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Abstract

We study a generalization of the well known house allocation problem in which agents may

own fractions of different houses summing to an arbitrary quantity, but have use for only the

equivalent of one unit of a house. We also depart from the classical model by assuming that

arbitrary quantities of each house may be available to the market. Justified envy considera-

tions arise when two agents have the same initial endowment, or when an agent is in some

sense disproportionately rewarded in comparison to her peers. For this general model, we

design an algorithm to find a fractional allocation of houses to agents that satisfies ordinal

efficiency, individual rationality, and no justified envy. Our results extend to the full preference

domain. We show that individual rationality, ordinal efficiency, and no justified envy conflict

with weak strategyproofness. We also show that individual rationality, ordinal efficiency and

strategyproofness are incompatible. Finally, we prove that two reasonable notions of envy-

freeness, no justified envy and equal-endowment no envy, conflict in the presence of ordinal

efficiency and individual rationality. All our impossibility results hold in the strict preference

domain.
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1 Introduction

In this paper, we consider the problem of allocating a number of objects (say houses) to agents

in an efficient and fair manner. Agents have complete and transitive preferences over the houses,

and each agent wishes to be allocated the equivalent of at most one house. The distinguishing

feature of our model is that agents may be endowed with fractional amounts of various houses.

This model is a common generalization of several well-studied models that have received a lot

of attention in the literature. If each agent is endowed with a distinct house, we recover the

housing market model, first considered by Shapley and Scarf [9]. For this model, Shapley and

Scarf proposed the Top-Trading Cycles mechanism (attributed to Gale) that finds the unique core

allocation of the associated cooperative game. The TTC mechanism is Pareto efficient, strate-

gyproof, and is individually rational (precise definitions are given later). Ma [7] later proved that

the TTC mechanism is characterized by these properties. At the other extreme, if agents have

no endowments, we recover the random assignment problem considered by, among others, Ab-

dulkadiroglu and Sonmez [1], and Bogomolnaia and Moulin [4]. Abdulkadiroglu and Sonmez [1]

study the random priority (RP) mechanism: agents are ordered randomly, they choose houses in

this order, and each agent picks her most preferred house among the set of houses still available.

This mechanism is strategyproof, ex-post Pareto efficient, and satisfies equal treatment of equals.

An alternative mechanism—probabilistic serial (PS)—for the same problem was proposed by Bo-

gomolnaia and Moulin [4]: at each point in time, agents consume their best available houses at

unit rate. The resulting assignment can be implemented as a lottery over efficient deterministic

assignments. Bogomolnaia and Moulin [4] showed that the PS mechanism finds an allocation that

is envy-free and is ordinally efficient (a stronger form of efficiency), but satisfies strategyproofness

only in a weaker sense. Katta and Sethuraman [5] extended the PS mechanism to the full prefer-

ence domain, and proved that envy-freeness and ordinal efficiency are incompatible with even the

weaker form of strategyproofness. Finally, Abdulkadiroglu and Sonmez [2] and Yilmaz [10] have

considered house allocation problems with existing tenants:1 in this model, some agents have no

endowments (“new tenants”) and others are endowed with a distinct house (“existing tenants”).

In such models, in addition to fairness and efficiency, it is natural to require individual rationality:

absent such a requirement, agents may not participate in the mechanism in environments where

such participation is voluntary. Abdulkadiroglu and Sonmez [2] designed a natural mechanism for

this problem that specializes to the TTC mechanism when there are no new tenants, and to the

1A later version of Yilmaz’s work includes a brief discussion of how his algorithm can be adapted to the fractional

endowment setting considered in this paper.
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RP mechanism when there are no existing tenants. Recently, Yilmaz [10] proposed a mechanism

that specializes to the PS mechanism when there are no existing tenants, but is different from the

TTC mechanism when there are no new tenants.2 Note that in models with endowments expect-

ing envy-free assignments that are also individually rational may be unreasonable, as these two

requirements may be in obvious conflict with each other. A key contribution of Yilmaz [10] is his

definition of justified and unjustified envy, which shows how to interpret the equity requirement

when agents have different endowments.

Contributions. In our model, agents are allowed to have arbitrary endowments over the houses.

Thus, the model we propose—House allocation with fractional endowments—is a common gener-

alization of most of the existing models in the context of house allocation. For the house allocation

problem with fractional endowments, we design an algorithm to find an assignment that is in-

dividually rational, ordinally efficient, and satisfies the no justified envy criterion of Yilmaz [10].

This algorithm generalizes the work of Yilmaz [10] who designed an algorithm with these prop-

erties for the special case of 0-1 endowments. Similar to Yilmaz’s algorithm, our algorithm is

computationally efficient (its running-time is polynomial in the size of the input), and works by

solving a sequence of maximum flow problems. These algorithms are in the spirit of earlier work

of Katta and Sethuraman [5], and can be viewed as a generalization of their result to this sub-

stantially more general model. We further show that individual rationality, ordinal efficiency, and

no justified envy are incompatible with weak-strategyproofness, a very mild incentive compati-

bility requirement. Somewhat surprisingly, we also show that ordinal efficiency and individual

rationality alone are incompatible with strategyproofness. This negative result holds even in the

canonical instance of the model in which there are n agents and n houses and each agent owns 1/n

of every house. In the context of random assignment, this finding suggests that endowing each of

n agents with 1/n of every house and allowing them to trade their “endowments” cannot lead to a

truthful allocation procedure. Property rights are, in this sense, not helpful in overcoming related

impossibility results in the random assignment problem (Bogomolnaia and Moulin [4]). Finally,

we prove that, under ordinal efficiency and individual rationality, no justified envy conflicts with

the fairness requirement that no two agents with equal endowments envy each other. All of our

impossibility results hold even in the strict preference domain, and apply even when we substitute

no justified envy with weaker equity criteria.

2Sethuraman [8] proposed a solution for this problem that specializes to the PS mechanism when there are no

existing tenants and to the TTC mechanism when there are no new tenants.
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Applications. House allocation and random assignment models have significant applications—

the allocation of scarce on-campus housing is one celebrated example. Our model addresses

any situation in which agents collectively own a bundle of goods, allowing for separate individual

ownership. Owning a fraction of a good could reflect the probability of an agent actually possessing

the good in question, provided that endowments sum to less than 1. In the context of dorm room

allocation it could also reflect the relative “right” an agent has over a certain room.

Another interpretation of fractional individual ownership rests on thinking of goods as divisible

entities. (This is in contrast to the classical models where goods are assumed to be indivisible

and a fractional allocation of goods to agents is viewed as a lottery assignment.) This approach

makes particular sense in markets where time-sharing is an option. If a good may be consumed

at different times during the course of a given time period, then owning a fraction of it simply

reflects the amount of time an agent is entitled to consuming it.

Finally, one can view our model as a way of improving upon a given lottery. Imagine a

situation in which the final assignment of objects to agents will be made based on a given fractional

assignment matrix. Interpreting this fractional assignment matrix as the endowment of the agents,

the mechanism proposed here computes an alternative assignment matrix in which each agent’s

random allocation stochastically dominates her endowment, yielding a “superior” lottery for each

agent. Ordinal efficiency of the proposed mechanism implies that this new lottery cannot be

improved upon for all the agents simultaneously.

Organization of the Paper. We discuss the model more formally in §2. Section 3 contains

a description of the algorithm to find a solution for any given instance of the house allocation

problem with fractional endowments; it also proves that the algorithm finds an assignment that is

individually rational, ordinally efficient, and has no justified envy. Section 4 contains a collection

of impossibility results. We discuss several extensions in §5 and end with a brief discussion of

future research in §6.

2 Model Description

2.1 Model

Consider a market with n agents I = {1, 2, ..., n} and n houses H = {h1, h2, ..., hn}. Suppose

agent i is endowed with eij units of house hj , with each eij ∈ [0, 1]. We assume that each agent

owns at most the equivalent of a full house, and that at most one unit of any house is owned by
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the agents. In other words, the endowment matrix can be represented by a doubly sub-stochastic

matrix.3

h1 h2 . . . hn

1 e11 e12 . . . e1n

2 e21 e22 . . . enn
...

...
...

...
...

n en1 en2 . . . enn,

with the rows indexed by the agents and the columns by the houses. Each agent i has (ordinal)

preferences over the set of houses expressed by the complete and transitive relation �i.
4 If houses

hj and hk are such that hj �i hk and hk �i hj then agent i is indifferent between houses hj and

hk, denoted by hj ∼i hk. If hj �i hk, but hk 6�i hj , then agent i strictly prefers hj to hk, denoted

by hj �i hk. It is clear that the relation ∼i is symmetric and transitive, and that the relation �i

is antisymmetric and transitive.

