the 1981
Conference on Physics and Computation at MIT (Simulating Physics with computers [19]). The
following is a redaction of this speech.

1.1 Feynman’s Speech

What kind of computer can be used to simulate physics? There are the approximate kinds of
simulations, which use numerical algorithms based on simplifying assumptions in order to roughly
compute the energy of the physical system, or characterize the system dynamics. But what about
the exact simulation of a physical system? Is there a possibility that a computer will simulate exactly
what nature does?

There is a worry that not all of the laws of physics can be discretized and encoded for simulation.
For example, the laws of physics allow space go down to infinitesimal distances, wavelengths to
increase to infinite length, sum terms in infinite order - it would be difficult, if not impossible to
simulate these laws on a real, physical computer. However, it is not inconceivable that physicists
could discretize space and time (although we are still ways away from this).

Another worry is that the natural laws of physics are reversible, while computer logic is not.
In order to simulate a reversible system exactly, wouldn’t computer logic need to be reformulated
in terms of reversible logic gates? This worry is not of much concern, as it was shown by Charles
Bennett, Edward Fredkin and Tommaso Toffoli that computer logic can be formulated in terms of
reversible logic gates.1

A more serious problem is posed by quantum mechanics. Quantum mechanics involves probability
- and simulating probability is computationally problematic. If a description of a physical system in
nature with N variables requires a general function of N variables, and if a computer simulates this
by actually computing or storing this function, then doubling the size of nature (N → 2N) would
require an exponentially explosive growth in the size of the simulating computer. It is therefore
impractical (or impossible) to simulate by calculating all the probabilities exactly.

Another approach would be to simulate the probabilities of nature with a computer which is
itself probabilistic. It might not give the exact result that nature gives - but it will give results with

1Edward Fredkin and Tommaso Toffoli actually attended the conference; some of the work Feynman is referring
to can be found in Toffoli’s 1980 book Reversible Computing [40]. A more recent book authored by both Edward
Fredkin and Toffoli is Conservative Logic (2002) [22].

1



CHAPTER 1. INTRODUCTION 2

the same probability of nature. And by repeating the probabilistic simulation many times, it will
give the frequency of a given final state proportional to the number of times with approximately the
same rate. Is this actually possible?

The more interesting question is: why not let the computer itself be built of quantum mechanical
elements which obey quantum mechanical laws? What kind of computation could be possible with
this “quantum computer?” The implication is that a quantum computer would be able to simulate
a quantum system. But the more general implication is that the capabilities of such a computer
would be far greater than any“classical” computer.

There is a worry that a computer made of quantum components might not be able to simulate
all the classes of quantum problems. However, there are many phenomena in field theory that are
imitated by phenomena in solid state theory - so maybe there is a set of classes of quantum mechan-
ical systems that are “intersimulatable.” For example, maybe maybe finite and discrete quantum
mechanical systems could be simulated by a Hamiltonian involving only spin-one-half lattice an-
nihilation, creation, number and identity operators locally coupled to corresponding operators on
other space-time points. And finally, maybe there is even a “universal” class that can simulate every
possible quantum system - a sort of “universal quantum simulator?” Unsurprisingly, these questions
still drive the field today.2

1.2 The Golden Age?

On September 2, 2014, Google Research Director of Engineering Hartmut Neven unceremoniously
posted the following announcement on the Google Research Blog [2]:

The Quantum Artificial Intelligence team at Google is launching a hardware initiative to
design and build new quantum information processors based on superconducting electron-
ics. We are pleased to announce that John Martinis and his team at UC Santa Barbara
will join Google in this initiative. John and his group have made great strides in build-
ing superconducting quantum electronic components of very high fidelity. He recently was
awarded the London Prize recognizing him for his pioneering advances in quantum control
and quantum information processing. With an integrated hardware group the Quantum
AI team will now be able to implement and test new designs for quantum optimization
and inference processors based on recent theoretical insights as well as our learnings from
the D-Wave quantum annealing architecture. We will continue to collaborate with D-
Wave scientists and to experiment with the Vesuvius machine at NASA Ames which will
be upgraded to a 1000 qubit Washington processor.

The announcement was quickly picked up and shared within the academia and industry based
quantum computing communities (see the Tech Crunch and Wired articles, [1] and [3]). There
are many research groups attempting to build quantum computers using gate model architecture
with qubit hardware ranging from photons to ion traps to NMR; Martinis’s group (along with a
smattering of other research groups at Yale and elsewhere), is well known in the field for making

2He concluded the speech: “The program that Fredkin is always pushing, about trying to find a computer simulation
of physics, seems to me to be an excellent program to follow out. He and I have had wonderful, intense, and
interminable arguments, and my argument is always that the real use of it would be with quantum mechanics...And
I’m not happy with all the analyses that go with just the classical theory, because nature isn’t classical, dammit, and
if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.” [19]
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phenomenal progress in the past fifteen years on superconducting qubit systems. And Google isn’t
the only computer company placing its bets on superconducting qubit hardware - the IBM quantum
computing group at IBM research has also focused recent efforts on superconducting qubits as well
[13].

The fact that large tech corporations are investing in quantum computing research means that
the field has matured significantly. Are real, physical quantum computers possible? Martinis and
others, including Google and IBM, clearly believe that the answer is yes. If so, how so?

1.3 The Possibility of Quantum Computing

Feynman essentially posed the following three questions (we will tackle the first two):

1. Is it possible to build a computer with quantum components?

2. Many problems in physics and computer science are computationally inefficient. Can quantum
models of computing tackle these problems more efficiently?

3. Would such a computer be able to simulate all quantum systems?

Without getting into too much detail, some of the important (and weird) properties of quan-
tum mechanics are “coherent superposition” and “measurement ” (we’ll ignore “entanglement,” or
quantum correlation, for now). If we let |0〉 represent one possible state of a quantum system, and
|1〉 another possible state of a system, the “superposition” of these two states |0〉 and |1〉 is also a
possible state of the quantum system:

α |0〉+ β |1〉 (1.1)

where α and β are real or imaginary numbers that satisfy the simple property |α|2 + |β|2 = 1.
Quantum measurement occurs when a superposition is irreversibly “collapsed” to a single component
of superposition components:

α |0〉+ β |1〉 −→ |0〉 or |1〉 (1.2)

The probability of either outcome is given by |α|2 for |0〉 and |β|2 for |1〉. Thus if |α|2 = 1/4 and
|β|2 = 3/4, then the probability of measuring |1〉 on the superposition state α |0〉+ β |1〉 is 75%. A
qubit is a quantum system that can be described by the states |0〉, |1〉 or any superposition of |0〉
and |1〉 as defined by (1.1). If we treat a qubit as a single unit of information, a qubit could encode
a value of |0〉, |1〉 or any superposition α |0〉 + β |1〉 of these. Often times, a qubit is described as
a unit of information that can magically store both a “0 and 1 simultaneously.” While this is one
way to describe the mathematical property of “superposition,” it is important to remember that
measuring the qubit, however, would collapse any superposition and give a probabilistic outcome of
|0〉 or |1〉.

The combination of two quantum systems, say |1〉 and |1〉, is described by the (tensor) product
|1〉 ⊗ |1〉, which is often abbreviated to |1〉|1〉 or |11〉. If each of the two quantum systems is in
superposition, say the superposition (1.1), the entire two-system ensemble can be described by:

(α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉) (1.3)

This could represent a two qubit ensemble. If we multiply this out, we get:
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= α |0〉 ⊗ (α |0〉+ β |1〉) + β |1〉 ⊗ (α |0〉+ β |1〉) (1.4)

= α2 |0〉 |0〉+ αβ |0〉 |1〉+ βα |1〉 |0〉+ β2 |1〉 |1〉 (1.5)

The first thing to note is that two qubits in superposition can encode four possible units of
information - 00, 01, 10 and 11. Three qubits in superposition can encode 23 = 8 possible bits of
information - 000, 001, 010, 100, 011, 101, 110 and 111. It follows that N qubits can encode 2N bits
of information, which is a big deal. 500 qubits can encode 2500 bits of information (which is roughly
on the order of 10150 bits). This is enormous compared to a Terabyte -which is a measly 8 × 1012

bits. Given this property of quantum bits, one might expect stellar computational parallelism!
Before getting too excited about this, however, it is important to remember the next rule of

quantum mechanics - Born’s rule of probabilistic outcomes. That is, when we measure a quantum
computer, the result we get is probabilistic - and the probabilities depend on how we prepare and
manipulate the qubits. In the above equation, the outcomes are: |0〉 |0〉 with probability |α2|2, |0〉 |1〉
and |1〉 |0〉 with probabilities |αβ|2 each, and |1〉 |1〉 with probability |β2|2. For α � β, the most
likely outcome of measurement is |0〉 |0〉. If α and β are equal and normalized to α, β = 1/

√
2 , then

each of the four outcomes have equal measurement probability of 1/4. The outcome, of course, is a
2-bit number.

The unfortunate reality is that even if we could prepare and manipulate 500 qubits (2500 bits),
we would only be able to read one of those 500-qubit vectors after measurement, in the form of a
500-bit number. If all the qubits were prepared in an equal superposition of 1/

√
2(|0〉+ |1〉), then the

probability of measuring any one of the unique 2500 bit combinations would be 1/2500, a miniscule
number indeed. And so if we cared about the outcome of one of those, but not the rest, we would
have to somehow skew the probabilities of the measurement outcome such that we would get the
desired value with a sufficiently high probability (1/2500 is not particularly good - a probability of
1/2 would be much better). This was and still is one of the main challenges of quantum computing.

The early goals of quantum computing were to map the language of quantum mechanics to the
language of computing, and then to tease out the special properties of this new kind of computing.
This would take advantage of some of the unique properties of quantum mechanics such as quantum
superposition, entanglement and coherence to perform certain algorithms more efficiently - or more
“interestingly,” at the least. Deutsch’s various problems were stabs at this - they were a series of short
“proof of principle” algorithms that inspired the field. Then came along two important algorithms in
1994 and 1996 called Shor’s algorithm for number factorization, and Grover’s algorithm for “unsorted
database search.” These two algorithms have many practical applications, and have been the main
motivation for building quantum computers [39], [25].

When Shor’s algorithm and Grover’s algorithm were first created, they did not take into ac-
count the serious problems posed by quantum error. The worry was that the unique computational
speed-up provided by these algorithms would be lost with the necessary incorporation of error cor-
rection schemes. In the years that followed, a handful of quantum error correction schemes as well
as threshold theorems were proposed, and the general consensus among physicists and computer
scientists alike was that provided the physical error rates of individual qubits and gates were be-
low a certain threshold, Shor’s and Grover’s algorithms could be implemented with quantum error
correction schemes and still maintain algorithmic speed-up.

A growing group of physicists believe that it is indeed possible to physically build a quantum
computer using superconducting Josephson junctions, or “superconducting qubits.” How would
this be possible? Unlike quantum algorithms, there wasn’t much progress in quantum computing
experiments until the past two decades. Superconducting qubits, for example, weren’t even seriously



CHAPTER 1. INTRODUCTION 5

considered viable qubit-like systems until the early 2000s. The idea of a superconducting qubit is to
create a quantum system that behaved mathematically, like a 2-state quantum system. The energy
ground state of the system could represent |0〉 and the excited state could represent |1〉 . If it behaved
quantum mechanically, it could be in a superposition as well.

In addition to having these properties, the superconducting system would have to be addressable -
that is, we would have to be able to control it, initialize it, manipulate it with logic gates, and measure
it - while it maintained its quantum properties of entanglement and superposition. This was in fact
possible with superconducting qubits; at their core, they consist of a Josephson junction (a thin
barrier between two superconductors) that at low temperatures allows for tunneling. Interestingly,
the current (or the flux) can behave like a quantum variable and form coherent superpositions. The
superconducting Josephson junctions could be cleverly arranged to become two level systems, and
these two level systems could in turn be tuned and controlled simply changing the current frequency
and phase.

There was a looming problem, however, and this was the issue of decoherence. In the early
2000s, these superconducting qubits had very fast decoherence times - that is, they did not maintain
their quantum behavior for more than a few nanoseconds - not much time to perform algorithms.
The real success of these qubits was the dramatic increase in coherence time during the past 15
years - the coherence times have increased by at least five orders of magnitude. This was in no
small part due to a good understanding of decoherence theory as well as improvements in materials
and fabrication techniques. Today, superconducting qubits are seen as similar or even better than
the best qubit technologies (such as trapped ions). Superconducting qubits are also fabricated like
classical computer chips - on silicon wafer - and are thus not difficult design and manufacture.

While they claim to be close as of September 2015, Martinis’s group has not yet been able to
implement the 2D surface code - although he has succeeded in improving coherence times past the
surface code threshold [29]. Reaching these thresholds - and maintaining them as the architectures
scale - requires understanding the underlying physics in order to improve qubit coherence. But he
and most of the scientists in his subfield believe that there are no fundamental limits in sight -
and that quantum computers built from superconducting circuits are unambiguously within reach.
The skepticism surrounding quantum computing ranges from ignorant to extremely nuanced. This
next section discusses some of this skepticism topically - the more rigorous discussion, of course,
ensues in the subsequent chapters.

1.3.1 General Skepticism

Those with a rudimentary understanding of quantum mechanics might worry that quantum com-
puters are not feasible simply because the quantum and classical worlds don’t mix. Versions of the
traditionalist Copenhagen interpretation of quantum mechanics are often taught in undergraduate
physics courses; according to these accounts, the “microscopic” world obeys quantum mechanics,
and the “macroscopic” world obeys classical mechanics, and never the twain shall meet (this duality
is often referred to as Heisenberg’s cut). In addition, any sort of human manipulation or intervention
is equivalent to a measurement (in the sense described above) and hence collapse. Therefore, it is
not possible to “harness” the quantum world - or so the thinking goes.

There is an easy answer to this basic skepticism - a rich, developed theory exists that does
a far better job at explaining the quantum-to-classical transition than the early interpretations of
quantum mechanics. This is the theory of decoherence developed by H. Dieter Zeh, Anthony Leggett,
WojciechZureck and others in the 1970s and 1980s, that explains how quantum particles and systems
can effectively lose their quantum coherence simply by being entangled with an “environment” with
many degrees of freedom. Although they are not new fundamental axioms of quantum mechanics,
the insights of decoherence have been applied to countless theoretical systems and experimental set
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ups with great success. In this context, measurement can be understood as a “decoherence inducing
process,” and manipulations can be decoherence inducing or coherence preserving, depending on
how they are implemented. We can interact with and take advantage of the quantum world in novel
and exciting ways.

The real proof that we can harness the quantum world, however, is with the plethora of physical
prototypical systems of qubits, such as photons, ion traps, NMR, and of course superconducting
qubits. These systems essentially are qubit systems that can be initialized, logically manipulated,
entangled, and measured in most of the ways necessary to implement quantum circuits. Some of
these technologies are further ahead than others - superconducting qubits are currently considered
one of the most viable technologies, for reasons that will become clear in Chapter 5 (for a general
comparison of the pros and cons of the various technologies, see the review article by Ladd et al.
Quantum Computers (2010) [30]).

Another basic worry, which was an entirely open question at first (but has now been quite
elegantly addressed although not completely resolved) has to do with the limitations of computing.
As Feynman hinted at in his speech, how can we be sure that a quantum computer - assuming such
a contraption could be built - wouldn’t just be a souped up machine with the same fundamental
limitations as a classical computer? After all, there are a myriad of ways to implement computation;
most of them, however, can be fundamentally described by the classical theory of computation.
Although we might have reason to believe that a quantum computer would be different, how can
this be shown rigorously?

As mentioned above, a quantum computer could theoretically manipulate many more bits of
information than a classical computer - that N qubits could encode 2N bits of information, and that
a single quantum timestep could operate on all superpositions/combinations simultaneously. Even
today, this “quantum parallelism” is often touted in the media as the panacea to all computing
and memory problems. The catch of course - and this was also recognized early on - was that
measurement that did not favor any particular outcome can render quantum parallelism useless.
Early skeptics did not believe that algorithms could be designed that could overcome this problem
in a way that would be as efficient or more efficient as classical computers.

While it was shown in the mid-late 1980s that any classical algorithm could be mapped onto a
quantum computer, it was not until the discovery of Shor’s algorithm in 1994 and Grover’s algorithm
in 1996 that it became clear that quantum computers could actually execute particular algorithms
significantly faster than the most powerful classical computers. While some lament that there has
not been much progress in algorithms in the past decade, there is no doubt that quantum computers
are in a significant category of their own.

1.3.2 Contemporary Skepticism

A more nuanced - and legitimate - worry, is that error correction is insurmountable. What does
this mean exactly? It is conceivable that in order to account for quantum error, elaborate error
correction schemes would have to be incorporated such that logical qubits were comprised of many
individual qubits, and logical gate operations on these logical qubits were comprised of many individ-
ual operations on the individual qubits. One legitimate worry is that the increased cost in number
of qubits and the timesteps of operation could be so great that it cancels any efficiency gained from
the quantum aspect of the computation. The second, more serious worry is that necessary error
correction might render quantum algorithms significantly worse than classical algorithms in terms
of computation efficiency. In the mid to late 1990s, a few threshold theorems were formulated that
allayed these fears, first for uncorrelated (Markovian) errors, and then for various forms of correlated
errors. While there are still a few skeptics (usually mathematicians) who argue that correlated errors
fundamentally preclude the possibility of efficient quantum computing with error correction, their
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tone has softened in recent years due to the success of recent experiments.
The final worry has to do with physics. We understand decoherence to a large extent, but how

can we be sure that a particular physical implementation of a qubit - whether a trapped ion or a
superconducting qubit - does not have some fundamental physical “decoherence limit.” Sure it might
be possible to improve coherence times - but they cannot improve indefinitely. Where is the limit?
And if there is a limit, then how do we know that is is above the error correction threshold?

