
FROM FLUID RELAXATIONS TO PRACTICAL ALGORITHMS FOR
HIGH-MULTIPLICITY JOB-SHOP SCHEDULING: THE HOLDING

COST OBJECTIVE

DIMITRIS BERTSIMAS
Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, dbertsim@mit.edu

DAVID GAMARNIK
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, gamarnik@watson.ibm.com

JAY SETHURAMAN
Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027, jay@ieor.columbia.edu

We design an algorithm for the high-multiplicity job-shop scheduling problem with the objective of minimizing the total holding cost by
appropriately rounding an optimal solution to a fluid relaxation in which we replace discrete jobs with the flow of a continuous fluid.
The algorithm solves the fluid relaxation optimally and then aims to keep the schedule in the discrete network close to the schedule given by
the fluid relaxation. If the number of jobs from each type grow linearly with N , then the algorithm is within an additive factor O�N� from
the optimal (which scales as O�N 2�); thus, it is asymptotically optimal. We report computational results on benchmark instances chosen
from the OR library comparing the performance of the proposed algorithm and several commonly used heuristic methods. These results
suggest that for problems of moderate to high multiplicity, the proposed algorithm outperforms these methods, and for very high multiplicity
the overperformance is dramatic. For problems of low to moderate multiplicity, however, the relative errors of the heuristic methods are
comparable to those of the proposed algorithm, and the best of these methods performs better overall than the proposed method.

Received December 1999; revisions received July 2000, September 2001; accepted September 2002.
Subject classifications: Production/scheduling, deterministic: approximation algorithms for deterministic job shops. Queues, optimization:

asymptotically optimal solutions to queueing networks.
Area of review: Manufacturing, Service, and Supply Chain Operations.

1. INTRODUCTION

In this paper, we consider the high-multiplicity job-shop
scheduling problem with the objective of minimizing hold-
ing costs defined as follows. We have a set of I job types on
J machines. Job type i consists of Ji stages (also referred
to as “tasks”), each of which must be completed on a par-
ticular machine. The pair �i� k� represents the kth stage of
the ith job and has processing time pi�k. Suppose that we
have ni jobs of type i. We are given nonnegative weights
wi�k for type i jobs at stage k; our objective is to find a
schedule that minimizes∫ �

t=0

I∑
i=1

Ji∑
k=1

wi�kni� k�t�dt�

where ni�k�t� is the number of type i jobs in stage k at time
t. Note that when wi�k = wi (weight is independent from
the stage k), the contribution of any individual job a of
type i to the objective function is exactly wiDC�a�, where
DC�a� is the completion time of job a at the last stage
Ji. Thus, our objective generalizes a well-studied special
case—minimize the sum of weighted completion times of
all jobs.

In this paper, we consider a fluid relaxation of the
problem, in which we replace discrete jobs with the flow of

a continuous fluid. The idea of creating a feasible schedule
by rounding a solution to a fluid relaxation for the job-
shop scheduling problem, but for the makespan objective,
was first introduced by Bertsimas and Gamarnik (1999)
(see also Dai and Weiss 2002). The algorithm by Bertsimas
and Gamarnik (1999) produces a schedule with makespan
Cmax +O�

√
Cmax�, where Cmax is the lower bound pro-

vided by the fluid relaxation. Bertsimas and Sethuraman
(2002) propose a more dynamic way to round the fluid
relaxation that leads to a schedule with makespan at most
Cmax + �I + 2�PmaxJmax, where I is the number of distinct
job types, Jmax is the maximum number of stages of any
job type, and Pmax is the maximum processing time over
all tasks. In the present paper, we extend the technique of
Bertsimas and Sethuraman (2002) to accomodate the objec-
tive of minimizing holding costs. Computational results on
a class of benchmark instances indicate that the proposed
algorithm is practical, in the sense that it is fast, easy to
implement, and provides good quality solutions for high-
multiplicity job-shop problems.

The motivation for considering the fluid relaxation under
the holding-cost objective, comes from optimal control of
multiclass queueing networks, which are stochastic and
dynamic generalizations of job shops. In recent years
there has been considerable progress in solving the fluid

Operations Research © 2003 INFORMS
Vol. 51, No. 5, September–October 2003, pp. 798–813 798

0030-364X/03/5105-0798
1526-5463 electronic ISSN



Bertsimas, Gamarnik, and Sethuraman / 799

relaxation in multiclass queueing networks. Focusing on
objective functions that minimize holding costs, Avram
et al. (1995) use the Pontryagin maximum principle and
find an optimal solution to the fluid relaxation explic-
itly. However, the description of the optimal fluid solution,
while insightful for the original problem, involves the enu-
meration of an exponential number of cases. Luo and Bert-
simas (1999), building upon the work of Pullan (1993),
use the theory of continuous linear programming to pro-
pose a convergent numerical algorithm for the problem that
is able to efficiently solve problems involving hundreds of
machines and job types; we use this algorithm in solving
the fluid relaxations throughout this work.

Contributions

1. We describe an efficient algorithm called the fluid-
synchronization algorithm under the holding-cost objective
(FSA-HC) to round an optimal fluid solution such that the
resulting schedule is asymptotically optimal; the specific
asymptotics we consider is a sequence of job-shop prob-
lems in which the number of type i jobs initially present
is �iN , with �i nonnegative constants and N → �. We
show that rounding an optimal fluid solution appropriately
results in a schedule that incurs O�N� extra cost compared
to the optimal cost of the fluid job shop. We also show that
the optimal fluid cost is O�N 2�, and the difference between
the optimal fluid cost and the optimal cost of the original
problem is at most O�N�. This implies that the scheduling
algorithm we construct is asymptotically optimal. Specif-
ically, the relative error between the cost of the FSA-HC
ZD�N � and the cost of an optimal schedule ZJS�N � is

ZD�N �−ZJS�N �

ZJS�N �
� O

(
1
N

)
�

2. We report computational results on the performance
of the FSA-HC to a subset of the 82 benchmark problems
in the OR library (http://mscmga.ms.ic.ac.uk/info.html).
We also compare the performance of the proposed algo-
rithm and several commonly used heuristic methods. These
results suggest that for problems of moderate to high multi-
plicity, the proposed algorithm outperforms these methods,
and for very high multiplicity the performance gain is dra-
matic. For problems of low to moderate multiplicity, how-
ever, the relative errors of the heuristic methods are com-
parable to those of the proposed algorithm, and the best
of these methods performs better overall than the proposed
method. Given that (a) it is common manufacturing prac-
tice in job shop environments to solve problems with high
multiplicity, and (b) the algorithm is simple to implement
and fast, the FSA-HC should be considered a candidate for
practical application.

Related Work

The job-shop scheduling problem with the makespan objec-
tive has been widely studied. For a review of this liter-
ature, see Hall (1997), Karger et al. (1997), Hall et al.

(1997), Bertsimas and Sethuraman (2002), and the refer-
ences therein.

In contrast, the job-shop scheduling problem with the
weighted completion time objective has received little
attention in the discrete optimization literature. However,
fluid relaxations with holding-cost objective have been
studied extensively in the queueing literature. We provide
a brief overview of this literature, which will also serve to
place our results in perspective.

Fluid relaxations have been the subject of intensive
research during the last decade. An important breakthrough
was achieved by Dai (1995) and Rybko and Stolyar (1992),
who established that stability of multiclass queueing net-
works is implied by stability of their deterministic fluid
counterparts. Motivated by the success of these ideas in
analyzing stability, there has been a growing literature in
finding near-optimal scheduling policies using fluid relax-
ations. Papers that address this issue include the ones by
Avram et al. (1995), Atkins and Chen (1995), Chen and
Yao (1993), Eng et al. (1996), and Meyn (1997a, b). All
of these papers formulate the fluid relaxation, find a fluid
solution (optimal or otherwise), and then heuristically inter-
pret the fluid solution to derive a discrete policy; except
for Meyn (1997b), none of these papers presents any per-
formance analysis of the derived discrete policy (except in
fairly restricted settings). Meyn (1997b) discusses a policy-
iteration algorithm and demonstrates its (quicker) conver-
gence to optimality when initiated with an optimal fluid
solution. Although this establishes an intimate connection
between the large-state behavior of a multiclass queueing
network and its fluid model, this property does not seem to
be directly usable in designing a good policy.

Maglaras (2000), building on the BIGSTEP approach
of Harrison (1996), proposed a class of policies based on
solving fluid relaxations repeatedly. For any policy in this
class, the nominal length of a review period is computed;
based on the queue lengths at the beginning of each review
period, the length of the nominal review period, and the
planned “safety-stocks” for each class, a fluid-type problem
is solved. A solution to this fluid-type problem is then used
to derive a processing plan for that review period. The next
review of the system is conducted as soon as this process-
ing plan is completed, which could be different from the
next nominal review time instant because of the stochas-
tic nature of the processing times. This is an example of
a “discrete-review” policy. Maglaras (2000) proves the sta-
bility of a fairly broad range of discrete-review policies
and establishes their fluid-scale asymptotic optimality. An
important distinction is that Maglaras considers a steady-
state problem, but proves performance guarantees of a tran-
sient nature. Our work, in contrast, considers a transient
problem to begin with. Thus, when restricted to transient
problems, it may be possible to use results of Maglaras
(2000) to obtain asymptotically optimal schedules. (The
scheme presented in Maglaras 2000 appears to use the fact
that the effective arrival rate of each class is strictly posi-
tive, and so has to be modified suitably to address the job-
shop problem without arrivals.) However, our approach has



800 / Bertsimas, Gamarnik, and Sethuraman

two distinct advantages: First, we provide an explicit rate
of convergence to optimality; second, we solve the fluid
relaxation once, and do not re-solve it at intermediate points
in time.