An allocation for agent i is a vector pi = (pi1, pi2, . . . , pin) such that
∑

j pij ≤ 1. The inter-

pretation is that in allocation pi, agent i consumes pij units of house hj . As is clear from the

definition of an allocation, we consider environments in which agents desire at most the equivalent

of “one house.” The allocations for all the agents can be described by an assignment matrix, with

the rows indexing the agents and columns indexing the houses; like the endowment matrix, the

assignment matrix will be a doubly sub-stochastic matrix. In this work, we explore mechanisms

for allocating the houses to the agents satisfying some desirable properties, described next.

2.2 Mechanisms and Properties

A mechanism is a function that determines an assignment matrix for every possible profile of pref-

erences and endowments. The desirable properties of a mechanism typically stem from efficiency,

truthfulness, and equity considerations.

Efficiency. For agent i, an allocation pi dominates qi, denoted pi �i qi,

pi �i qi ⇔
∑
k�ih

pik ≥
∑
k�ih

qik, for all h ∈ H.

3All of the results extend to the more general case in which an arbitrary amount (instead of 1) of each house is

available in the market. See §5 for this and other generalizations.
4All of our results extend in a straightforward manner to the case in which �i is quasi-transitive, and also to

the case in which �i is a partial order. We omit the details.

5



If at least one of the above inequalities is strict, then pi strictly dominates qi, and is denoted

pi �i qi. (The dominance relation described here is simply the first-order stochastic dominance.)

Note that � is a partial order and certain allocations are not comparable: for example, getting

the second best object for sure cannot be compared to getting 1/2 unit each of the best and worst

objects. The dominance relation defined on individual allocations extends to assignment matrices

in a natural way: an assignment matrix P dominates an assignment matrix Q if pi �i qi for every

agent i; P strictly dominates Q if P dominates Q, and if pi �i qi for some agent i. An assignment

matrix P is said to be ordinally efficient (or simply efficient) if P is not strictly dominated by any

assignment matrix Q. A mechanism is efficient if it determines an efficient assignment matrix for

every profile of preferences and endowments.

Individual Rationality. Consider an environment in which participation is voluntary. If the

mechanism finds an allocation pi for agent i such that pi �i ei, then agent i will always participate.

Otherwise i may choose not to participate, which may result in an inefficient assignment. So, an

assignment P is said to be individually rational if pi �i ei for each agent i. A mechanism is

individually rational if it determines an individually rational allocation for every agent.

Truthfulness. In many application contexts, preferences of the agents are not observable, but

should be elicited from them. A natural, but fairly strong, requirement then is a mechanism in

which it is a (weakly) dominant strategy for agents to reveal their preferences truthfully. As not

every pair of allocations can be compared, there are two versions of this property. A mechanism

is said to be strategyproof if for every agent i, the allocation she obtains by reporting her true

preferences (weakly) dominates the allocation she obtains by reporting any other preference,

regardless of what the other agents do. A mechanism is said to be weakly strategyproof if for

every agent i, the allocation she obtains by reporting her true preferences is not dominated by the

allocation she obtains by reporting any other preference, regardless of what the other agents do.

Equity. A minimal requirement of fairness is the familiar property of equal treatment of equals

(ETE), which states that two agents with identical endowments and preferences should receive

identical allocations. Formally a mechanism satisfies ETE if it finds an allocation such that

pi = pi′ whenever ei = ei′ and �i = �i′ , for any pair of agents i and i′.

A stronger requirement is envy-freeness, which states that each agent’s allocation (weakly)

dominates every other agent’s allocation. That is, for any agent i, pi �i pi′ for every agent

i′. Indeed this property has been considered in many economic contexts, notably in the house
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allocation problem with no endowments. For the model with endowments, however, envy-freeness

is too strong a requirement as it is in obvious conflict with individual rationality. For instance,

suppose agents i and i′ both have house hj as their most preferred choice, but i owns hj . In this

case individual rationality dictates that i be allocated hj fully, but i′ will necessarily envy i in

this allocation. Thus, any reasonable definition of envy in this context should take into account

the fact that a mechanism may be forced to treat agents differently because they have different

endowments. We define two notions of envy-freeness in this context (neither one of which implies

the other), which are described next.

First, we can require envy-freeness only amongst agents who have identical endowments: this

is a natural property and a reasonable requirement because two agents with identical endowments

bring exactly the same resources to the group, so any differences in their final assignment should

be explained solely by their preferences. We say that a mechanism satisfies equal-endowment no

envy (EENE) if agents with the same initial endowments do not envy each other. In other words,

a mechanism satisfies EENE if it finds an allocation P such that pi �i pi′ whenever ei = ei′ .

An alternative notion—no justified envy—has been proposed by Yilmaz [10] for the house-

allocation model with existing tenants, a special case of our model in which the endowment matrix

is 0-1 and sub-stochastic. He distinguishes between two kinds of envy: justified and unjustified.

The difference is explained by the following two examples, both due to Yilmaz.

Example 1. Consider the following instance of the house allocation problem with three

agents {1, 2, 3} and three houses {a, b, c}. Agent 1 prefers a to b and b to c; agents 2 and 3 prefer

b to a and a to c. The initial endowments are specified in braces, next to the preference ordering.

Here, agent 1 is endowed with house b, agent 2 with a, and agent 3 with c.

1 : a � b � c {b}
2 : b � a � c {a}
3 : b � a � c {c}

It is clear that the only individually rational and efficient assignment is

a b c

1 1 0 0

2 0 1 0

3 0 0 1
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Clearly agent 3 will envy both agents 1 and 2. However, this envy is not justified because it

is not possible for agents 1 and 2 to give up any portion of their endowments to agent 3, receive

a positive share of house c and still maintain individual rationality. In contrast, consider the

following example:

Example 2.

1 : a � c � b {b}
2 : b � c � a {a}
3 : b � a � c {c}

The assignment discussed earlier—giving a to 1, b to 2, and c to 3—is still individually rational

and efficient. However there are other individually rational and efficient allocations because agents

1 and 2 are willing to give up some of b and a respectively for any house in the sets {a, c} and {b, c}
respectively. In this context, if all of c is allocated to agent 3, then this agent could justifiably

envy agents 1 and 2. This is because instead of giving agents 1 and 2 their best houses, the

mechanism could have found a different allocation in which agents 1 and 2 do a little worse, still

maintain individual rationality, and agent 3 does a little better. In particular, the assignment

a b c

1 1
2 0 1

2

2 0 1
2

1
2

3 1
2

1
2 0

is individually rational, efficient, and is envy-free.

Yilmaz [10] formalizes these observations into the following definition: an agent i justifiably

envies an agent i′ if i’s allocation does not dominate i′’s, and if i’s allocation is an individually

rational allocation for agent i′. Formally, i justifiably envies i′ if

pi 6�i pi′ and pi �i′ ei′ .

Equivalently, i does not justifiably envy i′ if

pi �i pi′ or pi 6�i′ ei′ .

We say that a mechanism satisfies no justified envy if in the assignment it determines, no agent

justifiably envies any other agent. 5 This definition of NJE is motivated by the following consid-

eration: if pi 6�i pi′ , then agent i could potentially prefer the allocation pi′ to pi; however, if NJE

5We could require further that the allocation of agent i′ dominate i’s endowment. But this makes it more difficult

for justified envy to exist, so no justified envy becomes easier to satisfy.
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is satisfied, this implies that pi is not even an individually rational allocation for agent i′. In a

way, this definition of NJE traces any potential envy in the final allocation to the difference in

the endowments the agents start with.

We conclude this section by pointing out that the model we consider generalizes some of the

most prominent models studied in the house allocation literature. In particular:

• If the endowment matrix is a permutation matrix, we recover the classical house trading

model of Shapley and Scarf [9] in which each agent owns a distinct house.

• If the endowment matrix is identically zero, we get the random assignment problem consid-

ered by Abdulkadiroglu and Sonmez [1], Bogomolnaia and Moulin [4], Katta and Sethura-

man [5], and others.

• If the endowment matrix is {0, 1} with each column sum at most 1 and each row sum

at most 1, we obtain the house allocation problem with existing tenants, considered by

Abdulkadiroglu and Sonmez [2] and Yilmaz [10].

