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Abstract

We consider the problem of allocatingm objects to n agents. Each agent has unit demand,

and has strict preferences over the objects. There are qj units of object j available and the

problem is balanced in the sense that
∑

j qj = n. An allocation specifies the amount of each

object j that is assigned to each agent i, when the objects are divisible; when the objects are

indivisible and exactly one unit of each object is available, an allocation is interpreted as the

probability that agent i is assigned one unit of object j. In our setting, agent preferences over

objects are extended to preferences over allocations using the natural lexicographic order.

The goal is to design mechanisms that are efficient, envy-free, and strategy-proof. Schulman

and Vazirani show that an adaptation of the probabilistic serial mechanism satisfies all these

properties when qj ≥ 1 for all objects j. Our first main result is a characterization of problems

for which efficiency, envy-freeness, and strategy-proofness are compatible. Furthermore, we

show that these three properties do not characterize the serial mechanism. Finally, we show

that when indifferences between objects are permitted in agent preferences, it is impossible

to satisfy all three properties even in the standard setting of “house” allocation in which all

object supplies are 1.

1 Introduction

We consider the problem of allocating m objects to n agents. Each agent i has unit demand,

and an amount qj , not necessarily integer, of object j is available. We assume that
∑

j qj = n, so

that supply and demand are balanced. An allocation A = (aij) is a non-negative n×m matrix

in which each row i adds up to 1 and each column j adds up to qj . The ith row of the allocation

matrix A is also referred to as agent i’s allocation.1 If the objects are divisible, aij is simply the

amount of object j that agent i receives; if the objects are indivisible and exactly one unit of

each object is available, we may interpret aij as the probability that agent i receives object j. 2

Each agent i has a strict preference ordering Pi over the set of objects: for objects j and k,

we say that j >Pi k (or simply j >i k) if and only if agent i strictly prefers j to k. This strict
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1We use the term “allocation” for both the matrix A, which describes the allocation for all agents, and for any

of its rows, which describes the allocation for the corresponding agent.
2This case corresponds to the well-studied “house allocation” problem [3, 7, 9]
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preference ordering over objects can be extended to a preference ordering over allocations in

many different ways. In this paper we shall restrict our attention to the lexicographic extension,

first considered in this context by Cho [4] for the probabilistic assignment of indivisible objects,

and, independently, by Schulman and Vazirani [8] for allocating divisible objects. Given two

allocations A and A′, agent i prefers the one in which he receives more of his most-preferred

object; if he receives the same amount of his most-preferred object in both, he prefers the one in

which he receives more of his second most-preferred object, etc. To state this formally, suppose

that agent i’s preference ordering over the objects is 1 >i 2 >i . . . >i m. Given two allocations

A and A′, agent i lexicographically prefers A to A′ if and only if the first non-zero entry in

(ai1 − a′i1, ai2 − a′i2, . . . , aim − a′im) is positive. Of course, agent i is indifferent between A and

A′ if and only if i’s allocation is the same in A and A′. Note that the preference ordering is

complete in the sense that given two different allocations for agent i, he will always prefer one

to the other.

A problem is completely specified by the set of agents N along with their preferences, and

the set of objects with the corresponding qj . A mechanism is a function that maps each problem

to an allocation. Typically, the goal is to design a mechanism that satisfies certain desirable

properties. To state these properties formally, it is important to define the notion of dominance.

Definition 1 (Dominance). An allocation A′ dominates an allocation A if each agent i

(weakly) prefers his allocation in A′ to that in A.

Note that each agent compares his allocation in A to that in A′ using the lexicographic

extension of his preference ordering over the objects. Using this definition of dominance, we

next define efficiency and envy-freeness for allocations.

Definition 2 (Efficiency). An allocation A is efficient if it is not dominated by any other

allocation A′.

Definition 3 (Envy Freeness). An allocation A is envy-free if each agent i (weakly) prefers

his allocation to the allocation of any other agent.

A mechanism is efficient if it associates an efficient allocation with each problem, and it is

envy-free if it associates an envy-free allocation with each problem.3 In other words, a mechanism

is said to be efficient if, in any problem, there is no way to strictly improve one agent’s allocation

without making another agent worse off; it is envy-free if each agent prefers his allocation to

that of any other agent in any problem. Our final desideratum for a mechanism is strategy-

proofness. Informally, a mechanism is strategy-proof if it is not possible for any agent to improve

his allocation by falsifying his preferences, regardless of the preferences of the other agents.

Formally:

3In this paper we shall be concerned with envy-free mechanisms only. To be able to compare allocations across

agents, we need the agent demands to be identical, and we normalize this demand to 1; this is really the rationale

for insisting a priori that every agent have unit demand. The mechanisms described here admit natural extensions

to settings in which the agents have different demands.
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Definition 4 (Strategy-proofness). For each agent i, and for each profile of preferences

P−i = (P1, P2, . . . , Pi−1, Pi+1, Pi+2, . . . , Pn), let Ai and A′i be the allocations of agent i when

the mechanism is applied to the profiles (Pi, P−i) and (P ′i , P−i) respectively. A mechanism is

strategy-proof if Ai ≥Pi A
′
i for all i, Pi, P−i, and P ′i .