The answer to this question is not so clear. On the one hand, a fully “error corrected” circuit
(let alone computer) has not been successfully built yet. On the other hand, coherence times are
improving at a dizzying pace, with no real end in site.

Skepticism Response Chapter(s)

We can’t control the quantum world
Superconducting Qubits,
Decoherence

2, 4, 5

Quantum computers are no more efficient than clas-
sical computers

Shor and Grover algo-
rithms

2

Error correction renders quantum algorithms no bet-
ter than classical algorithms

Threshold theorems 3

Coherence cannot be improved enough to make full
error correction feasible

Decoherence theory 5, 6

Table 1.1: Skepticism

The foundations of quantum mechanics and quantum computing, as well as Shor’s and Grover’s
algorithms, are covered in Chapter 2. Chapter 3 covers various quantum error correction schemes
and various threshold theorems, while Chapter 4 covers the physics of Josephson junctions and
superconducting qubits, including basics of qubit initialization, gate manipulation, and read out.
Chapter 5 discusses the physics models behind the general theory of decoherence, including the
spin-boson model and the spin-bath model, and relates them to superconducting qubits. Recent
experimental results of interest are discussed in the final chapter. All of the material in this thesis
assumes familiarity with quantum mechanics at the level of the well known textbook by Griffiths
[24].

There is a real need for the material in this thesis. At the granular level, many fundamental
quantum computing references such as the book by Nielsen and Chuang [34] hardly mention su-
perconducting qubits or the surface code for error correction. More generally, however, very few
quantum computing resources are written specifically for physicists, and topics such as quantum
computing or decoherence are not usually included in undergraduate or graduate physics courses on
quantum mechanics. Possibly as a result, very few physics students understand the foundations of
quantum computing even though it is simply an extension of the already familiar quantum mechan-
ics. While the narrow purpose of this thesis is to argue that quantum computing is possible, the
more general goal of this thesis is to present both the foundations of quantum computing and some
of the exciting recent trends in the field in a comprehensive manner.



Chapter 2

Foundations of Quantum
Computing

Quantum computing is built on the hallowed principles of quantum mechanics. This chapter begins
with a quick, dense review of the mathematical framework of quantum mechanics, motivated by
the important question: What exactly are the non-classical features of quantum mechanics? “Su-
perposition,” “measurement” and “entanglement” are common parlance in the world of quantum
computing, but how exactly are they defined? The next part of the chapter systematically explains
how can we use the mathematical framework of quantum mechanics for computation: how to encode
information in qubits, what logical manipulations are allowed, and how they fit together to form
quantum circuits. Finally, the chapter concludes a brief overview of the great promises of quantum
computing - algorithmic speed up. This includes early “proof of principle” algorithms such as the
various Deutsch problems, as well as Shor’s algorithm and Grover’s algorithm.

2.1 Principles of Quantum Mechanics

What is it about quantum systems - and the theory of quantum mechanics - that is so unique? Let’s
begin with the basic mathematical postulates:

1. State Vector: The properties of a quantum system are completely defined by specification
of its state vector |Ψ〉. The state vector is an element of a complex Hilbert space H called the
space of states.1

2. Observables: With every physical property O (energy, position, momentum, angular mo-
mentum, etc.) there exists an associated linear, Hermitian2 operator Ô (usually called an
observable), which acts in the space of states. The eigenvalues of the operator are the possible
values of the physical properties.

3. Born rule: If |ψ〉 is the vector representing the state of a system and if |φ〉 represents another
physical state, there exists a probability of finding |ψ〉 in state |φ〉, which is given by the squared

1Remember that the mathematical concept of a Hilbert space generalizes the notion of Euclidean space by extending
the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to
spaces with any finite or infinite number of dimensions. It is an abstract vector space with the structure of an inner
product that allows length and angle to be measured

2A Hermitian matrix is a square matrix with complex entries that is equal to its own conjugate transpose. If the
conjugate transpose of a matrix A is denoted by A†, then the Hermitian property can be expressed as A = A†.

8
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modulus of the scalar product on H: | 〈ψ|φ〉 |2. If Ô is an observable with eigenvalues λk and
eigenvectors |k〉 such that Ô |k〉 = λk |k〉, the probability of obtaining λk as the outcome of the
measurement Ô is | 〈k|ψ〉 |2. After the measurement the state is left in the state projected on
the subspace of the eigenvalue.

4. Unitary Evolution: The evolution of a closed system is unitary.3 The state vector |ψ(t)〉 at
time t is derived from the state vector |ψ(t0)〉 at time t0 by applying unitary operator Û(t, t0)
called the evolution operator.

How are superposition, entanglement, measurement and decoherence embedded in these postu-
lates?

2.1.1 The Schrodinger Equation

The Schrodinger equation is a partial differential equation that describes how a quantum state of a
physical system changes with time

ĤΨ(r, t) = ih̄
d

dt
Ψ(r, t) (2.1)

Ĥ is the Hamiltonian, which in most cases characterizes the total energy of the any given wavefunc-
tion. If Ĥ is time independent, then the solution has the following form

Ψ(r, t) = e−iĤt/h̄Ψ(r, t), Û(t) = e−iĤt (2.2)

where Û(t) is the evolution operator. This simple evolution operator will come up again and again
both in the context of applying gates to qubits and the various decoherence models). The familiar
time independent formulation has the following structure for a single, non-relativistic particle:

EΨ = ĤΨ, and EΨ(r) =
[
− h̄

2µ
∇2 + V (r)

]
Ψ(r) (2.3)

(although this will not come up much in the context of quantum computing). While the overall
form of the Schrodinger equation was not particularly surprising when it was first formulated -
as it was originally motivated by the classical wave equation - it does lead to some unusual and
experimentally verified predictions such as the quantization of energy levels and the quantization of
angular momentum (position, time and momentum are not quantized, however).

2.1.2 “Coherent” Superposition

Superposition lies at the heart of quantum mechanics. Superposition is the property linear combi-
nations of quantum states, represented by vectors in Hilbert space, are also quantum states. For
example, if |ψ1〉 is a quantum state, and |ψ2〉 is a quantum state, then

|Ψ〉 =
∑
n

cn |ψn〉 (2.4)

is also a quantum state. Similarly, if we start off with a spin-1/2 “spin up” state |↑〉 in the {|↑〉 , |↓〉}
basis, according to the superposition principle the state |Ξ〉 = (|↑〉+ |↓〉)/

√
2 is also a quantum state.

3A matrix U is unitary if U†U = UU† = I. The importance of this to quantum logic is discussed in the following
section.
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The double slit experiment is a well known experimental verification of superposition. Electrons
are directed towards two slits, and produce an interference pattern on a distant screen, which is
really just a measure of spatial variation of density pattern with distribution %(x) of particles. If
each electron that passed through either one of the slits was simply either in the |ψ1(x)〉 state or
the |ψ2(x)〉 state, then the distribution of electron buildup on the screen over time would be

%(x) ∝ |ψ1(x)|2 + |ψ2(x)|2 (2.5)

However, the classic result is

%(x) =
1

2
|ψ1(x) + ψ2(x)|2 =

1

2
|ψ1(x)|2 +

1

2
|ψ2(x)|2 + Re{ψ1(x)ψ∗2(x)} (2.6)

where the last term is responsible for the characteristic interference pattern on the screen. This shows
that the particles cannot be described as one and only one of the wavefunctions |ψ1(x)〉 or |ψ2(x)〉, but
must be described instead as a superposition of these wave functions |Ψ(x)〉 = (|ψ1(x)〉+|ψ2(x)〉)/

√
2.

The poing its that we must be careful to emphasize a state that is a superposition of other states
does not simply represent a classical probabilistic ensemble of components where the system really
“is” just one of the components, but we do not know which one. It is a new physical state of an
individual system and not just a statistical distribution of component states.

Unitarity is an important element of quantum mechanics - as we stated above, the operator
which describes the progress of a physical system in time must be a unitary operator. Why is this
so? Unitarity is essentially a restriction on the allowed evolution of quantum systems that ensures
that the sum of all possible outcomes is 1 (the Born rule). Unitarity is defined as

U†U = UU† = I (2.7)

We can show how unitarity maintains the Born rule with the following sketch: since the prob-
ability is the square of the amplitude, it can be obtained as the inner products of vectors. The
probability amplitude of |X〉 , |Y 〉 at initial time t, is 〈X|Y 〉, and the probability amplitude of
|X ′〉 , |Y ′〉 at time time t′ is 〈X ′|Y ′〉. In order for these probability amplitudes to remain the same
(assuming measurement has not occurred), the time evolution operator must have the property that

Û |X〉 = |X ′〉 , Û |Y 〉 = |Y ′〉 −→ 〈X|Y 〉 = 〈X ′|Y ′〉 = 〈X| Û†Û |Y 〉 (2.8)

and hence, any evolution of a quantum system must be unitary. The importance of this for quantum
computing cannot be understated: if we wish to implement algorithms that maintain the quantum
properties of qubits such as superposition, the operations we apply must be unitary.

2.1.3 Measurement and the Quantum-to-Classical Transition

The Measurement Problem is the problem of how or whether the wavefunction collapses during an
observation. The wavefunction evolves deterministically according to the Schrodinger equation as
a linear superposition of orthogonal states, but actual measurements always find that the physical
system is in one of the states. It is a very strange thing, really.

How does measurement occur? One early way of understanding measurement is by postulating
a duality between quantum and classical worlds, famously known as Heisenberg’s cut. Below
the cut everything is governed by quantum mechanics of the wave function, and above the cut
everything can be described classically. Since observation and measurement are in the classical
regime (i.e. they require macroscopic observers with macroscopic forces), any interaction with the
microscopic, quantum world would immediately induce collapse of the wavefunction . This is part of
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the Orthodox, or Copenhagen interpretation, and is problematic for multiple reasons (both physical
and philosophical - see Chapter 8 of Schlosshauer [37] for a more extensive discussion).

The process of measurement is better described in terms of von Neumann collapse (which is
the ancestor to decoherence theory). Von Neumann attempted to describe quantum measurement
entirely in quantum terms as an interaction between a measured system and a measuring apparatus
(which could be large or small, conscious or unconscious). The basic schematic is as follows. If the
measurement apparatus starts out in the “ready” state |ar〉 and the system to be measured is in the
|a1〉 state, after the measurement interaction the combined system is described as

|si〉 |ar〉 → |si〉 |ai〉 (2.9)

where the measurement has established a one-to-one correspondence between the state of the system
and the state of the apparatus. In this scheme, the measurement has not altered the state of the
system, and no entanglement has occurred thus far.

However, if the initial system-to-be-measured is in a superposition, then the linearity of the
Schrodinger equation implies that the system apparatus combined will evolve according to:

|ψ〉 |ar〉 =

(∑
i

ci |si〉
)
|ar〉 → |Ψ〉 =

∑
i

ci |si〉 |ai〉 (2.10)

This of course leaves the apparatus in an entangled, superimposed state. As Schlosshauer writes, “we
can no longer attribute an individual state vector to the system or the apparatus.”4 Entanglement
has occurred, and it has occurred at the macroscopic level if the apparatus is macroscopic. This
unitary evolution is referred to as premeasurement. So what happens next? According to von
Neumann, there are two possibilities: (1) the system can either remain entangled, or (2) collapse of
the wavefunction can occur. This second option is referred to as strong measurement.

The measurement problem still holds, however. How does “strong measurement” actually oc-
cur? In this vein, Schrodinger’s cat was a thought experiment devised by Schrodinger in 1936 in
order to highlight the weirdness of quantum mechanics at the macroscopic level - and the prob-
lem of how probabilities are converted to well-defined outcomes. Various interpretative frameworks
were developed, such as Hugh Everett’s many-worlds interpretation, De Broglie-Bohm theory
of Bohmian mechanics, objective collapse models such as GRW collapse, and others to resolve
this issue. The literature on these interpretations is vast; see David Albert’s Quantum Mechanics
and Experience [5] for a simple introduction to the measurement problem, David Wallace’s book
The Emergent Multiverse [41] for a rigorous explanation of the many-worlds interpretation, Roland
Omnes’s Interpretation of Quantum Mechanics [36] and Maximillian Schlosshauer’s Decoherence and
the Quantum-to-Classical Transition [37] for rigorous explanations of the measurement problem and
how it relates to decoherence theory.

2.1.4 Decoherence

Our view of entanglement and collapse of the wave function has changed slightly since the 1930s and
1940s. Quantum effects have been observed in the lab in the mesoscopic (i.e. decidedly larger than
microscopic) domain. In addition, it was realized that discussing and modeling quantum systems
as isolated systems was not valid in many instances. The implicit assumption that we could always
shield our systems from unwanted environmental disturbances was simply obscuring certain aspects
of quantum theory. In the 1970s and 1980s, new research efforts began treating quantum systems
as open systems - with a lot of success in the area of quantum optics. It was also realized that the

4The von Neumann scheme for ideal quantum measurement is described extensively in Schlosshauer pp. 50-53 [37].
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“isolated system” assumption had in fact been a crucial obstacle to understanding the quantum-to-
classical transition. Theorists such as H. Dieter Zeh and E. Joos were able to show that the openness
of quantum systems could actually explain how quantum systems lose some of their superposition
components (more on this in subsequent chapters).

It is worth mentioning in the context of decoherence and measurement that most devices capable
of detecting a single particle and measuring its position strongly modify the particle’s state in the
measurement process (e.g. photons are destroyed when striking a screen). Less dramatically, the
measurement may simply perturb the particle in an unpredictable way; a second measurement, no
matter how quickly after the first, is then not guaranteed to find the particle in the same location.

However it is possible to measure a system (and collapse it if it is in a superposition) twice
(or more) without changing the value of the measured system. This is a Quantum Nondemoli-
tion (QND) measurement, and it is used frequently in physical qubit systems. Note that the
term“nondemolition” does not imply that the wave function fails to collapse.

2.1.5 Spin

For completeness, we state here that a “spin” S is a discrete degree of freedom that transforms like
angular momentum under rotations and corresponds to an observable describing the spin of a spin
1/2 particle, in each of the three spatial directions. It is a uniquely quantum object with a finite
state space. The Pauli spin matrices are set of three 2 × 2 complex matrices that are unitary, and
they feature significantly in the quantum computing formalism.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.11)

For a spin 1/2 particle, the spin operator is given by Ŝi = h̄
2 σ̂i. A spin Hamiltonian (almost

always) consists of a sum of one-spin and two-spin terms. This is very analogous to the Hamiltonian
of a particle system, where one has one-body terms (an external potential) plus two-body terms
(particle-particle interactions). For example, a general spin Hamiltonian can be be composed of a
magnetic field coupling HB = −ĤB

∑
giµBŜi where ĤB is the magnetic field, and an exchange

interaction (sometimes called Heisenberg Exchange Hamiltonian) Hex = −
∑
i,j JijŜi · Ŝj . In a

crystal, generalization of the Heisenberg Hamiltonian in which the sum is taken over the exchange
Hamiltonians for all the (i, j) pairs of atoms of the many-electron system gives:

HHeis =
1

2

−2J
∑
i,j

Ŝi · Ŝj

 = −
∑
i,j

JŜi · Ŝj (2.12)

We will see a similar Hamiltonian used for spin-bath coupling decoherence models in Chapters 5 and
6. Unsurprisingly, two level quantum systems can be described using the spin operator formalism.
Since information is traditionally encoded in 0s and 1s, it makes sense to describe the quantum bit
as a binary system as well i.e. a two dimensional complex Hilbert space with orthonormal bases
{|0〉 , |1〉}.

For completeness, we mention here that the Bloch sphere is a useful visualization of pure state
of a two level quantum system.

|Ψ〉 = eiγ
(

cos(
θ

2
) |0〉+ eiφ sin(

θ

2
) |1〉

)
(2.13)
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Figure 2.1: Bloch Sphere

where γ, θ and φ are real numbers. Typically eiγ is omitted, as it is not observable in most
scenarios. We will reference the Bloch sphere frequently.

2.1.6 Entanglement

One of the most fascinating, disturbing and revolutionary, non-classical elements of quantum me-
chanics is entanglement. An entangled system is defined as a composite state of two or more systems
which cannot be written as a tensor product of the original component systems. It can be under-
stood as arising from the superposition principle combined with the linearity of the Schrodinger time
evolution. For example, the Bell states are four maximally entangled states:

|Φ+〉 =
1√
2

(|00〉+ |11〉) (2.14)

|Φ−〉 =
1√
2

(|00〉 − |11〉) (2.15)

|Ψ+〉 =
1√
2

(|01〉+ |10〉) (2.16)

|Ψ−〉 =
1√
2

(|01〉 − |10〉) (2.17)

It is easy to check that we cannot write these Bell states as tensor products of two individual states in
the {|0〉 , |1〉} basis (e.g. |Φ+〉 6= |ψ1〉 ⊗ |ψ2〉 where |ψi〉 = α|0〉+ β|1〉). But what does entanglement
mean, and how are quantum correlations different from classical correlations? We say that there is
a measurement correlation between quantum systems. However in classical systems, we often come
across correlations due to conservation laws. If an object at rest splits into two equal fragments,
and we measure the momentum of one of the fragments we can infer (immediately) the momentum
of the other fragment due to conservation of momentum. In the case of an entangled system,
when we measure one of the particles/subsystems, the quantum correlations are “transformed”
into classical (purely statistical) correlations. However, the outcome of the first measurement is
random - we have no way of predicting with 100% accuracy which particular outcome will be
obtained. It would appear...that after the first measurement, the outcome is “instantaneously”
transmitted to the other particle, which may be separated by an arbitrary distance. While this was
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originally considered a troubling aspect of the theory of quantum mechanics (see the famous 1935
“EPR” paper Can quantum mechanical description of physical reality be considered complete? by
Einstein, Podolsky and Rosen [18]), entanglement is now considered an indisputable part of quantum
mechanics. John Bell’s book Speakable and Unspeakable in Quantum Mechanics [9] contains a more
extensive discussion on entanglement and the role it plays in our current understanding of quantum
mechanics.