3 The Controlled-Consuming (CC) Algorithm

In this section we design an efficient algorithm to find an allocation satisfying individual rational-

ity, ordinal efficiency, and no justified envy. To make the discussion transparent and to keep the

notation short, we shall restrict attention to the case in which the agents have strict preferences

and have doubly stochastic endowment matrices. In Section 5, we show how our algorithm can

be adapted to deal with indifferences and more general endowment profiles.

The CC algorithm falls under the general class of simultaneous eating algorithms, first in-

troduced by Bogomolnaia and Moulin [4]. In particular, it allows each agent to “eat” her most

preferred available house at rate 1, as long as there is some way to complete the assignment so

that the individual rationality constraints are not violated ; this continues until some house is com-

pletely consumed, or some individual rationality constraint is in danger of being violated. In the

latter case the agents, whose continued consumption of their best available houses would violate

some individual rationality constraint, are forbidden from consuming their most preferred houses

even if they are available, and they move on to their next best house.

3.1 Flows and Cuts

A network (V,A) consists of a set V (called nodes) and a set A (called arcs) of ordered pairs

of distinct elements of V , along with some additional data associated with V and A such as
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capacities and costs. A useful model to keep in mind is that of a transportation network: the

nodes represent demand or supply points of a commodity, and the arcs indicate potential ways

in which the commodity can be transported, with the costs and capacities having the obvious

interpretation. The relevant network problem for the purposes of this paper is the maximum

flow problem, which is defined as follows: given a network, a source node s, a sink node t, and

capacities u(·) on the arcs, find the maximum amount of flow that can be sent from s to t. Related

to this problem is the problem of finding a minimum capacity s-t cut: an s-t cut is any collection

of nodes S that includes s and excludes t, and the capacity of any such cut is the sum of the

capacities of the arcs (i, j) with i ∈ S and j 6∈ S. It is obvious that the capacity of any s-t

cut is an upper bound on the total flow that can be sent from s to t; therefore the minimum

capacity s-t cut is an upper bound on the maximum s-t flow. A fundamental result in network

flow theory is that the maximum s-t flow is exactly the same as the minimum capacity s-t cut (for

background on maximum flows, see Ahuja et al. [3]). A more general model involves a network

in which certain arc capacities are a function of a parameter λ; the maximum flow (equivalently,

the minimum cut) is therefore a function of λ, and the problem of interest is to understand the

dependence of these quantities on this parameter. This is called the parametric maximum flow

problem. The CC algorithm, as we shall describe later, works by finding a maximum flow in a

suitably defined parametric network. We first illustrate the algorithm on an example.

3.2 An Illustrative Example

Consider the following instance:

1 : a � c � b {.99b, .01c}
2 : b � a � c {.99a, .01c}
3 : b � a � c {.01a, .01b, .98c}

As described earlier, the algorithm finds the final allocations by solving a sequence of maximum-

flow problems on specific networks associated with the given instance. The networks all have the

same set of nodes and arcs, but data associated with the network such as arc-capacities and other

auxiliary information maintained by the algorithm will change over time. The nodes of the net-

work are as follows: for each agent i, we introduce 3 nodes i(1), i(2), i(3), one for each “preference

level”; there is a node for each house; and finally, there is a source node s and a sink node t.

The arcs of the initial network are as follows: the source is connected to each node i(k), with the

capacity of the arc being eih if h is the kth most preferred house of agent i; each “house” node
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is connected to the sink with an arc of capacity 1; and finally, there are k infinite capacity arcs

from node i(k) to the house nodes, one to each of agent i’s k most preferred houses.

1(1) 

1(2) 

1(3) 

2(1) 

2(2) 

2(3) 

3(1) 

3(2) 

3(3) 

a 

b 

c 

s 
t 

0 

.01 

.99 

0 

.99 

.01 

01 

.01 

.98 

1 

1 

1 

Figure 1: Initial network

The initial network is shown in Figure 3.

We first make a few observations:

• Any flow from s to t determines an assignment in a natural way: the amount of house h

allocated to agent i, denoted pih, is given by the total amount of flow in the arcs (i(k), h),

for k = 1, 2, 3.

• The maximum flow from s to t is 3 (use the endowments as flows).

• Any flow of 3 units from s to t determines an individually rational assignment: the only

way to send 3 units of flow from s to t is for each arc from s to i(k) to carry a flow equal

to its capacity, which is equal to i’s endowment of her kth best house; the only way for this

flow to reach the sink is via one of the arcs leaving i(k), and each of these arcs is to a house

that i (weakly) prefers to her kth best house. So the individual rationality constraints will

be satisfied for every agent i.

Iteration 1. The flow given by the endowments (i.e., the assignment in which each agent is

given her endowment) is individually rational, but may not be ordinally efficient. To find an
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Figure 2: Initial network

ordinally efficient assignment, we employ a variation of the “simultaneous eating” algorithm due

to Bogomolnaia and Moulin [4]: for each agent i, we consider increasing the capacity on the

arc (s, i(1)) at unit rate; because of this increase, we can decrease the capacity (at unit rate)

on the first positive capacity arc in the sequence (s, i(2)), (s, i(3)), . . . , (s, i(n)), and still maintain

individual rationality. The algorithm we propose does exactly this with one important exception:

if an agent i has a positive endowment e of her most preferred house, the capacity of the arc

(s, i(1)) is set to this endowment until time e so as to maintain individual rationality. This is seen,

for instance, in Figure 4, which focuses on agent 3 and shows how the arc-capacities from the

source to the nodes of agent 3 vary during the course of the algorithm. As agent 3 is endowed

with 0.01 units of his most preferred house b, the capacity of arc (s, 3(1)) will be 0.01 until λ

12



!"!#$ !"%#$ !"&#$ %"!#$ %"%#$ %"&#$ &"!#$ &"%#$ &"&#$

'$ ($ )$

*'+,-./0!1$ *23,/0%4-./0!1$ /56$*'+,-.01$*23,/0!4-.0!1$ *23,/554-./551$/55$ /0!$*'+,-.01$

a b c

1 .01 .98 .01
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Figure 3: Initial network

reaches that value, after which it will simply be λ.

3(1) 

3(2) 

3(3) 

a 

b 

c 

s t 

1 

1 

1 

max{!,.01} 

min{.02-!,.01} 

.98 

Figure 4: Changing capacities as λ increases.
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We gradually increase λ and continue doing so as long as the maximum flow from s to t

is still 3, and as long as none of the arc capacities drops below zero. The former is to ensure

that we stay within the class of individually rational allocations, and the latter ensures that the

trade-off of less- to more-preferred houses is feasible for each agent. For example, the capacity

of arc (s, 1(2)) drops to zero when λ = 0.01: the interpretation is that agent 1 consumes 0.01 of

his most-preferred house (house a) by giving up the same amount of house c that he is endowed

with; any additional consumption of a by this agent cannot be due to a demand of house c by

the other agents, because agent 1 is not entitled to any part of house c any longer; so any further

consumption of a by agent 1 must be due to his giving up an equal amount of house b. This

is incorporated into the algorithm by setting the capacity of (s, 1(2)) to zero and by setting the

capacity of (s, 1(3)) to 0.99− λ. 6 The value of λ at the end of the first iteration is thus 0.01 and

the allocation at this time is
a b c

1 .01 .98 .01

2 .98 .01 .01

3 .01 .01 .98

Iteration 2. We continue increasing λ until it reaches .02, at which point the capacity of the

arc (s, 3(2)) becomes zero. At this point the network is updated so that the capacity of the arc

(s, 3(3)) is set to 0.98− λ. The value of λ at the end of this iteration is 0.02 and the allocation at

this time is
a b c

1 .02 .97 .01

2 .97 .02 .01

3 0 .02 .98

Iteration 3. We continue increasing λ until it reaches .5, at which point the maximum flow in

the network is about to drop below 3. That is, the maximum s-t flow will be below 3 for any

larger value of λ. This is so because the nodes 2(1) and 3(1) receive λ units of flow from the source

and they can send this flow only to node b, which can send only one unit of flow to the sink.

That house b is a bottleneck can also be seen by examining the min-cut: The relevant min-cut is

{s, 2(1), 3(1), b} with a capacity of 4− 2λ, which is below 3 for any λ > 0.5. Thus house b becomes

6The CC algorithm keeps track of these two entities—the best house for an agent and the next house for which

he has a positive endowment— for each agent over time in two arrays called best and next.
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unavailable to agents 2 and 3 7, and their allocation of house b is set at .5. Their “best” house

now becomes a, and their “next” houses are updated to c. The allocation at the time λ = 0.5 is

given by

a b c

1 .5 0 .5

2 .49 .5 .01

3 .01 .5 .49

Note that for agents 2 and 3, the capacity of the arcs from the source to their “best” houses will

now be increased at unit rate. Notice, further, that at this stage all agents are “eating” house a.