Bogomolnaia and Moulin [3] proposed an important new mechanism for the house allocation

problem that they called the probabilistic serial (PS) mechanism. The specific preference model

they assumed was the one based on first order stochastic dominance (hereafter, the sd-preference

model): an agent i prefers an allocation A to an allocation A′ if A stochastically dominates A′,

or equivalently, agent i’s expected utility of A is greater than that of A′ for every utility function

consistent with his preference ordering. Although this notion leads only to a partial ordering

over allocations for each agent, they were able to show that the outcome of the PS mecha-

nism was strongly envy-free in the sense that each agent’s allocation stochastically dominates

the allocation of any other agent. Furthermore, they proved that the PS mechanism was ef-

ficient (no other allocation matrix stochastically dominates the PS outcome), but only weakly

strategy-proof (by misreporting his preference ordering, an agent cannot obtain an allocation

that stochastically dominates his true allocation). Moreover, they show that no mechanism

satisfies efficiency, envy-freeness and strategy-proofness in the sd-preference model.

Given that no mechanism is efficient, envy-free, and strategy-proof in the sd-preference

model, one can consider relaxations of these requirements. The model of this paper, due to

Cho [4] and, independently, Schulman & Vazirani [8], can be seen as a relaxation of the stochas-

tic dominance preference model, in which agents compare allocations based on lexicographic

preferences. The key motivation for considering lexicographic preferences is three-fold: first,

lexicographic preferences form a complete relation so that every pair of allocations can be com-

pared; second, it is a weakening of the stochastic dominance preference model in the sense that

stochastic dominance implies lex-dominance; and finally, it can be interpreted as a limiting case

of agents with von-Neumann-Morgenstern utilities.4

Cho [4] observed that the probabilistic serial mechanism of Bogomolnaia and Moulin [3]

satisfies all three properties when m = n, qj = 1 for all j, and the objects are indivisible. Inde-

pendently, Schulman and Vazirani [8] studied the lexicographic preference model when agents’

demands and objects’ supplies are arbitrary5 and the objects are divisible. Their algorithm—

called synchronized greedy (SG)—is efficient in all cases, envy-free when the agents have unit

(or equal) demands, and strategy-proof when the maximum amount demanded by an agent is

at most the minimum supply of an object. Specialized to our setting then, the SG mechanism

4Lexicographic preferences have a long history in the economics literature, dating back at least to Hausner [5],

who formulated the theory of lexicographic expected utility. The key point of departure from the standard

expected utility theory is that continuity is not required; thus, preferences over lotteries that do not satisfy

continuity can be represented by a vector-valued utility function, and preferences over lotteries translate to

lexicographic dominance of the corresponding utility vectors. We refer the reader to Cho [4] for a more extensive

discussion.
5Earlier, Heo [6] extended the probabilistic serial mechanism to the more general case of arbitrary object

supplies and arbitrary agent demands (not necessarily 1), but focused on sd-preference model. She showed that

the serial rule (as she termed it) is efficient, and envy-free (if agents have unit demands).
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is efficient and envy-free, and is strategy-proof whenever qj ≥ 1 for all j.

Our first result, proved in Section 2, is that when this last condition is not satisfied no

mechanism can satisfy all three properties. Specifically, we show that if there is an object j with

qj < 1, then there is an instance involving as many agents as objects for which no strategy-proof

mechanism can be both efficient and envy-free. In proving this result we assume that we are free

to choose all the parameters of the problem: the number of agents, the number (and supply)

of objects, and the preference ordering of the agents. A natural question is if a similar result

is possible for a given number of agents and a fixed set of objects with a given supply vector,

with only the agent preferences varying. For this setting, we characterize when it is possible to

find a mechanism satisfying all three properties: we show that either the synchronized greedy

mechanism is strategy-proof for every preference profile (and hence satisfies all three properties)

or no mechanism can satisfy all three properties. One way to interpret this result is that whenever

the SG mechanism fails strategy-proofness, so does every other mechanism that is envy-free and

efficient. Our next two results answer questions left open by Schulman and Vazirani [8]: In

Section 3, we show that the synchronized greedy mechanism is not the only mechanism with

these properties by constructing a “hybrid” mechanism that incorporates elements of a greedy

mechanism and the SG mechanism. This new mechanism satisfies an invariance property called

bounded invariance (defined formally in Section 3), in addition to being efficient, envy-free

and strategy-proof. An important consequence is that envy-freeness, efficiency, and bounded

invariance do not characterize the SG mechanism when agents have lexicographic preferences;

this is in sharp contrast to the sd-preference model, where these properties do characterize the

serial mechanism ( see Bogomolnaia and Heo [2]). In Section 4 we allow for the agents to

be indifferent between objects. The natural extension of the serial mechanism to this setting,

developed by Katta and Sethuraman [7], is efficient and envy-free but not strategy-proof. We

show that no mechanism can be efficient, envy-free and strategy-proof, even for the special case

of unit qj .