The maximally entangled Greenberger-Horne-Zeilinger (GHZ) state is simply an extension of the
Bell |Ψ+〉 state for N > 2 qubits:

|GHZ〉 =
|0〉⊗N + |1〉⊗N√

2
(2.18)

where |0〉⊗N is the N -tensor product. For example, the simplest entangled state N = 3 is:

|GHZ〉 =
|000〉+ |111〉√

2

As we shall see later, many experiments (e.g. [8] and [29]) create and maintain GHZ states as
a measure of how well their hardwares can entangle their qubits. This is particularly important
because by various measures of entanglement (there is no standard measure), the GHZ is considered
maximally entangled.5 If one of the qubits is measured (as either 0 or 1), however, the states are no
longer entangled. In contrast, the W state is defined as:

|W 〉 =
1√
N

(|100..0〉+ |010...0〉+ ...+ |00...01〉) (2.19)

and has multiparticle entanglement such that when one qubit is measured, the remaining qubits are
still entangled.

2.2 Quantum Computing Basics: The Quantum Circuit Model

It was once thought that logic gates were fundamentally irreversible. Theoretical research in the
area of reversible computing established that the irreversible logic of classical computers could be
reformulated in terms of reversible gates (one-to-one maps of input and output). Since quantum
evolutions are unitary, reversible logic is the paradigm of choice for quantum computing. Standard
quantum computing theory begins with the definition of the primary units of information - qubits
- orthogonal states in a two level quantum system. We define these two component vectors in the
{|0〉 , |1〉} basis as

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
(2.20)

It is also common to use the{|+〉 , |−〉} basis

|+〉 =
1√
2

(|0〉+ |1〉) =
1√
2

[
1
1

]
(2.21)

5Interestingly, it wasn’t explicitly studied until 1989 by Daniel Greenberg, Michael Horne and Aaron Zeilinger in
Going Beyond Bell’s Theorem [23].
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Figure 2.2: Classical Computing Logic Gates (Irreversible)

|−〉 =
1√
2

(|0〉 − |1〉) =
1√
2

[
1
−1

]
(2.22)

We define the tensor product of two qubits as:

|0〉 ⊗ |0〉 = |00〉 =

[
1
0

]
⊗
[

1
0

]
=

 1×
[

1
0

]
0×

[
1
0

]
 =


1
0
0
0



|01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1


The tensor product of 3 qubits gives vectors of length 23 = 8, and so on (we can see that the

Dirac bra-ket notation makes dealing with the tensor product of many qubits less cumbersome than
vector notation).

2.2.1 Qubit Manipulations and Gates

The natural choice of unitary transformations to use for two level quantum systems are:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(2.23)

which are the same matrices as the Pauli σ matrices mentioned above. Interpreted in the context
of logic operations, the Pauli-X is simply a NOT gate

X |0〉 =

[
0 1
1 0

] [
1
0

]
→
[

0
1

]
= |1〉 , X |1〉 → |0〉
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as it flips the state |0〉 to |1〉 and the state |1〉 to |0〉. The Z-gate has no classical analogy, as it
rotates |1〉 to −|1〉 but does nothing to |0〉:

Z |1〉 =

[
1 0
0 −1

] [
0
1

]
→ −

[
0
1

]
= − |1〉

Gates can also be applied one after another.6

While the above gates are the most obvious operators to introduce into the quantum circuit
model, there are three more important single qubit gates that play a role in the quantum algorithms
to come. These gates are the Hadamard gate H, the phase gate S, and the shift gate T (also called
the π/8-gate).

H =
1√
2

[
1 1
1 −1

]
(2.24)

S =

[
1 0
0 i

]
(2.25)

T = eiπ/8
[
e−iπ/8 0

0 eiπ/8

]
=

[
1 0
0 eiπ/4

]
(2.26)

The Hadamard gate has the important property of putting the |0〉 and |1〉 states in superpositions.
This is equivalent to switching from the {|0〉 , |1〉} basis to the {|+〉 , |−〉} basis:

H |0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

1√
2

(|0〉+ |1〉) = |+〉 , H |1〉 = |−〉

H |−〉 =
1√
2

[
1 1
1 −1

]
1√
2

[
1
−1

]
=

1

2

[
0
2

]
= |1〉 , H |+〉 = |0〉

Pauli spin matrices exponentiated7 give rise to three useful classes of unitary matrices called rotation

6These matrices are operators, and order matters. Conventionally, the rightmost operator is applied first, such
that:

XZ |0〉 =

[
0 1
1 0

] [
1 0
0 −1

] [
1
0

]
=

[
0 1
1 0

] [
1
0

]
= |1〉

ZX |0〉 =

[
1 0
0 −1

] [
0 1
1 0

] [
1
0

]
=

[
1 0
0 −1

] [
0
1

]
= − |1〉

Both of these are distinct from X⊗ Z |0〉 ⊗ |1〉 = X |0〉Z |1〉, where X⊗ Z is a 2-qubit operator, or a 4× 4 matrix.
7Note that the function of an operator can be expressed as f(Â) =

∑
i f(λi) |ai〉 〈ai|, where λi is an eigenvalue

and |ai〉 is an eigenvector. Since the eigenvectors of Z are |0〉 and |1〉 with eigenvalues 1 and −1, we can write

e−iθZ/2 = e−iθ(1)/2 |0〉 〈0|+ e−iθ(−1)/2 |1〉 〈1| =
[
e−iθ/2 0

0 eiθ/2

]



CHAPTER 2. FOUNDATIONS OF QUANTUM COMPUTING 17

Figure 2.3: Quantum Gates

operators:8

Rx(θ) ≡ e−iθX/2 = cos(
θ

2
I− i sin

θ

2
X) =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ

2

]
(2.27)

Ry(θ) ≡ e−iθY/2 = cos(
θ

2
I− i sin

θ

2
Y) =

[
cos θ2 − sin θ

2

− sin θ
2 cos θ

2

]
(2.28)

Rz(θ) ≡ e−iθZ/2 = cos(
θ

2
I− i sin

θ

2
Z) =

[
e−iθ/2 0

0 eiθ/2

]
(2.29)

For any unitary operation U on a qubit, there exist real numbers α, β, γ, δ such that U = eiαRx(β)Rz(γ)Rx(δ).
This generalizes for all non-parallel vectors m̂, n̂ such that U = eiαRn̂(β)Rm̂(γ)Rn̂(δ). This is an
important result, as it states that any single qubit operation can be decomposed into this form.9 This
is called the X-Z decomposition for a single qubit.

There are a few notable two-qubit gates, including the Control NOT (CNOT) and SWAP gates:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


These gates have the following transformations:

CNOT |00〉 → |00〉 , CNOT |01〉 → |01〉 , CNOT |10〉 → |11〉 , CNOT |11〉 → |10〉

SWAP |00〉 → |00〉 , SWAP |01〉 → |10〉 , SWAP |10〉 → |01〉 , SWAP |11〉 → |11〉

CNOT is particularly important, as any unitary transformation on n qubits can be decomposed into

8Nielsen and Chuang, pp. 174-175 [34]
9The following corollary can be used to build multi-qubit unitary operations. For a single qubit unitary gate, there

exist single qubit operators A,B,C such that ABC = I and U = eiαAXBXC where α is an overall phase factor.
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a sequence of CNOT and single qubit gates.
The Toffoli gate, also known as CCNOT, is a 3-qubit gate that flips the third qubit if the first

two qubits are |1〉:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Since the state space of a 3-qubit vector has length 23, 3-qubit gates are 8× 8 matrices.

The Fredkin gate (also known as CSWAP, or controlled SWAP) is a reversible three-qubit gate
that swaps the last two qubits if the first qubit is |1〉:

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Note that the majority of these gates (e.g. Fredkin and Toffoli gates) were formulated in the

context of reversible computing, which preceded the quantum circuit model formalism. The notation
for quantum gates was developed by Adriano Barenco, Charles Bennett, Richard Cleve, David
DiVincenzo, Peter Shor and others. See Elementary Gates for Quantum Computation by Barenco
et al. [6] for a more extensive discussion on one and two-qubit gates.

A universal set of gates is a finite set of gates which, when combined, can model any arbitrary
operation. In classical computing, the set of AND and NOT gates is universal. In reversible (classi-
cal) computing, the 3-qubit Toffoli gate is a universal reversible logic gate, as any reversible circuit
can be constructed from it. In quantum computing, the set of Toffoli/CCNOT (3 qubit) is universal,
as various combinations of CCNOT can model all of the aforementioned one, two and three-qubit
gates. The set of CNOT (two-qubit), H (one-qubit) and T (one-qubit) is also universal for the same
reason.

2.2.2 No Cloning Theorem

There is an interesting and important result, called the “no cloning theorem,” which states that it is
impossible to create an identical copy of an arbitrary unknown quantum state.10 We can easily show
this mathematically. Let’s assume that there exists a unitary “copier” operator Ĉ that somehow
copies the state |φ〉 onto the state |e〉 in the following way:

Ĉ|φ〉A|e〉B = |φ〉A|φ〉B (2.30)

10William Wootters and Wojciech Zurek were the first to point this out explicitly in their 1982 paper A single
quantum cannot be cloned [42].
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for all possible states |φ〉 in the state space. It must be unitary if it is a non-measurement, time
evolution on the state. This seems fine; however, if we select an arbitrary pair of states |φ〉A and
|ψ〉A and try to copy them we run into trouble. Because Ĉ is unitary, it preserves the inner product,
so the inner product after the copier is applied must remain the same:

〈e|B〈φ|A|ψ〉A|e〉B = 〈e|B〈φ|AĈ†Ĉ|ψ〉A|e〉B = 〈φ|B〈φ|A|ψ〉A|ψ〉B , (2.31)

Equating the left hand side and right hand sides

〈φ|ψ〉A〈e|e〉B = 〈φ|ψ〉A = 〈φ|ψ〉2AB

This implies that either 〈φ|ψ〉 = 1 or 〈φ|ψ〉 = 0, so we obtain either φ = ψ or φ and ψ are

orthogonal. However, this cannot be the case for two arbitrary states (e.g. φ = 1
2 |0〉 +

√
3

2 |1〉 and

φ = 1√
2
|0〉 + 1√

2
|1〉 whose inner product is equal to 1+

√
3

2
√

2
) . Therefore a single universal gate Ĉ

cannot clone a general quantum state. However, a copier could clone equal or orthogonal states.
The implications of the no cloning theorem for quantum algorithms and quantum error correction

are important. Let’s say we manipulate some qubits as part of a routine (i.e. as part of a general
quantum algorithm or as part of a an error correction protocol), and want to duplicate the results
of this routine without measurement in order to proceed to the next part of the algorithm. The no
cloning theorem states that this is simply not possible.

2.3 Early Quantum Algorithms

Thus far we have not discussed any algorithms that take advantage of the unique properties of quan-
tum systems described at the beginning of the chapter. The grand vision of quantum computing
is for there to be a class of algorithms comprising of many unitary operations run repeatedly with
correct (or desired) answers represented by the distribution of probabilistic outcomes. The theory of
reversible computation had already established that classical computation could be achieved with
reversible gates, albeit without speed up. The algorithms described below are simple “proof of
principle” algorithms designed to highlight the possible speed up due to the properties of quantum
mechanics. The following sections roughly follow the format of David Deutsch’s seminal 1985 paper
Quantum theory, the Church-Turing principle and the universal quantum computer [15].

Quantum Parallelism: We are interested in constructing a circuit whose input is x and whose
output is f(x) with probability 1, while also computing f(x) more efficiently than a classical circuit.
A single qubit |x〉 has two possible values, |0〉 and |1〉. The possible values of the function are
|f(x)〉 = |0〉 or |f(x)〉 = |1〉. The Fredkin gate transforms two qubits in the following way:

|x〉|y〉 → |x〉|y ⊕ f(x)〉

Where |x〉|y〉 is a suitable input observable, ⊕ is addition modulo 2, and |x〉|y⊕f(x)〉 is a suitable
output observable. Note that the third input f(x) is hardwired into the circuit (this is one of the
properties of Fredkin gates). If the second qubit is set to |y〉 = |0〉, then the transformation carried
out by the Fredkin gate is:

|x〉|0〉 → |x〉|0⊕ f(x)〉 = |x〉|f(x)〉 (2.32)

where we obtain |f(x)〉 from |x〉. Note that nothing particularly exciting has happened yet -
(2.32) simply takes x and spits out f(x), just like any classical circuit might. However, things
change when |x〉 is in a superposition of two output qubits:
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|x〉 =
1√
2

(|0〉+ |1〉) −→ f

(
1√
2

(|0〉+ |1〉)
)

=
1√
2

(|f(0)〉+ |f(1)〉)

Already we can see that the Fredkin gate will process information about both |f(0)〉 and |f(1)〉.
Mathematically this turns into:

|x〉|0〉 → |x〉|f(x)〉 (2.33)

1√
2

(
|0〉+ |1〉

)
|0〉 → 1

2

(
|0〉+ |1〉

)(
|f(0)〉+ |f(1)〉

)
(2.34)

=
1

2

(
|0〉|f(0)〉+ |1〉|f(0)〉+ |0〉|f(1)〉+ |1〉|f(1)〉

)
(2.35)

The output therefore contains information both about |f(0)〉 and |f(1)〉. This is quantum par-
allelism, and it can mathematically be extended to n qubits.11 Thus quantum parallelism allows us
to construct the entire truth table of a quantum gate array with 2n entries in a single time step.

The trouble, of course, is that when we measure the output, we can only observe one value of
(2.33) i.e. one value of the truth table, with probability 1/4. If we repeat the measurement, we are
equally as likely to get any of the four table entries. Obtaining all four entries would require at least
4 measurements. This of course would have no advantage over a classical algorithm whatsoever,
as a classical algorithm would simply calculate one entry in a single iteration, and all four entries
in 4 iterations (maximum). So in order to actually exploit quantum parallelism, clever algorithms
need to manipulate the probabilities associated with each value. “Deutsch’s Problem” is one such
algorithm.

“Deutsch’s Problem” (1985): Lets say that a programmer is interested in calculating f(0)⊕
f(1) instead of just f(x). By modular arithmetic:

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0

So if f(0) = f(1), then f(0) ⊕ f(1) = 0, and if f(0) 6= f(1), then f(0) ⊕ f(1) = 1. Classically,
calculating f(0)⊕ f(1) requires calculating both f(0) and f(1) with a total time of 2T . A quantum
algorithm can reduce that time to T . All we need to do is create the state:

1√
2

(
|0〉|f(0)〉+ |1〉|f(1)〉

)
(2.36)

And find the inner product with a new output observable in the following non-degenerate basis:

|zero〉 = |0〉|0〉 − |0〉|1〉+ |1〉|0〉 − |1〉|1〉 (2.37)

|one〉 = |0〉|0〉 − |0〉|1〉 − |1〉|0〉+ |1〉|1〉 (2.38)

|fail〉 = |0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉 (2.39)

|error〉 = |0〉|0〉+ |0〉|1〉 − |1〉|0〉 − |1〉|1〉 (2.40)

(each pair on the RHS has a normalization coefficient of 1/2). The surprising result is that if the
observed value is |zero〉, then it must be the case that f(0) = f(1), and if the observed value is |one〉,
then it must be the case that f(0) 6= f(1). The probability of measuring a value for f(0) ⊕ f(1)
(either |zero〉 or |one〉) is 1/2, and the probability of not measuring a value (i.e. |fail〉) is also 1/2.

11See Marinescu pp.205-206 [31] for a simple proof.
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Thus the quantum algorithm computes f(0)⊕ f(1) in a single step with a probabilistic success rate
of 1/2.

In 1992, David Deutsch and Richard Jozsa improved this idea with a deterministic algorithm
(generalized to a function which takes n bits input). Unlike Deutsch’s Problem, this algorithm
required two function evaluations instead of only one. Further improvements to the Deutsch-Jozsa
algorithm were made by Richard Cleve and others in Quantum algorithms revisited [12] resulting in
the Deutsch-Josza Algorithm that is both deterministic and requires only a single query of f(x). The
Deutsch-Jozsa algorithm provided inspiration for Shor’s algorithm and Grover’s algorithm, which
we shall cover later in this chapter. The next algorithm below is is a special case of the general
Deutsch-Josza algorithm.