An interesting recent development is the work of
Queyranne and Sviridenko (1999), in which they consider
approximation algorithms for shop-scheduling problems
with a minimal sum of job completion times objec-
tive. Their main result is the following: If there exists
a polynomial-time algorithm for a class of multipro-
cessor job-shop problems that guarantees a makespan
no larger than � times the trivial lower bound (the
so-called congestion-dilation bound), then they describe
a polynomial-time algorithm for minimizing the weighted
completion time that is within a factor of 8� of the opti-
mum. (Their algorithm works for a generalization in which
release dates are also given.) Their algorithm involves use
of the approximation scheme for the makespan objective.
Note that the polynomial-time approximation schemes for
the makespan objective do not always satisfy the hypothesis
of their statement: The work of Queyranne and Sviridenko
(1999) requires a makespan guarantee that is within a fac-
tor of � of a lower bound, not the optimal makespan itself.
In fact, recent results of Hoogeveen et al. (1998) show
that the job-shop problem with the objective of minimizing
weighted completion time does not have a polynomial-time
approximation scheme unless P = NP .

We conclude our description of related work by outlin-
ing the similarities and differences with the earlier work
of Bertsimas and Sethuraman (2002). In both papers, we
solve a fluid relaxation of the underlying scheduling prob-
lem and use the solution to compute nominal start times for
all the tasks. We can view the nominal start time of a par-
ticular task as its ideal start time. The nominal start times
of the collection of tasks available for processing at a par-
ticular machine determine the task to be processed next;
this is computed using the fluid-synchronization algorithm.
The fluid-synchronization algorithm used here is similar to
the one used in Bertsimas and Sethuraman (2002), which
considers the makespan objective but differs from it in one
crucial aspect: For the makespan objective, scheduling a
job to start earlier than its nominal start time causes no dif-
ficulty, but for the holding-cost objective, it is critical that
no task be scheduled prior to its nominal start time. While
this seems like an innocent change in retrospect, this obser-
vation is crucial in proving Theorem 1, a key ingredient in
the proof of our main theorem (Theorem 6). A second cru-
cial ingredient is dealing with nonintegral queue lengths.
For the makespan objective, the fluid solution is trivial, has
a constant control, and so can be dealt with relatively easily.
For the holding-cost objective, the fluid solution typically
has multiple pieces, with a (different) constant control in
each piece. It is often the case that the values of the queue
lengths at the intermediate points are fractional, which is
allowed in the fluid relaxation but disallowed in our out-
put schedule. Thus, another (technical) difficulty in dealing

with such fluid solutions is that prior to applying a round-
ing heuristic, it is necessary to construct a fluid solution
with integer breakpoints (see §3.3).

In addition to these technical differences, our paper
makes a conceptual contribution. Typically, algorithms that
solve (or approximately solve) makespan objectives, and
algorithms that solve (or approximately solve) weighted
completion-time objectives share very little in common.
Thus, it is rare that an algorithm that addresses the
makespan objective is useful at all (in whatever form)
in solving the weighted completion-time version of the
problem. Our paper provides precisely such an algorithm,
which yields asymptotically optimal schedules for high-
multiplicity job-shop problems.

Structure of the Paper

In §2, we formulate the problem and define our notation.
In §3, we introduce the fluid relaxation. In §4, we describe
an algorithm to discretize an optimal fluid solution for the
holding-cost objective and show that it provides an asymp-
totically optimal schedule. In §5, we present computational
results on a variety of job-shop instances from the OR
library. Section 6 contains some concluding remarks.

2. PROBLEM FORMULATION AND NOTATION

In the job-shop scheduling problem there are J machines
�1��2� � � � ��J which process I different types of jobs. Each
job type is specified by the sequence of machines to be
processed on, and the processing time on each machine. In
particular, jobs of type i� i = 1�2� � � � � I are processed on
machines �i

1��
i
2� � � � ��

i
Ji

in that order, where 1 � Ji � Jmax.
The time to process a type i job on machine �i

k is denoted
by pi�k. Throughout, we assume that pi�k are integers. We
put Pmax = maxi� k pi� k and �max = maxj ��j �.

The jobs of type i that have been processed on machines
�i

1� � � � ��
i
k−1, but not on machine �i

k, are queued at machine
�i
k and are called “type i jobs in stage k” or “class �i� k�”

jobs. We will also think of each machine �j as a collection
of all type and stage pairs that it processes. Namely, for
each j = 1�2� � � � � J ,

�j =
{
�i� k� � �j = �i

k�1 � i � I�1 � k � J
}
�

There are ni jobs for each type i initially present at their
corresponding first stage. Let wi�k be nonnegative integer
holding-cost rates associated with �i� k� jobs. Let ni�k�t�
be the number of �i� k� jobs at machine �i

k at time t. Our
objective is to find a scheduling policy that minimizes∫ �

t=0

I∑
i=1

Ji∑
k=1

wi�kni� k�t�dt�

We impose the following restrictions on the schedule.
1. The schedule must be nonpreemptive. That is, once a

machine begins processing a stage of a job, it must com-
plete that stage before doing anything else.

2. Each machine may work on at most one task at any
given time.



Bertsimas, Gamarnik, and Sethuraman / 801

3. For k > 1, stage k of a job can begin only after the
completion of its �k−1�st stage.

As mentioned earlier, we consider a sequence of job-
shop problems for which the number of initial jobs of type
i is �i ·N . Specifically, the sequence of job-shop problems
we consider is indexed by N , which varies while all other
quantities remain the same. In this paper, we construct a
scheduling algorithm which is asymptotically optimal, as
we let N →� and treat �i as nonnegative constants inde-
pendent of N .

3. THE FLUID JOB-SHOP SCHEDULING
PROBLEM

3.1. Problem Formulation and Properties

In this section, we describe a continuous relaxation of the
job-shop scheduling problem. In a fluid job shop, there are
J machines �1��2� � � � ��J and I job types. Each job type is
specified by the sequence of machines �i

k, k = 1�2� � � � � Ji
on which it has to be processed; the processing time of a
type i job on machine �i

k is a positive real number pi�k.
For convenience, we let �i�k = 1/pi�k; we can think of �i�k

as the rate at which machine �i
k processes �i� k� jobs. We

refer to type i jobs which have been processed on machines
�i

1��
i
2� � � � ��

i
k−1, but not on machine �i

k, as jobs of class
�i� k� or �i� k� jobs. We let xi�k�t� be the number of jobs
of class �i� k� at time t. The number of type i jobs initially
present, xi�1�0�, is also denoted by xi and can take arbitrary
nonnegative values; we assume that xi�k�0�= 0 for k> 1. In
contrast to the discrete problem, the number of �i� k� jobs
at time t can assume arbitrary nonnegative real values; for
that reason, we think of this as the fluid level of class �i� k�
at time t. Let Ti�k�t� be the total amount of time machine
�i
k works on class �i� k� jobs in the interval �0� t�. We first

present all of the constraints:

xi�1�t�= xi−�i�1Ti�1�t�� i = 1�2� � � � � I� t � 0� (1)

xi�k�t�= �i�k−1Ti�k−1�t�−�i�kTi� k�t��

k = 2� � � � � Ji� i = 1�2� � � � � I� t � 0� (2)

0 �
∑

�i� k�∈�j
�Ti� k�t2�−Ti�k�t1��

� t2 − t1� ∀t2 > t1� t1� t2 � 0� j = 1�2� � � � � J � (3)

xi�k�t�� 0� Ti� k�t�� 0� (4)

Constraints (1) and (2) capture the dynamics of the sys-
tem. These equations merely state that the fluid level of
class �i� k� at time t is the initial fluid level plus the amount
of fluid that has arrived from class �i� k− 1� by time t
minus the amount of class �i� k� fluid that has been pro-
cessed by machine �i

k by time t. Constraints (4) reflect
the fact that the fluid level of class �i� k� and the amount
of time allocated by machine �i

k to class �i� k� are non-
negative. Constraint (3) is the capacity constraint for each
machine—the total amount of time devoted to processing
by machine j in an interval �t1� t2� cannot exceed the length

of the interval t2 − t1. Our objective function for the fluid
job shop is∫ �

0

I∑
i=1

Ji∑
k=1

wi�kxi� k�t�dt�

The problem of whether a polynomial-time algorithm
exists for the fluid-control problem is still open. However,
based on several structural properties for this class of prob-
lems (see Anderson and Nash 1987), Luo and Bertsimas
(1999), based on earlier work by Pullan (1993), propose
provably convergent discretization-based methods that are
able to quickly solve large-scale instances in practice. The
algorithm of Luo and Bertsimas (1999) is used in our com-
putational study.

A key property of the fluid job-shop problem that we
shall make use of extensively is stated as Proposition 1; its
proof can be found in Anderson and Nash (1987).

Proposition 1. There exists an optimal solution for the
fluid job-shop scheduling problem such that x�t� is piece-
wise linear with a finite number of pieces.

Note that by Proposition 1 there is always an optimal
fluid solution such that Ti�k�t� is piecewise linear and has
a finite number of pieces. For this solution, we define

ui�k�t�=
dTi�k�t�

dt
� (5)

Because Ti�k�t� is piecewise linear, Equation (5) does not
determine ui�k�t� at the (finitely many) breakpoints; at each
of these breakpoints, we set

ui�k�t�= ui�k�t
+��

Clearly, ui�k�t� can be interpreted as the instantaneous frac-
tion of effort allocated to class �i� k� jobs by machine �i

k

at time t. We shall find it convenient to work with ui�k�t�
instead of Ti�k�t�. The refore, Proposition 1 guarantees the
existence of an optimal fluid solution with piecewise con-
stant control. This property enables us to use repeatedly the
machinery developed in Bertsimas and Sethuraman (2002)
for the makespan objective to obtain asymptotically opti-
mal schedules.

3.2. A Lower Bound

Let ZF�N � denote the cost of an optimal fluid solution
when the number of initial jobs of type i is �i ·N ; simi-
larly, let ZJS�N � denote the cost of the optimal solution to
the corresponding discrete job-shop problem.

We now establish a useful relationship between ZF�N �
and ZJS�N �. Ideally we would like to establish that ZF�N �
is a lower bound on the cost of an optimal job-shop sched-
ule for the discrete network. While we have been unable to
establish this result in general, we can prove the following
theorem.

Theorem 1. (a) ZF�N �= CN 2.
(b) ZJS�N �� ZF�N �−O�N�.