2 Strict Preferences: Strategy-proofness

Schulman and Vazirani show that the SG mechanism is efficient and envy-free, and is strategy-

proof whenever qj ≥ 1 for all j. We start this section by showing that, in the absence of this

last condition, no mechanism can satisfy all three properties.

Proposition 1. For any ε ∈ (0, 1), there exists a problem such that qj ≤ 1 − ε for which no

strategy-proof mechanism is both efficient and envy-free.

Proposition 1 is a special case of Theorem 1. Nevertheless, we present a detailed proof of

this result because the proof describes ideas that are used repeatedly throughout the paper.

Proof. Suppose the supply of object a is 1−ε. Consider an instance of the problem with k agents

and k objects, where k ≥ 1/ε and k ≥ 3. The supply of object c is 1 + ε, and the supply of
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every other object (including object b) is 1. We will now list the implications of a strategy-proof

mechanism that finds an efficient and envy-free allocation.

We start with the following preference profile.

1 a b · · ·
2 b c · · · a

3 b c · · · a
...

...
...

...
...

k b c · · · a

That is, the last k − 1 agents have identical preferences.

First, by (lex) efficiency, object a must be completely allocated to agent 1. Otherwise, part

of a must be allocated to some agent i 6= 1, and agent 1 must be allocated a positive amount of

some other object j 6= a; this is because each agent has a demand of 1 and less than 1 unit of a

is available. As every agent other than 1 has a as his least-preferred object, agents 1 and i can

exchange a (small) positive amount of their allocations of j and a respectively, making each of

them better off, and thus resulting in a violation of efficiency.

Second, we must have aib = 1/k for all agents i. To see why this holds, consider the following

preference profile

1 b a · · ·
2 b c · · · a

3 b c · · · a
...

...
...

...
...

k b c · · · a

in which only agent 1’s preference ordering has been changed. By envy-freeness, every agent

must be allocated 1/k units of b. Note that 1/k ≤ ε, so that agent 1 still needs at least 1 − ε
units of the other objects for his allocation to be complete. Again by efficiency, agent 1 must be

allocated all of a. So agent 1 is allocated 1 − ε units of a and 1/k units of b at this preference

profile. By strategy-proofness, the allocation at the original preference profile must be the same

for agent 1, otherwise agent 1 can manipulate at one of these profiles.

Finally, consider the allocation obtained for the preference profile

1 a b · · ·
2 b a c · · ·
3 b c · · · a
...

...
...

...
...

k b c · · · a
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which differs from the first preference profile in only agent 2’s preference ordering. Strategy-

proofness for agent 2 implies a2b = 1/k, otherwise agent 2 can manipulate at one of these profiles.

Now, envy-freeness implies ajb = 1/k for all j 6= 1, which, in turn, implies a1b = 1/k. This,

however, poses a problem: efficiency would require that agent 1 be allocated all of object a, but

agent 2 would envy agent 1 in any such allocation.

The impossibility result proved in Proposition 1 relies on our ability to choose not just the

preferences of the agents, but also the number of agents, and the number of objects (and their

availabilities). A natural question then is the following. Suppose we are given a set of agents

and objects, and suppose the qj are also fixed for the objects; a problem is then specified by

the preference profile for the given set of agents over the given set of objects. In this setting,

when is it possible to design a strategy-proof mechanism that is always efficient and envy-free?

Our next result settles this question and establishes the robustness of the probabilistic serial

mechanism in this setting.

We start with an observation about strategy-proofness in this setting. This result, whose

proof is omitted here, was proved by Cho [4].

Claim 1. Consider a preference profile P = (P1, P2, . . . , Pn), and suppose P ′i is obtained from

Pi by swapping some pair of adjacent objects in Pi, and suppose P ′ = (P ′i , P−i). Let Ai and A′i
be the allocations to agent i when a mechanism π is applied to profiles P and P ′ respectively.

Then π is strategy-proof if and only if Ai >Pi A
′
i for all i, Pi, P

′
i , P−i.

Theorem 1. Suppose there are n agents (each with unit demand) and m objects available in

quantities q1, q2 . . . , qm. Then there is a strategy-proof mechanism that is efficient and envy-free

if and only if

qa +
qb
n
> 1

for every pair of distinct objects a and b. Furthermore, whenever this condition is satisfied, the

probabilistic serial mechanism is strategy-proof.

Proof. Assume there is a distinct pair of objects a and b violating the condition of the claim,

i.e., qa + qb/n ≤ 1. We proceed as in the proof of Proposition 1. Consider the preference profile

P = (P1, . . . , Pn), where P1 = (a, b, . . .) and Pi = (b, c, . . . , a) for each i 6= 1. Efficiency requires

that object a be allocated to agent 1 completely. Strategy-proofness requires that agent 1 be

allocated at least qb/n of object b: otherwise agent 1 could report (b, a, . . .) as his preference

ordering and get qb/n units of b (by envy-freeness) and qa units of a (by efficiency). Now,

consider what happens when agent 2 reports (b, a, . . .) as his preference ordering. Strategy-

proofness implies agent 2 receives exactly qb/n units of b; efficiency requires that agent 1 receive

all of a; and in that case, 2 will envy agent 1. This argument also highlights the key role the

condition plays in obtaining the impossibility: if qa + qb/n > 1, agent 1 will not be allocated

qb/n units of b (as his demand is only 1), in which case there is no violation of envy-freeness.