“Deutsch’s Algorithm” (1998): Similar to above, we want to check whether a function is
either balanced or constant; i.e. if f(0) = f(1) or f(0) 6= f(1). If f(0) ⊕ f(1) = 0, then functions
are balanced, and if f(0) ⊕ f(1) = 1, then the functions are constant. We are given a quantum
implementation of the function f(x) that maps |x〉 |y〉 to |x〉 |f(x)⊕ y〉. First apply the Hadamard
gate to each qubit

HH |0〉 |1〉 = H |0〉H |1〉 −→ 1

2
(|0〉+ |1〉)(|0〉 − |1〉) (2.41)

=
1

2
|0〉 (|0〉 − |1〉) +

1

2
|1〉 (|0〉 − |1〉) (2.42)

apply function f(x) via the unitary gate Uf(x)

=
1

2
|0〉 (|f(0)⊕ 0〉 − |f(0)⊕ 1〉) +

1

2
|1〉 (|f(1)⊕ 0〉 − |f(1)⊕ 1〉) (2.43)

=
1

2
(−1)f(0) |0〉 (|0〉 − |1〉) +

1

2
(−1)f(1) |1〉 (|0〉 − |1〉) (2.44)

= (−1)f(0) 1

2

(
|0〉+ (−1)f(0)⊕f(1) |1〉

)(
|0〉 − |1〉

)
(2.45)

(this requires some algebra). We ignore the global phase, and apply the Hadamard gate to each
qubit:

= (−1)f(0)H
1√
2

(
|0〉+ (−1)f(0)⊕f(1) |1〉

)
H

1√
2

(
|0〉 − |1〉

)
(2.46)

=
1

2

(
|0〉+ (−1)f(0)⊕f(1) |0〉

)
|1〉+

1

2

(
|1〉 − (−1)f(0)⊕f(1) |1〉

)
|1〉 (2.47)

=
1

2

(
1 + (−1)f(0)⊕f(1)

)
|0〉 |1〉+

1

2

(
1− (−1)f(0)⊕f(1)

)
|1〉 |1〉 (2.48)

When the first qubit is measured, if the function is balanced the outcome will be |0〉 with probability
1, and if the function is constant the outcome will be |1〉 with probability 1. This deterministically
returns an answer in a single algorithmic iteration. While this algorithm doesn’t have many prac-
tical purposes, it undoubtedly proves the possibility of algorithmic speedup with quantum computers.

2.4 The Quantum Fourier Transform (QFT)

The Quantum Fourier Transform (QFT) is the quantum analogue of the discrete fourier transform,
and is an important part of many quantum algorithms including Shor’s algorithm. The QFT gate
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Figure 2.4: The general Deutsch-Josza algorithm begins with the n + 1 bit state |0〉⊗n|1〉 and

examines the probability of measuring |0〉⊗n, | 1
2n

∑2n−1
x=0 (−1)f(x)|2 which evaluates to 1 if f(x) is

constant and 0 if f(x) is balanced.

acts on quantum state
∑N−1
i=0 xi |i〉 and maps it to a quantum state

∑N−1
i=0 yi |i〉 according to the

formula

yk =
1√
N

N−1∑
j=0

xje
2πijk/N (2.49)

where ω is often substituted for e2πi/N . This is possible because the fourier transform is unitary and
can be expressed as a unitary matrix FN

FN =



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωN−1

1 ω2 ω4 ω6 . . . ω2(N−1)

1 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)


For example, for N = 4, w = i and

F4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


The QFT can be implemented simply by a series of Hadamard and rotation gates. See Nielsen and
Chuang pp. 216-221 [34] and Marinescu pp. 210-224 [31] for extensive discussions and examples of
the Quantum Fourier Transform.

Figure 2.5: Quantum Fourier Transform Circuit for N = 3
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2.5 Quantum Phase Estimation

The quantum phase estimation algorithm is a quantum algorithm that finds many applications
as a subroutine in other algorithms. The algorithm allows us to estimate the eigenphase θ of
an eigenvector |ψ〉 of a unitary gate U (where U |ψ〉 = eiθ |ψ〉), given access to a quantum state
proportional to the eigenvector and a procedure to implement the unitary gate conditionally. Note
that the Quantum Fourier Transform is part of the phase estimation algorithm. See Nielsen and
Chuang pp. 221-247 [34] for a rigorous treatment of quantum phase estimation and its role in Shor’s
algorithm.

2.6 Shor’s Algorithm

Shor’s algorithm is quantum algorithm for integer factorization, formulated in 1994 by Peter Shor
[39]. The problem posed is: given a composite integer N , find a factor (any nontrivial factor will
do). It is substantially faster than the fastest known classical number factorization algorithm, called
the general number field sieve (although it is possible that an unknown faster classical algorithm
might exist).12 Much of the excitement surrounding Shor’s algorithm has to do with the possibility
that it could be used to break public-key encryption schemes such as RSA, which is based on the
assumption that factoring large numbers is computationally intractable.

Shor’s algorithm consists of two parts: (1) reducing the factoring problem to the problem of order-
finding (2) solving the order finding problem with a quantum algorithm, which can be thought of
as the quantum phase estimation algorithm in disguise. Scott Aaronson explains the algorithm well
without much mathematical formalism; the following sketch is based off his explanation [4]. A more
rigorous explanation of Shor’s algorithm and the derivation of its computational complexity can be
found in Nielsen and Chuang pp. 226-247 [34] and Marinescu pp. 224-247 [31].

As we hinted at previously, an efficient quantum algorithm needs to exploit some structure of
the problem in order to “skew” the measurement outcome such that the outcome is probabilistically
correct. The integer factorization problem does have some structure - in fact, it can be reduced to
period finding. What exactly is period finding, then?

We start off by noticing that we can express the powers of 2 as powers of 2 mod 15:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . . −→ 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, . . .

It is clear from this that the powers of 2 mod 15 are periodic. The powers of 2 mod 21 are also periodic:
2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . . −→ 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, etc. The generalization of this
by Euler states that if N is product of two prime number p and q, then the sequence:

x mod N, x2 mod N, x3 mod N, x4 mod N, . . . (2.50)

will repeat with some period that evenly divides (p−1)(q−1), provided x is not divisible by p or q. It
follows that if N = 15, then the prime factors of N are p = 3 and q = 5, so (p− 1)(q − 1) = 8. And
the period of 2 mod 15 is 4, which evenly divides 8. Similarly, for N = 21, then p = 3 and q = 7, so
(p−1)(q−1) = 12. And the period of 2 mod 21 is 6, which evenly divides 12. This means that, if we
can find the period of a sequence that van be expressed in the form of (2.50), then we can uncover
a “hidden” structure of the prime factors of N (namely, a divisor of (p− 1)(q− 1)). And in order to
find the period, we simply need to apply the (quantum) Fourier transform over the superposition of

12Specifically, the cost of Shor’s algorithm is O((logN)3) using fast multiplication, which is polynomial in the
number of bits needed to represent N , or “polylogN .” It is substantially faster than the general number field sieve,

which works in “sub-exponential time” about O(e1.9(logN)1/3(log logN)2/3 ) [39]
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xmod N, x2mod N, x3mod N etc. (luckily it is possible to generate this superposition). The reason
this is not efficient on a classical computer is that the period of the sequence might be extremely
large, i.e. it could have N might have hundreds or thousands of digits, and it is therefore impractical
to store or manipulate on a classical computer. This of course is not an issue for a quantum computer
with an N -qubit register that encodes 2N bits of information. So if we apply the Quantum Fourier
Transform to this particular superposition of states, the outcome will be a new superposition of states
which is probabilistically weighted towards the vector/state representing the period. This is repeated,
and the outcomes are used to reconstruct the original prime factors.

Until now the Quantum Fourier Transform was simply a unitary operation - a tool and not
an algorithm. When included in Shor’s algorithm, however, it is the key to quantum algorithmic
efficiency. This is because the outcome of the QFT depends on the input i.e. the superposition of
states. So when a problem can be reduced to a question of finding the period, the Quantum Fourier
Transform can be used to skew the measurement statitistics.

2.7 Grover’s Algorithm

Grover’s algorithm finds unique input to a black box function that produces a particular output
value using just O(N1/2) evaluations of the function, where N is the size of the function’s domain.
This only produces quadratic speed up as opposed to the exponential speed up of Shor’s algorithm.
While it was originally described as a database search algorithm, it is better described as an inverting
function, i.e. for a function y = f(ω), calculate ω given y.

f is the function which maps database entries to 0 or 1 where f(ω) = 1 if and only if ω satisfies
the search criterion. The algorithm relies on the existence of “quantum black box” access to a
subroutine Uω which is a unitary operator with the following properties:

Uω |ω〉 = − |ω〉
Uω |x〉 = |x〉 for all x 6= ω

Assuming such a subroutine exists and is efficient, the goal is to identify index |ω〉.
The algorithm is simply:

1. Initialize the system to a superposition over all states

|s〉 =
1√
N

N−1∑
x=0

|x〉

2. Perform the Grover iteration r(N) times: this is defined as applying operator Uω, then applying
the Grover diffusion operator Us = 2 |s〉 〈s| − I.

3. Measure: the result will be eigenvalue λω with probability approaching 1 for N � 1. From
λω, ω may be obtained

Note that if we are dealing with a database, it is not represented explicitly but rather by index
-reading a full database item by item could take a much longer time than Grover’s search algorithm.
Nielsen and Chuang pp. 248 - 261 [34] and Marinescu pp. 246-261 [31] discuss Grover’s algorithm
in more detail.



Chapter 3

Quantum Error

“The marvel of the present result [re the threshold theorem] is that it proves that, to
the best of our current knowledge, no principle in physics will limit quantum computers
from being realized someday” Nielsen and Chuang, p.494

It was understood early on that quantum systems are inherently noisy. How difficult it would
be to manage this quantum noise was studied in the mid-90s by Landauer, Unruh, and others. The
worry, of course, was that implementing error correction on quantum circuits would render any
“quantum algorithmic efficiency” (such as that achieved by Shor’s algorithm) useless. It would be
even worse if quantum error correction required such an overhead of resources that it made quantum
computers significantly worse than classical computers.

Luckily, these fears never materialized, and in the ensuing years various efficient error correction
schemes were designed (such as Shor’s code, CSS, the surface code and others) that cleverly tackled
the issue of error correction. Of particular importance were the various threshold theorems, which
showed that a quantum computer could simulate an ideal quantum computer, provided the level
of noise is below a certain threshold. These threshold theorems imply that the error in quantum
computers can be controlled as the number of qubits scales up. They also imply that algorithms
like Shor’s algorithm and Grover’s algorithm would still be more efficient than classical algorithms
even with error correction. Of all the error correction schemes, the surface code takes advantage
of particular properties of qubits such as parity to reduce the threshold necessary to implement
efficient computation (this is why it is favored among suqperconducting qubit research groups).
The stabilizer code, for example, has a threshold around pth ≈ 10−4 while the surface code has a
threshold around pth ≈ 10−2. Depending how much better coherence is than the minimum threshold
for a particular implementation, it is estimated that error correction will account for the majority
of quantum information processing (which is not the most exciting prospect).

The main sources for this section are Nielson and Chuang [34], Schlosshauer [37] and Martinis’s
extensive surface code paper [21]. Unfortunately this chapter is somewhat topical and covers just
enough material to understand error correction in the context of quantum computing. Where the
noise comes from, and how exactly it affects these systems, is discussed in subsequent chapters.

25
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3.1 Quantum Error Formalism

3.1.1 A Simple Understanding

How do we model noise in a classical system? Let’s start with a simple example of bit 0 that has
probability p of flipping to 1 through some noisy process, and similarly for bit 1→ 0. If X is initial
state of the bit, and Y is the final state of the bit, probability dictates:

p(Y = y) =
∑
x

p(Y = y|X = x)p(X = x)

where conditional probabilities p(Y = y|X = x) are called transition probabilities. Rewriting in
matrix form with p0, p1 as initial probabilities that the bits are in the states 0 and 1, and q0, q1 as
corresponding probabilities after noise has occurred[

q0

q1

]
=

[
1− p p
p 1− p

] [
p0

p1

]
where the center matrix is evolution matrix E. This assumes that consecutive noise processes
are independent, is physically reasonable in many situations. More generally, it treats results as
stochastic Markov processes. Although quantum errors are quite different from classical errors, we
can generalize this probabilistic paradigm to the class of quantum errors by simply assuming that
at every time step of a quantum manipulation, there is an associated probability of error p.

There are five general kinds of quantum errors:

amplitude damping - If a qubit is in excited state |1〉, amplitude damping causes qubit to
“relax” to the ground state |0〉 by losing energy to the environment (for example, in the form of a
photon when a single atom coupled to a single mode of electromagnetic radiation undergoes spon-
taneous emission). However, if a qubit is in the ground state, no change occurs.

phase damping - Phase damping (also called the phase flip) is a noise process that describes
a change in phase of the quantum state. For example, a 1√

2
(|0〉 + |1〉) state might transform to a

1√
2
(|0〉 − |1〉) state. Phase damping is uniquely quantum mechanical, and can even describe loss of

quantum information without loss of energy. As Nielsen and Chuang write that “phase damping is
one of the most subtle and important processes in the study of quantum computation and quantum
information.”1 As an aside, T2 is often referred to as the “Transverse coherence time” or “phase
damping time” and it essentially describes how long the phase term of the qubit can be controlled.
This will be discussed further in the discussion of decoherence.

bit flip - This noise simply flips the qubit from |0〉 to |1〉 (and vice versa).

bit-phase flip - The bit-phase flip is a combination of the bit flip and the phase flip (noting
that Y = iXZ). Thus, 1√

2
(|0〉+ |1〉) −→ − 1√

2
(|1〉+ |1〉) is an example of a bit-phase flip.

depolarizing channel - This is a channel where the amplitude of the state uniformly contracts,
regardless of value or phase.

1Nielsen and Chuang, p. 385 [34]
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3.2 Quantum Error Correction (QEC)

3.2.1 Simple Error Correction: the Shor Code

In order to protect against the effects of these possible errors, we can encode information by including
redundant information. One simple example is to replace a single qubit with three qubits |0〉 →
|000〉 = |0L〉 , |1〉 → |111〉 = |1L〉 which we call a logical qubit. Suppose initial state a |0〉+ b |1〉 was
logically encoded such that |0L〉 + b |1L〉 = a |000〉 + b |111〉 , and that a bit flip occurred on one of
the qubits. A simple error correction procedure to recover the original state would be:

1. Error Detection (syndrome diagnosis): perform an operation that indicates which qubit
flipped, if any. There are four projection operators:

P0 ≡ |000〉 〈000|+ |111〉 〈111| no error

P1 ≡ |100〉 〈100|+ |011〉 〈011| bit flip qubit 1

P2 ≡ |010〉 〈010|+ |101〉 〈101| bit flip qubit 2

P3 ≡ |001〉 〈001|+ |110〉 〈110| bit flip qubit 3

Note that the syndrome only contains information about which error has occured, but no
information about the value of a or b (i.e. no information about the state being protected).

2. Recovery Use value of error syndrome to decide which procedure to use to recover initial
state. If P0 do nothing, if P1 then flip first qubit, etc.

This correction scheme works well provided bit flips occur on no more than one of the three qubits.
This occurs with probability (1− p)3 + 3(1− p)2 = 1− 3p2 + 2p3 and the probability of the error not
being corrected is therefore 3p2−2p3. If p < 1/2, then the probability of the error being corrected is
> 1/2. However, if the probability of error is > 1/2, then the probability of the error being corrected
is < 1/2.

This only applies to bit flip errors - however as we saw above, there are other kinds of errors.
Interestingly, there is a simple way to convert the phase flip channel into a bit flip channel. The
phase flip operator Z is applied to state a |0〉+ b |1〉 such that it becomes a |0〉 − b |1〉. In {|+〉 , |−〉}
basis the Z operator acts as a bit flip: Z |+〉 = |−〉. Hence for phase-flip correction, we can simply
encode logical qubits as |0L〉 = |+ + +〉 , |1L〉 = |− − −〉. All operations needed for error correction
are performed in a similar manner to the bit flip channel but in the {|+〉 , |1〉} by including the
Hadamard transform H where necessary. The Shor code is a simple quantum code which can protect
against the effects of arbitrary error on single qubit. It takes advantage of the three qubit bit flip
and phase flip codes. First encode using the phase flip code |0〉 → |+ + +〉 , |1〉 → |− −−〉 and then
encode each of the three qubits using the bit flip code, such that each |+〉 → 1

2
√

2
(|000〉+ |111〉) and

|−〉 → 1
2
√

2
(|000〉 − |111〉) . The result is a nine qubit code:

|0〉 → |0L〉 ≡
1

2
√

2

(
|000〉+ |111〉

)(
|000〉+ |111〉

)(
|000〉+ |111〉

)
|1〉 → |1L〉 ≡

1

2
√

2

(
|000〉 − |111〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
The Shor code was one of the first error correction schemes.
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3.2.2 Stabilizer Codes

Stabilizer codes (or additive quantum codes) are an important class - many states can be more
easily described by working with the operators that stabilize them than by working explicitly with
the state itself. And many error correction schemes (including Shor’s code and CSS) can be more
compactly described using stabilizer formalism than state vector formalism. Stabilizer formalism
also allows for systematic construction procedures for encoding, decoding and error-correction.