Iteration 4. We continue increasing λ until it reaches .505, at which point the maximum flow in

the network is about to drop below 3. The relevant minimum-cut in this case is {s, 1(1), 2(1), 2(2),
3(1), 3(2), a, b} with a capacity of 3.505− λ. Thus, house a is declared unavailable to agents 1 and

3 and their allocation of house a is set at .505, and .005 respectively. In effect, the algorithm

discovers that any additional allocation of house a to agents 1 or 3 will cause the individual

rationality condition for agent 2 to be violated. Thus, even though house a is still available, it

has to be made unavailable to agents 1 and 3, if the final allocation is to be individually rational

for agent 2. Agent 1’s best house is updated to c and her next house to b. Agent 3’s best house

is updated to c, while her next house is now undefined. The allocation at λ = 0.505 is given by

a b c

1 .505 0 .495

2 .49 .5 .01

3 .005 .5 .495

Iteration 5. We continue increasing λ until it reaches .99, at which point the maximum flow in

the network is about to drop below 3. The relevant minimum-cut is once again {s, 1(1), 2(1), 2(2), 3(1),
3(2), a, b} with a capacity of 3.99 − λ: thus, house a is declared unavailable to agent 2 and her

allocation of house a is set at .49. Her best house is updated to c, while her next house is now

7The CC algorithm uses a set A of ordered agent-house pairs to keep track of the set of houses available for each

agent.
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undefined, which we denote by U . The allocation when λ = 0.99 is thus

a b c

1 .505 0 .495

2 .49 .5 .01

3 .005 .5 .495

Iteration 6. We continue increasing λ from 0.99. No other updates are made until the algorithm

terminates at time λ = 1. Thus, the final allocation is given by

a b c

1 .505 0 .495

2 .49 .5 .01

3 .005 .5 .495

The role of endowments and strategic behavior. We briefly comment on the CC algo-

rithm’s focus on individual endowments and vulnerability to strategic behavior. As the following

example suggests, it can be profitable to claim that one’s endowment is more valuable than it

actually is. In particular, a valuable social endowment may give an agent added bargaining power

over obtaining her most preferred houses.

Suppose that agent 1 misrepresents her preferences and submits a � b � c, instead of a � c � b.
She thus overstates the value of her endowment to her. With this new preference profile, the CC

algorithm will compute the following allocation

a b c

1 .99 0 .01

2 .01 .98 .01

3 0 .02 .98

It is clear that agent 1’s new allocation emphatically dominates her old one. By misstating that

house b is her second most preferred, agent 1 can ensure that 2 trades her endowment of house

a almost entirely with her. Notice that agent 2 is also quite happy with this trickery as her new

allocation also clearly dominates her old one. The only agent who is left out in the cold is 3 who

is in effect compelled to keep her endowment of house c.

The above example further highlights how agents with identical preferences (agents 2 and 3)

may receive very different allocations depending on the attractiveness of their endowments for
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other agents. In our example, agent 2’s endowment is far more desirable to agent 1 than agent 3’s

endowment. This, however, does not give agent 2 an intrinsic edge over 3. The structure of the

CC algorithm ensures that agent 3 is allowed to improve her allocation, so long as IR constraints

are respected. In this regard, agent 1’s IR constraints are key. When she declares her preferences

truthfully, her coveted endowment of house b will be equally distributed to agents 2 and 3. When

she lies, agent 2 ends up getting all but .01 of agent 1’s endowment of b.

3.3 The Algorithm

We now formally present the algorithm. Recall that I = {1, 2, . . . , n} denotes the set of agents

and H = {h1, h2, . . . , hn}, the set of houses. We assume strict preferences and a doubly stochastic

endowment matrix. Let hi(k) denote agent i’s kth most preferred house (thus hi(1) �i hi(2) �i

. . . �i hi(n)
). For convenience, denote ei,hi(k)

by ei(k) . As mentioned earlier, the algorithm finds

the final assignment by solving a sequence of (parametric) maximum-flow problems on specific

networks associated with the given instance. The networks all have the same set of nodes and

arcs, but some of the arc-capacities change during the course of the algorithm. The nodes of the

network are as follows:

• (agent nodes) for each agent i, there are n nodes i(1), i(2), . . . , i(n), one for each “preference

level”;

• (house nodes) for each house hj , there is a node labelled hj ; and

• a source node s and a sink node t.

The arcs of the network are as follows: the source is connected to each agent node i(k) with

an arc whose capacity is denoted ui(k) ; each house node hj is connected to the sink with an arc of

capacity 1; and finally, there are k infinite capacity arcs from node i(k) to the house nodes, one to

each of agent i’s k most preferred houses. During the course of the algorithm the capacities of some

of the arcs emanating from the source node will be varied; all other arc-capacities remain fixed.

(To capture this, we sometimes use an additional superscript for ui(k) to make this dependence

explicit.) Finally, the algorithm maintains the following additional information that is critical to

its operation: (i) a set A of available agent-house pairs; and (ii) for each agent i, a best house

index bi and a next house index ni.
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Initial Network

If (i, h) ∈ A, we say that house h is available for agent i. Initially, every house is available for

each agent so that A consists of all possible agent-house pairs. The initial capacities, u0i(k) , of the

arc connecting the source s to the node i(k) is set to the corresponding endowment ei(k) . The best

house for agent i is her most preferred house among the houses available to her; if her best house

is hi(k) , her next house, if any, is the smallest j > k for which the arc (s, i(j)) has positive capacity.

Equivalently, agent i’s best house index, bi, is k and her next house index, ni, is j. (If there is

no next house for agent i, ni is undefined.) Note that the best house is defined with respect to

the set A whereas the next house is defined with respect to the arc-capacities of the associated

network.

An iteration of the CC algorithm

The algorithm progresses by examining a sequence of networks at times 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤
λz = 1. At each of these instants, the network is updated (some arc-capacities are changed), as is

the additional information that it maintains (the set A, and the best and next house indices for

each agent). To complete the description of the algorithm we specify how, given all the data at

time λt, the algorithm finds λt+1 and updates the network as well as the auxiliary information.

Let λ be a parameter that will be gradually increased from its current value of λt. Consider

the network at time λt and make the following changes for each agent i:

• Set the capacity of the arc (s, i(bi)) to

max

{
λ−

bi−1∑
`=1

uts,i(`) , uts,i(bi)

}
. (1)

• Set the capacity of the arc (s, i(ni)) to

min

{ bi∑
`=1

uts,i(`) + uts,i(ni)
− λ, uts,i(ni)

}
. (2)

All other arc capacities are maintained at their values at time λt.

If the maximum in Expression (1) is achieved by the first term, we say that agent i is consuming

her best house; if the maximum in Expression (1) is achieved by the second term, we say that

agent i is claiming her best house. Clearly an agent can consume or claim a house only if it is

available to her, and only when it is her best house. The interpretation of these two steps is very
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straightforward: for each agent, we increase the capacity of the arc to the best available house at

unit rate (the first term in Expression (1)), except when individual rationality requires a larger

quantity of that house to be set aside for this agent (the second term in Expression (1)). In the

former case, the increase is accompanied by a corresponding decrease in the guarantee of the next

best house, which explains Expression (2).

We now solve a parametric maximum-flow problem on this updated network by gradually

increasing λ from its current value of λt. Observe that for λ = λt, the maximum s-t flow is n.

Define λt+1 as the earliest time at which at least one of the following events occurs:

(a) The capacity of some arc becomes zero;

(b) Any further increase of λ will cause the maximum s-t flow to be strictly below n;

(c) The value of λ is 1.

We first obtain the new network by fixing the capacities of all the arcs to be their values at

λ = λt+1.

Event (c) defines the termination condition for the algorithm: any maximum s-t flow (neces-

sarily of value n) in the final network can be interpreted as an allocation of houses to the agents:

the amount of house h allocated to agent i, denoted pih, is given by the total amount of flow in

the arcs (i(k), h), for k = 1, 2, . . . , n.