This establishes the necessity of the stated condition.
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To prove its sufficiency, it is enough to show that the probabilistic serial mechanism is

strategy-proof whenever qa+qb/n > 1 for every distinct pair of objects a and b (by earlier results

of Bogomolnaia & Moulin [3] and Schulman & Vazirani [8], we know that the probabilistic serial

mechanism is envy-free and efficient for every (q1, q2, . . . , qm)). And by Claim 1, it is enough to

consider the case when some agent i swaps a pair of objects a and b that are adjacent in his

preference ordering.

Fix the preference profile P−i for all the agents except agent i. Suppose agent i ranks a

immediately before b in Pi, and swaps these two objects in P ′i . Let A and A′ be the allocations

for the profiles P = (Pi, P−i) and P ′ = (P ′i , P−i) respectively. It is clear that the probabilistic

serial algorithm makes the same choices under both P and P ′ until agent i’s best remaining

object is a or b. Let t be the first epoch at which this event happens (note that t is the same

for both problems P and P ′). If object a or object b is completely consumed by time t, there is

no change in the final allocation, so we may assume that both a and b are available at time t.

In this case, we shall show that aia > a′ia; that is, by delaying the request for object a, agent i

will obtain a smaller quantity of it.

If aij = 0 for all objects j that agent i ranks worse than a, the result is immediate: ai` = a′i`
for all ` >Pi a, and

aia = 1−
∑

`:`>Pi
a

ai` = 1−
∑

`:`>Pi
a

a′i` = 1−
∑

`:`>P ′ia

a′i` + a′ib > 1−
∑

`:`>P ′ia

a′i` ≥ a′ia.

Here we make use of the fact that at time t a positive fraction of both a and b are available,

which implies a′ib > 0.

Suppose agent i is the only agent to whom object a is allocated in P . Then aia = qa (and

qa ≤ 1 necessarily in this case). We note that this can happen only if a is the top ranked object

of agent i in P—otherwise some other object ` is the top ranked object, in which case i will

be assigned at least q`/n units of that object, and q`/n+ qa > 1 by the condition of the claim.

Therefore, when i’s preference changes to P ′, b will be the top-ranked object for agent i. So

a′ib ≥ qb/n; the condition qb/n+ qa > 1 implies then that a′ia ≤ 1− qb/n < qa.

The only remaining case is when agent i is not the only agent to whom object a is allocated,

and that agent i is allocated a positive fraction of some object that he ranks worse than a.

When the profile is P , agent i consumes a in the interval [t, ta) where ta is the epoch at which

a is completely consumed by the agents in P . By assumption t > 0 and ta < 1, and that there

is at least one other agent consuming a in the interval [t′, ta) for some t′ ∈ (t, ta). When Pi

changes to P ′i , agent i will spend some positive fraction of time consuming b; this implies that

every agent other than i will request a (weakly) earlier in P ′ than in P . Moreover, agent i starts

consuming a strictly after time t in problem P ′. These two observations imply that aia > a′ia as

required.
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3 Strict Preferences: An Alternative Mechanism

We now address one of the open questions posed by Schulman and Vazirani [8]. We start with a

description of the synchronized greedy mechanism (or simply, the serial rule) when agent demands

are not necessarily identical. Suppose the demand of agent i is ri and the supply of object j is

qj and suppose
∑

i ri =
∑

j qj . The serial rule starts at time 0 for all agents in parallel. Each

agent consumes his top-ranked object at rate ri. An object may be simultaneously consumed by

several agents. This continues until some object is completely consumed. Then instantaneously

any agent i whose most-preferred object ran out switches to his next best available object, and

begins consuming it at the same rate ri. In general, whenever an object runs out, all the agents

who were in the process of consuming it switch to their next most-preferred object that has

not yet been fully allocated. Each agent i is, at any time, consuming exactly one object, at

rate ri. At time 1, all the agents simultaneously complete their full allocation. Schulman and

Vazirani show that this mechanism is efficient, strategy-proof if maxi ri ≤ minj qj , and envy-free

whenever ri = r for all agents i.

We next define bounded invariance. A mechanism satisfies the bounded invariance property

if for any agent i and any object j, any change in agent i’s preferences involving only objects he

ranks below j does not modify the amount of object j each agent obtains. Formally:

Definition 5 (Bounded Invariance). For each agent i, each object j, let Pi and P ′i be two

preference orderings which only differ in the order of the objects that i likes less than j. For each

profile of preferences P−i = (P1, P2, . . . , Pi−1, Pi+1, Pi+2, . . . , Pn), let A and A′ be the allocations

obtained when the mechanism is applied to the profiles (Pi, P−i) and (P ′i , P−i) respectively. A

mechanism satisfies bounded invariance if for all agents i, preferences Pi, P−i, objects j, and

P ′i , akj = a′kj for all agents k.