3.2.3 Fault Tolerance

The basic idea of fault-tolerance is to compute directly on encoded states without decoding them. If
we assume noise can affect every element of computation (state preparation, quantum gates, mea-
surement procedure, transmission of quantum information along wires, etc.), we must replace each
qubit in the original circuit with an encoded block of qubits and replace each gate with a procedure
for performing encoded gate acting on the encoded state. Applying error correction periodically is
not sufficient to prevent the build up of errors

1. Encoded gates can cause errors to propagate. Therefore encoded gates must be designed
carefully such that failure during procedure can only propagate to a small number of qubits
in each block (called fault tolerant procedures).

2. Error correction itself can introduce errors on encoded qubits, so this must be accounted for
as well

The fault tolerance of a procedure is defined as the property that if only one component o the pro-
cedure fails, then the failure causes at most one error in each encoded block of qubits output from
the procedure.2

3.2.4 Threshold Theorems

There is a remarkable result - the threshold theorem - that arbitrarily good quantum computation
can be achieved even with faulty logic gates provided only that error probability per gate is below
a constant threshold. The result is based on concatenated codes which can be used to reduce the
effective error rate achieved by computation even further. We can recursively apply a particular
scheme for simulating a circuit using an encoded circuit by constructing a hierarchy of circuits. If
failure of physical qubit is p, then failure at one level of encoding is cp2, at two levels of encoding is

c(cp2)2. Concatenating k times, probability of failure at highest level is (cp)2k

/c, while the size of
the simulating circuit goes as dk times the size of the original circuit (d is a constant representing
maximum number of operations used in fault tolerant procedure to do encoded gate and error-
correction).

One of the earlier threshold theorems stated the following:
Threshold Theorem A quantum circuit containing p(n) gates may be simulated with probability
of error at most ε using

O(poly(log p(n)/ε)p(n))

gates on hardware whose components fail with probability at most p provided p is below some
constant threshold p < pth and given reasonable assumptions about the noise in the underlying
hardware.

2Nielsen Chuang p. 476 [34]
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For the Steane code, pth ≈ 10−4. The most important result of error correction codes is the
result that provided noise in individual quantum gates is below a certain constant threshold, it is
possible to efficiently perform an arbitrarily large quantum computation . The conclusion, then, is
that quantum error does not pose an existential threat for quantum computation.

It is important to note the assumptions made for the early threshold theorems. It is certainly
reasonable that physical implementations of qubits might experience more varied forms of noise that
don’t fit into the above formulation, such as

1. Correlated error in time (i.e. the noise is non-Markovian)

2. Correlated error due to spatial considerations

Finally, it is important to realize that threshold result requires parallelism, and doesn’t take into
account classical communication elements, inclusion of ancilla qubit generation etc. However, many
more sophisticated models have been developed since the first threshold theorems, and the general
idea of a threshold still holds for these as well.

3.2.5 Surface Codes

Surface codes are a particular class of code that take advantage of symmetrical properties of groups
of qubits (such as parity) to correct quantum errors. They were somewhat obscure until recently,
and are not mentioned in Nielsen and Chuang. Some consider it an even more robust type of error
correction that only needs nearest neighbor correlation and has lower threshold values than the
traditional codes mentioned above. Surface codes: Towards practical large-scale quantum computa-
tion by Fowler, Mariantoni, Martinis and Cleland 2012 [21] is a fantastic resource with a wealth of
information about surface codes. Below is one figure from this paper.



CHAPTER 3. QUANTUM ERROR 30

Figure 3.1: Surface Code (a) A two-dimensional array implementation of the surface code. Data
qubits are open circles, measurement qubits are solid circles, with measure-Z qubits colored green
(dark) and measure-X qubits colored orange (light). Away from the boundaries, each data qubit
contacts four measure qubits, and each measure qubit contacts four data qubits; the measure qubits
perform four-terminal measurements. On the boundaries, the measure qubits contact only three data
qubits and perform three-terminal measurements, and the data qubits contact either two or three
measure qubits. The solid line surrounding the array indicates the array boundary. (b) Geometric
sequence of operations (left), and quantum circuit (right) for one surface code cycle for a measure-Z
qubit, which stabilizes ẐaẐbẐcẐd. (c) Geometry and quantum circuit for a measure-X qubit, which
stabilizes X̂aX̂bX̂cX̂d. The two identity Î operators for the measure-Z process, which are performed
by simply waiting, ensure that the timing on the measure-X qubit matches that of the measure-Z
qubit, the former undergoing two Hadamard Ĥ operations. The identity operators come at the
beginning and end of the sequence, reducing the impact of any errors during these steps [21].



Chapter 4

Superconducting Qubits

While we have reviewed much of the theoretical foundation of quantum computing, from the circuit
model to quantum error correction, the question still remains: how is it possible to physically imple-
ment a qubit -and for that matter, a quantum computer? While there are many possible physical
implementations of qubits, including photons, ion traps and NMR, superconducting qubits are cur-
rently considered one of the most successful and feasible technologies. This has to due with the fact
that, over the past decade, the quantum coherence of superconducting qubits has increased more
than five orders of magnitude (more on this in subsequent chapters).

Superconducting qubits are essentially variations of Josephson junction circuits with inductors,
capacitors and resonators in addition to Josephson junctions. The circuits are very similar to dissi-
pationless LC circuits (i.e. simple harmonic oscillators) at extremely low temperatures, except that
the Josephson junctions behave like nonlinear inductive elements and affect the oscillator potential
such that it becomes anharmonic. The anharmonicity, of course, is key as it means that the different
energy levels may be addressed at different frequencies. When tuned appropriately, higher energy
levels can be ignored and the circuit becomes a two level system (with a ground state and an excited
state) which is a robust representation of a qubit.

The qubit can be controlled by applying a sinusoidal driving force (similar to a classical circuit).
The frequency of the driving wave causes rotations about the z-axis, and the phase of the driving
voltage causes rotations about the x and y axis. This allows for complete control of the state of
the qubit. Finally, measurement can be done by reading the signal from a resonator coupled to the
qubit.

In this way, with superconducting qubits we have:

1. Representation of quantum information

2. Application of unitary transforms

3. Preparation of a fiducial input state

4. Measurement of output

The majority of the material in this chapter was referenced from Superconducting Quantum Bits
(2008) by Clarke and Wilhelm [11], Steven Girvin’s chapter on circuit QED from Quantum Ma-
chines: Measurement and Control of Engineered Quantum Systems: Lecture Notes of Les Houches
Summer School (chapter 3) [16], Superconducting Qubits: A Short Review by Devoret, Wallraff and
Martinis [17], as well as great course notes by Andreas Wallraff, and Theo Walter from the ETH

31
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Zurich QSIT 2015 course.1 All of these resources discuss the physics of superconducting circuits ex-
tensively. Unfortunately the standard reference for quantum computing, Nielson and Chuang [34],
only mentions superconducting qubits in a single paragraph.

4.1 Macroscopic Quantum Behavior and Josephson Junc-
tions

There are two important definitions related to Josephson junctions:

1. flux quantization, whereby magnetic flux in superconducting ring is quantized

Φ0 = h/2e ≈ 2.07× 10−15Tm (4.1)

2. Josephson Tunneling, where cooper pairs can tunnel through energy barrier coherently.
Supercurrent I through the barrier is related to the gauge invariant phase difference δ(t)
between the phases of the two superconductors:

I = I0sin(δ(t)) (4.2)

where I0 is the critical current, a phenomenological property of the junction. The phase

difference changes in time as h̄dδ(t)dt = h̄ω = 2eV , where ω is the angular frequency at which
the supercurrent oscillates.

We introduce the operators δ̂ and N̂ associated with the Josephson coupling energy Ej =
I0Φ0/2π and the charging energy Ec = (2e)2/2C.

When Josephson junctions were fist investigated in the 1960s, it was found that macroscopic
quantum tunneling occured and that energy levels were quantized [28]. Cooper pairs tunnel from
|0〉 state through barrier when I < I0 and then run freely down the washboard potential, generating
a voltage of 2∆s/e, which can be detected easily. Energy quantization was found by irradiating
junction with microwaves, since each energy level has a unique frequency due to the anharmonic
nature of the potential.

In the 1980s, Anthony Leggett predicted that it would be possible to demonstrate a superposition
of macroscopic flux states in Josephson junction devices. This was not achieved experimentally until
1997 and 2000 by Nakamura with a charge qubit and Friedman and Caspar Van der Waal with flux
qubits.

The next step is to show that the nonlinear inductance alters the Hamiltonian of the LC circuit
in order to solve for the new energy levels of the system. There are many different ways of doing this
- either with a coax line, capacitor or inductor coupled with voltage. The so called “phase qubit”
is with coax line and forms a natural phase basis, the “charge qubit” is with a capacitor and forms
a charge basis, and the “flux qubit” is with an inductor and forms a flux basis. The Cooper pair
box, or charge qubit is currently the most used configuration, and is the basis of the quantronium,
transmon and then xmon qubits. We will therefore focus on the charge qubit.

1These notes can be accessed at qudev.ethz.ch/node/114091 and qudev.ethz.ch/content/QSIT15/QSIT15 Super L02 slides.pdf
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4.2 Circuit Equations

The following is a rough and simple derivation of the quantum analogue to the LC Circuit. The
classical circuit equations are:

Φ = LI VL = −LdI
dt

Q = CVC (4.3)

Emag =
1

2
LI2 Eelec

1

2
CV 2 (4.4)

where Φ magnetic flux of the inductor, L is inductance, I is the current, Q is the total charge
on capacitor C is the capacitance, VL is the voltage across inductor, VC is the voltage across the
capacitor, and E is the energy stored in inductor capacitor respectively. Ignoring resistance, the
basic circuit Hamiltonian is:

HLC =
1

2
CV 2 +

1

2
LI2 =

1

2

Q2

C
+

1

2

Φ2

L
(4.5)

If we treat Q as p and Φ as x, recalling that:

δH

δp
= ẋ

δH

δx
= −ṗ, δH

δΦ
=

Φ

L
= I = Q̇

δH

δQ
=
Q

C
= V = −Lİ = −Φ̇ (4.6)

Making the jump from classical to quantum by treating x and p as operators x̂ and p̂, we have
the quantum Hamiltonian:

Ĥq =
1

2

Q̂2

C
+

1

2

Φ̂2

L
=

1

2

h̄

C

δ2

δΦ2
+

1

2

1

L
Φ̂2 (4.7)

Which has all the expected properties of a quantum harmonic oscillator such as energy En =

h̄ω
(
n+ 1

2

)
.

This can be expressed in second quantization form:

Ĥ = h̄ω(â†LC âLC +
1

2
) (4.8)

âLC =
1√

2h̄ZC

(
ZCQ̂+ iΦ̂

)
â†LC =

1√
2h̄ZC

(
ZCQ̂− iΦ̂

)
(4.9)

â† =
√
n+ 1 |n+ 1〉 â |n〉 =

√
n |n− 1〉 â†â |n〉 = n |n〉 [â†, â] = 1 (4.10)

where ZC =
√
L/C is the characteristic impedance, with no dissipation.2

We now move on to the RLC Circuit. If we include resistance in parallel with the inductor and

2The same would hold with the following substitutions: V̂ = Q̂
C

Î = Φ̂
L
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capacitor, the dynamic equation for current through the inductor is

d2

dt
IL +

R

L

d

dt
IL +

1

LC
IL = 0 (4.11)

d2

dt
IL + 2α

d

dt
IL + ω2

0IL = 0 (4.12)

α, and ω0, are both in units of angular frequency. α, is called the neper frequency, or attenuation,
and is a measure of how fast the transient response of the circuit will die away after the stimulus has
been removed, and ω0 is the angular resonance frequency. For the case of the series RLC circuit these

two parameters are given by: α = R/2L and ω0 = 1/
√
LC. The damping factor is ζ = α

ω0
= R

2

√
C
L ,

which has the general solution

IL(t) = A1e
t(−α+

√
α2−ω2

0) +A2e
t(−α−

√
α2−ω2

0) (4.13)

For an underdamped response ζ < 1

IL = Ae−αtsin(ω0

√
1− ζ2t+ φ) (4.14)

The equation implies that the lower the resistance, the less the decay - as would be expected from
our understanding of the LC circuit. The general solution is sinusoidal with an amplitude that
decays with characteristic time, corresponding to energy dissipation.

The Q factor is a widespread measure used to characterize resonators. It is defined as the peak
energy stored in the circuit divided by the average energy dissipated in it per radian at resonance.
Low Q circuits are therefore damped and lossy and high Q circuits are underdamped. Q is related
to bandwidth; low Q circuits are wide band and high Q circuits are narrow band (Q is the inverse
of fractional bandwidth). For a resistor in series

Q =
1

ω0RC
=
ω0L

R
=

1

R

√
L

C
(4.15)

In order to control the circuit, we need to make energy gap between ground state and first
excited state much larger than thermal energy of the system. Luckily, the energy spectrum of
superconductors is ideal for this. While the energy spectrum of valence electrons is a continuum
above superconducting temperatures, at critical temperature, electrons bind into cooper pairs and
form bosonic states. At sufficiently low temperatures, all the cooper pairs reach ground state (since
they are bosonic). And thus we get split energy levels!

This leads us to superconductors. At typical temperatures of 10−2 K, superconductors have with
quality factors Q on the order of 104 (due to limitation of size of inductors and capacitors which are
roughly 1 nH and 1 pF, leading to typical resonant frequency on order of 5 Hz).

The fundamental challenge of building a quantum computer lies in the tension between decou-
pling and coupling; in order for a qubit to have quantum properties, it must be isolated/decoupled
from other sources (e.g. noise from other qubits or noise from external controls). However, some
level of coupling is necessary in order to initialize, control, and read out the qubit. Many qubit
implementations based on microscopic degrees of freedom, such as electron spins and atomic dipoles
have difficulty creating inter-qubit coupling without introducing unwanted decoherence. However,
as we shall see, superconducting qubits can be manipulated and measured quit elegantly.
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4.3 The Charge Qubit (Cooper pair Box)

Figure 4.1: Cooper pair Box (a) schematic (b) energy levels and (c) 〈n〉

The charge qubit is an island of charge, sandwiched between an external capacitor and Josephson
junction. Initially, the island is charge neutral. When the gate voltage is turned on, charges build
up at the capacitor and charges begin to polarize both in the circuit and on the “island” without
any net charge being added to the system. As polarization increases, charges begin to tunnel onto
the island through the Josephson junction. As the voltage continues to increase, there is an increase
in the number of Cooper pairs that tunnel to the island. When the voltage is removed, these Cooper
pairs tunnel back. The charge qubit therefore treats the presence or absence of Cooper pairs on
island as the two states of a qubit (e.g. ground state is represented by no extra pairs on the island,
while the excited state is represented by one extra Cooper pair on island).

The Hamiltonian can be simply expressed as the sum of total energy stored in the electric and
magnetic fields H = HE +HB . The energy stored in the electric field is related to the capacitor, and
there are two capacitors and extra Cooper pair charges. Since we are concerned with the difference
in the number of Cooper pairs, we want to keep track of charge QΣ = Qcooper −QG. If we call CΣ

the net capacitance of island, we get this from the sum of the gate capacitor and junction capacitor
which are in parallel (i.e. they can be added) CΣ = CG +CJ . We also want to represent the charge
of Cooper pairs in terms of number of Cooper pairs, so Q̂cooper = 2eN̂cooper (since each pair has net
charge of 2e). It follows that the gate capacitor has QG = 2eNG = CGVG. Therefore

HE =
1

2

Q̂2
Σ

CΣ
=

4e2

2CΣ

(
N̂cooper −NG

)2

(4.16)

where charging energy is EC = 4e2/2CΣ. (Beware - this is still somewhat classical, haven’t fully
derived results). The Hamiltonian is parabolic in nature, and is centered at every discrete value of
Ncooper. Note that we are not considering any sort of dissipation or interaction.

On he other hand, the energy stored in the magnetic field (stored by Josephson junction due to
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its inductor-like properties) is HB = −EJ0 cos δ̂

H = EC

(
N̂cooper −NG

)2

− EJ0 cos δ̂ = EC

(
− i d

dδ
−NG

)2

− EJ0 cos δ̂ (4.17)

Rewritten in the charge number basis as

Ĥ =
∑
N

[
EC(N̂cooper −NG)2 |N〉 〈N | − 1

2
EJ0(|N〉 〈N + 1|+ |N + 1〉 〈N |)

]
(4.18)

(4.19)

If we make the two level approximation (i.e. assume that we only care about the lowest two) such
that N = {0, 1}, we can rewrite the Hamiltonian in terms of the familiar Pauli spin matrices,

Ĥ = −1

2
EC(1− 2NG)σ̂z −

1

2
EJ0 σ̂x (4.20)

and solve for energy eigenvalues3

E± = ±1

2

√
E2
C + E2

J0
+ 4NGE2

C(NG − 1) (4.21)

What we see is that the magnetic component of Hamiltonian proportional to EJ creates energy
gaps at degeneracy points! Gap size between ground and first excited state is EJ , and this
energy decreases with each level. This, of course, is anharmonic and allows for precise control
of transitions! More importantly, EC is a function of the voltage, while Ej is a function of the
flux. These correspond to effective magnetic fields in the z-direction and x-direction respectively.
Therefore, we have effectively created a tunable atom!

4.3.1 Tuning Junction

The relevant tuning parameters in the Hamiltonian are the charging energy EC , the number of
gate charges NG and the Josephson energy EJ . EC is inversely proportional to net capacitance on
island, so we could add more capacitors to change capacitance. Since NG is proportional to the
externally applied voltage, tuning the voltage changes NG. While the Josephson energy EJ can
be manufactured to specification (e.g. surface area and thickness of Josephson substrate). Finally,
the phase difference depends on magnetic flux through junction; two junctions in parallel change
dependence of cosine term in EJ according to magnetic flux through loop of junctions.

