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Abstract

This paper is concerned with the problem of locating a facility on the line in the presence

of strategic agents, also located on the line. Each agent incurs a cost equal to her distance

to the facility whereas the planner wishes to minimize the Lp norm of the vector of agent

costs. The location of each agent is only privately known, and the goal is to design a strat-

egyproof mechanism that approximates the optimal cost well. It is shown that the median

mechanism provides a 21−
1
p approximation ratio, and that this is the optimal approximation

ratio among all deterministic strategyproof mechanisms. For randomized mechanisms, two

results are shown: First, for any integer ∞ > p > 2, no mechanism—from a rather large

class of randomized mechanisms— has an approximation ratio better than that of the median

mechanism. This is in contrast to the case of p = 2 and p =∞ where a randomized mechanism

provably helps improve the worst case approximation ratio. Second, for the case of 2 agents,

the LRM mechanism, first designed by Procaccia and Tennenholtz for the special case of L∞,

provides the optimal approximation ratio among all randomized mechanisms.

1 Introduction

We consider the problem of locating a single facility on the real line. This facility serves a set

of n agents, each of whom is located somewhere on the line as well. Each agent cares about his

distance to the facility, and incurs a disutility (equivalently, cost) that is equal to his distance

to access the facility. An agent’s location is assumed to be private information that is known

only to him. Agents report their locations to a central planner who decides where to locate the

facility based on the reports of the agents. The planner’s objective is to minimize a “social”

cost function that depends on the vector of distances that the agents need to travel to access the
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facility. It is natural for the planner to consider locating the facility at a point that minimizes her

objective function, but in that case the agents may not have an incentive to report their locations

truthfully. As an example, consider the case of 2 agents located at x1 and x2 respectively, and

suppose the location that optimizes the planner’s objective is the mid-point (x1 + x2)/2. Then,

assuming x1 < x2, agent 1 has an incentive to report a location x′1 < x1 so that the planner’s

decision results in the facility being located closer to his true location. The planner can address

this issue by restricting herself to a strategyproof mechanism: by this we mean that it should be a

(weakly) dominant strategy for each agent to report his location truthfully to the central planner.

This, of course, is an attractive property, but it comes at a cost: based on the earlier example, it

is clear that the planner cannot hope to optimize her objective. One way to avoid this difficulty

is to assume an environment in which agents (and the planner) can make or receive payments;

in such a case, the planner selects the location of the facility, and also a payment scheme, which

specifies the amount of money an agent pays (or receives) as a function of the reported locations

of the agents as well as the location of the facility. This option gives the planner the ability to

support the “optimal” solution as the outcome of a strategyproof mechanism by constructing a

carefully designed payment scheme in which any potential benefit for a misreporting agent from

a change in the location of the facility is offset by an increase in his payment.

There are many settings, however, in which such monetary compensations are either not

possible or are undesirable. This motivated Procaccia and Tennenholtz [15] to formulate the notion

of Approximate Mechanism Design without Money. In this model the planner restricts herself to

strategyproof mechanisms, but is willing to settle for one that does not necessarily optimize her

objective. Instead, the planner’s goal is to find a mechanism that effectively approximates her

objective function. This is captured by the standard notion of approximation that is widely

used in the CS literature: for a minimization problem, an algorithm is an α-approximation if the

solution it finds is guaranteed to have cost at most α times that of the optimal cost (α ≥ 1).

Procaccia and Tennenholtz [15] apply the notion of approximate mechanism design without

money to the facility location problem considered here for two different objectives: (i) minisum,

where the goal is to minimize the sum of the costs of the agents; and (ii) minimax, where the

goal is to minimize the maximum agent cost. They show that for the minimax objective choosing

any k-th median—picking the kth largest reported location—is a strategyproof, 2-approximate

mechanism. They design a randomized mechanism called LRM (Left-Right-Middle) and show

that it is a strategyproof, 3/2-approximate mechanism; furthermore, they show that those mech-

anisms provide the optimal worst-case approximation ratio possible (among all deterministic and

randomized strategyproof mechanisms, respectively). For the minisum objective, it is known that

choosing the median reported location is optimal and strategyproof [14]. Feldman and Wilf [9]

consider the same facility location problem on a line but with the social cost function being the
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L2 norm of the agents’ costs (Feldman and Wilf actually used the sum of squares of the agents’

costs, however most of their results can be easily converted to the L2 norm. Of course, the ap-

proximation ratios they report need to be adjusted as well). They show that the median is a√
2-approximate strategyproof mechanism for this objective function, and provide a randomized

(1 +
√

2)/2-approximate strategyproof mechanism. Feldman and Wilf also generalize the median

mechanism to maintain strategyproofness and a
√

2 approximation ratio on trees; furthermore,

they provide a family of randomized strategyproof mechanisms for trees, and in particular show

that a member of this family reduces the approximation ratio to strictly below
√

2. A general

survey of approximate mechanism design without money for facility location problems has been

written by Cheng et al. [7].

Aside from the recent literature on approximate mechanism design, our work is loosely related

to other different strands in the literature with a much longer history. First is the classical work

on social choice, which deals with the aggregating the preferences of a set of voters over a set of

alternatives [13]. The location problem we consider is a special case in which the alternatives are

all possible points on the real line (the location of the facility), and agents have single-peaked

preferences. An important difference, however, is the following: a typical social choice problem

is to find an aggregation rule satisfying a desired set of properties, whereas in our case the plan-

ner wishes to optimize or approximate a given social objective function. Nevertheless, various

techniques and results from this literature are useful in our setting as well. An important result

along these lines is Moulin’s characterization of strategyproof mechanisms on the line [14]. A

parallel characterization result was developed by Schummer and Vohra [17] for general graphs.

In both these papers, much like in our paper, generalized medians play an important role; also,

despite not having a specific objective function, these characterizations assume less specific ef-

ficiency related properties, such as Pareto efficiency and onto range. Additional papers along

these lines are [5, 8]. It is important to note that impossibility results abound in social choice

models—our focus on the simple special case enables us to avoid impossibility results such as the

Gibbard-Satterthwaite Theorem [10, 16], which implies the non-existence of a reasonable social

choice function. Second is the classical work in operations research on graphical location problems

that considers locating the facility at a Condorcet point [11, 12, 4, 3]. (A Condorcet point is one

that is preferred by a majority of agents to any other location.) This literature seeks to establish

bounds on the total cost to all the agents to access the facility divided by the minimum cost,

with the understanding that smaller ratios are better. However, this literature does not model

individual agent incentives, and moreover does not also explore other mechanisms. Finally, there

is a rich literature on facility location problems and variations (such as the k-median and k-center

problems) where agent incentives are not taken into account. In such problems, there is typically a

single objective function (the planner’s), and agent locations are known. In this literature, one re-
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sorts to approximation algorithms for a different reason—often, these optimization problems turn

out to be computationally intractable, and the focus is on developing computationally efficient

heuristics for which a worst-case approximation guarantee can be proved (see [19], and chapters

25-26 of [18]). To our knowledge, most of the algorithms designed in this literature violate our

(rather strong) strategyproofness requirements. In addition, some consideration has been given

in literature to the circle topology, by Alon et al. [1, 2]. It is important to note that while the

idea of using approximate mechanisms to induce strategyproofness was first proposed in 2009,

the problem of finding strategyproof mechanisms has received attention beforehand. The papers

that were written before 2009 allow much more generality in the preferences of the agents, but as

a result do not have a specific objective function to optimize, and thus approximation is not of

relevance there.