We now turn to two natural questions. First, is the SG mechanism the only mechanism that

is efficient, strategy-proof and envy-free whenever maxi ri ≤ minj qj , and ri = r for all agents

i?6 Second, Bogomolnaia and Heo [2] showed that, for the sd-preference model, the serial rule

is characterized by efficiency, envy-freeness, and bounded invariance. Schulman and Vazirani

asked if this result was true for the lexicographic preference model. In Algorithm 1 we present

a strategy-proof mechanism that is both efficient and envy-free under the required conditions.

Furthermore, we argue that the mechanism in Algorithm 1 also satisfies the bounded invariance

property, thus answering both questions in the negative.

The Hybrid mechanism, shown in Algorithm 1, treats the most-preferred objects differently

than the rest of the objects. Any object that is over-demanded—meaning supply is at most the

demand—is fully allocated to the agents who demand it, and their demands are adjusted down

by this amount; any agent who demands an object that is not over-demanded is allocated an

amount s ≤ 1, where s is the smallest allocation given to the agents who consume over-demanded

objects. If every agent’s demand is met, the algorithm stops; otherwise, the SG mechanism is

applied to the residual problem.

6Note that, by normalizing, we may assume without loss of generality that ri = 1 ∀1 ≤ i ≤ n.
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Algorithm 1 A Hybrid Mechanism

Input: Agents’ strict preference lists, ri = 1 for all agents, qj ≥ 1 for all objects.

Output: A lex-efficient, envy-free, strategy-proof allocation.

Step 1) (greedy (partial) allocation) For each object j, let Sj be the set of agents who have j

as a top choice and s = minj
qj
|Sj | . Assign each object j as follows:

(a) if qj ≤ |Sj |, assign
qj
|Sj | units of j to each i ∈ Sj .

(b) otherwise, assign s units of j to each i ∈ Sj

Update the remaining capacities of the agents and quantities of the objects accordingly. Re-

move from the problem all agents who have completed their allocation and all objects that

have been fully assigned.

Step 2) Complete the allocation using the synchronized greedy mechanism.

Theorem 2. The Hybrid Mechanism is efficient, envy-free and strategy-proof whenever ri = 1

for all i and qj ≥ 1 for all j.

Before we present the proof of Theorem 2, we argue that both the Hybrid mechanism and

the SG mechanism satisfy bounded invariance. Suppose we apply the Hybrid mechanism to the

profiles P = (Pi, P−i) and P ′ = (P ′i , P−i) as in the definition of bounded invariance. It is clear

that the mechanism makes the same choices under both P and P ′ at least until object j is fully

allocated, as both preference profiles agree for all objects that i likes at least as much as j.

Therefore, object j will be identically allocated in both problems. The same argument can be

used to show that the SG mechanism satisfies bounded invariance.

Remark. One fact worth noting is that the SG mechanism (equivalently, the serial rule) is

sd-envyfree, which means that the allocation of an agent stochastically dominates the allocation

of any other agent. Trivially, sd-envyfreeness implies envy-freeness in the lexicographic sense.

Furthermore, it is easy to see that the Hybrid mechanism is not sd-envyfree. Indeed, Bogomol-

naia [1] shows that the SG mechanism is the only one satisfying efficiency, sd-envyfreeness, and

bounded invariance.

We conclude this section by presenting the proof of Theorem 2.

Proof of Theorem 2. For each agent i and each object j, let r′i be the remaining requirements

of agent i and q′j be the remaining quantity available of object j after Step 1 is completed. As

all agents with r′i = 0 and all objects with q′j = 0 are removed from the problem, we will just

focus on the agents and objects with r′i > 0 or q′j > 0 respectively.
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Recall that
∑

j qj = n and each qj ≥ 1, so 0 < s ≤ 1 in Step 1 of the algorithm. If in fact,

when s = 1, every agent is allocated one unit of his most-preferred object, and the Theorem

follows trivially. Therefore we will assume that 0 < s < 1 in Step 1 of the algorithm.

Efficiency. Efficiency of the Hybrid mechanism follows from a simple observation that it is a

particular case of the “extended” SG mechanism of [8], in which each agent i has an arbitrary

speed function ηi(·) : [0, 1] → R+ such that
∫ 1
0 ηi(t)dt = 1. The speed function of an agent

i in the Hybrid mechanism depends on whether i’s most-preferred object j is over-demanded

(meaning qj ≤ |Sj |) or not (meaning qj > |Sj |). In the latter case, the speed function is 1 over

the interval [0, 1]; in the former case, the speed function is
qj

s|Sj | in the interval [0, s], and
1−qj/|Sj |

1−s
in the interval (s, 1]. Note that the speed function of the agents whose most-preferred object is

under-demanded is at least 1 initially, and is at most one in the interval [s, 1]. Schulman and

Vazirani [8] showed that any mechanism in this class is efficient, and this implies the efficiency

of the Hybrid mechanism.