If Event (b) occurs, the algorithm identifies a minimum s-t cut whose capacity is strictly below

n for any λ > λt+1. Such a cut will be of the form s ∪ Xt+1 ∪ Yt+1, where Xt+1 is a subset of

the agent nodes of the form i(k) and Yt+1, a subset of the house nodes. 8 Moreover, for any node

i(k) ∈ Xt+1, each of its neighboring house nodes must be in Yt+1 (otherwise the cut will have

infinite capacity). Consider any agent i. Suppose her total consumption (including all her copies

in Xt+1) of the bottleneck set Yt+1 increases with λ, then agent i’s best house, which is necessarily

in Yt+1, is declared unavailable to her. This occurs if and only if i(bi) ∈ Xt+1 and i(ni) 6∈ Xt+1; in

this case the pair (i, hi(bi)) is removed from A, and her best house index is incremented (as her

best house is no longer available to her). This is done for each agent i. The next house indices

for all the agents are updated, and the algorithm continues.

If Event (a) occurs, the best house indices do not change, but the next house indices of at

least one of the agents changes; we recalculate the next house indices of all the agents and the

algorithm continues.

8When there are many such minimum cuts, we pick one with the maximum number of nodes on the source side.

Such a cut is unique, see Lovasz and Plummer [6].
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This completes one iteration of the algorithm. A formal description of the algorithm appears

as Algorithm 1.

Relationship to Yilmaz’s algorithm. The CC algorithm generalizes the earlier algorithm of

Yilmaz [10] that was designed for the special case of 0-1 endowments, which, in turn, generalized

an earlier algorithm of Katta and Sethuraman [5] for the case of no endowments. Therefore the

CC algorithm shares a number of features with these two algorithms. The one key difference is

in the network construction: in the case of fractional endowments it may be necessary to make

as many copies of each agent node as the number of distinct objects, whereas for the case of

0-1 endowments a single additional copy suffices. Given the need to work with n agent-nodes

for each agent, it is critical that any additional consumption of the best object for each agent

be compensated in a way that maximizes potential trading opportunities in the future: this is

done by reducing the capacity of the arc from the source to that agent’s entitlement of the next

best object; a different choice may not result in an efficient outcome! This is facilitated by the

auxiliary information maintained by the algorithm. These issues do not arise in the case of 0-1

endowments or when there are no endowments: in these special cases, once an agent node becomes

part of the bottleneck set, either an object is completely consumed, or the group of agents in the

bottleneck set can be isolated and their final allocation can be determined by solving a subproblem

in isolation. In other words, once the IR constraint becomes binding for a group of agents, that

group of agents will compete for the rest of their endowments, and this determines the subproblem

that the algorithm solves. In contrast, for the case of fractional endowments, there are potentially

n different IR conditions for each agent, and it is not possible to view these in isolation. It is this

feature that makes the CC algorithm somewhat more complicated to describe.

3.4 Properties

We show that the CC mechanism is individually rational, ordinally efficient, and satisfies no

justified envy and no-envy for agents with equal endowments.

Proposition 1 The CC mechanism is individually rational.

Proof. Fix an agent i and any k ∈ {1, 2, . . . , n}. We show, by induction on t, that

k∑
`=1

uti(`) ≥
k∑

`=1

ei(`) (3)
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Algorithm 1: The CC Algorithm

begin

A0 = {(i, h) | i ∈ I, h ∈ H}
for i ∈ I do

u0i(k) = ei(k) , for k = 1, 2, . . . , n

bi = 1, ni = min`>1{` | u0i(`) > 0}

t = 0, λ0 = 0

while λt < 1 do

for i ∈ I do

ui(bi)(λ) = max{λ−
∑bi−1

`=1 u
t
i(`)
, utibi
}

ui(ni)
(λ) = min{

∑bi
`=1 u

t
i(`)

+ uti(ni)
− λ, utini

}

Gradually increase λ from λt until (a) some arc capacity becomes zero; or (b) the

maximum s-t flow in the network is below n for any larger value of λ; or (c) λ = 1

Set λt+1 = λ, At+1 = At

for i ∈ I do

ut+1
i(bi)

= max{λt+1 −
∑bi−1

`=1 u
t
i(`)
, utibi
}

ut+1
i(ni)

= min{
∑bi

`=1 u
t
i(`)

+ uti(ni)
− λt+1, utini

}

if maximum s-t flow is below n for λ > λt+1 then

Find a min-cut, which will be of the form s ∪Xt+1 ∪ Yt+1, where Xt+1 is a

subset of the agent nodes and Yt+1, a subset of the house nodes

for i ∈ I do

if i(bi) ∈ Xt+1 and i(ni) 6∈ Xt+1 then

At+1 ← At+1 \ {(i, hi(bi))}
bi ← bi + 1

for i ∈ I do

ni = min`>bi{` | u
t+1
i(`)

> 0}

t← t+ 1

end
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for any t ≥ 0. As u0i(k) = ei(k) for each k, the result is true by definition for t = 0. Suppose

the result is true at the beginning of iterations 0, 1, 2, . . . , t. We show that the result is true at

the beginning of iteration t + 1, equivalently, at the end of iteration t. In iteration t, the only

arc-capacity that potentially decreases is that of the arc from s to i(ni); but from Expressions (1)

and (2), this decrease, if any, is offset by a corresponding increase in the capacity of the arc from

s to to i(bi). The result follows.

We now turn to properties concerning ordinal efficiency and no-envy. To this end we start

with a few observations. First, the total capacity of the arcs emanating from the source node s

is always n, the total number of agents (equivalently, houses). Second, the maximum s-t flow in

the network is always n, which implies that the flow along the arcs emanating from the source is

unique. These observations are useful in proving the following:

Lemma 1 Suppose the minimum-cut found by the algorithm in iteration t is s ∪ Xt+1 ∪ Yt+1.

Then:

(a) The set Yt+1 is precisely the set of all houses that are adjacent to some agent in Xt+1.

(b) If agent-node i(k) ∈ Xt+1, then i(`) ∈ Xt+1 for any ` < k.

(c) Let X̄t+1 denotes the set of agents nodes that are not in Xt+1. In any maximum-flow from

s to t (in the current network or in the future), the flow carried by any arc from a node in

X̄t+1 to a node in Yt+1 is zero.

Proof. Observe that arcs from Xt+1 to Yt+1 have infinite capacity, and a minimum-cut cannot

contain any such arc; so it is clear that every house node adjacent to some agent-node in Xt+1

must be included in Yt+1. Any house node h for which there is no incoming arc from any node

in Xt+1 will contribute one unit to the cut-capacity (as the arc from h to t will be part of the

cut); removing such a node from the cut will decrease the cut-capacity by 1 as no additional arcs

will contribute to the cut-capacity. This verifies part (a) of the proposition. To verify part (b),

observe that agent-node i(k) connects to all the house nodes that any other agent-node i(`) (with

` < k) connects to; including such an agent-node i(`) in the cut may decrease the cut-capacity (as

the arc from s to i(`) will no longer contribute), but will not increase it. To verify part (c), observe

that every arc from a node in X̄t+1 to a node in Yt+1 is a backward arc in the minimum-cut, and

so cannot carry positive flow in any maximum-flow in the network at time λt+1. Moreover, by

the definition of λt+1, we know that in the network at time λt+1, the total capacity of the arcs

connecting s to Xt+1 equals the total capacity of the arcs connecting Yt+1 to t. In all future
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networks, the total capacity of the arcs connecting s to Xt+1 cannot decrease, which implies that

the total flow along these arcs cannot decrease either. But the only way for this flow to reach the

sink node t is via the arcs from Yt+1 to t.

Armed with these observations, we are now ready to formally prove that the CC mecha-

nism is ordinally efficient and satisfies no justified envy as well as no-envy for agents with equal

endowments.

We begin with ordinal efficiency. Let P be the assignment found by the CC algorithm. The

CC algorithm is a “simultaneous eating” algorithm (we can find eating speed functions such that

the assignment found by the simultaneous eating algorithm with these eating speed functions is

the assignment P ); Bogomolnaia and Moulin [4] showed that any assignment found by such an

algorithm is ordinally efficient and every ordinally efficient assignment can be found this way. It

follows then that P is ordinally efficient. Nevertheless, we present a direct proof of this result. The

proof uses an alternative characterization of ordinal efficiency, due to Bogomolnaia and Moulin [4],

and extended to the full preference domain by Katta and Sethuraman [5]. Given an assignment

matrix P and preference relations �i for each agent i, define the binary relation τ(P,�) over the

set of houses H as follows: 9

hτh′ ⇔ { ∃i ∈ I : h �i h
′ and pi,h′ > 0}.