In our paper, we follow the suggestion of Feldman and Wilf [9] and study the problem of

locating a single facility on a line, but with the objective function being the Lp norm of the vector

of agent-costs (for general p ≥ 1). In the context of real world facility location problems, where

the agents must drive to and from the facility, the Lp norm can represent situations where travel

time or other cost increases superlinearly with the distance (as suggested in [6]). For example,

when driving over larger distances, there is an increased likelihood (depending on traffic) of the

need to stop and refuel, or, in the case of electric cars, stop and recharge–which is even more

costly since such recharging can be done at home, without wasting the driver’s time. As another

example, certain hybrid cars increase their fuel consumption in longer drives— which is relevant

if the cost represents fuel consumption rather than travel time. For such problems, our results

provide strong lower bounds, robust to the topology of the road network (since they only require

a line) and the value of p. We also hope that our results regarding the median will guide the

construction of good mechanisms for more general topologies, similarly to the case of p = 2 in

[9], where the optimality of the median on the line inspires the construction of a mechanism for

tree networks using the appropriate adaptation of the median. Another use of the Lp norm is

to strike a balance between efficiency and fairness. The cases of p = 1 and p = ∞, which were

both studied in [15], can be viewed as representing the two extremes on the spectrum between

maximizing efficiency (minimizing the total social cost) and maximizing fairness (minimizing the

cost of the agent who is worst off). Thus, our definition of social cost allows for a controlled

tradeoff between efficiency and fairness by varying the value of p. On the line, this interpretation

of the Lp norm becomes particularly interesting in the context of voting. Public opinion on many

issues is considered to be on a spectrum between political left and right, lending itself naturally

to a one dimensional description. One of the common problems in democratic societies is to

balance between majority rule and respecting minority rights; thus, the Lp measure allows for

a quantitative exploration of this balance. Of course, this interpretation of the Lp norm can be
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relevant to physical facility location problems as well.

We define the problem formally in section 2. In section 3, we show that the median mechanism

(which is strategyproof) provides a 2
1− 1

p approximation ratio, and that this is the optimal ap-

proximation ratio among all deterministic strategyproof mechanisms. We move onto randomized

mechanisms in section 4. First, we present a negative result: we show that for integer∞ > p > 2,

no mechanism—from a rather large class of randomized mechanisms— has an approximation ra-

tio better than that of the median mechanism, as the number of agents goes to infinity. It is

worth noting that all the mechanisms proposed in literature so far— for minimax, minisum, and

the L2 social cost functions— belong to this class of mechanisms. Next, we consider the case of

2 agents, and show that the LRM mechanism provides the optimal approximation ratio among

all randomized strategyproof mechanisms (that satisfy certain mild assumptions) for this special

case, for every p ≥ 1. Our result for the special case of 2 agents also gives a lower bound on

the approximation ratio for all randomized mechanisms. We briefly discuss some directions for

further research in section 5. In the appendix we discuss some technical details omitted from the

paper, as well as an additional negative result for an alternative definition of the agents’ cost.

2 Model

Let N = {1, 2, . . . , n}, n ≥ 2, be the set of agents. Each agent i ∈ N reports a location xi ∈ R. A

deterministic mechanism is a collection of functions f = {fn| n ∈ N, n ≥ 2} such that each fn :

Rn → R maps each location profile x = (x1, x2, . . . , xn) to the location of a facility. We will abuse

notation and let f(x) denote fn(x). Under a similar notational abuse, a randomized mechanism

is a collection of functions f that maps each location profile to a probability distribution over R:

if f(x1, x2, . . . , xn) is the distribution π, then the facility is located by drawing a single sample

from π.

Our focus will be on deterministic and randomized mechanisms for the problem of locating

a single facility when the location of any agent is private information to that agent and cannot

be observed or otherwise verified. It is therefore critical that the mechanism be strategyproof—it

should be optimal for each agent i to report his true location xi rather than something else. To

that end we assume that if the facility is located at y, an agent’s disutility, equivalently cost, is

simply his distance to y. Thus, an agent whose true location is xi incurs a cost C(xi, y) = |xi−y|.
If the location of the facility is random and according to a distribution π, then the cost of agent

i is simply C(xi, π) = Ey∼π|xi− y|, where y is a random variable with distribution π. The formal

definition of strategyproofness is now:1

Definition 1. A mechanism f is strategyproof if for each i ∈ N , each xi, x
′
i ∈ R, and for each

1Note that for randomized mechanisms, we require strategyproofness in expectation, rather than ex-post.
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x−i = (x1, x2, . . . , xi−1, xi+1, . . . xn) ∈ Rn−1,

C(xi, f(xi,x−i)) ≤ C(xi, f(x′i,x−i)),

where (α,x−i) denotes a vector with the i-th component being α and the j-th component being xj

for all j 6= i.

The class of strategyproof mechanisms is quite large: for example, locating the facility at agent

1’s reported location is strategyproof, but is not particularly appealing because it fails almost every

reasonable notion of fairness and could also be highly “inefficient”. To address these issues, and to

winnow down the class of acceptable mechanisms, we impose additional requirements that stem

from efficiency or fairness considerations. In this paper we assume that locating a facility at y

when the location profile is x = (x1, x2, . . . , xn) incurs the social cost

sc(x, y) =

(∑
i∈N
|xi − y|p

)1/p

, p ≥ 1.

For a randomized mechanism f that maps x to a distribution π, we define the social cost to be2

sc(x, π) = Ey∼π

[(∑
i∈N
|xi − y|p

)1/p
]
.

For this definition of social cost, our goal now is to find a strategyproof mechanism that does

well with respect to minimizing the social cost. A natural mechanism (and this is the approach

taken in the classical literature on facility location) is the “optimal” mechanism: each location

profile x = (x1, x2, . . . , xn) is mapped to OPT (x), defined as OPT (x) ∈ arg miny∈R sc(x, y).3

This optimal mechanism is not strategyproof as shown in the following example.

Example. Suppose there are two agents located at the points 0 and 1 respectively on the real

line. If they report their locations truthfully, the optimal mechanism will locate the facility at

y = 0.5, for any p > 1. Assuming agent 2 reports x2 = 1, if agent 1 reports x′1 = −1 instead, the

facility will be located at 0, which is best for agent 1.

Given that strategyproofness and optimality cannot be achieved simultaneously, it is necessary

to find a tradeoff. In this paper we shall restrict ourselves to strategyproof mechanisms that

2For this definition of social cost, an alternative option is to let the agents’ costs increase non-linearly with their

distance from the facility, in particular C(xi, y) = |xi− y|p. In Appendix A we provide an interesting result for this

case.
3Strictly speaking, the mechanism is not well defined in cases where the social cost at x is minimized by multiple

locations, but we could pick an exogenous tie-braking rule to deal with such cases.
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approximate the optimal social cost as best as possible. The notion of approximation that we

use is standard in computer science: an α-approximation algorithm is one that is guaranteed to

have cost no more than α times the optimal social cost. Formally, the approximation ratio of an

algorithm A is supI{A(I)/OPT (I)}, where the supremum is taken over all possible instances I

of the problem, and A(I) and OPT (I) are, respectively, the costs incurred by algorithm A and

the optimal algorithm on the instance I.4 Our goal then is to design strategyproof (deterministic

or randomized) mechanisms whose approximation ratio is as close to 1 as possible.