Envy-freeness. Suppose agent i has j as his most-preferred object. We first show that the

only agents that i potentially envies are those in Sj , i.e., an agent will never envy the allocation

of someone who did not obtain the same object as him in Step 1 of the algorithm. If qj ≤ |Sj |,
this follows trivially as all agents outside Sj will get zero units of j, while i gets a positive

amount. On the other hand, if qj > |Sj |, each agent in Sj obtains s units of j in Step 1 and will

start Step 2 with j as his top choice. In Step 2, the “eating speed” of the agents in Sj is at least

as much as the “eating speed” of any other agent in the problem. Therefore, the agents who are

in Sj will be allocated at least s extra units of j than those who are outside of Sj . Thus, the

only agents that i potentially envies are those in Sj . However, i cannot envy any agent i′ ∈ Sj
because their eating speeds are identical throughout.

Strategy-Proofness. Finally, we show that the mechanism is strategy-proof whenever min qj ≥
1. Recall that, by Claim 1, it is sufficient to show that no agent can benefit by swapping adjacent

objects in his preference profile.

Fix an agent i, and consider two preference profiles P and P ′ that differ only in i’s report.

Suppose also that a is ranked just above b in P , whereas their order is swapped in P ′.

We first consider the case when a is not the most-preferred object of agent i. In this case, the

outcome of Step 1 of the Hybrid mechanism is the same for profiles P and P ′; Step 2 is simply

an application of the SG mechanism to the problem that remains after Step 1, and so the result

would follow if we can show that the SG mechanism is strategy-proof on this resulting instance.

By the result of Schulman and Vazirani [8], it is enough to show that maxi:r′i>0 r
′
i ≤ minj:q′j>0 q

′
j ,

where r′i and q′j are the residual demand and supply of agent i and object j respectively. First,

note that all agents obtain at least s units of an object in Step 1 and this bound is tight, hence

maxi:r′i>0 r
′
i = 1 − s. Second, for all objects j with Sj = ∅, q′j = qj ≥ 1 > 1 − s. If qj ≤ |Sj |,

object j is fully allocated in Step 1 and is removed from the problem. The only objects that

remain are those with qj > |Sj | and |Sj | ≥ 1. For such objects, exactly s units of it are assigned
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to each agent in Sj , so the remaining quantity q′j = qj − s|Sj | > (1 − s)|Sj | ≥ (1 − s). Thus,

maxi:r′i>0 r
′
i ≤ minj:q′j>0 q

′
j as required.

We now consider the case when a is the most-preferred object of agent i and b is his second

most-preferred object. Let α (resp. β) be the amount of a agent 1 gets when he reports a

(resp. b) as his top-choice. We prove the result by showing that α > β. Define S′a = Sa\{i},
S′b = Sb ∪ {i}, S′j = Sj for all objects j 6= a, b and let s′ = minj

qj
|S′j |

.

Case 1: qa ≤ |Sa| − 1. In this case a will be fully distributed in Step 1 of the Hybrid

mechanism, in both P and P ′. Thus α = qa/|Sa| > 0, whereas β = 0.

Case 2: |Sa| − 1 < qa ≤ |Sa|. In this case α = qa/|Sa|. If agent i ranks b first followed

by a, each agent in S′a will get s′ units of a in Step 1 and will have an eating speed (1 − s′)
in Step 2; agent i will consume only b in Step 1, and his maximum eating speed in Step 2 is

(1 − s′). So if agent i is able to obtain β units of a in Step 2, each of the agents in S′a will

obtain at least β units of a in Step 2 as well. As only qa units of a are available, we must have

(s′ + β)|S′a| + β = s′|S′a| + β|Sa| ≤ qa. Dividing both sides by |Sa| and observing that s′ > 0,

it follows that β < α.

Case 3: qa > |Sa|. Here, qa/|Sa| > 1, and so a cannot be the object that determines s in

the original problem P . As qj/|S′j | ≤ qj/|Sj | for every j 6= a, we must have s′ ≤ s. Furthermore,

note that β—the quantity of a that agent i obtains by misreporting—is maximized whenever i

obtains s′ units of b and b is fully allocated at the end of Step 1, so we will assume that is the

case. In this case, s′ = qb/|S′b|.
Let F = {j : j 6= b and qj > |Sj |} and E = {j : j 6= b and qj ≤ |Sj |}. The sets F and

E partition the set of objects other than object b; furthermore, only the objects in F remain

in the problem in Step 2, and a ∈ F . We analyze how the problem obtained in Step 2 changes

because of agent i’s misreport.

• For every j ∈ F , the amount of j at the beginning of Step 2 changes from qj − s|Sj | to

qj − s′|S′j |, and all the agents in S′j have eating speeds (1 − s′) instead of (1 − s). In

particular, for j 6= a, the quantity available increases by (s − s′)|Sj | units, whereas for

object a the quantity increases by (s− s′)|Sa|+ s′. These agents all eat at a faster speed

of (1− s′) rather than (1− s).

• Object b is fully allocated, and the agents in S′b have speed (1−s′). In the original problem

b may or may not have been fully allocated, and the agents in Sb will have had an eating

speed of at most (1− s).