Say that the relation is strict if h � h′ in the definition above. The relation τ is cyclic if there

exists a cycle of relations h1τh2, h2τh3, . . . , hk−1τhk, hkτh1. It is strictly cyclic if it is cyclic, and

at least one of the relations in the cycle is strict. The following result is due to Bogomolnaia and

Moulin [4].

Proposition 2 Let P be a random assignment matrix for the preference profile �. Then P is

ordinally efficient if and only if the relation τ(P,�) is not strictly cyclic.

Proposition 3 The CC mechanism is ordinally efficient.

Proof. Suppose not. Consider an instance for which the assignment P found by the CC algorithm

is not ordinally efficient. Then there is a set of agents and a set of houses such that the relation τ

is strictly cyclic. Suppose without loss of generality that the set of agents is {1, 2, . . . , k}, the set

of houses {h1, h2, . . . , hk} and suppose that hi �i hi+1 for each agent i (interpreting hk+1 as h1),

9Note that τ depends on both the given assignment and the preference relation, but we suppress this dependence

because it is usually clear from the context.
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and pi,hi+1
> 0. As agent i prefers hi to hi+1, and as pi,hi+1

> 0, house hi becomes unavailable

for agent i before house hi+1 does. Let λi be the time at which house hi becomes unavailable for

agent i, and suppose λ1 = min`{λ`}. We claim that the minimum s-t cut s ∪X ∪ Y at time λ1

contains all the house nodes h1, h2, . . . , hk. Clearly, it contains h1 as h1 becomes unavailable to

agent 1 at exactly this time. Since agent k is later assigned a positive amount of h1, part (c) of

Lemma 1 implies that the set X must contain some copy of agent k with an arc to h1 (recall that

agents with no copy in the cut will not get assigned any amount of houses in the cut); but this

copy of agent k will have an arc to hk as well, because hk �k h1. Therefore hk ∈ Y . Applying the

same argument, we see that {h1, h2, . . . , hk} ⊂ Y . However, house h1 is declared unavailable to

agent 1, which implies her next house at time λ1 should be outside of S. But note that part (c)

of Lemma 1 implies that agent 1 cannot be allocated any more of the houses in Y and so p1,h2

must be zero, a contradiction.

Proposition 4 The CC allocation satisfies no justified envy.

Proof. Let P be the assignment found by the CC algorithm on an instance of the problem.

Consider an agent i and let h1 �i h2 �i ... �i hn. Let λt+1 be the epoch at which house hk is

declared unavailable for agent i. By the definition of the CC algorithm, house hk must have been

the best house for agent i at some point (possibly only at λt+1). Let s ∪Xt+1 ∪ Yt+1 be the cut

found by the CC algorithm. Note that the only additional agents that i may potentially envy

because of hk’s unavailability (to him) should continue to “consume” or “claim” hk after time

λt+1. By part (c) of Lemma 1, any such agent i′ must have both his best and next agent-nodes

in Xt+1. However, the CC algorithm always satisfies the following invariant

nj∑
`=1

ut+1
j(`)

=

nj∑
`=1

ej(`) , (4)

for any agent j, if nj is his next house at time λt+1. In particular, this expression is valid for

agent i′.

Now consider the allocation of agent i found by the CC algorithm. By part (c) of Lemma 1,

we know that agent i receives exactly λt+1 units from the houses in Yt+1. The discussion in the

preceding paragraph implies that any individually rational allocation for agent i′ must allocate

more than λt+1 units from the set Yt+1. So the allocation of agent i is not individually rational

for agent i′.
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3.5 Computational considerations

To analyze the number of iterations needed for the algorithm to terminate, observe that each

iteration (except the last) ends with the occurrence of Event (a) or Event (b) (or both); Event (a)

causes at least one agent’s next house to change; Event (b) causes at least one agent’s best house

to change. As any agent prefers her best house to her next house, we see that the number of

possibilities for each agent is O(n), so the algorithm terminates in O(n2) iterations. Each iteration

of the algorithm involves finding the smallest breakpoint of a parametric max-flow problem. Even

though some of the capacities are nonlinear because of Expression (1), it is clear that we can

find each λt by solving at most (n + 1) maximum-flow problems from s to t. (Each capacity

is a piecewise linear function with at most 2 pieces; and once an agent becomes a “consumer,”

she cannot become a “claimer” unless her best house changes.) Thus the entire algorithm can be

implemented by solving O(n3) maximum flow problems in a network with O(n2) nodes and O(n3)

arcs. Our analysis of the running time is very loose, and a more careful implementation will likely

be substantially faster, but we do not investigate this aspect any further as it falls outside the

scope of this paper.

4 Impossibility Results

The CC mechanism satisfies individual rationality, efficiency and no justified envy, but is not even

weakly strategyproof. This is not a coincidence: The following result rules out the existence of a

mechanism satisfying individual rationality, efficiency, no justified envy, and weak strategyproof-

ness.

Theorem 2 Consider the strict preference domain and fix |I| ≥ 3. Any mechanism satisfying

individual rationality, efficiency, and no justified envy cannot be strategyproof, even in the weak

sense.

We note that to prove such an impossibility result for |I| ≥ k, it is enough to consider the case

|I| = k as long as individual rationality is required. Any instance with k agents can be extended

to one with a greater number of agents by letting agents k+ 1, . . . , n own a distinct house, which

they prefer to any other house in the market.
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Proof. Let I = {1, 2, 3}, H = {a, b, c}, and consider the following preference and endowment

profile:

1 : a � b � c {c}
2 : c � a � b {a}
3 : a � c � b {b}

Individual rationality dictates that p2b = 0. Furthermore, ordinal efficiency implies that

p2a = 0; otherwise agent 2 can exchange a part of her share of a for house c from agents 1 or 2,

resulting in a Pareto improving assignment for all agents. From these two observations, we get

p2c = 1, and p1c = p3c = 0. Since any allocation that 3 obtains will be individually rational for 1

and vice versa, no justified envy implies that 1 and 3 need to receive identical allocations. Thus

we obtain

a b c

1 1
2

1
2 0

2 0 0 1

3 1
2

1
2 0

Now consider what happens if agent 1 changes her preferences to a � c � b. Applying

individual rationality for agents 1 and 2, we get p1b = p2b = 0, by which p3b = 1. Then, from

ordinal efficiency we get p1a = p2c = 1. For agent 1, this allocation dominates the original one,

so weak strategyproofness is violated.

Remarks.

1. Observe that this result does not exploit the full power of the no justified envy requirement.

For example, the violation of weak-strategyproofness persists as long as agent 1 does not get

all of a in the original preference profile: any criterion of fairness that rules out p1a = 1 in

the original preference profile is incompatible with individual rationality, ordinal efficiency,

and weak strategyproofness.

2. Our definition of NJE assumes that an agent i justifiably envies j if her allocation does

not dominate j’s allocation and a relevant IR condition is met. Suppose we weaken the

dominance-related part of the definition and require that j’s allocation strictly dominate

i’s.10 This new definition makes it easier to find an allocation that satisfies NJE, and

therefore makes establishing an impossibility result harder. However, Theorem 2 remains

10That is, i justifiably envies j if pj �i pi and pi �j ej .
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valid even under this weaker equity criterion: for the given profile, IR and OE force c to

be allocated to agent 2. Since agents 1 and 3 have identical preferences on the remaining

objects, and any allocation of these objects to the agents is individually rational for both, the

only envy-free allocation according to either definition is for them to receive equal amounts

of each object. When agent 1 submits the modified preference ordering, IR and OE force

the allocation that is stated, so envy is not used in any form in that case.

3. Theorem 2 asserts the incompatibility of individual rationality (IR), ordinal efficiency (OE),

no justified envy (NJE), and weak strategyproofness (WSP). We do not know if there are

mechanisms that satisfy every proper subset of these properties: the CC mechanism satisfies

IR, OE and NJE; the PS mechanism satisfies OE, NJE (actually, no-envy) and WSP; we

do not know of mechanisms satisfying WSP, IR, and either OE or NJE.

The impossibility result can be strengthened if we insist on strategyproofness in the strong

sense: the following result shows that (strong) strategyproofness is incompatible with individual

rationality and efficiency. This is somewhat surprising as typically individual rationality and

efficiency are viewed as fairly mild requirements. The proof adapts an elaborate construction of

Bogomolnaia and Moulin [4] to an environment with endowments and the elegant reasoning they

use in their proof of a related (but different) impossibility result. 11

Theorem 3 Consider the strict preference domain and fix |I| ≥ 4. There is no mechanism that

satisfies individual rationality, ordinal efficiency, and strategyproofness.