3 The Median Mechanism

For the location profile x = (x1, x2, . . . , xn), the median mechanism is a deterministic mechanism

that locates the facility at the “median” of the reported locations. The median is unique if n is

odd, but not when n is even, so we need to be more specific in describing the mechanism. For

odd n, say n = 2k − 1 for some k ≥ 1, the facility is located at x[k], where x[k] is the kth largest

component of the location profile. For even n, say n = 2k, the “median” can be any point in the

interval [x[k], x[k+1]]; to ensure strategyproofness, we need to pick either x[k] or x[k+1], and as a

matter of convention we take the median to be x[k]. It is well known that the median mechanism

is strategyproof.5 Furthermore, the median mechanism is anonymous.6 Thus we may assume,

without loss of generality, that each agent reports her location truthfully.

Our main result in this section is that, for any p ≥ 1, the median mechanism uniformly achieves

the best possible approximation ratio among all deterministic strategyproof mechanisms. We start

with two simple observations, which will be used in the proof of this main result.

Lemma 1. For any real numbers a, b, c with a ≤ b ≤ c, and any p ≥ 1,

(c− a)p ≤ 2p−1[(c− b)p + (b− a)p].

Proof. For any p ≥ 1, f(x) = xp is a convex function on [0,∞), and so for any λ ∈ [0, 1] and

x, y ≥ 0,

f(λx+ (1− λ)y)) ≤ λf(x) + (1− λ)f(y). (1)

Setting λ = 1/2, x = c− b, and y = b− a, we get:

1

2p
(c− a)p ≤ 1

2
[(c− b)p + (b− a)p]. (2)

4For the case of randomized mechanisms, it should be noted that this is the approximation ratio is in expectation

rather than with high probability.
5A classical paper of Moulin [14] for a closely related model shows that all deterministic strategyproof mechanisms

are essentially generalized median mechanisms.
6In an anonymous mechanism, the facility location is the same for two location profiles that are permutations

of each other.
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Multiplying both sides of the inequality by 2p gives the result.

Lemma 2. For any non-negative real numbers a and b, and any p ≥ 1,

(a+ b)p ≥ ap + bp.

Proof. For integer p, the result is a direct consequence of the binomial theorem; the same argument

covers the case of rational p as well. Continuity implies the result for all p.

Theorem 1. Suppose there are n agents with the location profile x = (x1, x2, . . . , xn). Define the

social cost of locating a facility at y as (
∑n

i=1 |y − xi|p)
1
p for p ≥ 1. The social cost incurred by

the median mechanism is at most 2
1− 1

p times the optimal social cost.7

Proof. We may assume that x1 ≤ ... ≤ xn. Let OPT be a facility location that minimizes the

social cost, and let m be the median. The inequality we need to prove is

n∑
i=1

|m− xi|p ≤ 2p−1
n∑
i=1

|OPT − xi|p.

We do this by pairing each location xi with its “symmetric” location xn+1−i and arguing that the

total cost of these two locations in the median mechanism is within the required bound of their

total cost in an optimal solution. For even n, this completes the argument; for odd n the only

location without such a pair is the median itself, which incurs zero cost in the median mechanism,

and so the argument is complete. Formally, the result follows if we can show

|m− xi|p + |xn+1−i −m|p ≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p), ∀ i ≤ bn/2c.

We consider two cases, depending on whether OPT is in the interval [xi, xn+1−i] or not. In

each of these cases, OPT may be above the median or below, but the proof remains identical in

each subcase, so we give only one.

1. xi ≤ m ≤ OPT ≤ xn+1−i or xi ≤ OPT ≤ m ≤ xn+1−i. We will prove the first of

these subcases; the proof of the second is identical. Applying Lemma 1 by setting a = m,

b = OPT , and c = xn+1−i, we get

|xn+1−i −m|p ≤ 2p−1(|xn+1−i −OPT |p + |OPT −m|p).

Thus,

|m− xi|p + |xn+1−i −m|p ≤ |m− xi|p + 2p−1(|xn+1−i −OPT |p + |OPT −m|p)

≤ 2p−1(|m− xi|p + |xn+1−i −OPT |p + |OPT −m|p)

≤ 2p−1(|xn+1−i −OPT |p + |OPT − xi|p),
7This is a generalization of the results for p = 2 [9], p = 1 and p =∞ [15] (when p =∞, the median mechanism

provides a 2-approximation).

8



where the last inequality is obtained by applying Lemma 2 to the terms |m − xi|p and

|OPT −m|p.

2. OPT ≤ xi ≤ m ≤ xn+1−i or xi ≤ m ≤ xn+1−i ≤ OPT . Again, we prove only the first

subcase. Note that

|xn+1−i −m|p + |m− xi|p ≤ |xn+1−i − xi|p

≤ |OPT − xn+1−i|p

≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p)

where the first inequality follows from Lemma 2. (Note that Lemma 1 is not used in the

proof of this case.)

We end this section by showing that no deterministic and strategyproof mechanism can give

a better approximation to the social cost.

Lemma 3. Consider the case of two agents and suppose the location profile is (x1, x2) with

x1 < x2. For p ≥ 1, suppose the social cost of locating a facility at y is (|x1 − y|p + |x2 − y|p)1/p.
Any deterministic mechanism whose approximation ratio is better than 2

1− 1
p for p > 1 must locate

the facility at y for some y ∈ (x1, x2).
8

Proof. The function sc(x, y) is strictly convex in y, and its unique minimizer is y∗ = (x1 + x2)/2,

with the corresponding value sc(x, y∗) = |x2 − x1|/21−
1
p . Moreover sc(x, x1) = sc(x, x2) =

|x2 − x1| = 2
1− 1

p sc(x, y∗). It follows that for the deterministic mechanism to do strictly better

than the stated ratio, the facility cannot be located at the reported locations; locating the facility

to the left of x1 or to the right of x2 only increases the cost of the mechanism, so the only option

left for a mechanism to do better is to locate the facility in the interior, i.e., in (x1, x2).

Theorem 2. Any strategyproof deterministic mechanism has an approximation ratio of at least

2
1− 1

p for the Lp social cost function for any p ≥ 1.9

Proof. Using Lemma 3, we can now argue similarly to the case of p =∞ (theorem 3.2 in [15]).10

Suppose p > 1 (the bound holds trivially for p = 1), and suppose a deterministic strategyproof

mechanism yields an approximation ratio strictly better than 2
1− 1

p for the Lp social cost. For

the two-agent location profile x1 = 0, x2 = 1, Lemma 3 implies the facility is located at some

y ∈ (0, 1). Now consider the location profile x1 = 0, x2 = y. Again, by Lemma 3, the mechanism

8Ex-post Pareto efficiency (as defined in section 4.2) requires the facility to be located in [x1, x2]; thus, this

property is stronger.
9The lower bound of 2 on the approximation ratio holds when p =∞, see Procaccia and Tennenholtz [15].

10Another argument along this line can be found in the proof of theorem 4.4 in [9].
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must locate the facility at y′ ∈ (0, y) to guarantee the improved approximation. But if agent 2 is

located at y < 1, he can misreport his location as 1, forcing the mechanism to locate the facility

at y, his true location; this violates strategyproofness.

4 Randomized Mechanisms

Recall that when the social cost is measured by the L2 norm or the L∞ norm, randomization

provably improves the approximation ratio. In the former case, Feldman and Wilf [9] describe an

algorithm whose approximation ratio is (
√

2+1)/2; for the latter, Procaccia and Tennenholtz [15]

design an algorithm with an approximation ratio of 3/2. The mechanisms in both cases are

simple and somewhat similar, placing non-negative probabilities only on the optimal location and

generalized medians (defined shortly), where these probabilities are independent of the reported

location profile. In this section we show that this is not enough in general; namely, randomizing

over generalized medians and the optimal location does not improve the approximation ratio of

the median mechanism for any integer p ∈ (2,∞). For the case of 2 agents we show that the

best approximation ratio is given by the LRM mechanism among all strategyproof mechanisms.

