
Digital Object Identifier (DOI) 10.1007/s00236-003-0119-6
Acta Informatica 39, 597–612 (2003)

c© Springer-Verlag 2003

Ideal preemptive schedules on two processors

E.G. Coffman, Jr.1, J. Sethuraman2,�, V.G. Timkovsky3

1 Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
(e-mail: egc@ee.columbia.edu)

2 Department of Industrial Engineering & Operations Research, Columbia University,
New York, NY 10027, USA (e-mail: jay@ieor.columbia.edu)

3 CGI Group Inc., 1 Dundas St. W., Ste. 2700, Toronto, Ontario M5L 1G1
(e-mail: timko@cgi.ca); and Department of Computing & Software, McMaster University,
Hamilton, Ontario L8S 4L7, Canada

Received: 11 November 2002 / 2 May 2003

Abstract. An ideal schedule minimizes both makespan and total flow time.
It is known that the Coffman-Graham algorithm [Acta Informatica 1, 200–
213, 1972] solves in polynomial time the problem of finding an ideal nonpre-
emptive schedule of unit-execution-time jobs with equal release dates and
arbitrary precedence constraints on two identical parallel processors. This
paper presents an extension of the algorithm that solves in polynomial time
the preemptive counterpart of this problem. The complexity status of the
preemptive problem of minimizing just the total flow time has been open.

1 Introduction

We describe a preemptive algorithm for scheduling n unit-execution-time
(UET) jobs with equal release dates on two identical parallel processors un-
der a general partial order specifying precedence constraints. The algorithm
is preemptive in that it is allowed to interrupt an executing job and resume it
later on the same or the other processor; such algorithms are not restricted
in the number of times they can preempt jobs. An ideal schedule simultane-
ously minimizes both makespan and total flow time. Our main contribution
is a preemptive algorithm for finding an ideal schedule in polynomial time.
Note that the complexity status of the preemptive problem of minimizing
just the total flow time has been open.

� Research supported by an NSF CAREER Award DMI-0093981 and an IBM Faculty
Partnership Award.



598 E.G. Coffman, Jr. et al.

� � � �

� � � �

� � �

� � �

Fig. 1. For the instance with six jobs and precedence constraints 1 → 2, 3 → 4, 5 → 6, the
MC algorithm finds the upper schedule with total flow time 1 + 2 · 1.5 + 2.5 + 2 · 3 = 12.5
applying the wrap-around rule to each of the job sets {1, 3, 5} and {2, 4, 6}. The lower
schedule, however, has a smaller total flow time 2 · 1 + 2 · 2 + 2 · 3 = 12

An algorithm is said to be non-preemptive if all jobs must run to com-
pletion without interruption. The earliest polynomial-time algorithms for
scheduling UET jobs with general precedence constraints on two identical
processors were devoted to minimizing makespan. These are the preemp-
tive Muntz-Coffman (MC) algorithm [11] and the nonpreemptive Coffman-
Graham (CG) algorithm [4]. These algorithms bear directly on the problem
here; polynomial-time algorithms were obtained later for the more general
problem of minimizing the maximum lateness [5,7]. Other cognate prob-
lems include the preemptive and nonpreemptive versions of minimizing the
number of late jobs, total tardiness, and total weighted flow time which are
all known to be NP-hard even for chain-like precedence constraints [9,10,
16,1].

The MC algorithm schedules jobs level-by-level highest level first, where
the level of a job is the number of edges in a longest path from that job to
a job having no successors. If the currently highest level has more than
two jobs, then they are scheduled by the preemptive wrap-around rule. If
there are exactly two jobs at the highest level, they are run nonpreemptively
in parallel. If there is just one, it is run nonpreemptively with a highest
(necessarily lower) level available job, if any. Figure 1 shows that the MC
algorithm does not always minimize total flow time.

The above algorithms suggest two natural approaches to finding an ideal
preemptive schedule: Attempt to extend the preemptive MC algorithm so
that it minimizes total flow time while preserving minimum makespan, or
attempt to introduce preemptions into the nonpreemptive CG algorithm so
that it minimizes total flow time and reduces makespan to that of the MC
algorithm. The process of creating a preemptive ideal schedule appears to be
much easier starting from a CG schedule than from an MC schedule partly
because, as observed by M. R. Garey (private communication), the CG
algorithm minimizes total flow time for the nonpreemptive case. Although
this property has been known for a long time, we are not aware of any
published proof. In this paper, we sketch a proof, leaving routine details to
the reader.



Ideal preemptive schedules on two processors 599

The main body of the paper is devoted to an extension of the CG algorithm
that yields ideal preemptive schedules. In Sect. 2, we discuss properties of
CG schedules, in particular, the partition of CG schedules into components
called follow-set schedules which must appear in sequence. In Sect. 3, we
give an algorithm for finding an ideal preemptive follow-set schedule. By
appropriately iterating this algorithm on an entire CG schedule, we will
obtain in Sect. 4 an algorithm that computes ideal preemptive schedules.
Concluding remarks outline related unsolved problems.