Proof. We start with the following fact about strategyproof mechanisms (we omit the easy proof,

see Bogomolnaia and Moulin [4]):

Fact 1 Consider two orderings of houses σi = h1 �i h2 �i ... �i hn and σi′ = h′1 �i h
′
2 �i ... �i

h′n. Suppose for some k, {h1, ..., hk} = {h′1, ..., h′k}. Consider a mechanism φ and suppose pi and

p′i are the allocations it finds when agent i reports the preference order σi and σi′ respectively, for

some fixed preferences of the other agents. If φ is strategyproof, then
∑k

l=1 pil =
∑k

l=1 p
′
il.

Our proof of Theorem 3 proceeds by examining a sequence of profiles, noting down, in each

case, the implications of the various properties; eventually, we shall show that these implications

11Bogomolnaia and Moulin [4] show that strategyproofness is incompatible with efficiency and equal treatment

equals for the random assignment problem with strict preferences.
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are inconsistent. In the rest of the proof, we suppress the �i notation in describing an agent’s

preferences so that a �i b �i c �i d is simply denoted abcd; the identity of the agent is usually

clear from the context. We also use IR for individual rationality, OE for ordinal efficiency, and

SP for strategyproofness.

Consider an instance of the problem with |I| = 4 and suppose each agent owns 1/4 of each

house.

• Profile 1: In this profile agents 2, 3, and 4 have the preference order abcd and agent 1’s

preference order is badc. By OE, p1a = 0 (as every other agent prefers a to b and agent 1

prefers b to a); and by IR, p1b = pia + pib = 1/2, for i = 2, 3, 4. By a similar reasoning,

p1d = 1/2.

a b c d

badc 0 1
2 0 1

2

abcd(3)

• Profile 2: Consider the profile in which agent 1 has the preference bdac, and the others,

abcd. Here OE implies that p1a = 0. For agent 1, SP and Fact 1 applied to profiles 1 and 2,

we get p1b = 1/2 and p1d = 1/2. Also, as p1a = 0, we must have max{p2a, p3a, p4a} ≥ 1/3.

Assume, without loss of generality, that the maximum is attained by agent 4, so that

p4a = β ≥ 1/3 > 1/4. These observations are summarized as

a b c d

bdac 0 1
2 0 1

2

abcd(2)

abcd β

Agent 4 is now special as this agent has the largest amount of a in Profile 2. In the rest of

the profiles, agents 2 and 3 always have the preference order abcd (like in Profiles 1 and 2);

agents 1 and 4 will have different preference orderings in different profiles and these will be

specified in each case.
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• Profile 3: Here the preference order of agents 1 and 4 is abdc (agents 2 and 3 have the

preference order abcd). By IR, we have pia = pib = 1/4 for all i. Then, by OE, we have

p1d = p4d = p2c = p3c = 1/2. So we get

a b c d

abdc 1
4

1
4 0 1

2

abcd(2) 1
4

1
4

1
2 0

abdc 1
4

1
4 0 1

2

• Profile 4: Now, consider the profile in which agent 1’s preference is badc and agent 4’s is

adbc. By OE, p1a = 0, and by IR p1b ≥ 1/2. Suppose p1b = 1/2 + α, for some α ≥ 0. By

IR, agents 2 and 3 collectively own at least 1/2 units each of the bundle {a, b}; and agent 4

owns at least 1/4 units of the bundle {a, b}. These observations imply α ≤ 1/4.

a b c d

badc 0 1
2 + α

abcd(2)

adbc

• Profile 5: Now, consider the profile in which 1’s preference is bdac and 4’s is adbc. Clearly,

OE implies p1a = 0. Also, SP and Fact 1 applied to agent 1 and Profiles 4 and 5 yields

p1b = 1/2 + α. Furthermore, applying Fact 1 to agent 4 and Profiles 2 and 5, we get

p4a = β > 1/4. Now let p1d = γ and p1c = ε and p4d = δ. All these observations are

summarized as

a b c d

bdac 0 1
2 + α ε γ

abcd(2)

adbc β δ

From Profile 4, we already know that α ≤ 1/4. We shall now show a sharper bound on α.

Note that p1a + p1b = 1/2 + α; by IR, agents 2 and 3 own at least 1/2 units each of the

bundle {a, b}, and agent 4 owns at least 1/3 units of a (as β ≥ 1/3). Adding up all of these,
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we find that these four agents collectively own at least 11/6 + α units of the bundle {a, b};
this implies α ≤ 1/6 < 1/4 as only two units of the bundle {a, b} are available.

We shall now argue that γ > 1/4. If ε = 0 then γ = 1− 1/2− α⇒ γ > 1
4 because, we just

saw that α < 1/4. If, on the other hand, ε > 0, then OE implies that p2d = p3d = 0. As

β > 1/4, we must have δ < 3/4, which implies γ = 1 − δ > 1/4. In either case, we have

γ > 1/4.

• Profile 6: Suppose agent 1’s preference is abdc and agent 4’s is adbc. By IR, pia = 1/4 for

all i. Then SP and Fact 1 applied to agent 1 and Profiles 4 and 6 implies p1b = 1/4 + α.

Furthermore SP and Fact 1 applied to agent 1 and Profiles 5 and 6 implies p1d = γ > 1/4.

Consider agent 4. By OE, p4b = 0; by SP and Fact 1 applied to agent 4 and Profiles 3 and

6, we have p4a + p4b + p4d = 1, which implies p4d = 3/4. So we get

a b c d

abdc 1
4

1
4 + α ε γ

abcd(2) 1
4

adbc 1
4 0 3

4

If γ > 1
4 we have γ + 3

4 > 1, a contradiction.

Remark. The result in Theorem 3 is sharp in the sense that there are mechanisms satisfying every

proper subset of the properties in the statement of the theorem. The CC mechanism satisfies OE

and IR; the identity mechanism that sets the final allocation to the initial endowments satisfies

SP and IR; and any serial dictatorship that ignores the endowments—order the agents in some

way and let them choose their best available houses in that order—satisfies SP and OE.

Our next result shows that NJE and EENE are incompatible in the presence of ordinal effi-

ciency and individual rationality.

Theorem 4 Consider the strict preference domain and fix |I| ≥ 5. Any mechanism satisfying

individual rationality and ordinal efficiency cannot simultaneously satisfy no justified envy and

equal-endowment no envy.
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Proof. Let I = {1, 2, 3, 4, 5}, H = {a, b, c, d, e}, and consider the following preference and

endowment profile:

1 : adbe {1/2b, 1/2e}
2 : aed {d}
3 : abe {1/2b, 1/2e}
4 : bc {c}
5 : ca {a}

The agent preference lists are not complete, but they can be made complete by ranking the

remaining houses arbitrarily—the IR constraint will ensure that no agent gets any fraction of the

houses that are not in the given preference lists. For convenience, therefore, we work with the

shortened preference lists.

We examine the implications of imposing IR, OE, and EENE on this example. The restrictions

imposed by IR are are summarized as:

a b c d e

1 p1a p1b 0 p1d p1e

2 p2a 0 0 p2d p2e

3 p3a p3b 0 0 p3e

4 0 p4b p4c 0 0

5 p5a 0 p5c 0 0

We use OE to further refine the set of possible allocations. Suppose p1b > 0. This implies

p4b < 1, which implies p4c > 0. Then, we must have p5c < 1, which implies p5a > 0. But then

agents 1, 4 and 5 can perform mutually beneficial trade, which violates OE. We conclude that

p1b = 0. A similar argument establishes that p3b = 0. As b can only be allocated to agents 1, 3, or

4, we must have p4b = 1. But this implies p4c = 0, which implies p5c = 1, which, in turn, implies

p5a = 0. Thus, the allocation matrix should be:

a b c d e

1 p1a 0 0 p1d p1e

2 p2a 0 0 p2d p2e

3 p3a 0 0 0 p3e

4 0 1 0 0 0

5 0 0 1 0 0
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In any allocation that satisfies EENE, agents 1 and 3 must get the same amount of object a;

suppose p1a = p3a = x. Then p3e = 1−x, and by IR for agent 3, x ≥ 1/2. Therefore x = 1/2 and

so p1a = p3a = p3e = 1/2, which implies p2a = 0. Finally, agents 1 and 2 have opposite preferences

on the objects d and e, and by OE, agent 1 cannot be allocated any amount of e when agent 2

gets a positive amount of d. Thus, we must have p2e = 1/2, p1e = 0, p1d = p2d = 1/2. The final

allocation matrix is
a b c d e

1 1
2 0 0 1

2 0

2 0 0 0 1
2

1
2

3 1
2 0 0 0 1

2

4 0 1 0 0 0

5 0 0 1 0 0

(5)