4.3.2 Manipulation

The next question is, how driving force will affect qubit? If we tune the frequency of the driving
oscillator near the transition frequency of system, we would expect system to transition from ground
state to first excited state (corresponding to an X-gate)

Using the rotating wave approximation (see Appendix), we can derive the following Hamiltonian
that relates the driving frequency and the driving phase to the Pauli spin matrices

Ĥrot =
1

2
(ωq − ωd)σ̂z +

1

2
Ā(cosφσ̂x + sinφσ̂y) (4.22)

3Note that the above Hamiltonian differs slightly depending on particular circuit
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The long and short of it is that the frequency of the driving voltage controls z-axis rotations, and
the phase of the driving voltage controls x and y-axis rotations!

4.3.3 Qubit-Qubit Coupling and Quantum Non-Demolition (QND) Read-
out

The final piece to the superconducting qubit schematic is qubit measurement. This is done by
coupling the qubit to a resonator and measuring the effective resonant frequency. The mathematics
is somewhat involved and draws from the well researched field of cavity quantum electrodynamics
(cavity QED). The goal is to convert the Hamiltonian of the resonator qubit system into the form
of the Jaynes-Cummings Hamiltonian, which is a template Hamiltonian used in qavity QED. The
Jaynes-Cummings Hamiltonian looks like

ĤJaynes−Cummings = h̄ω

(
â†â+

1

2

)
+

1

2
h̄ωσ̂z +

1

2
h̄g

(
âσ̂+ + â†σ̂−

)
(4.23)

where ωc is the frequency of the mode of oscillation of the radiation in the cavity, ωa is the transition
frequency of the atom trapped in the cavity, g is the coupling factor, and σ̂± are the raising and
lowering operators of the atom. If we ignore the high frequencies (since contributions to evolution of
the system are too fast for consideration), we can rewrite original Hamiltonian into Jaynes-Cummings
form

Ĥ = h̄ωr

(
â†â+

1

2

)
+

1

2
EJ σ̂z +

1

2
h̄g

(
âσ̂+ + â†σ̂−

)
(4.24)

with

g = EC
CG
2e

√
h̄ωr
2C

(4.25)

where CG is the capacitance of the capacitor in the qubit, and C is the capacitance of the capacitor
in the LC resonator circuit. Coupling between resonator and qubit take energy from resonator and
give to qubit (ασ+) or vice versa.

In order to actually measure the qubit, we detune the resonant frequency of the resonator and the
qubit so that when a signal is sent to qubit through the resonator, the resonator is hardly perturbed.
We simplify the Hamiltonian further (since it is weakly coupled) and fin that the effective frequency
of the resonator ωr when coupled to the qubit, is dependent on the state of the qubit. Once
the resonator and qubit are detuned (dispersive regime), we can measure ωr to determine state
of qubit without disturbing qubit (i.e. Quantum Non Demolition). It is then possible to perform
basic spectroscopy on resonator, and hence measure the system. We mention here that qubit-qubit
coupling differs between various physical implementations, but are usually similar to the methods
described above. See the Girvin chapter [16] or the review article by Devoret et al. [17] for more
details.



Chapter 5

The Physics of Decoherence

Decoherence is the loss of coherence or ordering of the phase angles between the components of a
system in a quantum superposition due to energy dissipation and/or pure dephasing. This represents
one of the most difficult and unique challenges to quantum computing, as the entire theory requires
that coherence times are better than particular fault tolerant thresholds. Fortunately, decoherence
theory allows us to understand which parameters are important for improving coherence times, and
it does not seem like there are any theoretical principles that limit coherence times below the fault
tolerant thresholds.

In this chapter, the theory is developed carefully, first with toy models and then with the canonical
spin-boson model and spin bath model. We also emphasize how coherence times might be improved
from a mathematical perspective.

Density matrices and reduced density matrices play an important role in decoherence theory. This
is because, when entanglement occurs (say, between the system of interest and the environment), we
cannot describe the entangled system in terms of a single quantum state vector (see section 2.1.6).
However, the measurement statistics of such entangled systems can be elegantly described with
reduced density matrices. The following exposition on density matrices and decoherence models
roughly follows Schlosshauer, Chapters 2-5 [37]. Maximilian Schlosshauer’s Decoherence and the
Quantum to Classical Transition is an extremely well written book that covers the above topics
in much more depth. Roland Omnes’ well known book The Interpretation of Quantum Mechanics
[36] is also a good introduction to the general subject of decoherence and the role it plays in the
interpretation of quantum mechanics. Finally, Joos Zeh and others wrote a well regarded (and more
advanced) volume on the subject called Decoherence and the Appearance of a Classical World in
Quantum Theory [27].

5.1 Density Matrices

We begin with a density matrix of a pure state (i.e. unentangled). We can define the density
operator ρ̂ corresponding to a pure state |ψ〉 as ρ̂ ≡ |ψ〉 〈ψ|, which is the projection operator onto
the state |ψ〉. If we reexpress |ψ〉 as a superposition of basis states |φi〉 such that |ψ〉 =

∑
i ci |φi〉

with a corresponding density operator

ρ̂ = |ψ〉 〈ψ| =
∑
ij

cic
∗
j |φi〉 〈φj | (5.1)

38
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This can be written in matrix form, and is called the density matrix

ρij = cic
∗
j 〈φi|ψ〉〈ψ|φj〉 = cic

∗
j 〈φi|ρ̂|φj〉 (5.2)

ρ =


c1c
∗
1〈φ1|ρ̂|φ1〉 c1c

∗
2〈φ1|ρ̂|φ2〉 . . .

c2c
∗
1〈φ2|ρ̂|φ1〉 c2c

∗
2〈φ2|ρ̂|φ2〉

...
. . .

 (5.3)

While the i = j terms are called the diagonal terms, the i 6= j terms are called the off-diagonal
terms, or interference terms. These interference terms are the embodiment of coherent superposition
discussed in section 2.1.2. It is important to keep in mind, however, that these interference terms
should always be understood in terms of a particular basis (in this case {|φi〉}. A basis in which the
density matrix becomes diagonal always exists, and there will be no interference in this basis. As
Schlosshauer emphasizes, we should not assume that a diagonal density matrix implies a system that
“does not have quantum properties” or “behaves classically.”1 Note that the two ways of describing
the system (either as a pure state |ψ〉 or as a pure state density operator ρ̂ = |ψ〉 〈ψ|) are entirely
equivalent formally and physically.

The density matrix formalism turns out to be much more useful when dealing with mixed states,
or statistical ensembles of several pure states. In such scenarios, insufficient information is known
about the system - it is in a pure state, but the observer does not know which pure state. We can
therefore ascribe probabilities pi to each of the pure states |ψi〉. The density matrix is the quantum-
mechanical analogue to a phase-space probability measure (probability distribution of position and
momentum) in classical statistical mechanics. The mixed state itself represents a classical ensemble,
where the origin of the probabilities is purely classical. Supposing that a quantum system may be
found in state |ψ1〉 with probability p1, or in state |ψ2〉 with probability p2, and so on, the density
operator for this system is

ρ̂ =
∑
i

pi|ψi〉〈ψi| (5.4)

where {|ψi〉} need not be orthogonal and
∑
i pi = 1. By choosing an orthonormal basis {|um〉}, one

may resolve the density operator into a density matrix or density operator:

ρmn =
∑
i

pi〈um|ψi〉〈ψi|un〉 = 〈um|ρ̂|un〉, ρ̂ =
∑
mn

|um〉ρmn〈un| (5.5)

For an operator Ô, which describes an observable O of the system, the expectation value 〈Ô〉 is
given by

〈Ô〉 =
∑
i

pi〈ψi|Ô|ψi〉 =
∑
i

pi 〈ψi|un〉 〈un| Ô |um〉 〈um|ψi〉 (5.6)

=
∑
mn

〈um|ρ̂|un〉〈un|Ô|um〉 =
∑
mn

ρmnOnm = Tr(ρ̂Ô) (5.7)

where the trace operation Tr acting on an operator Ô in the basis {|ψi〉} is defined as Tr(Ô) ≡∑
i 〈ψi| Ô |ψi〉 (i.e. the sum of the diagonal elements). In other words, the expectation value of Ô for

the mixed state is the sum of the expectation values of Ô for each of the pure states |ψi〉 weighted
by the probabilities pi and can be computed as the trace of the product of the density matrix with

1Schlosshauer, p. 35 [37].
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the matrix representation of Ô in the same basis. We also note here that for an entangled system,
the density operator ρ̂ of the composite system cannot be written as the tensor product of the two
subsystems ρ̂1 ⊗ ρ̂2.

Now the real motivation to introduce this formalism is to use reduced density matrices to
describe the dynamics of an open quantum system - a system where the environment is significantly
influencing the quantum system of interest. If a quantum system has two or more subsystems that
are entangled, then each subsystem must be treated as a mixed state even if the complete system is
in a pure state. The basic example is for a quantum system A entangled with a quantum system B.
The combined quantum system AB may be pure, but we can only access (i.e. perform measurements
on) one of the systems, A. The most appropriate way to express all the information available to the
observer of system A is with the reduced density matrix

ρ̂A ≡ TrBρ̂ (5.8)

where TrB is the trace performed using the orthonormal basis of the Hilbert space HB of system B,
or the partial trace. We can interpret this as averaging over the observed degrees of freedom of the
unobservable system B. Importantly, this definition seems to hint that the system B plays some role
in the dynamics of AB, and that this is part of the outcome of A when system A is observed.

In order to derive this reduced density matrix, consider an entangled state of systems A and B

|Ψ〉 =
1√
2

(|a1〉 |b1〉+ |a2〉 |b2〉) (5.9)

where |ai〉 , |bi〉 are arbitrary normalized but not necessarily orthogonal states of A and B. The pure
state density matrix (i.e. of the total system AB, which is pure) is:

ρ̂ = |Ψ〉 〈Ψ| = 1

2

2∑
ij=1

|ai〉 〈aj | ⊗ |bi〉 〈bj | (5.10)

This bipartite density matrix isn’t particularly insightful.2 We want to calculate expectation values
for A-observables, which we call Ô = ÔA ⊗ ÎBwith {|ψk〉} and {|φl〉} as orthonormal bases of the
Hilbert spaces HA and HB of A and B. Since the expectation value 〈Ô〉 of any observable can be
computed using the trace rule (5.6), we can write

〈Ô〉 = Tr(ρ̂Ô) =
∑
kl

〈φl| 〈ψk| ρ̂
(
ÔA ⊗ ÎB

)
|ψk〉 |φk〉 (5.11)

=
∑
k

〈ψk|
(∑
l=1

〈φl| ρ̂ |φl〉
)
ÔA |ψk〉 (5.12)

=
∑
k

〈ψk| (TrBρ̂)ÔA |ψk〉 (5.13)

= TrA

(
(TrBρ̂)ÔA

)
= TrA

(
ρ̂AÔA

)
(5.14)

2This can be expressed as 1
2

(
|a1〉 〈a1| ⊗ |b1〉 〈b1|+ |a2〉 〈a1| ⊗ |b2〉 〈b1|+ |a1〉 〈a2| ⊗ |b1〉 〈b2|+ |a2〉 〈a2| ⊗ |b2〉 〈b2|

)
or alternatively as 1

2

(
|a1b1〉 〈a1b1|+ |a2b2〉 〈a1b1|+ |a1b1〉 〈a2b2|+ |a2b2〉 〈b2b2|

)
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For the bipartite state, the reduced density operator is

ρ̂A =
1

2

2∑
ij=1

|ai〉 〈aj | 〈bj |bi〉 (5.15)

=
1

2
|a1〉 〈a1|+

1

2
|a2〉 〈a2|+

1

2

(
|a1〉 〈a2| 〈b2|b1〉+ |a2〉 〈a1| 〈b1|b2〉

)
(5.16)

Where the two terms in the brackets are the off diagonal interference terms. It is clear that the
influence of system B is interconnected with with off diagonal A terms. And here is the key - if
the states |b1〉 and |b2〉 are orthogonal, then the off diagonal terms - and hence any indication of
interference - vanish. This will become more evident in the next example.

Also note that this result can be generalized for entanglement between N subsystems:

ρ̂i = Tr1,...,i−1,i+1,...,N (ρ̂), and 〈Ô〉 = Tr(ρ̂Ô) = Tri(ρ̂iÔi) (5.17)

The insight here is that by tracing over all or a fraction of the degrees of freedom of the environment,
we can obtain a complete and exhaustive description of the measurement statistics for the system of
interest.

5.2 Simple Model for Decoherence

As an instructive example to build on the above result, let us consider a two-qubit system where
the second qubit is “environmental noise” B. The interaction Hamiltonian between two, two-level
systems is described by the Heisenberg Hamiltonian equation 2.12 (with h̄ = 1)

Ĥ =
J

4
σ̂(A)
z ⊗ σ̂(B)

z (5.18)

where J is simply a coupling constant. Starting with the product state |Ψ(t0)〉 = |+〉A⊗|+〉B = |++〉,
we let the system unitarily evolve with operator Û(t) = e−iĤt (equation 2.2) and then perform the
trace operation on the B-qubit to understand how the A-qubit evolved (and how it was influenced
by the B-qubit). We can write the density operator ρ̂A

ρ̂A = |+〉A 〈+|A =
1

2
(|0〉 〈0|+ |1〉 〈1|+ |0〉 〈1|+ |1〉 〈0|) (5.19)

and the density matrix as

ρA =
1

2

(
1 1
1 1

)
(5.20)

at time t we have

|Ψ(t)〉 = U(t) |+〉A |+〉B = e−iJtσ̂Aσ̂B/2 |+〉 |+〉 (5.21)

(5.22)

The state of the A-qubit at time t is given by

ρ1(t) = Tr(|Ψ(t)〉 〈Ψ(t)|) =
1

2

(
1 cos(Jt/2)

cos(Jt/2) 1

)
(5.23)
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The algebra for equation 5.23 is a bit cumbersome3. It is evident that while the diagonal elements
are constant, the off-diagonal elements change with time. This means that the coherence is periodi-
cally completely lost and then completely regained (albeit with sign changes) at intervals of π/J . The
coherence is regained when The real consequences of this changing coherence are highlighted in the
next example.

In 1982, Wojciech Zurek created one of the first basic models to illustrate basic features of
environment induced decoherence [43]. The model consists of a two level quantum system S linearly
coupled to an environment E that is comprised of N other quantum two level systems (this is a
generalization of the above toy model). Although it is overly simplified for most purposes, it can be
applied to certain real, physical systems.4 Two basis states of S are |0〉 and |1〉 while the basis states
of the N two level systems of environment E are |↑〉i , |↓〉i where i = 1, 2, ...N . The total system-
environment combination is a 2N+1 dimensional tensor product Hilbert space H = HS ⊗ HE1...N .
Assuming that the interaction Hamiltonian Ĥint dominates the evolution (i.e. ignoring intrinsic
dynamics of each system), we have

Ĥ =
1

2
σ̂z ⊗

(
g1σ̂

(1)
z ⊗ Î2,3,...N + g2σ̂

(2)
z ⊗ Î1,3,...N + ...

)
(5.24)

=
1

2
σ̂z ⊗

( N∑
i=1

giσ̂
(i)
z

⊗
i′ 6=i

Îi′

)
(5.25)

=
1

2
σ̂z ⊗ Ê (5.26)

Each element in the environment couples to the central system S, but they do not couple with
each other (the identity is only necessary when i′ 6= i, and is implicit in Ê). The qubit couples
linearly through z-spin component to each of the environmental spins, where gifor i = 1, 2, ...N is
the coupling strength, while the Hamiltonian is in diagonal form. Since the Hamiltonian commutes,
it is a conserved quantity and no energy is exchanged and therefore no dissipation needs to occur.
We can describe the energy eigenstates of the environment part Ê of the Hamiltonian as |n〉 =
|↑〉1 |↓〉2 ... |↑〉N , and associate energy εn with each eigenstate |n〉

εn =

N∑
i=1

(−1)nigi (5.27)

where we define ni = 1 if ith environmental spin is in the down state |↓〉 and ni = 0 if ith environ-
mental spin is in the up state |↑〉 any arbitrary pure state of SE can be represented as:

|Ψ〉 =

2N−1∑
n=0

(cn |0〉 |n〉+ dn |1〉 |n〉) (5.28)

3We can notice that the eigenvectors of the 4×4 matrix σ̂z⊗σ̂z are |00〉 , |11〉 , |01〉 , |10〉 with eigenvalues 1, 1,−1,−1

respectively. Remembering that the function of an operator can be expressed as f(Â) =
∑
i f(λi) |ai〉 〈ai|, where λi

is an eigenvalue and |ai〉 is an eigenvector, we can write

e−iJtσ̂z σ̂z/2 |+〉 |+〉 =
[
e−iJt/2(|00〉 〈00|+ |11〉 〈11|) + eiJt/2(|01〉 〈10|+ |10〉 〈01|)

]
|++〉 etc.