Proof. (a) This follows immediately from the formulation
of the fluid relaxation. More formally, suppose we have a



802 / Bertsimas, Gamarnik, and Sethuraman

solution to the fluid relaxation for N = 1 (i.e., ni =�i). This
solution consists of the “allocation” variables T 1

i� k�t�, with
the corresponding “queue-length” variables x1

i� k�t�. We can
use these to find a solution to the fluid relaxation when
ni = �i ·N as follows. We set

T N
i�k�N · t�= NT 1

i� k�t��

xNi� k�N · t�= Nx1
i� k�t��

(b) To prove this part, we “fluidize” the optimal solution
to the job-shop problem. Consider any feasible schedule
to the discrete job-shop problem. We can “convert” this
schedule into a schedule for the fluid network by processing
the job “continuously.” This is illustrated in Figure 1.

The feasibility of this schedule is immediate from the
feasibility of the schedule for the discrete network. The
extra cost incurred is

I∑
i=1

Ji∑
k=1

pi�k
�wi�k+1 −wi�k�

2
�iN � �

For the special case in which all of the weights for a
particular job type are equal (i.e., wi�k is independent of
k), ZF is indeed a lower bound for ZJS. In the rest of this
paper we drop the “N ” and use ZF and ZJS instead; we
emphasize, however, that both ZF and ZJS depend on N .

3.3. A Suboptimal Fluid Solution with Integral
Queue Lengths at the Breakpoints

Proposition 1 establishes that a fluid optimal solution is
characterized by piecewise-linear controls; i.e., the con-
trol is constant between successive breakpoints. Our over-
all strategy is to construct a near-optimal algorithm to the
job-shop scheduling problem by rounding the optimal fluid
solution. In this section we show that, starting with the
optimal fluid solution, we can construct a piecewise-linear
fluid solution with cost close to the optimal fluid cost and

Figure 1. “Fluidizing” a discrete job-shop schedule.

✻

✲

✻

✲

✻

✲

✲

✻

◗
◗

◗
◗◗

✑
✑

✑
✑✑

T

T

t

t

T

T

xi,k+1(t)

xi,k(t)ni,k(t)

T + pi,k

ni,k+1(t)

T + pi,k T + pi,k

T + pi,k
t

t

0

0

0

0

such that the queue lengths at the breakpoints are integral.
This is a property that is needed in the construction of our
main rounding algorithm.

Lemma 2. Consider a feasible fluid solution that applies
constant controls in the time interval �0�L". At time 0 the
fluid level of class �i� k� is xi�k and at time L it is �yi� k�.
Let c be the average holding cost associated with this solu-
tion during the interval �0�L". For any integer M � Jmax,
we can construct a new feasible fluid solution which applies
constant controls in the time interval �0� 
L", where 
L =
L+2�maxPmaxJmax that has the following properties:
1. The solution starts from the configuration ��xi�1�+M ,

�xi�2�� � � � � �xi� Ji�� and ends in configuration ��yi�1�+M−
Jmax� �yi�2�� � � � � �yi� Ji�� at time 
L.
2. The average holding cost of this solution ĉ during the

time interval �0� 
L" satisfies
ĉ = c+∑

i� k

�xi� k+yi�k��maxPmaxJmax

+2IM�2�maxPmaxJmax +L�� (6)

Proof. Denote by ui�k the service effort that the original
fluid solution allocates to the class �i� k�. It then follows
that

�i�kui� kL=
k∑

l=1

�xi� l−yi� l�� 0� (7)

The new linear fluid solution will be defined over the
time interval �0� 
L", where


L= L+2�maxPmaxJmax� (8)

Specifically, we allocate effort vi�k to the class �i� k� over
the interval �0� 
L", where

vi�k =
∑k

l=1��xi� l�−�yi� l��+ Jmax

�i�k

L �

We now show that vi�k define a feasible linear fluid solution
with the associated cost satisfying (6). We first show that
vi�k � 0. Note that

�i�kvi� k 
L=
k∑

l=1

�xi� l−yi� l�

+
k∑

l=1

(�xi� l�−xi� l+yi� l−�yi� l�
)+ Jmax�

From the definition of Jmax and applying the inequality part
of (7) we obtain vi�k � 0.

Now fix an arbitrary station �j . We have∑
�i� k�∈�j

vi� k

= ∑
�i� k�∈�j

∑k
l=1�xi� l−yi� l�

�i�kL
· L
L

+ ∑
�i� k�∈�j

∑k
l=1��xi� l�−xi� l+yi� l−�yi� l��+ Jmax

�i�k

L

�
∑

�i� k�∈�j
ui� k

L


L + ∑
�i� k�∈�j

k+ Jmax

�i�k

L �



Bertsimas, Gamarnik, and Sethuraman / 803

where the inequality follows from the equality part of (7).
However, by feasibility of the original solution, we have∑
�i� k�∈�j

ui� k � 1�

Also,∑
�i� k�∈�j

k+ Jmax

�i�k

L � Pmax�max

2Jmax


L �

From the definition of 
L in (8) it follows that∑
�i� k�∈�j

vi� k � 1�

We now show that the solution ends with queue lengths in
class �i� k� equal to �yi�k�. In fact, because the queue length
of the class �i�1� at time 0 is �xi�k�+M by assumption,
then the queue length at time 
L in class �i�1� is

�xi�1�+M−�i�1vi�1 
L=�xi�1�+M−��xi�1�−�yi�1�+Jmax�

=�yi�1�+M−Jmax�

Similarly, for k= 2�3� � � � � Ji, the queue length of the class
�i� k� at the end time 
L is

�xi�k�+�i�k−1vi�k−1

L−�i�kvi� k 
L

= �xi�k�+
k−1∑
l=1

��xi� l�−�yi� l��

+ Jmax −
k∑

l=1

��xi� l�−�yi� l��− Jmax = �yi�k��

To finish the proof, we analyze the cost of the constructed
solution. Note that for each class �i� k�, k � 2, the corre-
sponding cost is the area of the trapezoid with height 
L
and the lengths �xi�k�� �yi�k�. The area is then equal to

1
2 ��xi�k�+�yi�k��
L
� 1

2 �xi�k+yi�k+2��L+2�maxPmaxJmax�

= 1
2 �xi�k+yi�k�L+ �xi�k+yi�k��maxPmaxJmax

+2�maxPmaxJmax +L�

Similarly, for the classes �i�1�, i = 1�2� � � � � I� the corre-
sponding cost is

1
2 �xi�1 +yi�1�L+ �xi�1 +yi�1��maxPmaxJmax

+ �2M − Jmax��2�maxPmaxJmax +L��

However, for all i, k, 1
2 �xi�k+yi�k�L is the cost of the orig-

inal solution corresponding to the class �i� k�. We conclude
that the total cost of the constructed solution ĉ satisfies

ĉ � c+∑
i� k

�xi� k+yi�k��maxPmaxJmax

+ IJmax�2�maxPmaxJmax +L�

+ I�2M − Jmax��2�maxPmaxJmax +L�

= c+∑
i� k

�xi� k+yi�k��maxPmaxJmax

+2IM�2�maxPmaxJmax +L�� �

This completes the proof of Lemma 2.

Proposition 2. Consider a feasible fluid solution that has
piecewise-constant controls and has initial queue lengths
�iN for class i jobs. Suppose that the number of pieces
is R and the queue length of the class �i� k� at the end
of the r th piece is Nxri� k. We can construct a new fluid
solution with R pieces such that the initial queue lengths
are ni = �N�i�+RJmax, the queue length of the class �i� k�
at the end of the r th piece is �xri�1�+ �R− r�Jmax for k= 1
and �xri� k� for k > 1, and the cost of this solution ĉ satisfies

ĉ � c+O�N��

Proof. We apply Lemma 2 to each individual piece r =
1�2� � � � �R of the original fluid solution. Note that the val-
ues xri� k (queue lengths of the original fluid solution scaled
by 1/N ) depend on �i, but do not depend on N . Then, the
difference between the costs c and ĉ in Lemma 2 depends
linearly on N . This completes the proof. �

Note that by definition xRi�k = 0 for all classes �i� k�.
Thus, the new fluid solution will also have �xRi�k� = 0; i.e.,
all jobs will be processed in the new fluid solution.

4. THE FLUID-SYNCHRONIZATION ALGORITHM
FOR THE HOLDING-COST OBJECTIVE

In this section, we describe the fluid-synchronization algo-
rithm under the holding-cost objective (FSA-HC), which
discretizes an optimal fluid solution. The algorithm is
based on a repeated application of a variation of the
fluid-synchronization algorithm (FSA) (called the revised
fluid-synchronization algorithm (RFSA)) introduced by
Bertsimas and Sethuraman in (2002). We describe the
RFSA in detail in §4.1 and prove certain properties.
Specifically, we show that for each piece of the optimal
piecewise-linear fluid solution, the extra cost incurred by
implementing the RFSA compared to the cost incurred by
the fluid solution is O�N�. Our overall scheduling algo-
rithm is then based on applying the RFSA for each indi-
vidual piece and showing that the extra cost compared to
the fluid cost is R ·O�N�= O�N�, where R is the number
of pieces in the fluid solution. Because the cost of the fluid
solution is O�N 2�, this would imply that the extra cost is of
lower order. The rest of the section is organized as follows.
We introduce the RFSA in §4.1. In §4.2, we introduce the
FSA-HC, and in §4.3 we analyze its performance.

4.1. The Revised Fluid-Synchronization Algorithm

The RFSA is a variant of the FSA developed for the
makespan objective in Bertsimas and Sethuraman (2002).
The FSA applies to any feasible fluid solution in which
jobs are serviced at constant rate. However, there is one



804 / Bertsimas, Gamarnik, and Sethuraman

important difficulty in using the FSA directly. For the
holding-cost objective, processing a job “too soon” may be
just as bad as processing a job “too late.” For example,
consider the nth �i� k� job and suppose wi�k � wi�k+1. The
operations of the FSA are governed by the discrete start
time DSi�k�n� and the nominal start time NSi�k�n� the nth
�i� k� job (formal definitions are given below). Under the
FSA, if DSi�k�n� � NSi�k�n�, then this job is processed
sooner than necessary at stage k, thereby reaching stage
�k+ 1� substantially earlier and, therefore, accumulating
holding costs at a much higher rate. This is in sharp contrast
to the makespan objective, where there is no incentive for a
machine to idle. We overcome this difficulty by modifying
our definition of when a job becomes available. This vari-
ant of FSA is what we call the revised fluid-synchronization
algorithm (RFSA). To introduce it, we adopt certain defi-
nitions from Bertsimas and Sethuraman (2002).