In this allocation agent 2’s allocation is individually rational for agent 1, and yet agent 2 prefers

1’s allocation to his own. Thus, agent 2 justifiably envies agent 1.12

Comparing EENE and NJE. The example considered in the proof of Theorem 4 displays

the tension between NJE and EENE. If we run the CC algorithm on that particular instance of

the problem the allocation we obtain is the following:

a b c d e

1 1
4 0 0 1

4
1
2

2 1
4 0 0 3

4 0

3 1
2 0 0 0 1

2

4 0 1 0 0 0

5 0 0 1 0 0

(6)

This allocation satisfies NJE but fails EENE for agents 1 and 3. In comparing it to the unique

allocation that satisfies EENE, it is not entirely clear which of the two is fairer—In allocation (5),

agents 1 and 3 do not envy each other, but agent 2 is justified in being unhappy with her allocation,

when comparing it to that of 1. Conversely, in allocation (6), agent 2 is not justified in envying

agent 3 (even though 3 gets more of house a than she does) but agent 1 strictly prefers 3’s

12This remains true even if we alter the NJE definition along the lines of the second remark following Theorem 2.
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allocation to her own, even though she came to the market with an identical endowment. This

example suggests an inherent difficulty in reconciling property rights with concepts of fairness

when endowments and allocations are fractional.

Finally, as the model considered here generalizes several well-studied models in the literature,

the impossibility results of these special cases automatically carry over. The most prominent of

these are stated in the following theorem.

Theorem 5

(i) (Bogomolnaia and Moulin [4]) Consider the strict preference domain and fix |I| ≥ 4. There

is no mechanism that satisfies ordinal efficiency, equal treatment of equals, and strategyproof-

ness.

(ii) (Yilmaz [10]) Consider the strict preference domain and fix |I| ≥ 3. There is no mechanism

that satisfies individual rationality, no justified envy, and strategyproofness.

(iii) (Katta and Sethuraman [5]) Consider the full preference domain and fix |I| ≥ 3. There is

no mechanism that satisfies ordinal efficiency, envy-freeness, and weak strategyproofness.

5 Extensions

We consider three extensions of the basic model treated in §2. In each case we briefly discuss how

the algorithm and results extend.

Full Domain. The CC algorithm can be generalized in a straightforward manner to the full

preference domain. For every agent i we introduce a node i(k) representing the set of his or her

k’th most preferred houses (unlike the case of strict preferences this need not be a singleton set)

and connect it to the source with an edge (s, i(k)). We include edges from i(k) to every house that

is included in agent j’s k most preferred sets of houses. The algorithm then extends naturally.

For each agent we—in effect— treat her bundle of equally preferable houses as a single house.

Her endowment over this “house” is the sum of her endowments over the original houses. In the

algorithm it is this quantity that we treat as the endowment of the “house” representing her kth

best set of houses. The proofs of individual rationality, ordinal efficiency, and no justified envy

extend easily.
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One difference worth mentioning is that, as the algorithm encounters breakpoints that force the

maximum s-t flow below n, there may be many ways to redistribute the houses in the bottleneck

set. For example, consider

1 : a ∼ b � c {1/2b, 1/2c}
2 : a ∼ b � c {1/2b, 1/2c}
3 : b � c � a {a}

At time λ = 2/3 the set {a, b} will become part of the min-cut, and so will be fully allocated

to the agents. Agent 3 must get 2/3 units of b but the way in which agents 1 and 2 split house a

and the remaining 1/3 units of b does not matter.

Arbitrary Endowment Profiles. The CC algorithm can be naturally adapted to cover general

endowment profiles where
∑

h eih 6= 1 for some i. In those cases the capacities of outgoing arcs

(s, i(·)) would simply sum to
∑

h eih, a non-negative number which could be greater or smaller

than 1. If this number is smaller than 1, then we proceed as before with the only difference that

node i(n) is granted a capacity of 1 −
∑

l<n ei(l) rather than ei(n)
. If, on the other hand, this

quantity is greater than 1, then we do not change anything and assign capacities to arcs (s, i(k))

in the usual manner. Of course, these changes may affect the quantity of a house available in the

market, which leads us to the next extension.

Arbitrary Fractions of Houses Available in the Market. The CC algorithm can be

adapted to the case in which a non-unit fraction of a house h, say wh, is present in the mar-

ket. If wh ≤ 1 then the only modification we need to make is to set the capacity of arc (h, t) to

wh instead of 1. If wh > 1, then we may split this house into two or more identical copies (thus

increasing the number of houses in the market), such that all but one of these have wh = 1 and

exactly one has wh ≤ 1. We then set the capacities of arcs (h, t) to wh. Since our algorithm can

deal with indifferences, this poses no problem. The breakpoints in the algorithm are subsequently

arrived at when the max flow drops below the quantity min{
∑

hwh, n}.

A number of other extensions such as unequal numbers of agents and houses, agents declaring

certain houses as “unacceptable” etc. can be accommodated as well. Since these changes are

much more straightforward and they have been addressed before in the literature on random

assignment problems (see Bogomolnaia and Moulin [4], Katta and Sethuraman [5], for example),

we do not discuss them in more detail here.
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6 Future Research

We have provided a computationally-efficient algorithm for finding an assignment satisfying indi-

vidual rationality, ordinal efficiency and no justified envy in generalized house allocation markets.

We have shown that these properties are inconsistent with strategyproofness even in the weak

sense. We have also shown that strategyproofness in the strong sense is incompatible with the

(very reasonable) requirements of individual rationality and ordinal efficiency. In light of this and

other impossibility results, a natural question to ask is whether there exists a mechanism that is

individually rational, ordinally efficient, and weakly strategyproof.

Furthermore, while we have shown that IR, OE, NJE, and EENE are incompatible, our knowl-

edge of mechanisms satisfying proper subsets of these properties is scarce. In particular, additional

work is needed to clarify EENE and its compatibility with proper subsets of IR, OE, and NJE.

We also wish to comment on what we consider to be a limitation of the CC algorithm. Consider

a preference and endowment profile for which there exists an assignment that is individually

rational, ordinally efficient, and envy-free. In such a case, it is not unreasonable to expect the

mechanism to find such an assignment. That the CC mechanism fails to do so is shown in the

following example:

Example 6. Consider the following endowment and preference profile

1 : a � b � c � d {5/18 a, 11/18 b, 1/9 d}
2 : c � a � b � d {7/18 b, 1/2 c, 1/9 d}
3 : c � b � a � d {7/18 a, 1/2 c, 1/9 d}
4 : a � d � b � c {1/3 a, 2/3 d}

It is clear that agents 1, 2, and 3 will not trade any of their endowment for any portion of

house d. Thus, agent 4’s allocation will necessarily be (1/3, 0, 0, 2/3). Furthermore, agents 2 and 3

will each receive 1/2 of c, while 1, 2 and 3’s allocation of d will remain fixed at 1/9. An allocation

that is individually rational, ordinally efficient, and envy-free is the following:

a b c d

1 1
3

10
18 0 1

9

2 1
3

1
18

1
2

1
9

3 0 7
18

1
2

1
9

4 1
3 0 0 2

3
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On the other hand, the algorithm will allocate 1/3 units of a to agent 4 (at which point

houses a, b, c become unavailable to her) while it will allocate more than 1/3 units of a to agent

1. Specifically, the CC algorithm finds the following assignment:

a b c d

1 7
12

11
36 0 1

9

2 1
12

11
36

1
2

1
9

3 0 7
18

1
2

1
9

4 1
3 0 0 2

3

In this assignment agent 4 envies 1 since p1a > p4a. This leads us to the following natural

open question: Among mechanisms that are individually rational and ordinally efficient, is there

one that always finds an envy-free assignment whenever there is one?

An interesting topic of research is to consider the core of the associated cooperative game.

The most appropriate way to define the core is not apparent; our preliminary investigation sug-

gests mostly negative results, but much remains to be done here. Finally, an interesting (and

challenging) open question is to generalize the TTC mechanism to this setting.
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