2 CG schedules

CG schedules are ideal schedules for the non-preemptive version of the
problem studied here; their structure will play a critical role in the design and
proof of correctness of an algorithm for finding ideal preemptive schedules.
For this reason, we first review the CG algorithm and note some useful
properties.

Given an instance containing n jobs, the CG algorithm first labels each of
the jobs using the integers 1, 2, . . . , n as follows: Suppose labels 1, 2, . . . , k
have already been assigned, and let S be the subset of unlabeled jobs, all
of whose successors have been labeled. Then, assign label k + 1 to a job in
S having the lexicographically smallest decreasing sequence of immediate-
successor labels. (Break ties arbitrarily.) The CG schedule is obtained by
scheduling, at each point in time, the highest-labeled available job. Since
each job is executed for one time unit, processors 1 and 2 both become
available at the same time. By convention, we assume that processor 1 is
scheduled before processor 2; thus, at any given time, the label of the job
executing on processor 1 is greater than the label of the job executing on
processor 2. An idle slot, necessarily on processor 2, is assumed to have
an artificial job with label 0. Except for these jobs with label 0, jobs are
identified uniquely by their labels. See Fig. 2 for examples.

To prove that the CG schedule has minimum makespan for the non-
preemptive version of the problem, Coffman and Graham [4] determined
sets of jobs Fk, Fk−1, . . ., F0 such that every job in Fi precedes every job in
Fi−1, for i = 1, 2, . . . , k. Thus, any feasible schedule must finish all jobs in
Fi before starting any job in Fi−1. The Fi are the follow-sets alluded to at the
end of the last section; the term is borrowed from Sethi [13]. The collection
of follow-sets is such that any schedule that executes these follow-sets in
order will trivially be at least as long as the CG schedule.

The follow-sets of a CG schedule are associated with pairs (Dk, Ek),
(Dk−1, Ek−1), . . . , (D0, E0), where Di is a job executing on processor 1
and Ei is either a gap in parallel with Di on processor 2, or a job executing
in parallel with Di on processor 2. The pairs are identified by working



600 E.G. Coffman, Jr. et al.

� �

� �

� �

� �

� �

� �

�

�

� � � �
� �

�

�

�

�

�
� � � � �

�

�

�

�
� � �

� � � � � � � � � � � � � �

� � � � � � � � �

Fig. 2. A precedence graph with 16 jobs, where “→≺” and “�→” denote a set of edges with
a common source and a common sink, respectively, and a related CG schedule with four
follow-sets: F3 = {16, 15, 14, 13, 12}, F2 = {11}, F1 = {10, 9, 8, 7, 6}, F0 = {4, 3, 2},
and two fill-jobs: E3 = 5, E1 = 1 (shown in bold)

Fig. 3. Follow-sets in CG schedules

backward from the end of the schedule. Let (D0, E0) be the last pair of
the CG schedule on processors 1 and 2 respectively. Suppose (Di−1, Ei−1),
(Di−2, Ei−2), . . . , (D0, E0), have been defined, for some i ≥ 1. The process
of defining {Ek} and {Dk} is complete, unless there is a latest job on
processor 2 smaller than Di−1 and scheduled earlier than Ei−1. In this case,
Ei is this job, and Di is the job on processor 1 that is scheduled at the same
time. Using these pairs, follow-set Fi consists of Di, and all jobs scheduled
after the pair (Di+1, Ei+1) and before the pair (Di, Ei); in this context, when
Ei is a job, and not a gap, it is referred to as a fill-job accompanying follow-
set Fi; it fills what would otherwise be a gap created by the precedence
relation. See Figs. 2 and 3 for an illustration. Trivially, there is always at
least one follow-set, but the last one, F0, in contrast to all others, can have
no job with a successor not in F0.

We record some useful observations about the CG schedule in the fol-
lowing lemma; all the statements in the lemma are easy to verify and are
present in some form in Coffman and Graham [4].

Lemma 1 Consider a CG schedule with the job pairs
(Dk, Ek), (Dk−1, Ek−1), . . . , (D0, E0) determining follow-sets
Fk, Fk−1, . . . , F0. Then for i = 1, 2, . . . , k,

(a) job Ei is smaller than any job in Fi−1, so it does not precede any job
in Fi−1.

(b) every job in Fi precedes every job in Fi−1;



Ideal preemptive schedules on two processors 601

(c) for each Fi there exist integers � and u, (u ≥ �) such that Fi consists of
all jobs from some level u to some level l (l ≤ u) that were not already
scheduled as fill-jobs; also, |Fi| is odd.