4Schlosshauer p. 90 [37]
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Assuming that S and E are uncorrelated at t = 0,

|Ψ〉 = (a |0〉+ b |1〉)
2N−1∑
n=0

cn |n〉 (5.29)

As above, the time evolution of the total system SE can be expressed as

|Ψ(t)〉 = e−iĤt |Ψ(0)〉 = a |0〉 |E0(t)〉+ b |1〉 |E1(t)〉 (5.30)

|E0(t)〉 =

2N−1∑
n=0

cne
−iεnt/2 |n〉 (5.31)

Already we can see that the basis states |0〉 , |1〉 of S are correlated with the relative states |E0(t)〉 , |E1(t)〉
of the environment E . The smaller the overlap between 〈E1(t)|E0(t)〉 , the more information is en-
coded in the environment that distinguishes between states |0〉 and |1〉. 〈E1(t)|E0(t)〉 is interpreted
as the decoherence factor r(t), given by

r(t) ≡ 〈E1(t)|E0(t)〉 ≡
2N−1∑
n=0

|cn|2e−iεnt (5.32)

Taking the trace in the {|0〉 , |1〉} basis

ρ̂S(t) = TrE ρ̂(t) ≡ TrE |Ψ(t)〉 〈Ψ(t)| (5.33)

= |a|2 |0〉 〈0|+ |b|2 |1〉 〈1|+ ab∗r(t) |0〉 〈1|+ a∗br∗(t) |1〉 〈0| (5.34)

Finally, we see that if r(t) −→ 0, the interference terms disappear. Hence r(t) describes local
damping of interferences between |0〉 and |1〉.

But how does r(t) change overtime, and how is it affected by the number of spins N in the
environment? Cucchietti, Paz and Zurek [14] were able to show that:

1. The degree of suppression of coherence scales exponentially with size N of the environment

2. For sufficiently large N , r(t) follows an approximately Gaussian decay with time r(t) ≈ e−Γ2t2 ,
where Γ2 is a decay constant determined by the initial state of the environment and the
distribution of couplings gi

3. As long as the number of degrees of freedom of the environment E is finite, there exists a
characteristic recurrence time for which the decoherence factor will return to it’s initial value
of one (this is because equation 5.32 is a sum of periodic functions, which is in turn periodic).
In physically relevant situations, the characteristic recurrence time is extremely long (and can
even exceed the lifetime of the universe). Thus even with this simple model, loss of coherence
is for all practical purposes irreversible.

4. There are a few unique states/boundary conditions: for example, if the each element in the
environment system was initially in the 1√

2
(|↑〉 + |↓〉), then r(t) would be cosN (gt), which is

periodic with frequency g/2π. However these do not usually apply in physical situations.

This particular model highlights a few important points. Most importantly, we see that including
“the environment” in a model can essentially explain the quantum to classical transition. Why
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don’t we see coherence at the macroscopic level? Because coherence is suppressed by environmental
interactions. In addition, the interactions in this particular model were energy conserving - so
despite the fact that there was no energy exchanged/dissipated, decoherence did occur. The fact that
decoherence can occur without energy dissipation makes it very clear that decoherence is a uniquely
quantum phenomenon. In the more “realistic” models we will see soon, of course, decoherence
usually does include dissipation.

5.3 Scattering Models

The next well known type of models are the scattering induced decoherence models. Although
the derivations are too lengthy for this context, a few comments are in order. Many of the ideas
of open quantum systems and environmentally induced decoherence were developed in the 1970s
and 1980s. It is now understood that any interaction between a massive object and a particle
may lead to entanglement and hence decoherence. The larger the object, the larger the scattering
cross section, the faster the decoherence. Interestingly, scattering induced decoherence resolves
Schrodinger’s historical problem of describing particles as spatially extended waves. It is generally
taught in introductory physics courses that a free particle described by a locally spatialized wave
packet spreads out on very short timescales. For example, if we describe a free particle with the mass
of an electron (m ≈ 10−30 kg) as a gaussian wave packet with an initial width of 1 angstrom, unitary
time evolution spreads the wave packet to a width on the order of 1,000 km!5 The seminal paper by
E. Joos and H.D. Zeh in 1985 [26] showed for the first time that ubiquitous scattering of photons,
air molecules and other environmental particles effectively suppresses the coherent spreading of free
particles on extremely short timescales. For more detail, see Omnes Chapter 7 [36] and Schlosshauer
Chapter 3.1 [37]. Ample references to original papers can be found there as well.

5.4 Canonical Decoherence Models

The beauty of decoherence theory is that it allows us to map complex systems onto canonical models.
There are four main canonical models for open quantum systems, which are made up of two kinds
of central systems and two kinds of environment systems:

• Central system S: The central system of interest is either modeled as (1) particles with
continuous coordinates x̂ and p̂ (e.g. photons) or (2) as discrete, two level systems (TLS) (e.g.
spin-1/2 particles)

• Environment E: The interacting environment can either be modeled as (1) a collection of
continuous harmonic oscillators, or as (2) a collection of discrete two level systems

The spin-boson model is a canonical model of a two level system coupled to an environment of
harmonic oscillators. Generally, the model is solved with an arbitrary choice of parameters, and then
“fit” to physically relevant situations by filling in parameters. Often times the same canonical model
will be unique in different regimes. The purpose of these next two sections is to provide an overview
of the two canonical decoherence models used for superconducting qubit theory and experiment.

Often times the two level central system is can be modeled as a particle confined to a double
well potential - two energy minimums (excited and ground states) separated by a barrier. Hence
the Hamiltonian can consist of a simple excitation/relaxation term, as well as a tunneling term.6 It

5A free particle ψ(x, t = 0) = (
√
πσ)−1/2e−x

2/2σ2
has probability density |ψ(x, t)|2 = (1/

√
πσ(t))e−x

2/σ2(t). The
width of the wavepacket grows as σ(t) = σ[1 + h̄2t2/(m2σ4)]1/2 See Schlosshauer, p.119[37]

6The Hamiltonian of a tunneling term is Ĥ = −1/2∆0σx, which is simple a flip operator |e〉 → |g〉 or |g〉 → |e〉
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is clear that qubits can be modeled as two level systems (TLS), and this is the most appropriate
central system S. We’ve thus narrowed down the canonical models to the spin-boson model (with
oscillator environments) and the spin-bath model (with spin environments). When do each of these
models apply?

Oscillator environments are essentially a quasicontinuum of delocalized bosonic field modes.
When decoherence occurs due to oscillator environments, energy and coherence are effectively irre-
versibly lost into the extended bosonic environment.7 Spin environments, on the other hand, are
particularly useful for modeling low temperature, superconducting experiments. This regime is dom-
inated by local modes, such as paramagnetic spins, electronic impurities, tunneling charges, defects,
nuclear spins, etc. Decoherence caused by these modes are confined to small regions in space. As we
shall see with superconducting qubits, even small improvements in the number of material defects
can greatly improve coherence times.

The subfields of decoherence and open quantum systems have an extensive toolbox of rigorous
mathematical objects (e.g. Schmidt decomposition, Wigner representation, Operator-Sum formal-
ism, Master equations, Born Markov approximations, Lindbald form, Langevin equations). How-
ever, simple versions of the spin-boson model and the spin-bath model can be analyzed without this
mathematical heavylifting.8

5.5 Spin-Boson Model

For the purposes of this discussion, we will consider a simplified version of the model in which the
Hamiltonian of the spin system does not contain a tunneling term. Despite the fact that it is a
simplified version, it still displays many of the characteristic features of decoherence.9

5.5.1 Set up

We begin with a Hamiltonian of the form

Ĥ = ĤS + ĤE + Ĥint (5.35)

The first term is the Hamiltonian of the central system S, defined as ĤS = 1
2ω0σ̂z. ω0 is the

difference in energy between the basis states |0〉 and |1〉. Note that in the more extensive model, the
tunneling term would be included in ĤS as well.

7Feynman and Vernon actually showed that the interaction with any environment can be linearly mapped onto a
system coupled to a an oscillator environment assuming that the interaction is weak and second-order perturbation
theory can be applied [20].

8Schlosshauer, again, does a fantastic job motivating and explaining much of this mathematical framework in [37]
9Some interesting examples of physical models that make this simplifying assumption:

1. Unruh, William G. “Maintaining coherence in quantum computers.” Physical Review A 51.2 (1995): 992.

2. Palma, G. Massimo, Kalle-Antti Suominen, and Artur K. Ekert. “Quantum computers and dissipation.”
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 452.
No. 1946. The Royal Society, 1996.

3. Duan, Lu-Ming, and Guang-Can Guo. “Reducing decoherence in quantum-computer memory with all quantum
bits coupling to the same environment.” Physical Review A 57.2 (1998): 737.

4. Reina, John H., Luis Quiroga, and Neil F. Johnson. “Decoherence of quantum registers.” Physical Review A
65.3 (2002): 032326.
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The second term is the Hamiltonian of the environment of harmonic oscillators, with the familiar

ĤE =
∑
i

(
1

2mi
p̂2
i +

1

2
miω

2
i q̂

2
i

)
(5.36)

where the bosonic mode i of the ith oscillator is defined by its natural frequency ωi, mass mi,
position operator q̂i and momentum operator p̂i.

Finally, the third term describes the linear coupling between the two level system S and the
environment E .

Ĥint = σ̂z ⊗
∑
i

ciq̂i (5.37)

where the σ̂z coordinate is coupled to the position coordinates q̂i of each harmonic oscillator with
coupling strengths ci. It is convenient to write the Hamiltonians in terms of the bosonic annihilatian
and creation operators for each mode.

q̂i =

√
1

2miωi

(
âi + â†i

)
(5.38)

p̂i = −i
√
miωi

2

(
âi − â†i

)
(5.39)

and dropping the vacuum-energy term
∑
i ωi/2 , we can rewrite the full Hamiltonian as

Ĥ =
1

2
ω0σ̂z +

∑
i

ωiâ
†
i âi + σ̂z ⊗

∑
i

(
giâ
†
i + g∗i âi

)
(5.40)

As in the in simple spin model above (equation 5.24), the property
[
Ĥ, σ̂z

]
= 0 indicates that

there is a conserved quantity. In this case, there is no induced transition between the ground and
excited state of the two level system S (which would involve a σ̂x operator), and hence no energy
dissipation (|e〉 → |g〉) or absorption (in the form of excitation |g〉 → |e〉). In addition, the populations
of the two energy levels are conserved quantities. This is therefore a model of decoherence without
dissipation. In circumstances where the timescale for decoherence without dissipation is much shorter
than the timescale for energy relaxation, the above model suffices. Clearly the more complete model
with the tunneling term allows for energy dissipation as well.

5.5.2 Solution

The strategy is to obtain a relatively workable expression for the time evolution operator. Unfortu-
nately this involves more math than can appropriately fit here (the basic approach is to switch to the
interaction picture, write the time evolution operator Û(t) as a time ordered product of operators,
expand in terms of a Dyson series and then express Û(t) in terms of a non time ordered evolution
operator V̂ (t)).

Making the usual assumption thatS and E are uncorrelated at time t = 0, we obtain the time
evolution:
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|Ψ(t)〉 = V̂ (t) |Ψ(0)〉 = V̂ (t)(a |0〉+ b |1〉) |ΦE〉 (5.41)

= a |0〉
∏
i

D̂(λi(t)/2) |ΦE〉+ b |1〉
∏
i

D̂(−λi(t)/2) |ΦE〉 (5.42)

≡ a |0〉 |E+(t)〉+ b |1〉 |E−(t)〉 (5.43)

where D̂(λi(t)) is an operator that generates the evolution of the i-th environmental oscillator. Un-
surprisingly, the form of the |Ψ(t)〉 is similar to that obtained in the simple spin-spin model in
section 5.2, equation 5.30. In both cases, the states |0〉 , |1〉 of the central system S and the states
|E+(t)〉 , |E−(t)〉 environment E are clearly and elegantly correlated. The specific forms of the states
|E+(t)〉 , |E−(t)〉 of course depend on the initial state of the environment.

Environment in ground state: The first scenario to look at is the initial state of E in the
energy ground state |ΦE〉 =

∏
i |E0〉i where i runs over all the environmental oscillators. This

can be likened to a measurement like process - the state of the environment |ΦE〉 gets shifted into
the states |E+(t)〉 , |E−(t)〉. And if the environment is sufficiently macroscopic, they are capable of
discriminating between the states |0〉 and |1〉. The coherence will be lost from the system, and the
off-diagonal elements in the reduced density matrix of the system (expressed in the basis {|0〉 , |1〉})
will disappear.

It can be shown that the decoherence factor is given by

r(t) = 〈E−(t)|E+(t)〉 = exp
(
−
∑
i

4
|gi|2

ω2
i

(1− cosωit)
)
≈ exp

(
−
∑
i

2|gi|2t2
)

(5.44)

where the final approximation is for t much smaller than dynamical timescales ω−1
i of the modes

(i.e. ωit� 1, so the cosine can be approximated to cos(ωit) ≈ 1− 1
2ω

2
i t

2). This final approximation
gives a gaussian decay of coherence between the states |0〉 and |1〉.

Environment in thermal equilibrium: This is the more general case, where the environmen-
tal oscillator is in a thermal state.

If the environment is sufficiently large, we can assume a continuous density of environmental
modes.

We can then analyze the decoherence factor in terms of a sum over the discrete couplings gi
to a continuous description by means of the spectral density J(ω).10 The typical approach is to
consider spectral density that is ohmic for sufficiently small frequencies J(ω) ∝ ω that has a smooth
high-frequency cutoff quantified by Λ. Integrating over ω, we get a result that can be separated into
temperature dependent and temperature independent terms

Γ(t) = Γfluc(t) + Γtherm(t) (5.45)

where Γfluc(t) = − 1
2 ln(1 + Λ2t2) and Γtherm(t) ≈ − ln(sinh(πkBTt)/πkBTt). Note that Γfluc is

independent of the temperature, but sensitive to the cutoff frequency, while Γtherm is dependent on

10This replaces the discrete sum in the modes for J(ω) with an (often phenomenologically motivated) continuous
function of the environmental frequencies ω. Usually, the frequency dependence of J(ω) is taken to follow a power-
law dependence of the form J(ω) ∝ ωα. The most common choice for the exponent α is α = 1, such that J(ω)
increases linearly with ω. This type of spectral density is called ohmic (the nomenclature has its origin in an analysis
of dissipative effects in the spin boson model). Other, less important examples include subohmic spectral densities
characterized by α < 1 and supraohmic spectral densities for which α > 1. Schlosshauer p. 188 [37]
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the temperature, and independent of Λ. It can be shown that at short and extremely short time
regimes, decoherence is entirely due to quantum vacuum fluctuations. It can also be shown that for
long-time regimes (much larger than the typical thermal fluctuation time), the decoherence factor
r(t) decays exponentially on a timescale set by the thermal correlation time (kBT )1. It is clear from
this very general model that coherence times can be improved by decreasing temperature, an obvious
but important result. Schlosshauer has an extensive derivation of the above results in Chapter 5 of
[37].

5.5.3 Full Spin-Boson Model

Shnirman, Makhlin and Schon review the full spin boson model and apply it to superconducting
charge qubits in their 2002 paper Noise and Decoherence in Quantum Two-Level Systems [38], and
also summarize what is known about relaxation and dephasing processes for spin-boson models with
linear coupling. The key difference from the previous model is the addition of the tunneling term
∝ σ̂x that makes the dynamics much more rich. Again, the motivating question is: how do we get
from a model to an estimation of decoherence time?

With this model, there is a dephasing timescale τφ as well as a relaxation timescale τrelax that
characterizes how the diagonal entries tend to their thermal equilibrium. The decoherence rates
using the Bloch-Redfield approximation are

Γrelax ≡ τ−1
relax =

1

h̄2 sin2 θSX(ω = ∆E/h̄) (5.46)

Γφ ≡ τ−1
φ =

1

2
Γrelax +

1

h̄2 cos2 θSX(ω = 0) (5.47)

The “pure” dephasing rate Γ∗φ is defined as being ∝ cos2 θ and is entirely non-dissipative and
has no classical analogue. This leads to the often quoted relation

Γφ =
1

2
Γrelax + Γ∗φ (5.48)

which is sometimes also stated as

1

T2
=

1

2T1
− 1

Tφ
(5.49)

In environment dominated regime, ∆E � αkBT , the coupling to the bath is dominant part of
Hamiltonian, and dephasing Γφ is much faster than relaxation Γrelax.

5.6 Spin-Bath Model

The spin-bath model, or spin-spin model, is extremely useful for describing defects in supercon-
ducting states. This is the regime where decoherence correlated with temperature is weak and
decoherence correlated to two-level state local defects are significant. Without going into much de-
tail, the model is similar to the simple spin-bath model we encountered at the beginning of this
chapter except for the inclusion of a tunneling term. Unsurprisingly, this leads to significantly dif-
ferent dynamics compared to the earlier static model. Schlosshauer Section 5.4.1 [37] discusses this
model in detail, and McDermott [33] applies this to superconducting qubits.
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Figure 5.1: “Moore’s Law” for Qubits (T2), [35]

5.7 Decoherence in Superconducting Qubits

Coherence times for superconducting qubits have dramatically improved since the early 2000s -
by 5 orders of magnitude! This was due to a combination of theoretical insights and methodical
experimentation. The nanosecond scale coherence in a Cooper pair by Nakamura in 1999. In
2002 Vion developed the quantronium qubit, a modified charge qubit, with a T2 coherence time of
hundreds of nanoseconds. Schoelkopf and his group at Yale developed the transmon qubit, which
significantly reduced the charge sensitivity of the cooper pair box by adding a shunt interdigitated
capacitor, microsecond range, and the 3D cavity transmon approach developed by Yale has increased
coherence to around 100µs Logic gate fidelity has significantly improved as well [35].