Definitions. Note that machine �j requires a certain
processing time to process jobs that eventually come to it,
which is

Cj =
∑

�i� k�∈�j
pi� kni�

The quantity Cj is called the congestion of machine �j . We
denote the maximum congestion by

Cmax ≡ max
j=1� ���� J

Cj � (9)

In addition, for machine �j , we let

Uj =
∑

�i� k�∈�j
pi� k

and

Pj = max
�i� k�∈�j

pi� k� (10)

Namely, Uj is the workload of machine �j when only one
job per type is present, and Pj is the maximum processing
time at �j . Finally, let

Umax = max
1�j�J

Uj (11)

and

Pmax = max
1�j�J

Pj � (12)

We also introduce:
Discrete start time (DSi�k�n�). This is the start time of

the nth �i� k� job in the discrete network, i.e., the time at
which the nth �i� k� job is scheduled for processing in the
(discrete) job shop, under the RFSA defined below.
Discrete completion time (DCi�k�n�). This is the com-

pletion time of the nth �i� k� job in the discrete network.
In particular,

DCi�k�n�=DSi�k�n�+pi�k� (13)

Fluid start time (F Si�k�n�). This is the start time of
the nth �i� k� job in the fluid relaxation (for the makespan
objective), and is given by

F Si�k�1�= 0� (14)

F Si�k�n�= F Si�k�n−1�+ Cmax

ni
� n > 1� (15)

Fluid completion time (FCi�k�n�). This is the comple-
tion time of the nth �i� k� job in the fluid relaxation (for
the makespan objective), and is given by

FCi�k�n�= F Si�k�n�+
Cmax

ni
� (16)

Nominal start time (NSi�k�n�). The nominal start time
of the nth �i� k� job is defined as follows:

NSi�1�n�=F Si�1�n�� (17)

NSi�k�1�=DSi�k−1�1�+pi�k−1� k>1� (18)

NSi�k�n�=max
{
NSi�k�n−1�+ Cmax

ni
�DSi�k−1�n�+pi�k−1

}
�

n�k>1� (19)

Nominal completion time (NCi�k�n�). The nominal
completion time of the nth �i� k� job is defined as follows:

NCi�k�n�= NSi�k�n�+
Cmax

ni
� (20)

As a convention, we define DSi�0�n�=DCi�0�n�= 0, for
all i� n. Similarly, we define pi�0 = 0 for all i� n.

Each job in the discrete network is assigned a status at
each of its stages, which is one of not available, available,
in progress, or departed. The status of the nth �i� k� job at
time t is
• Not available, if 0 � t < max.DCi�k−1�n��NSi�k�n�/.• Available, if max.DCi�k−1�n��NSi�k�n�/ � t <

DSi�k�n�.• In progress, if DSi�k�n�� t < DCi�k�n�.• Departed, if t �DCi�k�n�.

Description of the RFSA. Scheduling decisions in
the discrete network are made at well-defined scheduling
epochs. Scheduling epochs for machine �j are instants of
time at which either some job completes service at �j

and there is at least one available job at �j , or some job
becomes available at an idle machine �j . Suppose machine
�j has a scheduling epoch at time t. Among all the avail-
able jobs at machine �j , the RFSA schedules the one with
the smallest nominal start time. This scheduling decision,
in turn, determines the nominal start time of this job at its
next stage. The key difference between the FSA and the
RFSA is thus in the definition of available jobs: Under the
FSA, job n of class �i� k� is declared as available at time
DCi�k−1�n�, while under the RFSA it is declared available
at max.DCi�k−1�n��NSi�k�n�/. In other words, under the
RFSA, no job is scheduled to start prior to its nominal start
time. As in the case of the FSA, it is easy to see inductively
that the RFSA is well defined.



Bertsimas, Gamarnik, and Sethuraman / 805

Elementary Results for the RFSA. The following the-
orems relate the fluid and discrete completion times of a job
when the discrete schedule is computed using the RFSA.

Theorem 3. Let DCi�k�n� be the completion time of the
nth �i� k� job in the discrete schedule computed by the
RFSA, and let FCi�k�n� be its completion time in the fluid
relaxation. Then,

DCi�k�n�� FCi�k�n�+
k∑

l=1

�2P�i
l
+U�i

l
� (21)

and

DCi�k�n�� FCi�k�n−1�� (22)

Proof. Equation (21) was proved in Bertsimas and
Sethuraman (2002) under the FSA. A careful examination
of the proof in Bertsimas and Sethuraman (2002) reveals
that the same argument holds for the RFSA as well.

Equation (22) follows by the definition of the RFSA as
follows:

DSi�k�n�� NSi�k�n�

� NSi�k�n−1�+ Cmax

ni

� F Si�k�n−1�+ Cmax

ni

= FCi�k�n−1��

Thus, DCi�k�n��DSi�k�n�� FCi�k�n−1�� �

4.2. Algorithm FSA-HC

In this section, we provide a complete description of algo-
rithm FSA-HC. Its main idea is as follows.

Suppose the optimal fluid solution has R pieces. Follow-
ing Lemma 2 and Proposition 2, we first construct a mod-
ified fluid solution with R pieces which has integral queue
lengths at the breakpoints and has a cost which exceeds
the optimal cost by at most O�N�. Note that the initial
queue lengths of the modified solution are assumed to be
�ni� +RJmax, i = 1�2� � � � � I , if the original initial queue
length is ni. This means that we introduce for each class i
additional RJmax virtual jobs.

Let T i denote the time at which piece i ends for this
modified fluid solution (also the time at which piece �i+1�
begins), and let T 0 = 0 be the time origin. Thus, piece i
starts at time T i−1 and ends at time T i, for 1 � i � R. We
discretize each piece separately using the RFSA described
earlier in this section. Specifically, for each piece r =
1�2� � � � �R we formulate a makespan scheduling problem
on a suitably defined input and apply the RFSA. In this way
we obtain times T̂ 0 = 0� T̂ 1� T̂ 2� � � � � T̂ R such that the vector
of queue lengths at T̂ i in the discrete network is exactly the
same as the vector of queue lengths at T i in the modified
solution to the fluid relaxation. We then evaluate and com-
pare the cost of each piece and show that the discretization

error accumulated over all the R pieces is asymptotically
negligible compared to the total fluid cost.

The following definitions will be needed in a formal
description of the FSA-HC.
• Length of piece r . Lr = T r −T r−1.
• Fluid queue length. xri� k denotes the queue length

of �i� k� jobs in the modified solution to the fluid relax-
ation (according to Proposition 2). Specifically, if the queue
lengths of the optimal fluid solutions at the breakpoints are
NXr

i�k, then

xri�1 =�NXr
i�1�+ �R− r�Jmax�

xri� k=�NXr
i�k�� k = 2� � � � � Ji� (23)

Recall from Theorem 1 that the optimal fluid solution
depends linearly on N and, as a result, the values Xr

i�k

depend only on �i. Thus, the queue lengths xri� k depend
linearly on N .
• Number of jobs processed in piece r . yri� k denotes

the number of �i� k� jobs processed by the modified fluid
solution in piece r ; clearly, yri� k = �i�ku

r
i� kL

r � where uri� k is
the constant control on �i� k� jobs for piece r .

We need an additional definition before we can describe
the FSA-HC. In the makespan objective, the fluid solution
is constant, and all of the jobs required to be processed
are in their corresponding first stages. The latter property
is true for the first piece in the holding-cost objective, but
may be violated for the subsequent pieces. Moreover, in the
makespan objective, the fluid solution starts with a number
of class �i� k� jobs and drives them to zero within a single
piece in the solution. Hence, we need to enhance our defi-
nition of “job types.” This naturally leads to the definition
of auxiliary variables discussed next.

We define class �i� k� l1 r� jobs that represent those type i
jobs that move from stage k to stage l during the r th piece
of the fluid relaxation. Let zrikl be the number of such jobs.
For convenience, we define zrikk to be the number of type i
jobs that remain at stage k during piece r . We also define
class �i� k�E1 r� jobs that represent those type i jobs that
start at stage k, but depart from the network during the
r th piece of the fluid relaxation. Let zrikE be the number of
such jobs. We next illustrate the computation of zrikl in an
example, to motivate a formal algorithm to compute these
quantities that follow next.

Consider the following example (see Figure 2): There are
four machines and two types of jobs. Type 1 jobs require
service at machines 1, 2, 3, and 4 in that order; Type 2
jobs require service at machines 4, 3, 2, and 1 in that order.
The processing requirements and the holding-cost rates at
the various stages for each job type are shown in Table 1.
Suppose we have 250 jobs of Type 1 and 500 jobs of Type 2
initially. The fluid solution shown in Table 2, while not
optimal, has objective function value close to the optimal
fluid cost. Moreover, the vector of queue lengths at the
end points of each piece is integral. The auxiliary variables
associated with this fluid solution are shown in Table 3. In



806 / Bertsimas, Gamarnik, and Sethuraman

Figure 2. A four-station network.

✲ ✲ ✲ ✲ ✲

✛✛✛✛✛
σ2σ1 σ3 σ4

Type 1

Type 2

Table 3, the entry E refers to the external environment: This
just indicates that the corresponding jobs leave the network.