We conclude this section with a proof that a CG schedule has minimum
total flow time. The notion of compressed schedule is useful for this purpose.
A schedule for an instance of a scheduling problem is compressed [14] if,
among all schedules for the instance, it contains the minimum total idle time
in the interval [0, t], for every integer t ≥ 0. In the case of nonpreemptive
scheduling of UET jobs, the minimum total idle time in [0, t] is achieved by
a schedule that maximizes the number N [t] of jobs scheduled in [0, t].

The total flow time of a conservative nonpreemptive schedule of UET
jobs (one that never allows a machine to be idle if there is a job ready to
execute) is given by

n∑

t=1
t · (N [t] − N [t − 1]) = n2 −

n−1∑

t=1
N [t],

where N [0] = 0 and N [n] = n. Hence, a compressed schedule obviously
has the minimum total flow time because it maximizes N [t] for every t =
1, . . . , n− 1. Informally, the property of being compressed means that gaps
are shifted to the right as much as possible, and each gap is unavoidable. It
is intuitively clear, and not difficult to prove by induction on the number of
gaps, that CG schedules are compressed [14].

3 Contracting follow-sets

Using a single preemption, a makespan-2 nonpreemptive schedule of three
independent jobs can be shortened to a makespan-3/2 preemptive schedule.
This creation of a flat preemptive schedule will hereafter be called a con-
traction; it always involves just three jobs. Note for future reference that the
sum of the completion times is unchanged by a contraction (see Fig. 4).

Contraction can be extended to the follow-sets of CG schedules not
accompanied by fill-jobs. After showing how this is done, we will show
how to generate ideal preemptive schedules using this contraction operation
as a primitive.

In a given CG schedule, consider a follow-set whose last job, say J ,
executes in parallel with a gap, and suppose the follow-set is scheduled in
[t0, t]. The following algorithm contracts the schedule for the follow-set,
thus reducing its makespan by 1/2, if and only if it is possible to do so
without violating precedence constraints. For concreteness, let Fi be the
follow-set, so that J = Di



602 E.G. Coffman, Jr. et al.

� �

�
� � � � � � � � � � � � �

� �

� �

Fig. 4. A makespan-2 nonpreemptive schedule and a makespan-3/2 preemptive schedule of
jobs 1, 2, 3

Follow-set Contraction (FC) Algorithm. The algorithm first deter-
mines whether J is the only job in Fi, i.e., Fi is a singleton follow-set.
If so, it halts since the schedule trivially cannot be contracted. If not,
then it next determines whether J is the only level-l job in Fi; if it is,
the algorithm halts with the decision that Fi cannot be contracted. To
see that this is the correct decision, it is enough to note that all of the
jobs scheduled in [t0, t−1] must have J as their unique level-l succes-
sor; otherwise, another level-l job would be available for scheduling
by the CG algorithm in [t − 1, t], and this contradicts our assumed
gap in [t − 1, t].
The algorithm next checks the two jobs scheduled in [t − 2, t − 1].
(Two such jobs must exist, since Fi must have at least three jobs.)
If these jobs are both level-l jobs, then they and J comprise three
independent jobs and the schedule for these jobs is contracted as
described earlier. This schedule is appended to the nonpreemptive
schedule in [t0, t − 2] to produce a flat schedule for Fi, whereupon
the algorithm halts.
The only remaining case to consider is when Fi has more than one
level-l job, but there are not two of them in [t − 2, t − 1]. In this
case, the algorithm finds the latest time interval [t′ −1, t′] with t′ < t
in which a level-l job K is paired with a job K ′ at a level l′ for
some l′ > l. (Such an interval must exist, because there are at least
two level-l jobs.) It is easy to verify that all of the jobs scheduled
in [t′, t − 1] will have to precede job J (as J is the only level-l job
scheduled after t′), and succeed K ′. Thus, an attempt to contract the
schedule for Fi can do no better than to move the level-l job K from
[t′ − 1, t′] to [t − 1, t], and apply the algorithm recursively to the
schedule in [t0, t′]. That is, letting the level-l′ job K ′ play the role of
J , and replacing t with t′, the algorithm then proceeds recursively on
the smaller schedule in [t0, t′].
Continuing then, if K ′ is the only level-l′ job in Fi, then Fi cannot be
contracted. If the two jobs scheduled immediately prior to K ′ are also
level l′ jobs, then Fi can be contracted by contracting the schedule
for the three jobs in [t′ − 2, t′], and then moving up by 1/2 the jobs
(including K now) scheduled after t′. Otherwise, the algorithm finds
a level-l′ job paired with a level-l′′ job, and recurses again.



Ideal preemptive schedules on two processors 603

� � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � � � �

Fig. 5. Contracting a follow-set

By convention, if the FC algorithm concludes that a follow-set Fi cannot
be contracted, we set its output to be Fi itself. See Fig. 5 for illustrations.