Extending this analysis even to the case of 3 agents appears to be non-trivial.

4.1 Mixing Dictatorships and Generalized Medians with the Optimal Location

We begin with a definition of generalized medians.

Definition 2. Let x ∈ Rn, S ⊆ N , and m ∈ {1, . . . , |S|}. Let S = {s1, . . . , s|S|}, where xsi ≤
xsi+1. Then, the mth generalized median of subset S in location profile x is x[m,S] = xsm.11 If

S = N , we allow for the shorthand x[m] = x[m,N ].

Next, we define the class of mechanisms currently used in literature:

Definition 3. Let f be a mechanism which satisfied the following. For every n ∈ N, S ⊆ N , m ∈
{1, . . . , |S|}, there exist non-negative numbers vS

n
m, and vnOPT with vnOPT+

∑
S⊆N,m∈{1,...,|S|} v

Sn
m =

1, such that for every profile (x1, x2, . . . , xn), f locates the facility at OPT with probability

vnOPT and at x[m,S] with probability vS
n
m (where OPT is the optimal location for the profile

(x1, x2, . . . , xn)).12 If f satisfies these properties, we say that f is a Mixed Generalized Medi-

ans Optimal (MGMO) mechanism.

We now show that for integer p > 2, MGMO mechanisms cannot beat the median.

11That is, x[m,S] is the mth largest location among the locations of the agents in S, allowing for repetition.
12When a location appears more than once in OPT and x[m,S] for S ⊆ N and m ∈ {1, . . . , |S|}, the probabilities

add up.
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Theorem 3. Let f be a strategyproof MGMO mechanism. Then, for any finite integer p > 2, the

approximation ratio of f is at least 2
1− 1

p .

Proof. Fix n = 2k, with k ∈ N. In all profiles in our proof, the relative order of agents locations

remains the same: specifically, i < j implies xi ≤ xj for all of our profiles x. For every S ⊆ N , and

every j ∈ S let S(j) be the number of agents with index weakly smaller than j in S (for example,

if S = {2, 4, 9}, then S(2) = 1, S(4) = 2, and S(9) = 3). On our profiles, the probability that the

location of agent j ∈ N is chosen as a generalized median therefore is vnj =
∑

S⊆N :j∈S v
Sn
S(j).

For j = 1, . . . , k, define the profile xj as follows (where aj is a parameter to be defined shortly):

agents 1 through j are located at −aj ; agents j+1 through k are located at 0; agents k+1 through

2k − j + 1 are located at 1; and agents 2k − j + 2 through 2k are located at 1 + aj (note the

slight asymmetry in the location of the agents: while k agents are at or below zero, and k agents

are at or above 1, there is an additional agent at 1 compared to zero and so one less agent at

1 + aj compared to −aj). Now, aj is chosen to be the smallest positive root of the function

gj(α) = jαp−1 − (k − j + 1)− (j − 1)(1 + α)p−1; such an aj must exist by the intermediate value

theorem, as gj(0) < 0 and gj(α) is a continuous function of α with gj(α)→∞ as α→∞.

We show that the optimal mechanism locates the facility at zero for the profile xj , i.e., OPT =

0. Note that the social cost for this profile, when locating the facility at z ∈ [0, 1], is j(z + aj)
p +

(k− j)zp+ (k− j+ 1)(1−z)p+ (j−1)(1 +aj−z)p, and when z ∈ (−aj , 0) the social cost becomes

j(z + aj)
p + (k − j)(−z)p + (k − j + 1)(1 − z)p + (j − 1)(1 + aj − z)p. Note that the social cost

function is differentiable for z ∈ (0, 1) and for z ∈ (−aj , 0). The left and right derivatives at 0 are

both pjap−1j − p(k− j+ 1)− p(j− 1)(1 + aj)
p−1, and thus the social cost function is differentiable

on (−aj , 1) with its derivative at z = 0 equal to zero (by our choice of aj). The fact that this is a

global minimum now follows from strict convexity of the social cost function ||xj − z(1, . . . , 1)||p
(for all z ∈ R). Thus, indeed, OPT = 0.

We now attempt to bound vOPT . For each profile xj , consider the profile x′j that differs only

in the location of agent j: namely, x′jj = 0 instead of −aj . Note that on this profile, OPT = 0.5

by symmetry. Strategyproofness implies that a deviation from profile x′j to profile xj should not

be beneficial for agent j, namely ajv
n
j − 1

2v
n
OPT ≥ 0 (where aj is the increase in agent j’s cost

caused by that deviation when the facility is built in his reported location, and 1
2 is the decrease in

his cost caused by that deviation when the facility is located at OPT ), which implies vnj ≥
vnOPT
2aj

.

Defining aj for j = k+ 1, . . . , 2k in a symmetric fashion, it follows that the same inequality holds

for j in that range, and that aj = a2k−j+1. Summing those inequalities up, we get:

1− vnOPT =
2k∑
j=1

vnj ≥
2k∑
j=1

vnOPT
2aj

= 2
k∑
j=1

vnOPT
2aj

=
k∑
j=1

vnOPT
aj

11



vnOPT ≤
1

1 +
∑k

j=1
1
aj

Now, we claim it is enough to show that as n→∞ (or equivalently, as k →∞),
∑k

j=1
1
aj
→∞.

The inequality then implies that vnOPT → 0. Consider the profile which locates k agents at 0 and

k agents at 1. The social cost of locating the facility at OPT on this profile is p
√
n/2, while the

social cost of locating the facility at an agent’s location is p
√
n2
− 1
p ; thus, the approximation ratio

of f on this profile is
vnOPT

p√n/2+(1−vnOPT )
p√n2−

1
p

p√n/2 = 2
1− 1

p − (2
1− 1

p − 1)vnOPT . Thus, as n→∞, the

approximation ratio on these profiles approaches 2
1− 1

p , completing the proof.

We are left with the task of showing that limk→∞
∑k

j=1
1
aj

= ∞ . To do so, we first show

that for j ≥ k
1
p−1 + 1, 2p−1(j − 1) > aj . Recall that aj was defined as the smallest positive root

of gj(α), and that gj(0) < 0. Thus, it is enough to show that for j in the appropriate range,

gj(2
p−1(j − 1)) > 0. For notational convenience, we denote Q = 2p−1.

gj(Q(j − 1)) = jQp−1(j − 1)p−1 − (k − j + 1)− (j − 1)(1 +Q(j − 1))p−1

= Qp−1(j − 1)p−1 − k − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−2

> Qp−1(j − 1)p−1 − (j − 1)

p−1∑
i=1

(
p− 1

i

)
(Q(j − 1))p−2

= Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−2
p−1∑
i=1

(
p− 1

i

)
> Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−22p−1 = 0.

Now,

12



lim
k→∞

k∑
j=1

1

aj
> lim

k→∞

k∑
j=dk

1
p−1+1e

1

2p−1j

=
1

2p−1
lim
k→∞

k∑
j=dk

1
p−1+1e

1

j

≥ 1

2p−1
lim
k→∞

∫ k

k
1
p−1+2

1

t
dt

=
1

2p−1
( lim
k→∞

∫ k

k
1
p−1

1

t
dt− lim

k→∞

∫ k
1
p−1+2

k
1
p−1

1

t
dt)

=
1

2p−1
(( lim
k→∞

(1− 1

p− 1
) ln k)− 0) =∞

which completes our proof.