The auxiliary variables define the requirements for each
piece and capture exactly the dynamics of the r th piece of
the fluid solution. The algorithm to compute the auxiliary
variables proceeds as follows. It will be useful to define
some quantities in describing the algorithm. The outflow
of class �i� k� in piece r , outflow�i� k1 r�, is the number of
type i jobs that were in stage k at T r−1, but ended up in
stage k′ >k at T r . (Recall that if a job is waiting at stage k,
it has undergone processing up to its �k− 1�st stage.) By
definition, outflow�i� k1 r� is at most xr−1

i� k , the number of
�i� k� jobs at T r−1. Also, outflow�i� k1 r� cannot exceed
the total number of jobs whose kth stage is processed in
piece r . From these two observations, we have

outflow�i� k1 r�= min

{
k∑

p=1

�xr−1
i� p −xri�p�� x

r−1
i� k

}
�

Similarly, let inflow�i� k1 r� be the number of �i� k1 r� jobs
that were in some stage k′ < k at time T r−1, but ended up
in stage k at time T r . Again, by definition, we have

inflow�i� k1 r�−outflow�i� k1 r�= xri� k−xr−1
i� k �

Computing the auxiliary variables zrikl (for l � k) now
reduces to the problem of allocating the outflow�i� k1 r� to
the stages l � k appropriately. We do this one stage at a
time, starting from l= k: In this case, zrikl is just the number
of jobs that “stayed” at stage k during �T r−1� T r�, which is
exactly xr−1

i� k − outflow�i� k1 r�. For l > k, clearly, zrikl can-
not exceed outflow�i� k1 r� or inflow�i� l1 r�. For l = k+1,
we set

zrikl = min.outflow�i� k1 r�� inflow�i� l1 r�/�

and subtract zrikl from both outflow�i� k1 r� and inflow·
�i� l1 r�. The latter step is to account for the outflow of zrikl
jobs into stage k, and the inflow of zrikl jobs into stage l.
Thus, the modified definition of outflow�i� k1 r� reflects the
remaining amount of jobs that need to flow out of stage k,
which is then used in computing the zrikl for l = k+2, etc.

Table 1. Holding costs and processing times.

Type 1 Type 2

Holding costs (4, 1, 2, 1) (4, 1, 2, 1)
Processing times (1, 8, 4, 2) (2, 4, 1, 8)

A formal description of the algorithm to compute the aux-
iliary variables zrikl using the vector of fluid queue lengths
at time T r−1 and T r is shown in Figure 3.

The discretization algorithm for the holding-cost objec-
tive can thus be described as follows:

Fluid Synchronization Algorithm for Holding
Costs (FSA-HC)

Step 1. Solve the fluid-control problem, and obtain the
optimal fluid relaxation. This can be accomplished by
applying the algorithm of Luo and Bertsimas (1999). The
optimal fluid relaxation has R pieces, and breakpoints
0� T 1� � � � � T R and the corresponding lengths of the pieces
are Lr = T r+1 −T r .
Step 2. Following Proposition 2 and starting with the

optimal fluid solution, construct a new piecewise-linear
fluid solution with R pieces, such that the queue lengths at
the breakpoints are integral.
Step 3. For r = 1�2� � � � �R:

(a) Define new class �i� k� l1 r� jobs defined to be jobs
of type i that move from stage k to stage l during the r th
piece, and new class �ikE� r� jobs defined to be jobs of
type i that start at stage k but depart from the network
during the r th piece.

(b) Compute the number zrikl and zrikE of such jobs by
applying the algorithm shown in Figure 3.

(c) Apply the RFSA on the new network with zrikl
(i� k� l1 r) jobs and zrikE (ikE� r) jobs. The new break-
points will now be 0� T̂ 1� � � � � T̂ R and the corresponding
lengths of the pieces will be 
Lr = T̂ r+1 − T̂ r .
In essence, we view each piece r of the modified fluid

solution as a job-shop scheduling problem with a makespan
objective, but with new classes �i� k� l1 r�, �i� k�E1 r�. Lr

plays the role of Cmax, job types are indexed by �i� k� l1 r�
and �i� k�E1 r�, and the auxiliary variables zrikl play the role
of the ni.

We note that the jobs in the discretized solution may no
longer be processed in FCFS order. To see this, consider

Table 2. A near-optimal fluid solution.

Type 1 Type 2

(250, 0, 0, 0) (500, 0, 0, 0)
(0, 218, 0, 32) (375, 125, 0, 0)
(0, 136, 0, 114) (0, 406, 0, 0)
(0, 104, 0, 0) (0, 370, 0, 0)
(0, 0, 0, 0) (0, 250, 0, 0)
(0, 0, 0, 0) (0, 0, 0, 0)



Bertsimas, Gamarnik, and Sethuraman / 807

Table 3. Auxiliary variables zrikl for the fluid solution
of Table 2.

Origin Destination Number of
Type Stage Stage Jobs

Piece 1 1 1 2 218
1 1 4 32
2 1 2 125

Piece 2 1 2 4 82
2 1 2 375
2 2 E 94

Piece 3 1 2 E 32
1 4 E 114
2 2 E 36

Piece 4 1 2 E 104
2 2 E 120

Piece 5 2 2 E 250

a solution in which zrikl � zrik′l for some k, k′ such that
k < k′ < l. In this case, in our interpretation of the fluid
solution, type �i� k� l1 r� jobs are processed at a much faster
rate than the type �i� k′� l1 r� jobs, and so it is possible for
some job at stage k to reach the destination l prior to some
job at stage k′.

4.3. Analysis of the FSA-HC

In this section, we calculate the cost of the discrete sched-
ule the FSA-HC produces and compare it to that of the fluid
relaxation. Our analysis proceeds on a job-by-job basis. The
outline of the analysis is as follows.

1. We focus on �i� k� l1 r� jobs in the r th piece, and we
evaluate the cost of these jobs in the discrete network and
in the fluid relaxation.

2. We find an expression for an upper bound on the
difference between the cost accumulated in r th piece and
the corresponding cost of the fluid solution in the same
piece.

3. We show that the total error, summed over all pieces,
is asymptotically negligible compared to the cost of the
fluid solution.

Figure 3. Computing the values of the auxiliary
variables zrikl.

For i = 1�2� � � � � I �
For k = 1�2� � � � � Ji �

outflow�i� k1 r�= min
{

k∑
p=1

�xr−1
i� p −xri�p�� x

r−1
i� k

}
.

inflow�i� k1 r�= xri� k −xr−1
i� k +outflow�i� k1 r��

outflow�i�E1 r�= 01 inflow�i�E1 r�=
Ji∑
p=1

�xr−1
i� p −xri�p�.

For k = 1�2� � � � � Ji �
zrikk = xr−1

i� k −outflow�i� k1 r�.
For l = k+1, k+2� � � � � Ji�E:

zrikl = min.outflow�i� k1 r�� inflow�i� l1 r�/�
outflow�i� k1 r� �= outflow�i� k1 r�− zrikl1

inflow�i� l1 r� �= inflow�i� l1 r�− zrikl1

Lemma 4. The cost of the r th piece of the fluid relaxation
is equal to

Cr
f =

I∑
i=1

Ji∑
k=1

Ji∑
l=k

(
wi�kz

r
iklL

r

2
+ wi� lz

r
iklL

r

2

)
� (24)

Proof. To evaluate the cost of the r th piece in the fluid
network, we observe that
• The inventory level of �i� k� l1 r� jobs at stage k

decreases linearly from zrikl to zero.
• The inventory level of �i� k� l1 r� jobs at stage l

increases linearly from zero to zrikl.• All of the intermediate stages (if any) have zero inven-
tory level for �i� k� l1 r� jobs.

Thus, in the r th piece of the fluid solution, the cost
incurred by �i� k� l1 r� jobs in stage k is

wi�kz
r
iklL

r

2
�

and the cost incurred by �i� k� l� r� jobs in stage l is

wi� lz
r
iklL

r

2
�

Observing that jobs of type �i� k� l1 r� do not incur cost
at any other stage, we see that the cost of type �i� k� l1 r�
jobs is(
wi�kz

r
iklL

r

2
+ wi� lz

r
iklL

r

2

)
� (25)

Summing Equation (25) over all possible job types, we
obtain Equation (24). �

We now evaluate the cost of type i jobs in the discretized
solution corresponding to piece r . For convenience, we
shift the origin so that T r−1 = 0, and so T r = Lr .

Lemma 5. The cost of the r th piece in the discrete network
is at most

Cr
d =

I∑
i=1

Ji∑
k=1

Ji∑
l=k

Cr
d�i� k� l�� (26)

where

Cr
d�i�k�l�

=wi�kL
r

(
zrikl+1

2

)
+wi�kz

r
ikl�2Pmax+Umax�

+wi�lL
r

(
zrikl+1

2

)
+wi�lz

r
iklJmax�2Pmax+Umax�

+
l−1∑

p=k+1

wi�p

(
Lr+zrikl�p−k+1��2Pmax+Umax�

)
� (27)

Proof. The cost of the r th piece in the discrete network
can be computed as follows. We focus on jobs of type
�i� k� l1 r�, such that zrikl > 0. Otherwise, the cost contri-
bution of the type �i� k� l1 r� is zero. For convenience, we
renumber these jobs, if necessary, so that the jobs of type



808 / Bertsimas, Gamarnik, and Sethuraman

�i� k� l1 r� are numbered 1�2� � � � � zrikl. For k� p � l, recall
that DCikl�p�n� is the completion time of the nth type
�i� k� l1 r� job at stage p. (We suppress r from DCikl�p�n� to
simplify the already-congested notation.) Clearly, the cost
of type �i� k� l1 r� jobs is given by

zrikl∑
n=1

wi�kDCikl� k�n�+
zrikl∑
n=1

wi� l� 
Lr −DCikl� l−1�n��

+
zrikl∑
n=1

l−1∑
p=k+1

wi�p�DCikl�p�n�−DCikl�p−1�n��� (28)

We next evaluate each of the three terms in Equation (28)
separately. First, consider the last term in Equation (28).
Using Equation (21) for type �i� k� l1 r� jobs, we conclude
that

DCikl�p�n�� FCikl�p�n�+ �p−k+1��2Pmax +Umax�� (29)

for k � p � l. Also, by definition, for any p such that k �
p � l,

FCikl�p�n�= n
Lr

zrikl
� (30)

Combining Equations (29) and (30), we obtain

DCikl�p�n�� n
Lr

zrikl
+ �p−k+1��2Pmax +Umax��

k � p � l� (31)

From Equation (22), we obtain

DCikl�p�n�� �n−1�
Lr

zrikl
� (32)

Using Equations (31) and (32), we obtain

zrikl∑
n=1

l−1∑
p=k+1

wi�p

(
DCikl�p�n�−DCikl�p−1�n�

)
�

zrikl∑
n=1

l−1∑
p=k+1

wi�p

(
n
Lr

zrikl
− �n−1�

Lr

zrikl

+ �p−k+1��2Pmax +Umax�

)