The following result is an easy consequence of the comments given in
the FC algorithm description.

Lemma 2 In a given CG schedule, let Fi be a follow-set whose last job
executes in parallel with a gap. Applying the FC algorithm to Fi contracts
Fi if and only if it is possible to do so within the precedence constraints.
Moreover, the FC algorithm produces an ideal preemptive schedule for Fi.

Proof. First we note that preemptions are useless in the segments of the
schedule that the FC algorithm could not contract; such segments contain
2(t − t′) jobs that must precede a job scheduled at time t and succeed a
job scheduled at time t′. The FC algorithm therefore produces a minimum-
makespan preemptive schedule.

For total flow time, suppose |Fi| = 2m − 1. A simple calculation shows
that total flow time of Fi in the CG schedule is m2, which is minimum (see
McNaughton [12]). Since the output of the FC algorithm is a contracted
version of Fi or Fi itself, and since contraction preserves total flow time of
the jobs in the follow-set, the outcome of the FC algorithm is a schedule
with total flow time m2. ��

Note that if J is the last job in follow-set Fi, and if Fi cannot be con-
tracted, then J must be a last job in every feasible schedule of Fi. This will
be useful in proving the correctness of the algorithm for finding an ideal
preemptive schedule, which is described next.

4 Contracting schedules

This section proves that the Schedule Contraction (SC) algorithm presented
below produces preemptive ideal schedules. The SC algorithm proceeds by
contracting follow-sets whenever that is possible and, at the same time, helps
in eliminating a gap.



604 E.G. Coffman, Jr. et al.

The SC Algorithm. Suppose the CG schedule for some instance has
follow-sets Fk, Fk−1, . . . , F0, with corresponding fill-jobs or gaps
Ek, Ek−1, . . . , E0 occupying the respective final time units on pro-
cessor 2 in the CG schedule. The SC algorithm begins by searching
for an earliest gap. If the schedule has no gap, then the algorithm
halts, so assume that there is at least one gap and let Ej be the ear-
liest one. Then the algorithm searches for an earliest follow-set that
can be contracted and is scheduled no later than Fj . (The FC algo-
rithm is invoked for this purpose.) Suppose such a follow-set exists,
let it be Fi, i ≥ j, and let its last job finish at time t. The algorithm
first creates a reduced problem, which consists of the fill-job Ei,
the jobs in follow-sets Fi−1, Fi−2, . . . , F0, and their corresponding
fill-jobs Ei−1, Ei−2, . . . , E0. The SC algorithm starts out by schedul-
ing Fk, . . . , Fi+1 along with their fill-jobs just as the CG algorithm
does. It then appends a flat schedule for Fi. Finally, the SC algo-
rithm finishes off the schedule with an ideal preemptive schedule for
the reduced problem, this last part of the schedule being found by a
recursive application of the SC algorithm.
If no follow-set Fi, i ≥ j, can be contracted, the reduced
problem identified by the algorithm consists of the jobs in
follow-sets Fj−1, Fj−2, . . . , F0, and their corresponding fill-jobs
Ej−1, Ej−2, . . . , E0. The SC algorithm proceeds just as the CG al-
gorithm up to the time instant at which follow-set Fj completes; the
SC algorithm appends at this point an ideal preemptive schedule for
the reduced problem found as before by a recursive application of the
SC algorithm.
In either case, the algorithm halts when the reduced problem is empty.

Since any contracted follow-set contains at least three jobs and only one
preempted job, the total number of preemptions the algorithm makes is at
most n/3. Our main result is the following:

Theorem 1 For any given instance, the SC algorithm produces an ideal
preemptive schedule.

Proof. The proof is by induction on the number of gaps in the SC schedule
S for instance I . The basis of the induction, which proves that SC schedules
with no gaps are ideal, presents the most difficulty, so we will begin with
the induction step.

Induction step. The argument hinges on the following “separator” lemma.

Lemma 3 Let the SC schedule S have at least one gap, suppose the earliest
ends at time t, and denote the job executing in [t − 1, t] by J . Then J is a



Ideal preemptive schedules on two processors 605

separator in the sense that it must be scheduled in [t − 1, t] in every ideal
preemptive schedule.