4.2 Optimality of the LRM Mechanism for 2 Agents

Procaccia and Tennenholtz [15] defined the mechanism Left-Right-Middle (LRM) as follows:

place the facility with probability 1
2 at OPT , and with probability 1

4 at each of x[1] and x[n]. They

have shown that it is strategyproof, and that it provides a best-possible approximation ratio

of 3
2 when p = ∞. Our next result shows that the LRM mechanism provides the best possible

approximation ratio among all shift and scale invariant (defined below) strategyproof mechanisms

for the case of 2 agents for all Lp social cost functions for p ≥ 1.

We begin with some definitions: we say that a mechanism f is shift and scale invariant if for

every location profile x = (x1, x2) and every c ∈ R, the following two properties are satisfied:13

1. Shift Invariance: the random variables Y ′ ∼ f(x1 + c, x2 + c) and Y + c s.t. Y ∼ f(x) are

equal in distribution.

2. Scale Invariance: the random variables Y ′ ∼ f(cx1, cx2) and cY s.t. Y ∼ f(x) are equal in

distribution.14

13While these two properties are natural and reasonable to expect, it should be noted that they are not implied

by strategyproofness- one example is the constant mechanism, which always locates the facility at the same point

regardless of the reports. Requiring unanimity in addition to strategyproofness is also not sufficient to guarantee

these properties; for example, the mechanism that runs LRM if x[1] = 0, and otherwise locates the facility at x[1]

and x[2] with probability 1/2 each, is easily seen to be strategyproof and unanimous but neither shift nor scale

invariant.
14It is possible to replace shift invariance with symmetry in our assumptions, and preserve our results; see

appendix.

13



A convenient notation for a given location profile x is to denote its midpoint as mx = x1+x2
2 .

We say that a mechanism f is symmetric if for any location profile x and for any y ∈ R, P(f(x) ≥
mx + y) = P(f(x) ≤ mx − y).

The structure of the proof is as follows. Our goal is to show that within the class of strate-

gyproof, shift invariant and scale invariant mechanisms, we can further limit ourselves to symmet-

ric mechanism that locate the facility always at the agents’ locations or the midpoint; within this

further restricted class, it becomes easy to prove that LRM is optimal. We achieve this goal grad-

ually. First we show that we may restrict ourselves to symmetric (and anonymous) mechanisms.

We then provide a characterization of strategyproofness for such mechanisms, and use it to show

that we can further restrict ourselves to mechanisms which, for each profile x, do not locate the

facility both at (min {x1, x2},max {x1, x2}) and at (−∞,min {x1, x2}) ∪ (max {x1, x2},∞) with

positive probability. We then show that we can restrict ourselves to mechanisms that locate the

facility always at the agents’ locations or the midpoint.

The following lemma allows us to focus on symmetric mechanisms.

Lemma 4. Given any strategyproof, shift and scale invariant mechanism, there exists a symmet-

ric, strategyproof, shift and scale invariant mechanism with the same worst-case approximation

ratio.

Proof. Given a mechanism f , we define the mirror mechanism of f , fmirror, to be such that for

every profile x, we have that P(fmirror(x) ≥ mx + b) = P(f(x) ≤ mx − b) for all b ∈ R.15

We will need the following notation: For each profile x = (x1, x2), let Yx1,x2 ∼ f(x), and

Y ′x1,x2 ∼ fmirror(x). We claim that fmirror is shift invariant, scale invariant and strategyproof (all

of the equalities below are in distribution):

1. Shift invariance: let c ∈ R. Then Y ′x1+c,x2+c = 2mx1+c,x2+c − Yx1+c,x2+c = 2mx + 2c −
Yx1,x2 − c = Y ′x1,x2 + c.

2. Scale invariance: let c ∈ R. Then Y ′cx1,cx2 = 2cmx1,x2 − Ycx1,cx2 = c(2mx1,x2 − Yx1,x2) =

cY ′x1,x2 .

3. Strategyproofness: assume fmirror is not strategyproof, and assume without loss of gener-

ality that agent 2 has a profitable misreport: there exist profiles (w1, w2) and (w1, w2 + α)

for some α ∈ R such that E[|w2 − Y ′w1,w2
|] > E[|w2 − Y ′w1,w2+α|]. However, note that

w2−Y ′w1,w2+α = −w1−α+Yw1,w2+α = Yw1−α,w2−w1 (the second equality follows from shift

15Equivalently, the mirror mechanism can be thought of as follows: whenever f locates the facility at y ∈ R (that

is, the single sampling of f(x) yields y), fmirror ”mirrors” that location about mx, meaning it locates the facility

at 2mx − y.
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invariance), and that w2 − Y ′w1,w2
= Yw1,w2 − w1. Thus, it follows that E[|w1 − Yw1,w2 |] >

E[|Yw1−α,w2 − w1|], violating strategyproofness for f . Thus fmirror must be strategyproof.

Therefore, the mechanism g that picks f with probability 1/2 and fmirror with probability 1/2

is a strategyproof mechanism that is also symmetric; g trivially satisfies shift and scale invariance.

Finally, note that g has the same approximation ratio as f for all location profiles, since fmirror

has the same approximation ratio as f .

Mechanisms which satisfy shift and scale invariance as well as symmetry also satisfy anonymity:

Lemma 5. If a mechanism f is shift invariant, scale invariant and symmetric, it is also anony-

mous.

Proof. Again, all equalities are in distribution. Let x be a location profile. We need to prove

Yx1,x2 = Yx2,x1 . Shift and scale invariance gives Yx2,x1 = −Yx1,x2 + x1 + x2; thus, P(Yx2,x1 ≤ b) =

P(x1 + x2 − b ≤ Yx1,x2). But P(x1 + x2 − b ≤ Yx1,x2) = P(Yx1,x2 ≤ b) by symmetry about mx,

thus Yx2,x1 = Yx1,x2 .

The next lemma deals with an equivalent condition for strategyproofness for symmetric, shift

and scale invariant mechanisms.

Lemma 6. A symmetric, shift and scale invariant mechanism f is strategyproof if and only if

for any profile x ∈ R2 with x1 = 0 < x2, the following conditions hold:

1. −
∫
(−∞,x2) ydF (y) +

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

2.
∫
(−∞,x2) ydF (y)−

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

where Y ∼ f(x) with c.d.f. F .

Proof. The proof is in the appendix B.

Given a strategyproof, shift invariant, scale invariant and symmetric mechanism, the upcom-

ing results demonstrate how to find another strategyproof, shift invariant, scale invariant and

symmetric mechanism that restricts the probability assignment to x1, x2, and mx for every profile

x and simultaneously gives a weakly better approximation than the original mechanism.

Lemma 7. Let f be a strategyproof, shift invariant, scale invariant and symmetric mechanism.

There exists another strategyproof, shift invariant, scale invariant and symmetric mechanism g

with a weakly smaller expected social cost on every profile, such that at least one of the following

two properties holds:

15



(1) For every two-agent profile x, P(g(x) ∈ (x1, x2)) = 0 for every two-agent profile x. (Doesn’t

utilize interior)16

(2) For every two-agent profile x, P(g(x) ∈ (−∞, x1)∪ (x2,∞)) = 0 for every two-agent profile

x. (Ex-post Pareto efficiency)

Proof. The proof is in the appendix B.