• An agent whose most-preferred object is in E will have the same speed in both P and P ′,

as his allocation in Step 1 will be the same in both problems.

• Except possibly for b, only the objects in F remain in Step 2, in both P and P ′.
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For each object j ∈ F (including a), let Tj be the epoch at which j is fully allocated in

problem P and T ′j be the epoch at which it is fully allocated in P ′. Then, β = (1 − s′)T ′a and

α = (1− s)Ta + s. To show that the mechanism is strategy-proof, we need to show that β < α,

or equivalently:

T ′a <
(1− s)
(1− s′)

Ta +
s

(1− s′)
= Ta +

(s− s′)
(1− s′)

(1− Ta) +
s′

(1− s′)
.

Let T = (1−s)
(1−s′)Ta + s

(1−s′) , and let X (resp. Y ) be the total amount of a consumed by

agents in Sa (resp. outside Sa) during the second step in problem P . Note that a total of

X + Y + (s− s′)|Sa|+ s′ units of a are available at the beginning of the second step of P ′. We

shall establish that T ′a < T as follows: (i) Show that by time T , the agents in Sa (including i)

would have consumed more than X + (s − s′)|Sa| + s′ units of a in P ′, and (ii) show that by

time T , agents outside Sa would have consumed at least Y units of a in P ′. Together, these two

statements imply that a will be exhausted by time T , and therefore T ′a < T as desired.

To show (i), note that the X = |Sa|(1− s)Ta units of a consumed by the agents in Sa during

the second step of P can now be consumed by those agents at a faster rate in exactly (1−s)
(1−s′)Ta

units of time. The additional (s − s′)|Sa| + s′ units can be consumed in (s−s′)|Sa|+s′

(1−s′)|Sa| < s
(1−s′)

units of time, as |Sa| ≥ 2. This proves statement (i).

To prove (ii), we show that T ′j ≤ Tj + (s−s′)
(1−s′) for all Tj < Ta, by induction on the epochs at

which the objects are fully allocated in the original problem. Suppose Tj1 ≤ Tj2 ≤ . . . ≤ Ta. If

j1 ∈ E or j1 = b, the result is trivially true, as these objects are fully allocated (weakly) earlier

in P ′ than in P . If j1 ∈ F and |Sj1 | = ∅, the same quantity of j1 is available in both problems,

and as each agent consumes weakly faster in P ′ than in P , T ′j1 ≤ Tj1 < Tj1 + (s−s′)
(1−s′) and the result

follows. Finally, if j1 ∈ F and |Sj1 | 6= ∅, note that (s − s′)|Sj1 | additional units available in P ′

than in P . Every agent who has an object in E as his top-choice and j1 as his second choice has

the same eating-speed in both problems, and therefore will consume the same amount of j1 by

time Tj1 . Moreover, at least |Sj1 | agents will obtain j1 at rate (1− s′) in P ′, and can collectively

consume the same number of units as before plus the additional (s−s′)|Sj1 | by time Tj1 + (s−s′)
(1−s′) .

Therefore, it follows that by time Tj1 + (s−s′)
(1−s′) the object j1 must be fully consumed.

Now suppose this inequality holds for every object up to jk−1 and consider jk. Each agent

can start to consume jk at most (s−s′)
(1−s′) units later in P ′ than in P . The later the agents start

consuming this object, the longer it will remain in the problem. Therefore, the worst case is

that every agent starts consuming jk exactly (s−s′)
(1−s′) units of time later in P ′ than in P . If the

same amount of object jk is available in both P and P ′, T ′jk ≤ Tjk + (s−s′)
(1−s′) follows by observing

that the eating speed of any agent in P ′ is (weakly) greater than his eating speed in P . If jk is

available in different amounts, the result is obtained by the above argument plus the fact that

the additional amount of (s− s′)|Sjk | will run out before time Tjk + (s−s′)
(1−s′) .

The above result implies that every agent outside Sa will start consuming a at most (s−s′)
(1−s′)

units of time later in P ′ than in P . As the eating speeds of the agents are (weakly) greater

in P ′, by time Ta + (s−s′)
(1−s′) ≤ Ta + s′

(1−s′) < T they would have collectively consumed at least
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Y units of a, where the first inequality follows from the following observation: by definition

s′ = qb
|S′b|

= qb
|Sb|+1 , and s ≤ qb

|Sb| plus |Sb| ≥ 1 implies s′ ≥ (s− s′).

�

4 An impossibility result for the full domain

In this section we consider a version of the problem when agents may be indifferent between

objects. When preferences are strict and when the qj are all 1, the probabilistic serial mechanism

is envy-free, efficient, and strategy-proof. When indifferences are permitted, there is a natural

generalization of the probabilistic serial mechanism (see Katta and Sethuraman [7]) that is

always envy-free and efficient; however, it is easy to show that this mechanism is not strategy-

proof. We next show that no mechanism can be efficient, envy-free and strategy-proof, even for

the special case of unit qj .

Theorem 3. Suppose there are at least 6 agents and 6 objects and suppose ri = qj = 1 for all

i and j. If the agents are allowed to report indifferences, then no strategy-proof mechanism can

be both efficient and envy-free.