Remark. Given this lemma, the induction step is relatively easy to estab-
lish, as follows. Let I ′ denote the sub-instance consisting of just those jobs
scheduled after t in S plus the precedence relations restricted to these jobs.
By the inductive hypothesis, the preemptive schedule of the jobs executing
after time t in S is ideal in the sense that the schedule from t onwards is an
ideal preemptive schedule for I ′; since every job of I ′ must succeed J , and
since J must be executed in [t − 1, t], the schedule from (t − 1) onwards is
an ideal preemptive schedule for I ′ ∪ {J}. Now, consider the schedule of
the set of jobs in [0, t− 1] in S; this is a schedule for the 2(t− 1) jobs in the
set I ′′ ≡ I \ {I ′ ∪ {J}}. By the induction basis, it is an ideal preemptive
schedule for I ′′. (It trivially has a minimum makespan as it is gap free, but
we need the inductive hypothesis for total flow time.) Scheduling a job in
I ′′ after time (t − 1) would only increase total flow time, and may increase
makespan of the schedule as well; this shows that S is an ideal preemptive
schedule for I . ��

Proof of Lemma 3. We begin with a couple of observations. The SC algorithm
does not create gaps. A gap G in an SC schedule was the earliest gap found
in the CG schedule for the original instance or for some subsequent reduced
instance, depending on the level of the recursion when G was processed; G
could not be eliminated at that time because no follow-set in parallel with
or earlier than G could be contracted. (G remains thereafter since the next
reduced problem is drawn from the schedule to the right of G.)

Consider the iteration of the SC algorithm at level � + 1 ≥ 1 of the
recursion, and let F

(�)
i and E

(�)
i denote the follow-sets and fill-jobs in the

reduced instance defined at level � (in the original instance if � = 0). Sup-
pose E

(�)
j is the earliest gap, and let F

(�)
i , i ≥ j, be the earliest follow-

set that can be contracted. Then this reduced instance consists of the job
E

(�)
i , the jobs in F

(�)
i−1, F

(�)
i−2, . . . , F

(�)
0 , and their corresponding fill-jobs

E
(�)
i−1, E

(�)
i−2, . . . , E

(�)
0 . It is easy to see that the CG schedule for this instance

will have the following structure:

– The i − j sets F
(�)
i−1, F

(�)
i−2, . . . , F

(�)
j+1, F

(�)
j , are scheduled in that order,

with the last job of each set accompanied by one of the i − j jobs in
{E

(�)
i , E

(�)
i−1, . . . , E

(�)
j−1}. Indeed, we know that, since a fill-job cannot

precede any job in the follow-set scheduled right after it, the fill-jobs
{E

(�)
i , E

(�)
i−1, . . . , E

(�)
j−1} can each be slid down to the next follow-set,

with the last one being slid into the gap E
(�)
j .



606 E.G. Coffman, Jr. et al.

– The j sets F
(�)
j−1, F

(�)
j−2, . . . , F

(�)
0 , are scheduled in that order, with the

last job of F
(�)
m accompanied by E

(�)
m , for m = j − 1, j − 2, . . . , 0.

In particular, note that the earliest gap Ej of the original CG schedule
has been eliminated by contracting the follow-set Fi. While this operation
results in a reduced problem whose CG schedule is not contained in the
original CG schedule, note that the original and reduced CG schedules are
identical after the jobs in Fj are scheduled. (Of course, the SC schedule
corresponding to the reduced CG schedule starts 1/2 time unit earlier).

We are now ready to prove the lemma. If J is accompanied by a gap
in the SC schedule, then we know that J must have been accompanied
by a gap in the original CG schedule, and in every reduced CG schedule
computed during the course of the SC algorithm. In particular, in reduced
problems containing J , all the jobs in every follow-set examined by the SC
algorithm for contraction are required to precede J . Since the SC algorithm
was unable to eliminate the gap in [t− 1, t], we know that for some reduced
instance found during the course of the SC algorithm, both of the following
must be true: (i) The gap accompanying job J is the earliest gap; (ii) all
follow-sets preceding job J (if any) and the follow-set containing job J
as the last job cannot be contracted. Clearly, every follow-set examined by
the SC algorithm involving jobs scheduled earlier was either contracted, or
could not be contracted. Since all the jobs in every one of these follow-sets
were required to precede J , we conclude, by Lemma 2, that the follow-set
containing job J cannot be scheduled to start any earlier; in addition, since J
must be part of a follow-set that cannot be contracted, J has to be scheduled
as a last job in that follow-set. This shows that J cannot be scheduled to start
any earlier than (t − 1). Delaying the start of job J will increase makespan
and total flow time of the overall schedule, so J must be scheduled in [t−1, t]
in every ideal preemptive schedule. ��
Induction basis. We now prove the basis of the induction, when the SC
schedule S for the given instance I has no gaps. Before getting into details,
we will comment briefly on the proof.

The proof is based on the expectation that the precedence constraints
involving fill-jobs and those involving jobs in the same follow-set have no
effect on total flow time. This key simplification is proved implicitly in
our analysis, which focuses on the instance I∗ of the relaxed problem in
which such precedence constraints have been removed from I . Thus, each
fill-job is independent of all other jobs, and the jobs in any follow-set are
all independent of each other. (But all jobs of a follow-set must continue to
precede all jobs in subsequent follow-sets.)

