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Abstract. This paper concerns an online packet scheduling problem that arises as a natural
model for buffer management at a network router. Packets arrive at a router at integer time steps, and
are buffered upon arrival. Packets have non-negative weights and integer deadlines that are (weakly)
increasing in their arrival times. In each integer time step, at most one packet can be sent. The
objective is to maximize the sum of the weights of the packets that are sent by their deadlines. The
main results include an optimal (φ := (1+

√
5)/2 ≈ 1.618)-competitive deterministic online algorithm

and a (4/3 ≈ 1.33)-competitive randomized online algorithm against an oblivious adversary. The
analysis does not use a potential function explicitly, but instead modifies the adversary’s buffer and
credits the adversary to account for these modifications.
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1. Introduction. Buffer management at routers is a critical issue in providing
effective quality of service to various Internet applications. Motivated by this con-
sideration, Kesselman et al. [20, 21] propose a model, called buffer management with
bounded delay. In this model, packets arrive over time and are buffered upon arrival.
An arriving packet (w, d) has a non-negative weight w and an integer deadline d
before which it must be transmitted. At each integer time step, exactly one packet
can be sent. A packet with deadline d that is not sent before time d expires, and is
dropped from the buffer. The objective is to maximize weighted throughput, defined
as the total weight of the transmitted packets. This paper deals with an important
special case of the problem in which the packet deadlines are (weakly) increasing in
their release times — the agreeable deadline model.

If the relevant characteristics — release date, weight, and deadline — of each
packet are known ahead of time, an optimal schedule can be found efficiently, for
instance, as a maximum weighted matching problem on a convex bipartite graph. In
most applications, however, we do not know this information ahead of time. Rather,
packets arrive online, and we only learn about a packet and its associated charac-
teristics when it actually arrives. The scheduling algorithm, therefore, is required to
make its decisions at any step based only on all the packets that have arrived so far,
without making any assumptions about future arrivals. Such an algorithm is called
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an online algorithm, and is typically evaluated by its competitive ratio. An online
algorithm is k-competitive if its weighted throughput on any instance is at least 1/k
of the weighted throughput of an optimal offline algorithm on this instance. The
smallest value of k for which an algorithm is k-competitive is called its competitive
ratio [8]. Our goal is to design an online algorithm for this scheduling problem with a
good competitive ratio. If an online algorithm decides which packet to process based
only on the contents of its buffer, and independent of the packets that have already
been processed, we call it memoryless. All algorithms we design in this paper are
memoryless.

1.1. Prior Work. Since the introduction of this online buffer management
model in [20, 21], many researchers have studied this problem as well as several vari-
ants. For the general problem, a simple greedy algorithm that schedules a maximum-
weight packet in the buffer is 2-competitive [18, 20, 21]. The best-known lower bound
on the competitive ratio of deterministic algorithms, however, is φ ≈ 1.618 [18, 10, 2].
Much research has been motivated by attempting to design algorithms with improved
competitive ratios, and also by considering natural restrictions on problem instances
that make an improved competitive ratio possible. Two such restrictions (on dead-
lines) can be described in terms of a packet’s span, defined as the difference between
its deadline and release date. An input instance is called s-bounded if the span of any
packet is at most s, and s-uniform if the span of any packet is exactly s. An input
instance has agreeable deadlines (or is similarly ordered) if the deadlines of the packets
(weakly) increase with their release dates. The agreeable deadline model generalizes
both the s-uniform model and the 2-bounded model.

A generalization of the greedy algorithm, called EDFα, always schedules the
earliest-deadline packet with weight at least 1/α (α ≥ 1) of the maximum-weight
packet [6, 9]. Although EDFα improves the competitive ratio for s-bounded instances,
the best competitive ratio of this family of algorithms is (asymptotically) 2 for the
general case. Chrobak et al. [11, 12] introduced the idea of alternating between the
maximum-weight packet and an earliest-deadline packet with sufficiently large weight.
As stated, this idea does not result in an improvement, but they design a clever mod-
ification that improves the competitive ratio to 64/33 ≈ 1.939. Their algorithm is
the first one with a competitive ratio strictly below 2 for the general case. The best
currently known deterministic algorithm has competitive ratio 2

√
2− 1 ≈ 1.828 [15].