Proof. We start by proving the claim when there are exactly 6 agents and 6 objects. Consider

the following preference profile:

1 a {b,c,d} . . .

2 a b c d e f

3 a b c e f d
...

...
...

6 a b c e f d

Agents 3 through 6 have identical preferences. Only agent 1, who likes objects b, c, and

d equally—reports indifferences. As with earlier proofs, we explicitly list the implications of

efficiency, envy-freeness and strategy-proofness.

First, by envy-freeness, each agent must receive exactly 1/6 units of object a as it is the

unique top-ranked object for all agents.

Second, by efficiency, a1b = a1c = 0. For otherwise, agent 1 is allocated a positive amount

of b or c, and some other agent j has a positive amount of d; agents 1 and j can then engage

in a Pareto-improving exchange, contradicting efficiency. Therefore, by envy-freeness, agents 2

through 6 each receive 1/5 units of b and 1/5 units of c.

Third, by strategy-proofness, 1 must be allocated 5/6 units of d. To see this, consider what

happens when 1 reports the ordering a, b, c, d, e, f (the same as agent 2). In this case, by envy-

freeness, objects a, b, and c will each be shared equally by all the agents; object d, which is the

last choice of agents 3 through 6 cannot be assigned to them, and so will be shared equally by

agents 1 and 2 because of efficiency considerations. Thus agent 1 will be assigned 1/6 of a, 1/6
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of b, 1/6 of c, and 1/2 of d under the new report. So agent 1 must be assigned 5/6 units of d for

the mechanism to be strategy-proof. This, in turn, implies that agent 2 is assigned exactly 1/6

units of d (anything less will be inefficient). As 1
6 + 1

5 + 1
5 + 1

6 < 1, agent 2 must own some of

either e or f . In fact we can say something stronger: by strategy-proofness, agent 2 must obtain

exactly 1/5 units of e. Why? If 2 reports his preference ordering to be a, b, c, e, d, f (i.e. if 2

swaps e and d in his preference ordering), he obtains exactly 1/5 of object e. By envy-freeness,

he cannot obtain more than 1/5—recall that agents 2-6 get identical shares of a, b, and c; if 2

is assigned more than 1/5 of e, at least one of the agents 3-6 has to be assigned less than 1/5 of

e resulting in that agent envying agent 2).

Finally, consider what happens when agent 3 reports the ordering a, b, c, e, d, f . Strategy-

proofness implies a3e = 1/5 as otherwise agent 3 can manipulate at one of the profiles. In

addition, by the same arguments as before, agent 1 must still be allocated 5/6 units of d. Envy-

freeness then implies that a4e = a5e = a6e = 1/5 which then forces a2e = 1/5 as well. We

now look at agent 2’s allocation when 3 reports this new ordering. If a2d = 1/6 as before then

3 envies 2; if a2d < 1/6, then efficiency is violated: at least one of the agents 3 through 6 is

allocated a positive amount of d who can give that up for an equal amount of e. This establishes

the claim for the case of 6 agents and 6 objects.

Suppose there are n > 6 agents, and let G be the set of all objects with |G| = n. Partition

G into G1 = {a, b, c, d, e, f}, G2 = G\G1, and consider the following class of preference profiles:

1 a {b,c,d} . . . G2

2 a b c d e f G2

3 a b c e f d G2

...
...

...

6 a b c e f d G2

7 G2 . . . G1

...
...

...

n G2 . . . G1

Agents 1 through 6 have the same preferences over the objects in G1 as in the earlier proof;

each of these agents arbitrarily order the objects in G2 after the objects in G1. Each agent

i = 7, 8, . . . , n has arbitrarily order the objects in G2 before ordering the objects in G1. Efficiency

dictates that the objects in G1 be allocated to the agents 1 through 6, and that the objects in

G2 to the remaining agents.

5 Discussion

Our results shed additional insight into allocation mechanisms when agents have lexicographic

preferences. Specifically, we show that envy-freeness, efficiency, and strategy-proofness do not

characterize the serial rule if agents have lexicographic preferences, even in the restricted set-
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ting of unit demands and supplies. In addition, we show that the rule is not characterized

by envy-freeness, efficiency and a property called bounded invariance. This is in stark con-

trast to the standard setting when agents have “sd-preferences”: there, efficiency, envy-freeness

and bounded-invariance, characterize the serial mechanism. An interesting open question is to

characterize the serial rule by natural additional properties, or by a different combination of

properties.

When agents have “sd-preferences” the generalization of the serial rule described by Katta

and Sethuraman [7] finds an allocation that is envy-free and efficient. There, they showed that

the extended serial rule fails strategy-proofness, but so does every rule that is efficient and

envy-free. We develop a parallel result, but for the lexicographic preference model. Specifically,

we show that when the agents are allowed to be indifferent between objects, no mechanism

can satisfy all three properties, even when ri ≡ 1 and qj ≡ 1. It remains an interesting open

question to characterize the problems for which it is possible to design an envy-free, efficient,

and strategy-proof mechanism when indifferences are permitted.
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