Lemma 6 below proves the existence of a unique ideal preemptive sched-
ule for I∗ that begins with g contracted follow-sets, where g is the number



Ideal preemptive schedules on two processors 607

�
� �

� �

�

�

�

� � � �
�

�

� � � � 	
�

� 


��

� � 	
�

�

� � �
�

�

� � � �
�

� �� �

Fig. 6. Interchange the modes of execution of Fi and Fj

of gaps in the CG schedule for I . This schedule differs from the SC schedule
of I only in where contractions are made, not their number. Lemma 4 below
verifies that such differences have no effect on total flow time. Lemma 5 is
a “normal form” result that simplifies the arguments of Lemma 6.

As before, Fi, k ≥ i ≥ 0, denotes the i-th follow-set of the CG schedule
for the original instance I , and ni = |Fi|. The following “interchange”
lemma simplifies substantially the arguments in the remainder of the proof.

Lemma 4 Consider a preemptive schedule for a relaxed instance. Let Fi

execute before Fj and let t and t′ be the starting times of Fi and Fj , respec-
tively. Suppose Fi executes nonpreemptively with fill-job E and Fj executes
preemptively as a contracted follow-set. Note that t′ ≥ t + (ni + 1)/2 and
that Fj finishes at t′ + nj/2. Assume that all jobs, if any, executing in the
interval [t + (nj + 1)/2, t′] both start and finish in that interval.

Now, assuming that Fi can be contracted, interchange the modes of
execution: Execute Fi preemptively by contracting it, and de-contract Fj ,
executing its jobs nonpreemptively along with the fill-job E in the last time
unit of the schedule for Fj . (Note that the move of E is allowable since it is
independent of all other jobs in the relaxed instance. See Fig. 6 for an illus-
tration.) The interchange leaves total flow time of the schedule unchanged.

Proof. The interchange does not affect the completion times of jobs executed
before Fi starts or after Fj finishes. In accordance with observations made
when introducing contractions, the contraction of follow-set Fi does not
change total flow time of its jobs. The jobs executing originally in [t+(ni +
1)/2, t′], say there are n of them, all have their completion times reduced
by 1/2. Inspection of Fig. 7 shows that the interchange reduces by 1/2 the
completion times of all of the jobs in Fj . Thus, among the jobs considered
so far, there is a total reduction of total flow time of n × 1/2 + njx1/2 =
(n + nj)/2. It remains to observe that, in moving from Fi to Fj , the fill-job
E increases its completion time by (n + nj)/2, as can be seen in the figure.
The lemma is proved, as the net effect on total flow time is 0. ��



608 E.G. Coffman, Jr. et al.

In what follows, we consider an ideal preemptive schedule for a re-
laxed instance whose corresponding CG schedule has k + 1 follow-sets
Fk, Fk−1, . . . , F0. We let ti denote the earliest time at which all jobs of Fi

complete, and we let yi be the total execution time devoted to jobs that ex-
ecute but do not complete in [ti+1, ti]. The following result narrows down
considerably the possible schedules we need to consider.

Lemma 5 In any ideal preemptive schedule S∗ for a relaxed instance, the
following holds:

– For any i, k ≥ i ≥ 0, and t ∈ [ti+1, ti], at least one of the processors is
working on a job (either a fill-job or a follow-set job) that completes in
[ti+1, ti].

– for all i, yi ≤ 1.

Proof. If the first assertion were violated, then there would be a segment of
S∗ in some interval [ti+1, ti] during which no job that finishes in [ti+1, ti]
is executing. Since the instance is relaxed, the fill-jobs executing in this
segment are independent of all other jobs, so this segment can be shifted to
the end of the interval without increasing any completion times and without
violating precedence constraints. But this reduces ti thus contradicting our
assumption that the schedule is ideal and hence minimizes total flow time.

For convenience, assume processor 1 only executes jobs that complete
in [ti+1, ti]. To prove the second assertion, suppose yi > 1. All of the jobs
executing in [ti+1, ti] are independent so it is easy to see that the yi units
of partial execution time must be scheduled last on processor 2 (otherwise,
we could shift some partial execution time to the right and reduce at least
one completion time). But this leads to a contradiction just as before. We
can exchange the first unit of partial execution time on processor 2 with the
last job, say J , to complete on processor 1. It is readily verified that we can
sequence the partially executed jobs so that the exchange gives us a valid
schedule with a smaller completion time for J and with all other completion
times unchanged (see Fig. 7 for an illustration). ��

We are now at the heart of the proof where we show that S∗ has a structure
similar to that of a SC schedule.

Lemma 6 For an instance I∗ of the relaxed problem whose (non-
preemptive) CG schedule has g gaps and whose SC schedule has no gaps,
the preemptive schedule that contracts the first g non-singleton follow-sets
is ideal and lexicographically minimizes (tk, tk−1, . . . , t1, t0).