Lemma 8. Let f be a strategyproof, shift invariant, scale invariant, symmetric mechanism. As-

sume that f is either ex-post Pareto efficient or doesn’t utilize interior. Then there exists another

strategyproof mechanism g with a weakly smaller expected social cost on every profile, such that

P(g(x) ∈ {x1, x2,mx}) = 1 for every location profile x. Furthermore, g satisfies shift invariance,

scale invariance and symmetry.

Proof. We break the proof into two cases.

1. Assume f is ex-post Pareto efficient. Let g be the mechanism that satisfies P(g(x) = x1) =

P(f(x) = x1), P(g(x) = x2) = P(f(x) = x2), P(g(x) = mx) = 1−P(g(x) = x1)−P(g(x) =

x2). Note that since mx minimizes the social cost function for the profile x, g certainly

provides a weakly better approximation ratio than f . Furthermore, symmetry, shift and

scale invariance are preserved.

Let us prove that condition 1 in Lemma 6 holds for g; the proof for condition 2 is similar.

Since f is a strategyproof mechanism, the condition implies that for any profile x = (x1, x2)

with x1 = 0 < x2,

0 ≤ −
∫
[0,x2)

ydF (y) + x2P(f(x) = x2)

= −
∫
(0,x2)

ydF (y) + x2P(f(x) = x2)

= −E[f(x)1
(
f(x) ∈ (x1, x2)

)
] + x2P(f(x) = x2)

= −mxP(f(x) ∈ (x1, x2)) + x2P(f(x) = x2)

= −mxP(g(x) = mx) + x2P(g(x) = x2)

= −
∫
(0,x2)

ydG(y) + x2P(g(x) = x2).

The third equality holds because the distribution is symmetric around mx. Hence, the

condition is satisfied for the mechanism g.

16Note that it is possible for such a mechanism to still be ex-post Pareto efficient, if P(g(x) ∈ {x1, x2}).

16



2. Assume f doesn’t utilize interior. Let g be the mechanism which, for every profile x,

locates P(g(x) = x1) = P(g(x) = x2) = 0.5, which is clearly strategyproof, shift invariant,

scale invariant, and symmetric. sc(x, x2) minimizes sc(x, y) among y ≥ x2 and sc(x, x1)

minimizes sc(x, y) among y ≤ x1. Hence, E[sc(x, g(x))] ≤ E[sc(x, f(x))].

Now we are ready to prove the main theorem.

Theorem 4. The LRM mechanism gives the best approximation ratio among all strategyproof

mechanisms that are shift invariant, scale invariant and ex-post Pareto efficient.

Proof. By the previous lemma, it suffices to search among the class of strategyproof shift invariant,

scale invariant and symmetric mechanisms where any element f of the class satisfies the property

that P(f(x) ∈ {x1, x2,mx}) = 1 for every location profile x. Clearly, for such mechanisms, the

approximation ratio increases as P(f(x) ∈ {x1, x2}) increases. Assume P(f(x) ∈ {x1, x2}) < 0.5.

Then P(f(x) = mx) > 0.5, and by symmetry, P(f(x) = x2) < 0.25. But this gives, when x1 = 0

and x2 > 0, that −mxP(f(x) = mx) + x2P(f(x) = x2) = −x2
2 P(f(x) = mx) + x2P(f(x) = x2) <

0, violating strategyproofness by Lemma 6. Thus we must have that P(f(x) ∈ {x1, x2}) ≥ 0.5,

which implies that among all such mechanisms, LRM provides the best approximation ratio of

0.5(2
1− 1

p + 1).

An immediate consequence of Theorem 4 is the following corollary.

Corollary 1. Any strategyproof shift and scale invariant mechanism has an approximation of at

least 0.5(2
1− 1

p + 1) in the worst case.

5 Discussion

The most important open question in our view is whether or not randomization can help improve

the worst-case approximation ratio for general Lp norm cost functions. The case of p = 1 is

uninteresting because there is an optimal deterministic mechanism; for p = 2 and p = ∞ we

already saw that randomization improves the worst-case approximation ratio, but we do not

know if this is simply a happy coincidence, or if one can obtain similar results for all p > 2.

Our negative result in Section 4 implies that any improvement by randomization would require a

different approach than the existing mechanisms.

There are many other natural questions as well: for instance, what happens for more general

topologies such as trees or cycles? Is it possible to characterize all randomized strategyproof

mechanisms on specific topologies?

17



Finally, we believe it is of interest to consider more general cost functions for the individual

agents. The properties established for LRM and many other randomized mechanisms depend on

the assumption that agents incur costs that are exactly equal to the distance to access the facility.

Clearly, this is a very restrictive assumption, and working with more general individual agent

costs is an interesting direction to broaden the applicability of this class of models (see Appendix

A for a result regarding this direction).17
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Appendix A An Alternative Definition of Individual Cost

Let g be a strictly increasing and convex C1 function on [0,∞) with g(0) = g′(0) = 0. Note

that g(x) = xp satisfies this description for all p > 1. We consider a scenario where the cost of

agent i is C(xi, y) = g(|xi− y|) when the mechanism is deterministic and locates the facility at y.

Similarly C(xi, π) = Ey∼π[g(|xi − y|)] when the mechanism is randomized and locates the facility

according to distribution π. The social cost function h(|x1 − y|, |x2 − y|) is only assumed to be
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(1) anonymous (h(d, d′) = h(d′, d)) and (2) satisfy that for all a ∈ (min {x1, x2},max {x1, x2})
where x1 6= x2, h(|x1 − a|) + h(|x2 − a|) < h(|x2 − x1|). Note that for p > 1, the Lp norm of the

distances and the Lp norm of the costs (for the general g above) both satisfy these conditions. We

show that in this case, no randomized strategyproof mechanism satisfying shift invariance, scale

invariance and ex-post Pareto efficiency for n = 2 can help us improve the approximation ratio

relatively to the median mechanism.

Theorem 5. Let f be a randomized mechanism satisfying shift invariance and scale invariance,

and ex-post Pareto efficiency for n = 2. Assume f is strategyproof with respect to the individual

cost function C(xi, y) = g(|xi−y|), where g is a strictly increasing and convex C1 function on [0,∞)

with g(0) = g′(0) = 0. If the social cost function satisfies (1) and (2), then the approximation

ratio of f is at least as large as the median’s.

Proof. Using a proof similar to that of Lemma 4, we may assume without loss of generality that f

is symmetric. Consider a profile where n = 2 and x1 = 0, x2 = 1. Let Y = f(0, 1). We would like

that P(Y ∈ (0, 1)) = 0. Suppose for the sake of contradiction that there there exists x ∈ (0, 12)

such that P(Y ∈ (x, 1 − x)) = q > 0. Now suppose agent 2 now misreports his location to 1 + ε

for some small ε > 0 such that 1
1+ε > 1− x. By shift and scale invariance, f(0, 1 + ε) = (1 + ε)Y .