Many of the theoretical insights came from complex applications of the canonical models men-
tioned above of various qubit systems; the experimental insights however came from various fields
such as materials science and electrical engineering. There is also a lot of confusion and disagree-
ment among the leading research groups regarding many of the underlying decoherence mechanisms.
Below we will touch on some examples of theoretical insights.

Megrant and Martinis outline some of the main sources of decoherence in UCSB final report
for the CSQ program: Review of decoherence and materials physics for superconducting qubits [32].
The sources are threefold: Capacitor loss, inductor loss, and radiation loss (gate fidelity is a source
of error but not necessarily decoherence). Dielectric loss in the capacitor can have many possible
sources; for example, charge fluctuations, quasiparticle tunneling, or phonon radiation. These in
turn are often related to defects introduced in the fabrication materials and processes. Inductor
loss can come from trapped vortices, critical current fluctuations, and flux noise. Qubit decoherence
may also come from dissipation and noise from leads connected to the device. As per the discussion
throughout this chapter, most of these sources can be modeled either as oscillator environments or
as two level system environments.

In the context of superconducting qubits, a two level system (TLS) is a localized low-energy
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excitation predominantly found in noncrystalline dielectric materials. A TLS can be an ion or
electron that can tunnel between two spatial quantum states. It can arise due to defects in the
crystal structure or the presence of polar impurites. TLS have significant impact at low temperatures,
particularly when there are many TLS that form a “decoherence inducing” environment [35].

Unsurprisingly, there is some disagreement about this. Martinis and Megrant claim, for example,
that “The simple TLS model is consistent with all data we have seen in the past 5 years” but note
that“other groups doing transmon research have not reported significant effects from TLS.” [32]

Figure 5.2: Possible Sources of Decoherence in Supercondcuting Qubits

In the 2002 paper Noise and Decoherence in Quantum Two-Level Systems by Alexander Shnir-
man, Yuriy Makhlin and Gerard Schon [38] we see a discussion of noise in charge qubits due to
voltage fluctuations. As we saw earlier in the control Hamiltonian of the charge qubit, δV (t) cou-
ples to σz and δΦ(t) couples to σx. Because these noises are derived from linear circuits, they are
Gaussian and can be modeled by a bath of harmonic oscillators. They are entirely characterized by
their power spectra which in turn depend on impedance Z(ω) and temperature T .

The power spectra for the gate voltage fluctuations in the control circuit would be something
like

SV (ω) = 2Re{Zt(ω)}h̄ω coth

(
h̄ω

2kBT

)
(5.50)

At low frequencies the circuit will behave like a resistor Z(ω) = RV and the results for ohmic
dissipation apply. The dissipation would be characterized by dimensionless parameter

αV =
4RV
RK

(
Cg
Cqb

)2

(5.51)

which depends linearly on strength of voltage fluctuations in environment and coupling to the
qubit (∝ Cg/Cqb). For a typical value of voltage circuit RV ≈ 5Ω and for small effect of fluctuations
Cg � CJ can reach very weak dissipation, which theoretically allows for ≈ 106 coherent single bit
manipulations.
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In the same paper, they begin to discuss stronger sources of noise: background charge fluc-
tuations. They claim that they can be either modeled as two-state quantum system bath, or as
approximate oscillator bath with the appropriate spectrum, but do not discuss much further.

In the 2008 paper Materials Origins of Decoherence in Superconducting Qubits by Robert Mc-
Dermott [33], he states that for defect energies larger than kBT , TLS defects behave like a “spin
bath” in the quantum regime, and that the spin physics gives rise to unusual properties such as
enhanced dielectric loss at low temperature and low microwave drive power. On the other hand,
defects with energies less than kBT produce low-frequency charge and dielectric noise. Hence the
quantum TLS contribute to qubit energy relaxation, while the thermal TLS contribute to dephasing.

Just as resonant a magnetic field can induce transitions in a system of spins immersed in a strong
static magnetic field, resonant electric fields can couple to TLS with an electric dipole moment,
including transitions and dissipation. The loss tangent tan δ of the amorphous dielectric decreases
due to population of the TLS excited state. However, as thermal or external microwave transitions
saturate the TLS, the dielectric becomes transparent to resonant irradiation and the loss decreases

The dielectric loss of TLS can influence the qubit T1time in two ways: (1) lossy dielectrics incor-
porated in the wiring external to the qubit junction contribute a fraction α to the qubit capacitance,
and (2) in the case of a large qubit junction with area 100µm2 the tunnel barrier itself contains
a quasicontinuum of resonant TLS and dissipation from these states can induce qubit relaxation.
Interestingly, at millikelvin temperatures and at low microwave drive powers, the integral quality
factor of the tank is the inverse of the intrinsic loss tangent of the capacitor dielectric Qi = 1/ tan δi.
It is clear that the capacitance shunting the qubit junction should be entirely free of low energy
defect states. While a continuum of TLS in bulk dielectrics can lead to energy relaxation, coupling
of the qubit to discrete TLS in the Josephson barrier can itself lead to the quantum coherent transfer
of energy between the qubit and the TLS, and result in fidelity loss.

McDermott concludes that in order to minimize fidelity loss due to TLS in the qubit tunnel
barrier, it is necessary to reduce the density of resonant TLS. This can done straightforwardly either
by reducing the area of the Josephson junction or by improving the quality of barrier.



Figure 6.1: (a) Optical micrograph of the planar Xmon qubit, formed by the Al superconducting film
(light) and the exposed sapphire substrate (dark). The qubit is capacitively coupled to a quarter
wave readout resonator (top), a quantum bus resonator (right), and an XY control line (left), and
inductively coupled to a Z control line (bottom). The Xmon arm length is L. (b) The inset shows the
shadow evaporated Al junction layer in false color (blue regions). The junction size is 0.300.20µm2.
The capacitor central linewidth is S, and the gap width is W. (c) The electrical circuit of the qubit.
Barends et. al. 2013 [7]

Chapter 6

Recent Progress

Everything until now has been somewhat theoretical. And what a shame it would be if there
was nothing more to state than a slew of theoretical results! Luckily there has been an incredible
amount of progress in the subfield of superconducting qubits. Before concluding, it is worthwhile to
review some of the most exciting experimental developments. After all, the ultimate proof is in the
experiments themselves.

6.1 The Xmon Qubit (UCSB 2013)

In August 2013, Barends, Martinis and others at UCSB published Coherent Josephson Qubit Suitable
for Scalable Quantum Integrated Circuits [7]. In this paper, they built a planar, tunable supercon-
ducting qubit which they dubbed the “xmon.” One of the most impressive results was that they
were able to achieve xmon T1 energy relaxation time of up to 44 µs.

While many groups at the time were embedding “transmon” qubits into 3D superconducting
cavities to minimize defects, with T1 energy relaxation times between 30 and 140 µs, the xmon

52
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was essentially a planar transmon that was much more versatile. Martinis saw it as a balance
of coherence, connectivity and relatively easy manufacturing. What was unique about this qubit
was that it was frequency tunable, meant that they could implement fast two-qubit gates (because
there was not a concern of perturbing nieghboring qubits). They were also able to achieve the
important benchmark of Control-Z in 25 ns. According to the paper, the xmon qubit “provides
key ingredient for implementing a surface code quantum computer.” They also found that energy
relaxation depends on qubit frequency.

In this paper they also investigated dependence of qubit coherence time on capacitor geometry
using six different designs - varying width of central line, gap width, and arm length. They found
that overall energy relaxation time increases with width; the belief is that widening the capacitor
reduced the surface participation of dipole moments residing on surface oxides ad interfaces. They
also noted that lower and upper bounds of T1 increasing with capacitor dimension seem to indicate
that defects reside within the capacitor. Also in the paper, they modeled decoherence mechanism
arising from a sparse bath of weakly coupled (two level) defects.

How does the modular design work? Each arm has different function - a coplanar waveguide
resonator for read out, a quantum bus resonator for coupling/entanglement, XY control for frequency
control and Z control for phase control. Three of the connections are made with coupling capacitor,
and each coupling can be individually tuned and optimized. XY control can excite qubit in 10 ns,
while T1 of XY control is 0.3 ms. Z-control - can rapidly detune on order of 1 ns, while T1 for z-control
is ≈ 30 ms. More arms can be added for connectivity. They also noted that the limit T2 = 2T1

was not reached, indicating additional dephasing. Also note that in the paper Qubit Architecture
with High Coherence and Fast Tunable Coupling [10] Chen, Cleland, Martinis and others were able
to demonstrate that the cross coupling effects between two xmon qubits could be made small for
planar integrated circuits while still allowing for multiqubit operations.

6.2 5-qubit Linear Array (UCSB 2014)

The next truly exciting experiment came in 2014. In the paper Superconducting Quantum Circuits
at the Surface Code Threshold for Fault Tolerance [8] Barends, Korotkov, Cleland, Martinis and
others announced that they had built a 5-qubit linear array using xmon qubits.

In this particular experiment, the UCSB group was able to demonstrate universal set of logic
gates in a multi-qubit processor with single-qubit gate fidelity of 99.92% and two-qubit gate fidelity of
up to 99.4%. This is very good, as it places superconducting qubits at the fault tolerance threshold
for surface code error correction. They were also able to construct a 5-qubit GHZ state. As they
write in the paper: “The results demonstrate that Josephson quantum computing is a high fidelity
technology with a clear path to scaling up to large-scale, fault tolerant quantum circuit.”

Among other technical achievements, the they were able to maintain controlled phase gate nearly
40ns when two qubits were brought near resonance. This was with a dispersive measurement method;
where each qubit is coupled to a readout resonator with a distinct resonance frequency, enabling
simultaneous readout using frequency domain multiplexing through a single coplanar waveguide.
They also measured performance when simultaneously operating nearest-neighbor qubits, and fi-
delities were essentially unchanged (remember qubits are at different idle frequencies to minimize
coupling).

They were also able to implement a two-qubit controlled phase gate by tuning one qubit in fre-
quency along a fast adiabatic trajectory that takes two qubit state |11〉 close to the avoided level
crossing with the state |02〉. This two qubit gate fidelity is comparable to highest rates reported in
other qubit implementations, including NMR (99.5 %) and ion traps (99.3 %). But most impor-
tantly, they verified by simulation that gate fidelities are at the threshold for surface
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Figure 6.2: a, Optical image of the integrated Josephson quantum processor, consisting of alu-
minium (dark) on sapphire (light). The five cross-shaped devices (Q0Q4) are the Xmon variant
of the transmon qubits30, placed in a linear array. To the left of the qubits are five meandering
coplanar waveguide resonators used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the qubits. b, Circuit diagram. Our
architecture uses direct, nearest-neighbour coupling of the qubits (red/orange), made possible by
the nodal connectivity of the Xmon qubit. Using a single readout line, each qubit can be measured
using frequency-domain multiplexing (blue). Individual qubits are driven through capacitively cou-
pled microwave control lines (XY), and frequency control is achieved through inductively coupled
d.c. lines (Z) (violet). c, Schematic representation of an entangling operation using a controlled-
phase gate with unitary representation UCZ; (I) qubits at rest, at distinct frequencies with minimal
interaction; (II) when brought near resonance, the state-dependent frequency shift brings about a
rotation conditional on the qubit states; (III) qubits are returned to their rest frequency [8]

.

code quantum error correction. They estimated that decoherence accounts for 55 % of con-
trol phase gate error, control error accounts for 24 % error, and state leakage accounts for 21 % error.

The 5-qubit GHZ state was largest tomographic measurement of multi-qubit entanglement demon-
strated in solid state, and it too had fidelity similar to ion traps. They conclude by claiming that a
linear extension of the array to larger number of qubits is straightforward, and that implementing a
2D array will be somewhat more challenging (due to a more complicated wiring and readout design)
but also straightforward. Within a year, they delivered on their promise.

6.3 9-qubit Linear Array (UCSB 2015)

The most recent and important experiment by far was reported in March 2015. In the paper State
preservation by repetitive error detection in a superconducting quantum circuit [29] Kelly, Barends,
Cleland, Martinis and others reported that they were able to protect classical states as well as non-
classical GHZ states from environmental bit-flip errors (although not phase flip errors...yet) and
demonstrate the suppression of those errors with increasing system size. They were able to track
errors as they occurred by repeatedly performing projective QND parity measurements. Simplest
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system demonstrating basic elements of surface code is a one-dimensional chain of qubits (a “prim-
itive” of the surface code) which corrects bit flip errors (note - not phase flip errors) on both
data and measurement qubits. They were also able to test first and second order fault tolerance by
concatenation. Note however, that they did not implement the full surface code, and were not able
to correct for phase errors.

Figure 6.3: Repetition code: device and algorithm. a, The repetition code is a one-dimensional (1D)
variant of the surface code, and is able to protect against X (bit-flip) errors. The code is imple-
mented using an alternating pattern of data and measurement qubits. b, Optical micrograph of the
superconducting quantum device, consisting of nine Xmon transmon qubits with individual control
and measurement, with a nearest-neighbour coupling scheme. c, The repetition code algorithm uses
repeated entangling and measurement operations which detect bit-flips, using the parity scheme
on the right. Using the output from the measurement qubits during the repetition code for error
detection, the initial state can be recovered by removing physical errors in software. Measurement
qubits are initialized into the |0〉 state and need no reinitialization as measurement is QND.

6.4 4-qubit 2D Array (IBM 2015)

IBM has also been doing research in superconducting qubits, and in their most recent experiment
they implemented a 4-qubit array of transmons. The paper was Demonstration of a quantum error
detection code using a square lattice of four superconducting qubits (April 2015, Nature Communi-
cations) Corcoles, Gambetta, Chow [13].

While classical bit flip error can be corrected with a linear array, phase flip error requires a 2D
lattice (for the surface code). This protocol detected an arbitrary quantum error on an encoded two-
qubit entangled state via QND parity measurements via error syndrome qubits. IBM stated that this
experiment “Represents building block towards larger lattices amenable to fault-tolerant quantum
error correction architectures such as the surface code,” which is a vision that both Martinis/Google
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Figure 6.4: The optical image shows all components of the device, including the four qubits, Q1Q4,
the four readout resonators R1R4 and the four coupling buses B12, B23, B34 and B41. The readout
resonators also serve as qubit control lines, with single- and two-qubit gates applied at frequencies
ωi with i{1, 2, 3, 4}. Readout is performed at the resonator frequency ωMI . A blowup of one of the
qubits is also shown, depicting the capacitor geometry as well as the coupling lines to the readout
resonator (green coupler) and to the buses (red couplers). The black scale bar represents a length
of 100µm [13].

and IBM seem to share.
The chip was a 2x2 lattice of superconducting transmons, each coupled with nearest neighbors via

two independent superconducting coplanar waveguide resonators serving as quantum buses. While
this is an important step, they acknowledged that their system has not yet reached the fault tolerance
threshold yet.
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6.5 Conclusion

We carefully developed of the quantum circuit formalism of quantum computing, starting with two
level quantum systems and the Pauli spin matrices and building up to the celebrated algorithms
of Shor and Grover. The limitations of these algorithms were also discussed. These theoretical
developments addressed some of the original questions posed by Feynman - among other things,
they established that a computer built from quantum components is, indeed, fundamentally different
from a classical computer.

We then developed the problem of quantum error correction, which stems from the fundamental
physics of quantum systems but can be abstracted to a set of five possible transformations. The
two most important of these are energy relaxation, where the qubit loses energy to the environment
and relaxes from the |1〉 state to the |0〉 state, and dephasing, which changes the relative phase of
a qubit in a superposition. Novel error correction schemes had to be formulated in order to correct
for these possible errors, as classical error correction schemes cannot be implemented on qubits due
to the no cloning theorem. We also briefly touched on the threshold theorems, and the possibility
of efficient quantum computing given a probability of error below a threshold for a particular error
correction scheme. The surface code has the highest (and therefore most approachable) threshold
of the error correction codes, which is why it is considered an important benchmark. Although this
benchmark has not been fully reached, the necessary coherence time for a single qubit in the surface
code has been reached.

Next we explained the framework surrounding the physical implementation of superconducting
qubits, highlighting the unique properties of the Josephson junction and the similarity of Josephson
circuits with classical LC/RLC circuits. In particular, we show that the frequency and phase of the
driving voltage allow for elegant manipulation of the Pauli spin matrices.

Finally, we investigated the phenomenon of decoherence more closely to understand how inter-
action with the environment influences a particular quantum system. We introduced the canonical
spin-boson and spin-spin models, and discussed them in the context of superconducting qubits. In
this discussion we explained how coherence could be improved both by clever circuit design and by
better fabrication techniques. This also explains the five-fold increase in coherence times since 2000.
We finished off the subject with some recent examples of superconducting qubit research.

Martinis and his group at UCSB built qubits above the surface code threshold but have not yet
built a 2D array in order to correct both bit and phase flip errors. IBM has build a 2D array, but
its qubits are below surface code threshold. It seems that:

1. Coherence times are improving and don’t seem to have reached a ceiling

2. Arrays of qubits are extremely well controlled, and do not seem to change behavior when scaled
up

3. Large scale industrial manufacturing of superconducting qubits will not be difficult given cur-
rent fabrication techniques

In the face of all the theoretical results and experimental progress, it is not so hard to believe that
coherence in superconducting qubits might improve just a bit more - at least just enough to make
fault tolerant circuits and fault tolerant computing a reality.
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Figure B.1: Thesis on a napkin