Remark. Note that the lex-min schedule of Lemma 6 may not be a feasible
schedule for the original instance. However, both the lex-min schedule S∗
for the relaxed instance and the SC schedule S for the original instance have



Ideal preemptive schedules on two processors 609

�

� � �

�

�

�

� �

� �

�

��

� � �

�

�

� �

� �

�

�
� �

�

�
� �

� �

Fig. 7. Interchange a portion of J with a portion of E1

the same number of contractions. So repeated use of Lemma 4 on S∗ shows
that it has the same total flow time as S. Thus, once we have proved Lemma
6, we will be done.

We remark that the total flow time of S∗ is given by the simple formula
t20 + t0 + g/4, which the reader will have no difficulty in deriving. ��
Proof of Lemma 6. We proceed by contradiction and let I∗ be an instance
with the fewest number of jobs for which the lemma is false. Then, I∗
must be such that its first follow-set could be contracted, but is not by any
ideal preemptive schedule. Let S∗ be an ideal preemptive schedule for I∗
that lexicographically minimizes the (decreasing) sequence of follow-set
completion times.

Let S∗
i denote the segment of S∗ in the time interval [ti+1, ti]. (We set

tk+1 = 0 by convention.) Bear in mind that, because of the precedence
constraints, S∗

i cannot contain jobs of Fj , j < i, so S∗
i contains all ni jobs

of Fi and some number, say ri ≥ 0, of fill-jobs that complete in [ti+1, ti]
plus some set, possibly empty, of jobs that execute only partially during
[ti+1, ti] and take total time 0 ≤ yi ≤ 1 by Lemma 5. All of these jobs are
independent. Observe that to prove the claim, it suffices to show that rk = 0
and yk = 0 in S∗, as this implies that Fk is contracted.

For the purposes of the transformation below, we assume for simplicity
that there are no singleton follow-sets; extending the arguments to these
uncontractible special cases is easy and left to the reader. Let Fj , j ≤ k,
be the earliest follow-set with rj ≥ 1. Transform S∗ by replacing S∗

j with a
segment S∗∗

j constructed as follows (see Fig. 8 for an illustration):
If rj is odd, let processor 1 execute �nj/2	 jobs of Fj , followed by


rj/2� fill-jobs, followed by yj/2 ≤ 1/2 units of time spent on the partially
executed fill-jobs; and let processor 2 execute 
nj/2� jobs of Fj , followed
by 
rj/2� fill-jobs, followed by yj/2 ≤ 1/2 units of time spent on partially
executed fill-jobs, followed by the remaining fill-job completed in [tj+1, ti].
If rj is even, let processor 1 execute �nj/2	 jobs of Fj , followed by rj/2−1



610 E.G. Coffman, Jr. et al.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

t tj+1 j

Fig. 8. Transformation: the unshaded areas represent the jobs in Fj , horizontal shading
represents the fill-jobs that complete by tj , and the remaining areas represent the partially
completed fill-jobs

fill-jobs, followed by 1/2 ≤ (1 + yj)/2 ≤ 1 units of time spent on another
(complete) fill-jobE; and let processor 2 execute 
nj/2� jobs ofFj , followed
by rj/2− 1 fill-jobs, followed by 0 ≤ (1− yj)/2 ≤ 1/2 units of time spent
on the job E, followed by one fill-job, followed by yj ≤ 1 units spent on
the partially executed fill-jobs.

It is easy to verify that the total flow time of the transformed schedule
is no more than that of schedule S∗. Moreover, if yj is strictly positive or
if rj > 1, the transformed schedule is an ideal preemptive schedule with
a lexicographically smaller (tk, tk−1, . . . , t1, t0), contradicting our choice
of S∗. Thus, yj = 0 and rj = 1. Let the completing fill-job be E. (We
note in passing that it would be easy to show that none of the follow-sets
Fk, . . . , Fj+1 could be a singleton. For, if there were one, say Fi, i > j,
then we could easily arrange to complete the fill-job E in S∗

i rather than
S∗

j .)
Now suppose there is a smallest i larger than j such that yi > 0. Then

we modify the schedule so that Fi is contracted (thus reducing ti), and S∗
j is

replaced by S∗∗
j as in the procedure above, with the partially executed fill-

jobs being taken from S∗
i . Again, the new schedule contradicts the lex-min

property of S∗. Thus, yk = yk−1 = · · · = yj = 0 and rj = 1.
If j < k, then, by definition, rk = 0, so since yk = 0, we are done.

If j = k, then S∗ first schedules Fk along with E, followed by an ideal
preemptive schedule for the remaining jobs. By our assumption of a smallest
counterexample, a lex-min schedule for the remaining jobs can be found by
contracting the next g follow-sets that can be contracted. By contracting Fk

and scheduling E with the (g + 1)-st follow-set that can be contracted, we
obtain a schedule with the same total flow time (by Lemma 4), but with
a lexicographically smaller (tk, tk−1, . . . , t1, t0), again contradicting our
choice of S∗.