=
zrikl∑
n=1

l−1∑
p=k+1

wi�p

(
Lr

zrikl
+ �p−k+1��2Pmax +Umax�

)

=
l−1∑

p=k+1

wi�p

(
Lr + zrikl�p−k+1��2Pmax +Umax�

)
�

We next consider the second term of Equation (28). From
Theorem 9 in Bertsimas and Sethuraman (2002), we know
that the discretization of the r th piece finishes at time 
Lr ,
such that


Lr
� Lr + Jmax�2Pmax +Umax�� (33)

Using Equations (33) and (32), we obtain

zrikl∑
n=1

wi� l� 
Lr −DCikl� l−1�n��

�

zrikl∑
n=1

wi� l

(
Lr + Jmax�2Pmax +Umax�−

�n−1�Lr

zrikl

)
= wi� lz

r
iklL

r +wi� lz
r
iklJmax�2Pmax +Umax�

−wi� l

Lr

zrikl

zrikl∑
n=1

�n−1�

= wi� lL
r

(
zrikl+1

2

)
+wi� lz

r
iklJmax�2Pmax +Umax�� (34)

Finally, we consider the first term of Equation (28).
Using Equation (31), we obtain

zrikl∑
n=1

wi�kDCikl� k�n�

�

zrikl∑
n=1

wi�k

(
nLr

zrikl
+ �2Pmax +Umax�

)
= wi�kL

r

(
zrikl+1

2

)
+wi�kz

r
ikl�2Pmax +Umax�� (35)

The cost of type �i� k� l1 r� jobs in the r th piece in the
discrete network is obtained by adding Equations (33)–(35),
which yields Equation (27). �

We are now ready to prove that the FSA-HC yields an
asymptotically optimal schedule.

Theorem 6. Consider a job-shop scheduling problem
with I job types and J machines �1��2� � � � ��J . Given
initially �iN jobs of type i = 1�2� � � � � I , the FSA-HC
produces a schedule with cost ZD�N � such that

ZD�N �� ZF�N �+O�N�� (36)

In particular,

ZD�N �

ZJS�N �
� 1+O

(
1
N

)
� (37)

and thus

ZD�N �

ZJS�N �
→ 1� (38)

as

N →��

Proof. Let ZF�N � be the cost of the optimal fluid solution.
Let Z′

F�N � be the cost of the modified fluid solution after
applying the construction of Proposition 2.



Bertsimas, Gamarnik, and Sethuraman / 809

From Equations (24) and (26), we have

Cr
d−Cr

f �

I∑
i=1

Ji∑
k=1

Ji∑
l=k

{
wi�kL

r

2
+wi�kz

r
ikl�2Pmax +Umax�

+ wi� lL
r

2
+wi� lz

r
iklJmax�2Pmax +Umax�

+
l−1∑

p=k+1

wi�p

(
Lr + zrikl�p−k+1�

· �2Pmax +Umax�
)}
�

From the proof of part (a) of Theorem 1 and from Proposi-
tion 2, the terms zrikl and Lr all vary linearly with N . Thus,

Cr
d−Cr

f � AN�

for some (large enough) constant A. Thus,

ZD�N �−Z′
F�N �=

R∑
r=1

�Cr
d−Cr

f �

� ARN�

which establishes ZD�N � � Z′
F�N �+O�N�, because R is

also a constant. From Proposition 2 we have Z′
F�N � �

ZF�N �+O�N�, and thus ZD�N �� ZF�N �+O�N�.
From Theorem 1(b), we have ZF�N �� ZJS�N �+O�N�.

Thus,

ZD�N �

ZJS�N �
�

ZF�N �+O�N�

ZF�N �−O�N�

�
CN 2 +O�N�

CN 2 −O�N�

= 1+O

(
1
N

)
�

from which (38) follows. �

Table 4. Performance of the FSA-HC on job-shop instances in the OR-library.

ZF

ZD−N 2ZF

N 2ZF

Benchmark �N = 1� N = 1 N = 2 N = 5 N = 10 N = 100 N = 500

abz5 4�154�54 1�731 1�663 1�302 0�876 0�087 0�014
abz6 3�116�64 1�689 1�437 1�101 0�823 0�093 0�011
ft06 109�06 2�111 1�813 1�763 1�106 0�147 0�025
ft10 2�740�45 2�117 1�987 1�671 1�037 0�436 0�022
ft20 9�493�73 1�989 1�700 1�481 1�002 0�210 0�019
la01 2�837�45 1�965 1�573 1�320 1�129 0�313 0�016
la02 2�802�26 1�270 1�113 0�912 0�614 0�128 0�023
la03 2�471�49 1�961 1�672 1�475 1�131 0�254 0�014
la04 2�473�30 2�114 1�842 1�386 1�141 0�195 0�014
la05 2�501�91 1�320 1�219 1�214 1�067 0�411 0�016
la06 5�732�63 2�630 2�315 2�059 1�254 0�193 0�008
la10 5�998�61 1�767 1�645 1�323 1�006 0�255 0�011
la11 10�000�16 2�749 2�119 1�346 1�043 0�197 0�009
la13 9�715�28 2�643 2�216 1�414 1�095 0�351 0�011
la15 10�097�26 2�891 2�148 1�730 1�533 0�471 0�021
la17 2�983�00 2�653 2�351 1�985 1�438 0�336 0�021
la19 3�072�54 2�717 2�185 1�754 1�324 0�372 0�019
orb01 3�013�75 2�018 1�811 1�439 1�007 0�221 0�007
orb03 2�831�91 2�005 1�837 1�601 1�105 0�119 0�016
orb05 2�719�82 1�882 1�473 1�338 0�903 0�143 0�009

Remark. We note that any algorithm that uses the fluid
relaxation will incur O�N� error in the worst case. For
example, consider a single machine with N jobs, with
wi = 1. The cost of an optimal discrete schedule is
N�N +1�/2, but the optimal fluid cost is N 2/2.

5. COMPUTATIONAL RESULTS

In this section, we report computational results for the
objective of minimizing weighted completion times. This
is the special case of the holding-cost objective in which
the weights are all 1; i.e., wi�k = 1 for all i, k. For our
computational study, we chose a subset of 20 instances
from the OR library (http://mscmga.ms.ic.ac.uk/info.html);
the results shown on these instances are representative of
the results obtained for our algorithm in general. The results
reported in Table 4 are for these 20 benchmarks. The num-
ber of machines ranged from 5 to 20, and the number of
job types ranged from 5 to 50. All execution times were
under two minutes on a SUN workstation. The first set of
results aim to illustrate experimentally the effect of asymp-
totic optimality. The second set of results compares the
proposed algorithm and several commonly used heuristic
methods.

Asymptotic Optimality

For each benchmark, we assume that each job type has N

jobs in their first stage, and we report results for N = 1,
N = 2, N = 5, N = 10, N = 100, and N = 500. The lower
bound based on the fluid relaxation, ZF�1�, is shown in the
second column, and is valid for N = 1; the lower bound
for N = n is n2ZF�1�. The subsequent columns report the



810 / Bertsimas, Gamarnik, and Sethuraman

value of the relative error,

ZD�N �−ZF�N �

ZF�N �
= ZD�N �−N 2ZF�1�

N 2ZF�1�
�

(The results in terms of a more familiar measure—the
ratio of the cost of the heuristic schedule and the optimal
schedule—are obtained by adding one to the relative error.)
From the results reported in Table 4, we observe that the
relative error does converge to zero as N increases, as pre-
dicted by Theorem 6. The relative error is of the order of
100% for N = 10, 40% for N = 100, and 1% for N = 500.
Compared with the asymptotics for the makespan objec-
tive reported in Bertsimas and Sethuraman (2002) for the
same problems, we observe that for the makespan objec-
tive the corresponding errors are about 10% for N = 10,
1% for N = 100, 0.05% for N = 500; i.e., we need perhaps
an order of magnitude of more jobs in the system to obtain
the same accuracy. The relative error is O�1/N�, but the
hidden constant is much higher for the holding-cost objec-
tive compared to makespan. This is not too surprising, as
the number of pieces R will enter in the constant. Note also
that the relative error reported here is the error incurred
by the algorithm FSA-HC with respect to the fluid lower
bound; the performance of the FSA-HC compared to the
true value will be at least as good, usually better.

Comparison with Other Heuristic Methods

We next present results comparing the relative errors of
the algorithm FSA-HC with those of several simple heuris-
tic methods. The results are reported for exactly the same
benchmarks. Each heuristic method is employed in a non-
preemptive manner and essentially identifies the task to be
executed next by a machine whenever that machine needs
to make a scheduling decision. (In the queueing literature,
these are also referred to as “priority rules” or “priority
policies.”)

We tested eight common heuristic methods, listed below.
(a) Shortest Task Time (STT): schedule the task with the

smallest processing time.
(b) Longest Task Time (LTT): schedule the task with the

largest processing time.
(c) Shortest Processing Time (SPT): schedule the task

with the smallest total processing time. In other words, a
type i job receives priority over a type i′ job if

Ji∑
k=1

pi�k <
Ji′∑
k=1

pi′� k�

(d) Longest Processing Time (LPT): schedule the task
with the largest total processing time.

(e) Shortest Remaining Processing Time (SRPT): sched-
ule the task with the smallest remaining job processing
time. In other words, class �i� l� job receives priority over
�i′� l′� job if

Ji∑
k=l

pi� k <
Ji′∑
k=l′

pi′� k�

(f) Longest Remaining Processing Time (LRPT): sched-
ule the task with the largest remaining total processing
time.

(g) Last Buffer First Serve (LBFS): schedule the task
with the smallest remaining number of subsequent tasks.

(h) First Buffer First Serve (FBFS): schedule the task
with the largest remaining number of subsequent tasks.

We chose these heuristic methods primarily because
they are easy to implement and have roughly the same
implemenation complexity as our algorithm (FSA-HC).
(Strictly speaking, we need to solve the fluid relaxation
once to implement FSA-HC; the complexity of solving the
fluid relaxation exactly is still open. However, the fluid
relaxation does not have to be re-solved for various values
of N , so we ignore this cost.)