Then the difference in cost for agent 2 between the two profile of reports is

E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
] = −

∫ 1
1+ε

0
(g(1− y)− g(1− (1 + ε)y))dF (y)

+

∫ 1

1
1+ε

(g((1 + ε)y − 1)− g(1− y))dF (y)

≤ P(Y ∈ [
1

1 + ε
, 1])g(ε)− q

(
g(1− x∗)− g(1− (1 + ε)x∗)

)
where x∗ ∈ arg miny∈[x,1−x] g(1 − y) − g(1 − (1 + ε)y). The inequality follows from the fact that

g((1 + ε)y − 1) − g(1 − y) ≤ g(ε) for all y ∈ [ 1
1+ε , 1] and that g(1 − y) − g(1 − (1 + ε)y) ≥

g(1− x∗)− g(1− (1 + ε)x∗) for all y ∈ [x, 1− x]. Note that

lim
ε→0+

E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
]

ε
≤ lim

ε→0+
P(Y ∈ [

1

1 + ε
, 1])

g(ε)

ε
− q g(1− x∗)− g(1− (1 + ε)x∗)

ε

≤ P(Y = 1)g′(0)− qg′(1− x∗)x∗ < 0

The third inequality follows from g′(0) = 0 and g′(1 − x∗) > 0 (since g is strictly convex). This

implies that E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
] < 0 for ε sufficiently small, implying that there

is a profitable deviation for agent 2.
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Appendix B Omitted proofs from section 4.2

Proof of Lemma 6. First, let us prove that the two conditions imply strategyproofness. By shift

invariance and anonymity, it suffices to check strategyproofness for profiles where x1 = 0 and

x2 ≥ 0. Moreover, any scale invariant mechanism is trivially strategyproof with respect to the

profile (0, 0) since scale invariance implies f(0, 0) = 0, which means that no agent has incentive to

misreport his location.18 Thus, we can assume that x2 > 0. It suffices to show that agent 2 can-

not benefit by deviating from his true location if the two aforementioned conditions hold. Since

x2 > 0, we can denote agent 2’s deviation x′2 as cx2 for some c ∈ R. Moreover, we can assume that

c ≥ 0. This can be justified as follows. Assume c < 0. Note that by symmetry, in any fixed profile

z, the closer a point is to mz, the smaller the expected distance of the facility is from that point. In

particular, this implies that C(x2, f(0,−cx2)) ≤ C(−x2, f(0,−cx2)). But also note that by scale

invariance, C(−x2, f(0,−cx2)) = C(x2, f(0, cx2)). Thus, C(x2, f(0,−cx2)) ≤ C(x2, f(0, cx2)).

Consequently, if reporting cx2 is a profitable deviation for agent 2 for some c < 0, then reporting

−cx2 is also a profitable deviation for the agent.

When agent 2 reports his location to be cx2, where c > 1, the change in cost incurred by agent

2 is (where Corig is the expected cost of agent 2 under truthful reporting and Cdev is the expected

cost of agent 2 under misreporting):

Cdev − Corig = −(c− 1)

∫
(−∞,x2

c
)
ydF (y) +

∫
[
x2
c
,x2)

((c+ 1)y − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)+

+ (c− 1)x2P(Y = x2)

= −(c− 1)

∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)

+ (c− 1)x2P(Y = x2)

≥ −(c− 1)

∫
(−∞,x2)

ydF (y) + (c− 1)

∫
(x2,∞)

ydF (y) + (c− 1)x2P(Y = x2).

Hence, when condition 1 holds, we have that −(c − 1)
∫
(−∞,x2) ydF (y) + (c − 1)

∫
(x2,∞) yF (y) +

(c− 1)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0.

18f(0, 0) = 0 follows from, say, f(0, 0) = f(0 · 1, 0 · 1) = 0 · f(1, 1) = 0, where the second equality is by scale

invariance.
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Similarly, when 0 ≤ c < 1, the change in cost incurred by agent 2 is:

Cdev − Corig = (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − (c+ 1)y)dF (y)− (1− c)

∫
(
x2
c
,∞)

ydF (y)+

+ (1− c)x2P(Y = x2)

= (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − 2cy)dF (y)− (1− c)

∫
(x2,∞)

ydF (y)

+ (1− c)x2P(Y = x2)

≥ (1− c)
∫
(−∞,x2)

ydF (y)− (1− c)
∫
(x2,∞)

ydF (y) + (1− c)x2P(Y = x2).

Hence, when condition 2 holds, we have that (1− c)
∫
(−∞,x2) ydF (y)− (1− c)

∫
(x2,∞) ydF (y) +

(1 − c)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0. Hence, the mechanism is strate-

gyproof for any profile x with x1 = 0 < x2.

To prove the other direction, suppose condition 1 does not hold for some profile x with x1 = 0 <

x2. Then there exists ε > 0 small enough such that −
∫
(−∞,x2) ydF (y)+

∫
(x2,∞) ydF (y)+x2P(Y =

x2) ≤ −ε for some x2 > 0. We choose c > 1 s.t. P(Y ∈ [x2c , x2)) <
ε

4x2
, then we have that

Cdev − Corig = −(c− 1)

∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)

+ (c− 1)x2P(Y = x2)

≤ (c− 1)(−
∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2x2)dF (y) +

∫
(x2,∞)

ydF (y) + x2P(Y = x2))

< −(c− 1)
ε

2
< 0,

which contradicts strategyproofness of the mechanism.

Similarly, suppose condition 2 does not hold for some profile x with x1 = 0 < x2. Then there

exists ε > 0 small enough such that
∫
(−∞,x2) ydF (y) −

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≤ −ε for

some x2 > 0. We choose 0 < c < 1 s.t. P(Y ∈ (x2,
x2
c ])) < ε

4x2
, then we have that

Cdev − Corig = (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − 2cy)dF (y)− (1− c)

∫
(x2,∞)

ydF (y)

+ (1− c)x2P(Y = x2)

≤ (1− c)(
∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2x2)dF (y)−
∫
(x2,∞)

ydF (y) + x2P(Y = x2))

< −(1− c) ε
2
< 0,
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which contradicts strategyproofness of the mechanism.

Proof of Lemma 7. Let f be as given above. Assume f violates both (1) and (2) on some profile

x (otherwise, there is nothing to prove: we can take g = f). By shift invariance we may assume

without loss of generality that x1 = 0. We may assume by anonymity and shift invariance that

x1 = 0 < x2. Let Y ∼ f(x). Let p1 = P(Y ∈ (mx, x2)) + P(Y=mx)
2 = P(Y ∈ (x1,mx)) + P(Y=mx)

2 ,

p2 = P(x2,∞) = P(−∞, x1), z1 = E[Y 1(Y ∈(x1,mx))]+mxP(Y=mx)/2
p1

, and z′1 = E[Y |Y ∈ (−∞, x1)],
z2 = E[Y 1(Y ∈(mx,x2))]+mxP(Y=mx)/2

p1
, z′2 = E[Y |Y ∈ (x2,∞)].19

Consider a random variable Y ′′ obtained from Y as follows: P(Y ′′ ∈ {z′1, x1, z1, z2, x2, z′2}) = 1,

P(Y ′′ = z′1) = P(Y ′′ = z′2) = p2, P(Y ′′ = z1) = P(Y ′′ = z2) = p1, and P(Y ′′ = x1) = P(Y ′′ =

x2) = P(Y = x1) = P(Y = x2). Clearly, Y ′′ is symmetric about the midpoint mx. Since the

social cost function is convex, it follows that E[sc(x, Y ′′)] ≤ E[sc(x, Y )].

Now, consider a random variable Y ′ obtained from Y ′′ as follows. We construct Y ′ from

Y ′′ by shifting parts of the probability mass at z1 and z′1 to x1 as well as by shifting parts of

the probability mass at z2 and z′2 to x2 while ensuring that E[Y ′] = E[Y ′′]. Specifically, since

z1 < x1 < z′1, we can write x1 = λz1 + (1 − λ)z′1 for some 0 < λ < 1. One way to shift the

probability mass is to subtract probability λp and (1 − λ)p from z1 and z′1 respectively and add

probability p to x1 for p sufficiently small (do the same transformation for points z2, z
′
2, and x2).