This concludes the proof of the lemma, and hence the theorem.



Ideal preemptive schedules on two processors 611

5 Concluding remarks

It is readily verified that the time complexity of the SC algorithm is O(n2).
We also note that the SC algorithm solves the two-machine open-shop prob-
lem with precedence constraints and UET operations, since it is isomorphic
to the problem solved here [2,16].

The fractionality of a preemptive schedule is the greatest reciprocal 1
k

such that the interval between every two event times (i.e., start times, comple-
tion times, or preemption times) in the schedule is a multiple of 1

k . Theorem 1
shows that there exists an ideal preemptive schedule of UET jobs under arbi-
trary precedence constraints on two processors with fractionality 1

2 . Hence,
the recognition version of the problem is obviously in NP [6]. However, it
is unknown whether the recognition version of the corresponding problem
on three processors belongs to NP; indeed, it is unknown even if only the
makespan or only the total flow time is being minimized. The fractional-
ity conjecture [11] states that the problem of minimizing makespan on m
processors has a solution of fractionality 1

m , but it remains unverified even
in the case of UET operations. We refer to the extension of this conjecture
to the preemptive cases in the scheduling classification [8] as the extended
fractionality conjecture.

We also mention the NP-preemption hypothesis which asserts that the
recognition version of any preemptive problem in the scheduling classi-
fication belongs to NP. It is obviously true if the extended fractionality
conjecture is true. The following gives an idea of how much stronger the
extended fractionality conjecture is. Let the recognition version of a pre-
emptive problem belong to NP, and let q be a polynomial upper bound on
the size of the problem. Then it has a solution of fractionality 1

q! [15]. How-
ever, it is unknown whether the extended fractionality conjecture is true for
all preemptive problems whose recognition versions belong to NP. If the
NP-preemption hypothesis is true, then any preemptive problem on identi-
cal parallel processors in the scheduling classification polynomially reduces
to a nonpreemptive UET problem [15,3,16].

References

1. Ph. Baptiste, P. Brucker, S. Knust, V.G. Timkovsky. Fourteen Notes on Equal-
Processing-Time Scheduling. Technical Report, University of Osnabrueck, Os-
nabrueck, 2002

2. P. Brucker, B. Jurisch, M. Jurisch. Open shop problems with unit time operations. ZOR
– Methods and Models of Operations Research 37, 59–73, 1993

3. P. Brucker, S. Knust. Complexity results for single-machine problems with positive
finish-start time-lags. Computing 63, 299–316, 1999

4. E.G. Coffman, Jr., R.L. Graham. Optimal scheduling for two-processor system. Acta
Informatica 1, 200–213, 1972



612 E.G. Coffman, Jr. et al.

5. M.R. Garey, D.S. Johnson. Two-processor scheduling with start-times and deadlines.
SIAM Journal on Computing 6, 416–426, 1977

6. M.R. Garey, D.S. Johnson. Computers and Intractability. Freeman, San Francisco, 1979
7. E.L. Lawler. Preemptive scheduling of precedence-constrained jobs on parallel ma-

chines. In: M.A.H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.) Deterministic
and Stochastic Scheduling, pp. 101–123. Reidel, Dordrecht 1982.

8. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy, D. Shmoys. Sequencing and scheduling:
algorithms and complexity. In: S.C. Graves, A.H.G. Rinnooy Kan, P. Zipkin (eds.)
Handbook on Operations Research and Management Science, vol. 4: Logistics of Pro-
duction and Inventory, pp. 445–552. Elsevier 1993

9. J.K. Lenstra,A.H.G. Rinnooy Kan. Complexity results for scheduling chains on a single
machine. European Journal of Operational Research 4, 270–275, 1980

10. J.Y.-T. Leung, G.H.Young. Minimizing total tardiness on a single machine with prece-
dence constraints. ORSA Journal on Computing 2, 346–352, 1990

11. R.R. Muntz, E.G. Coffman, Jr. Optimal preemptive scheduling on two-processor sys-
tems. IEEE Transactions on Computers C-18, 1014–1020, 1969

12. R. McNaughton. Scheduling with deadlines and loss functions. Management Science
6, 1–12, 1959

13. R. Sethi. Scheduling graphs on two processors. SIAM Journal on Computing 5, 73–82,
1976

14. V.G. Timkovsky. A polynomial-time algorithm for the two-machine unit-time release-
date job-shop schedule-length problem. Discrete Applied Mathematics 77, 185–200,
1997

15. V.G. Timkovsky. Is a unit-time job shop easier than identical parallel machines? Discrete
Applied Mathematics 85, 149–162, 1998

16. V.G. Timkovsky. Identical parallel machines vs. unit-time shops and preemption vs.
chains in scheduling complexity. European Journal of Operational Research (to appear)