Tables 5 through 8 display the relative errors of FSA-HC
and those of the eight heuristic methods for various val-
ues of N . For N = 500, the fluid-based algorithm emerges
as a clear winner; but for smaller values of N , there is no
clear winner. For N = 1, FSA-HC yields the best result
for the six benchmarks abz5, abz6, ft10, orb01, orb03, and
orb05; among the remaining benchmarks, SRPT gives the
best results for 8, LBFS for 3, SPT for 2, and STT for 1.
For the next-higher value of N = 10, the SRPT heuristic
emerges as a clear winner in all but three benchmarks (la02,
la03, and la05). Even for these benchmarks, SRPT per-
forms very competitively. While the quality of the schedule
found by FSA-HC is not poor, it is still far from the per-
formance of many of these heuristic methods. One reason
for this behavior is that the number of jobs in the system is
not large enough to offset the “idleness” introduced in the
system as a result of discretizing each piece separately. For
N = 100, the fluid-based algorithm begins to perform com-
petitively with the best heuristic for many benchmarks; still,
the performance of SRPT is impressive here. As mentioned
earlier, for N = 500, the fluid-based algorithm outperforms
all of the tested heuristic methods by a substantial margin.
In this case (and hence for larger values of N as well),
the artificial idleness introduced by discretizing each piece
separately, and the costs associated with it, are negligible
in relation to the optimal fluid cost itself. As expected, the
relative error of FSA-HC decreases with N and appears to
converge to zero reasonably quickly.

It is also interesting to observe that the performance of
the eight heuristic methods stabilizes fairly quickly. The
best heuristic method among the chosen eight methods for
any given benchmark is the same, whether N = 100 or
N = 500. Specifically, SRPT is the best heuristic method
for the benchmarks abz5, ft20, la01, la04, la10, la13, la19,
and orb01; SPT is the best heuristic method for the bench-
marks abz6, ft06, la03, la06, la11, la15, and orb05; STT
is the best heuristic method for ft10, la02, and orb03;
and LBFS is the best heuristic method for the benchmarks
la05 and la17. This trend continues for larger values of
N , and more interestingly, the relative errors for larger
N are virtually unchanged. The relative errors of the best
heuristic method for each benchmark for N = 5�000 and



Bertsimas, Gamarnik, and Sethuraman / 811

Table 5. Comparison of the FSA-HC with simple dispatch rules �N = 1�.

ZF

ZH−N 2ZF

N 2ZF

Benchmark �N = 1� FSA-HC STT LTT SPT LPT SRPT LRPT LBFS FBFS

abz5 4�154�54 1�731 2�017 2�121 1�981 2�048 2�285 2�183 1�939 2�161
abz6 3�116�64 1�689 1�880 2�176 1�957 1�982 1�982 1�896 1�890 1�896
ft06 109�06 2�111 2�118 1�861 1�962 2�191 1�962 2�328 0�999 2�338
ft10 2�740�45 2�117 2�206 3�193 2�315 2�722 2�336 2�854 2�485 3�057
ft20 9�493�73 1�989 0�724 1�668 0�708 1�241 0�749 1�716 0�862 1�735
la01 2�837�45 1�965 1�130 1�356 1�128 1�321 1�092 1�305 1�108 1�354
la02 2�802�26 1�270 0�927 1�532 0�945 1�462 0�992 1�487 1�022 1�460
la03 2�471�49 1�961 1�079 1�742 0�947 1�265 0�941 1�261 1�283 1�185
la04 2�473�30 2�114 1�301 1�672 1�410 1�302 1�267 1�735 1�378 1�472
la05 2�501�91 1�320 0�986 1�067 0�936 1�058 0�918 1�204 0�917 1�212
la06 5�732�63 2�630 0�838 1�250 0�792 1�015 0�700 1�191 0�943 1�239
la10 5�998�61 1�767 0�755 1�228 0�743 1�064 0�711 1�237 0�817 1�155
la11 10�000�16 2�749 0�685 1�143 0�634 0�933 0�612 1�313 0�746 1�224
la13 9�715�28 2�643 0�647 0�984 0�606 0�959 0�570 1�229 0�603 1�239
la15 10�097�26 2�891 0�802 1�118 0�692 0�988 0�725 1�252 0�785 1�309
la17 2�983�00 2�653 1�712 1�700 1�588 1�679 1�595 1�772 1�540 1�794
la19 3�072�54 2�717 1�841 2�094 1�820 1�864 1�739 2�046 1�874 2�171
orb01 3�013�75 2�018 2�623 2�615 2�454 2�169 2�338 3�005 2�609 2�943
orb03 2�831�91 2�005 2�526 3�369 2�403 2�843 2�159 2�679 2�738 3�863
orb05 2�719�82 1�882 2�065 2�290 2�096 2�502 2�299 2�737 2�184 2�360

N = 10�000 are displayed in Table 9. We suspect that the
reason for convergence of relative errors to limiting nonzero
values lies in the fluid limit corresponding to a particu-
lar heuristic under consideration. Specifically, we conjec-
ture that the limiting relative error is the ratio of the cost
corresponding to the fluid limit of the heuristic scheduling
rule divided by the optimal cost over all fluid limits (which
is asymptotically achieved by our proposed FSA-HC pol-
icy). Proving this conjecture falls outside the scope of this
paper.

Table 6. Comparison of the FSA-HC with simple dispatch rules �N = 10�.

ZF

ZH−N 2ZF

N 2ZF

Benchmark �N = 1� FSA-HC STT LTT SPT LPT SRPT LRPT LBFS FBFS

abz5 4�154�54 0�876 0�471 0�701 0�439 0�459 0�308 1�017 0�314 1�066
abz6 3�116�64 0�823 0�468 1�056 0�430 0�697 0�383 1�048 0�473 1�173
ft06 109�06 1�106 0�522 1�191 0�382 0�650 0�350 1�022 0�512 1�370
ft10 2�740�45 1�037 0�326 1�452 0�510 0�978 0�470 1�998 0�532 1�974
ft20 9�493�73 1�002 0�173 1�251 0�163 0�493 0�129 1�428 0�289 1�529
la01 2�837�45 1�129 0�412 0�795 0�266 0�613 0�246 0�879 0�314 0�815
la02 2�802�26 0�614 0�223 0�680 0�238 0�450 0�286 0�976 0�316 0�855
la03 2�471�49 1�131 0�281 1�038 0�278 0�514 0�284 0�729 0�423 0�865
la04 2�473�30 1�141 0�338 1�044 0�348 0�701 0�329 1�070 0�473 0�851
la05 2�501�91 1�067 0�309 0�696 0�194 0�429 0�211 0�876 0�201 0�913
la06 5�732�63 1�254 0�273 0�723 0�229 0�510 0�213 0�965 0�520 0�934
la10 5�998�61 1�006 0�242 0�719 0�176 0�541 0�106 0�984 0�300 0�890
la11 10�000�16 1�043 0�305 0�839 0�169 0�548 0�157 1�079 0�350 0�999
la13 9�715�28 1�095 0�281 0�686 0�178 0�478 0�122 1�047 0�252 1�067
la15 10�097�26 1�533 0�376 0�781 0�196 0�554 0�227 0�998 0�330 1�147
la17 2�983�00 1�438 0�365 1�011 0�438 0�534 0�294 1�042 0�252 1�102
la19 3�072�54 1�324 0�321 1�178 0�371 0�483 0�306 0�965 0�319 1�122
orb01 3�013�75 1�007 0�736 1�186 0�587 0�750 0�515 1�927 0�581 1�745
orb03 2�831�91 1�105 0�609 1�500 0�617 0�793 0�534 1�334 0�758 2�619
orb05 2�719�82 0�903 0�558 0�802 0�487 0�570 0�395 1�043 0�582 0�926

Overall, it appears that even though these heuristic meth-
ods perform well for small to moderate values of N , they
do not scale well. In particular, on these benchmarks they
do not appear to yield asymptotically optimal schedules,
as the relative error appears to stabilize at a value that is
strictly positive.

These computations highlight the strengths and weak-
nesses of the FSA-HC that we summarize below:

1. For problems of low to moderate multiplicity
(N = 1−100), the relative errors of the heuristic methods



812 / Bertsimas, Gamarnik, and Sethuraman

Table 7. Comparison of the FSA-HC with simple dispatch rules �N = 100�.

ZF

ZH−N 2ZF

N 2ZF

Benchmark �N = 1� FSA-HC STT LTT SPT LPT SRPT LRPT LBFS FBFS

abz5 4�154�54 0�087 0�290 0�497 0�158 0�158 0�075 0�989 0�094 0�946
abz6 3�116�64 0�093 0�315 1�037 0�189 0�386 0�228 0�979 0�225 1�082
ft06 109�06 0�147 0�378 0�990 0�111 0�458 0�121 0�904 0�286 1�307
ft10 2�740�45 0�436 0�175 1�309 0�352 0�644 0�252 1�818 0�309 1�892
ft20 9�493�73 0�210 0�140 1�200 0�110 0�429 0�072 1�410 0�233 1�497
la01 2�837�45 0�313 0�357 0�711 0�163 0�467 0�118 0�840 0�247 0�773
la02 2�802�26 0�128 0�148 0�575 0�154 0�336 0�212 0�934 0�236 0�805
la03 2�471�49 0�254 0�228 0�850 0�216 0�413 0�222 0�704 0�322 0�814
la04 2�473�30 0�195 0�290 0�976 0�280 0�581 0�260 1�011 0�332 0�783
la05 2�501�91 0�411 0�236 0�627 0�127 0�361 0�133 0�848 0�126 0�882
la06 5�732�63 0�193 0�225 0�683 0�168 0�443 0�190 0�942 0�472 0�911
la10 5�998�61 0�255 0�197 0�674 0�116 0�422 0�046 0�961 0�241 0�867
la11 10�000�16 0�197 0�271 0�812 0�116 0�489 0�120 1�057 0�314 0�979
la13 9�715�28 0�351 0�245 0�688 0�129 0�425 0�085 1�032 0�248 1�050
la15 10�097�26 0�471 0�339 0�750 0�156 0�479 0�199 0�972 0�346 1�135
la17 2�983�00 0�336 0�246 0�731 0�260 0�311 0�181 0�957 0�140 1�063
la19 3�072�54 0�372 0�195 1�021 0�247 0�328 0�157 0�916 0�200 1�048
orb01 3�013�75 0�221 0�538 1�084 0�410 0�447 0�315 1�825 0�395 1�560
orb03 2�831�91 0�119 0�410 1�153 0�424 0�573 0�411 1�226 0�556 2�471
orb05 2�719�82 0�143 0�429 0�742 0�243 0�409 0�303 0�861 0�379 0�768

are comparable to those of the proposed algorithm, and the
best of the heuristic methods performs overall better than
the proposed method.