This transformation ensures E[Y ′] = E[Y ′′] because

(p1 − λp)z1 + (p2 − (1− λ)p)z2 + (P(Y ′′ = x1) + p)x1 = p1z1 + p2z2 + P(Y ′′ = x1)x1.

In order to maximize the shift in probability mass, we choose the largest p possible or p =

min(p1λ ,
p2
1−λ). If p = p1

λ , then P(Y ′ ∈ {z′1, x1, x2, z′2}) = 1, as P(Y ′ = z′1) = P(Y ′ = z′2) =

p2 − (1 − λ)p, and P(Y ′ = x1) = P(Y ′ = x2) = P(Y ′′ = x1) + p. Else if p = p2
1−λ , then

P(Y ′ ∈ {x1, z1, z2, x2}) = 1, P(Y ′ = z1) = P(Y ′ = z2) = p1 − λp, and P(Y ′ = x1) = P(Y ′ =

x2) = P(Y ′′ = x1) + p. It is clear from construction that Y ′ is symmetric about mx. Convexity

implies E[sc(x, Y ′)] ≤ E[sc(x, Y ′′)], and so E[sc(x, Y ′)] ≤ E[sc(x, Y )].

Now, let g be a mechanism that locates the facility according to Y ′ given profile x. Note

that there is a unique way to extend the definition of g to all other two-agent profiles such that

g is shift and scale invariant as well as symmetric; let us extend the definition of g that way.

Furthermore, this extension is easily seen to imply the following:

19Note that if P(Y = mx) = 0, then z1 is the conditional expectation of Y given that Y ∈ (x1,mx). When

P(Y = mx) > 0, imagine that whenever Y = mx, we flip a fair coin; then z1 is the conditional expectation of Y

given that Y ∈ (x1,mx) or Y = mx and the coin lands on heads. z2 can be defined in a similar manner (replace

(x1,mx) with (mx, x2) and heads with tails). From this description it is clear that z1 ∈ (x1,mx], z2 ∈ [mx, x2),

and that they are symmetric about mx.
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1. Since E[sc(x, g(x))] ≤ E[sc(x, f(x))] for the profile x, the social cost obtained by mechanism

g via the extension is no more than the one obtained by mechanism f for all two-agent

profiles.

2. If P(g(x) ∈ (x1, x2)) = 0, then P(g(q) ∈ (q1, q2)) = 0 for all two-agent profiles q. Similarly,

if P(g(x) ∈ (−∞, x1)∪(x2,∞)) = 0, then P(g(q) ∈ (−∞, q1)∪(q2,∞)) = 0 for all two-agent

profiles q.

Thus, all that is left for us to do is to show strategyproofness of g. We can do so by verifying the

conditions in Lemma 6 (the fact that it holds for all the required profiles is then again immediate

by shift and scale invariance). When p = p1
λ , we claim that it suffices to show that:

−z′1(p2−(1−λ)p)+z′2(p2−(1−λ)p)+x2(P(Y ′ = x2)+p) ≥ −z′1p2−z1p1−z2p1+z′2p2+x2P(Y = x2),

and that

z′1(p2−(1−λ)p)−z′2(p2−(1−λ)p)+x2(P(Y ′ = x2)+p) ≥ z′1p2+z1p1+z2p1−z′2p2+x2P(Y = x2).

To justify this claim, we need to show that the right hand sides are always greater than or equal

to 0. But note that z1, z2, p1, z
′
1, z

′
2, and p2 were defined so that the right hand sides amount

exactly to the conditions of Lemma 6 for f on the profile x, and thus must be greater than or

equal to zero. After some algebra, the two inequalities above reduce to:

z′1(1− λ)p− z′2(1− λ)p+ x2p ≥ −z1p1 − z2p1, (3)

and

−z′1(1− λ)p+ z′2(1− λ)p+ x2p ≥ z1p1 + z2p1. (4)

To show (3), we know that

z′1(1− λ)p+ z1p1 = (z′1(1− λ) + z1λ)p = x1p = 0, that is z′1(1− λ)p = −z1p1,

and that

x2p = (z′2(1− λ) + z2λ)p ≥ z′2(1− λ)p− z2p1, that is x2p− z′2(1− λ)p ≥ −z2p1.

Combining the two above expressions gives us the desired result. Similarly, (4) follows from the

fact that z′1(1 − λ)p + z1p1 = 0 and that x2p = (z′2(1 − λ) + z2λ)p ≥ −z′2(1 − λ)p + z2p1. The

proof for the case where p = p2
1−λ is similar and so will be omitted.
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Appendix C Alternative assumptions in section 4.2

Theorem 4 holds if we replace the assumption of shift invariance with symmetry. It is clear from

the structure of the proof that it is enough to replace Lemma 4 with the following lemma:

Lemma 9. Given any strategyproof, symmetric and scale invariant mechanism, there exists a

strategyproof, symmetric, scale and shift invariant mechanism with a weakly smaller worst-case

approximation ratio.

Proof. Given a mechanism f , define g(x) = f(0, x2 − x1) + x1. Assume f is strategyproof,

symmetric and scale invariant. We claim that g is strategyproof, symmetric, scale and shift

invariant with a weakly smaller worst-case approximation ratio. The fact that g is shift invariant

and has a weakly smaller worst-case approximation ratio than f is immediate. Let Yx1,x2 ∼ f(x)

and Y ′x1,x2 ∼ g(x); the relevant equalities below are in distribution.

1. g is symmetric: let x ∈ R2, and let b ∈ R. Then P(Y ′x1,x2 ≥ mx + b) = P(Y0,x2−x1 ≥
mx + b− x1) = P(Y0,x2−x1 ≥ m(0,x2−x1) + b) = P(Y0,x2−x1 ≤ m(0,x2−x1) − b) = P(Y0,x2−x1 ≤
mx − b− x1) = P(Y0,x2−x1 + x1 ≤ mx − b) = P(Y ′x1,x2 ≤ mx − b).

2. g is scale invariant: let x ∈ R2 and let c ∈ R. Then Ycx1,cx2 = Y0,c(x2−x1) +cx1 = cY0,x2−x1 +

cx1 = c(Y0,x2−x1 + x1) = cY ′x1,x2 . The second equality follows from scale invariance of f .

3. g is strategyproof: let x ∈ R2, b, x′2 ∈ R. There are two cases:

(a) Assume E[|x2 − Y ′x1,x2 |] > E[|x2 − Y ′x1,x′2 |]. Note that E[|x2 − Y ′x1,x2 |] = E[|(x2 − x1)−
Y0,x2−x1 |] and E[|x2 − Y ′x1,x′2 |] = E[|(x2 − x1) − Y0,x′2−x1 |]. Thus, it follows that when

agent 1’s location is 0 and agent 2’s location is x2 − x1, agent 2 can benefit under f

when reporting x′2 − x1 instead, violating strategyproofness of f . Contradiction.

(b) Assume E[|x1−Y ′x1,x2 |] > E[|x1−Y ′x1+b,x2 |]. Note that E[|x1−Y ′x1,x2 |] = E[|−Y0,x2−x1 |] =

E[|(x2−x1)−Y0,x2−x1 |], where the last equality follows from symmetry of f . Also note

that E[|x1−Y ′x1+b,x2 |] = E[|− b−Y0,x2−x1−b|] = E[|(x2−x1)−Y0,x2−x1−b|], where again

the last equality follows from symmetry of f . Thus, when agent 1’s true location is

0 and agent 2’s true location is x2 − x1, then agent 2 benefits under f by reporting

x2 − x1 − b, violating strategyproofness of f . Contradiction.
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