2. For problems of moderate to high multiplicity (N =
100− 500), the proposed algorithm outperforms the other
methods.

3. For problems of very high multiplicity (N =
5�000110�000), the overperformance becomes more
dramatic, as the relative error of the best of the heuristic
methods stabilizes to a strictly positive value, whereas the

Table 8. Comparison of the FSA-HC with simple dispatch rules �N = 500�.

ZF

ZH−N 2ZF

N 2ZF

Benchmark �N = 1� FSA-HC STT LTT SPT LPT SRPT LRPT LBFS FBFS

abz5 4�154�54 0�014 0�285 0�489 0�124 0�120 0�040 0�988 0�083 0�938
abz6 3�116�64 0�011 0�304 1�030 0�178 0�364 0�225 0�975 0�199 1�075
ft06 1�09�06 0�025 0�365 0�969 0�089 0�441 0�112 0�894 0�272 1�301
ft10 2�740�45 0�022 0�170 1�282 0�335 0�607 0�239 1�800 0�301 1�880
ft20 9�493�73 0�019 0�137 1�195 0�106 0�423 0�068 1�407 0�229 1�494
la01 2�837�45 0�016 0�352 0�705 0�156 0�454 0�109 0�836 0�244 0�769
la02 2�802�26 0�023 0�143 0�565 0�147 0�326 0�205 0�930 0�230 0�801
la03 2�471�49 0�014 0�223 0�851 0�210 0�406 0�214 0�701 0�313 0�809
la04 2�473�30 0�014 0�286 0�970 0�275 0�568 0�215 1�008 0�324 0�778
la05 2�501�91 0�016 0�230 0�651 0�123 0�355 0�126 0�846 0�120 0�879
la06 5�732�63 0�008 0�222 0�678 0�163 0�437 0�188 0�940 0�468 0�909
la10 5�998�61 0�011 0�196 0�671 0�111 0�414 0�041 0�959 0�245 0�864
la11 10�000�16 0�009 0�267 0�809 0�111 0�484 0�115 1�055 0�323 0�977
la13 9�715�28 0�011 0�241 0�684 0�124 0�420 0�081 1�032 0�205 1�049
la15 10�097�26 0�021 0�336 0�749 0�155 0�475 0�194 0�970 0�363 1�134
la17 2�983�00 0�021 0�236 0�718 0�244 0�292 0�177 0�948 0�132 1�059
la19 3�072�54 0�019 0�187 0�960 0�234 0�318 0�169 0�910 0�202 1�040
orb01 3�013�75 0�007 0�510 1�069 0�394 0�425 0�301 1�814 0�372 1�546
orb03 2�831�91 0�016 0�398 1�133 0�411 0�545 0�447 1�216 0�537 2�454
orb05 2�719�82 0�009 0�420 0�732 0�227 0�388 0�326 0�844 0�359 0�755

proposed algorithm is asymptotically optimal (i.e., the rel-
ative error tends to zero).

Overall, for relatively large job-shop problems, the rel-
ative error of the schedule computed by FSA-HC is quite
small. Given the high-quality solutions the algorithm finds,
and given that the running time of the algorithm is lin-
ear in the number of jobs present, the FSA-HC repre-
sents, in our opinion, a simple and practical method for
solving job-shop scheduling problems of moderate to high
multiplicity.



Bertsimas, Gamarnik, and Sethuraman / 813

Table 9. The relative error of the best heuristic methods
for large N .

Best Heuristic RE RE
Benchmark Method �N = 5�000� �N = 10�000�

abz5 SRPT 0�040 0�039
abz6 SPT 0�177 0�177
ft06 SPT 0�084 0�084
ft10 STT 0�169 0�169
ft20 SRPT 0�069 0�069
la01 SRPT 0�106 0�106
la02 STT 0�142 0�141
la03 SPT 0�209 0�209
la04 SRPT 0�213 0�213
la05 LBFS 0�119 0�119
la06 SPT 0�162 0�162
la10 SRPT 0�040 0�040
la11 SPT 0�110 0�110
la13 SRPT 0�080 0�080
la15 SPT 0�155 0�155
la17 LBFS 0�132 0�132
la19 SRPT 0�166 0�166
orb01 SRPT 0�298 0�298
orb03 STT 0�395 0�395
orb05 SPT 0�224 0�224

6. CONCLUSIONS

The major insights from our analysis are:
1. Given that the fluid relaxation ignores all the com-

binatorial details of the problem, our results imply that as
the number of jobs increases, the combinatorial structure
of the problem is increasingly less important, and, as a
result, a fluid approximation of the problem that only takes
into account the dynamic character of the problem becomes
increasingly exact.

2. The FSA-HC is attractive from a practical perspec-
tive. First, it is simple to implement and it is fast. Second,
its performance on the 20 problems in the OR-library shows
that it leads to high-quality solutions for problems of mod-
erate to high multiplicity, outperforming commonly used
heuristic rules. Given that high-multiplicity problems are
often solved in practice, especially in a manufacturing envi-
ronment, the FSA-HC should be an attractive algorithm in
such settings.

ACKNOWLEDGMENTS

The authors thank the reviewers and the associate editor for
helpful comments. This research was partially supported
by NSF grant DMI-9610486 and by the MIT-Singapore
alliance.

REFERENCES

Anderson, E. J., P. Nash. 1987. Linear Programming in Infinite-
Dimensional Spaces. John Wiley and Sons, New York.

Atkins, D., H. Chen. 1995. Performance evaluation of scheduling
control of queueing networks: Fluid model heuristics. Queue-
ing Systems Appl. 21 391–413.

Avram, F., D. Bertsimas, M. Ricard. 1995. Fluid models of
sequencing problems in open queueing networks: An optimal

control approach. F. P. Kelly, R. J. Williams, eds. Stochastic
Networks. Proc. Internat. Math. Assoc., Vol. 71. Springer-
Verlag, New York, 199–234.

Bertsimas, D., D. Gamarnik. 1999. Asymptotically optimal algo-
rithms for job shop scheduling and packet routing. J. Algo-
rithms 33(2) 296–318.
, J. Sethuraman. 2002. From fluid relaxations to practical
algorithms for job shop scheduling: The makespan objective.
Math. Programming 92(1) 61–102.

Chen, H., D. Yao. 1993. Dynamic scheduling of a multiclass fluid
network. Oper. Res. 41(6) 1104–1115.

Dai, J. G. 1995. On positive Harris recurrence of multiclass queue-
ing networks: A unified approach via fluid limit models. Ann.
Appl. Probab. 5 49–77.
, G. Weiss. 2002. A fluid heuristic for minimizing makespan
in job shops. Oper. Res. 50(4) 692–707.

Eng, D., J. Humphrey, S. P. Meyn. 1996. Fluid network models:
Linear programs for control and performance bounds. 13th
World Congress Intern. Fed. Automatic Control. San Fran-
cisco, CA.

Hall, L. 1997. Approximation algorithms for scheduling.
D. Hochbaum, ed. Approximation Algorithms for ��-Hard
Problems. PWS Publishing Company, Boston, MA.
, A. S. Schulz, D. B. Shmoys, J. Wein. 1997. Scheduling
to minimize average completion time: Off-line and on-line
approximation algorithms. Math. Oper. Res. 22(3) 513–544.

Harrison, J. M. 1996. The bigstep approach to flow management
in stochastic processing networks. F. P. Kelly, S. Zachary,
I. Ziedins, eds. Stochastic Networks: Theory and Applica-
tions. Clarendon Press, Oxford, U.K., 57–90.

Hoogeveen, H., P. Schuurman, G. Woeginger. 1998. Non-
approximability results for scheduling problems with min-
sum criteria. R. E. Bixby, E. A. Boyd, R. Z. Rios-Mercado,
eds. Integer Programming and Combinatorial Optimization
(IPCO-VI Proceedings). Lecture Notes in Computer Science,
Vol. 1412. Springer-Verlag, New York, 353–366.

Karger, D., C. Stein, J. Wein. 1999. Scheduling algorithms. M. J.
Atallah, ed. Algorithms and Theory of Computation Hand-
book. CRC Press, Boca Raton, FL.

Luo, X., D. Bertsimas. 1999. A new algorithm for state-
constrained separated continuous linear programs. SIAM J.
Control Optim. 37(1) 177–210.

Maglaras, C. 2000. Discrete-review policies for scheduling
stochastic networks: Trajectory tracking and fluid-scale
asymptotic optimality. Ann. Appl. Probab. 10(3) 897–929.

Meyn, S. P. 1997a. The policy improvement algorithm for Markov
decision processes with general state space. IEEE Trans.
Automatic Control 42(12) 1663–1680.
. 1997b. Stability and optimization of queueing networks
and their fluid models. G. G. Yin, Q. Zhang, eds. Mathemat-
ics of Stochastic Manufacturing Systems. Lectures in Appl.
Math., Vol. 33. American Mathematical Society, Providence,
RI, 175–200.

Pullan, M. C. 1993. An algorithm for a class of continuous linear
programs. SIAM J. Control Optim. 31(6) 1558–1577.

Queyranne, M., M. Sviridenko. 1999. Approximation algorithms
for shop scheduling problems with minsum criteria. Tech-
nical report, Faculty of Commerce, University of British
Columbia, Vancouver, British Columbia, Canada.

Rybko, A. N., A. L. Stolyar. 1992. Ergodicity of stochastic pro-
cesses describing the operations of open queueing networks.
Problems Inform. Transmission 28 199–220.