For 2-uniform instances, Chrobak et al. [11, 12] designed an algorithm that is 1.377-
competitive and proved a matching lower bound. Their algorithm uses information
about the past, and so is not memoryless. In fact, a tight lower bound of

√
2 ≈ 1.414

has been proved on the competitive ratio of memoryless algorithms for 2-uniform
instances [2, 6, 9].

Randomized algorithms (against oblivious adversary) have also been given [6, 9]
with competitive ratios of e/(e − 1) ≈ 1.582 for the general case, and 1.25 for 2-
bounded instances. For 2-bounded instances, the lower bound is 1.25, while for the
2-uniform case it is 1.172. For the general case, 1.25 is still the best known lower bound
for randomized algorithms. The adaptive-online adversary model has been recently
studied, for which an upper and lower bound of 4/3 has been given for 2-bounded
instances [7]. It turns out that the randomized algorithm by Bartal et al. [6, 9] remains
e/(e − 1)-competitive against an adaptive adversary, even though subtle changes in
its analysis are required [19].

Finally, we mention a large body of work on a closely related model where packets
do not have deadlines, the buffer capacity is finite, and packets must be sent in a FIFO
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manner [24, 25, 22, 5, 26, 14, 16]. Note that a c-competitive algorithm for the FIFO
buffer model in which the buffer size is s implies a c-competitive algorithm for s-
uniform bounded delay instances. Some researchers also consider packet scheduling
in multiple FIFO input queues connecting one output queue [3, 4, 1]. We refer to a
survey by Goldwasser [17] for an overview of results and techniques for both models
and some of their extensions.

The known bounds are summarized in Table 1.1. Our results in this paper are
marked with [∗]. A blank entry indicates that the bound in this entry follows from
another bound in the same column.

Deterministic Randomized
Upper bounds Lower bounds Upper bounds Lower bounds

General 2 [18, 20, 21] 1.582 [6, 9]
1.939 [11, 12]

1.854 [23]
1.828 [15]

s-bounded 2− 2/s+ o(1/s) [6, 9]
1.854 [23]
1.828 [15]

agreeable- 1.838 [11, 12]
deadline 1.618 [∗] 1.33 [∗]

2-bounded 1.618 [20, 21] [∗] 1.618 [18, 10, 2] 1.25 [6, 9] 1.25 [10]
s-uniform 1.732 [14, 16] 1.25 [6, 9]

1.618 [∗] (s→∞)
2-uniform 1.414 [2] 1.377 [11, 12] 1.172 [6, 9]

1.377 [11, 12]

1.2. Our Contribution. Our main contribution includes the design of two on-
line algorithms for the agreeable-deadline packet scheduling problem described earlier.
The first algorithm, called MG (for modified greedy), is deterministic and achieves a
competitive ratio φ. This is the best possible competitive ratio for any deterministic
online algorithm, as the instances in the lower bound proof [18, 10, 2] are 2-bounded
(which is a special case of agreeable deadlines). The algorithm is strikingly simple,
and its analysis is simpler than those of previous algorithms with competitive ratios
below 2.

Besides the improved competitive ratio, we believe that our method of analysis
makes an important contribution. With any online algorithm, one needs to compare
the performance of the algorithm to the performance of an offline optimal algorithm.
When analyzing such algorithms step-by-step, one immediately encounters a chal-
lenge, since at some point the online algorithm will make a different choice than the
offline optimal, leaving them with different buffers. It then can become difficult to
compare the two algorithms going forward, as they have different “states.” The stan-
dard method of dealing with this difficulty is to introduce a potential function which
implicitly compensates for the difference in states, measuring how far ahead or be-
hind the online algorithm is. We take a different approach. After each step of the
algorithm, for the purposes of analysis, we explicitly modify the buffer of the optimal
offline algorithm. We must be careful to do so in a way that can only help the ad-
versary, by either giving him a “better” set of packets, or by increasing his objective
function to compensate for any loss of packets.
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Our second algorithm, called RMG, is randomized and achieves a competitive
ratio 4/3 ≈ 1.33 against an oblivious adversary. The analysis of RMG is similar to
the analysis of MG, in that it also explicitly modifies that adversary’s buffer.

2. The Agreeable Deadline Model.

2.1. Motivation. For motivation, we consider the greedy algorithm, which sends
the maximum-weight packet among all the packets in the buffer that can still meet
their deadlines [18, 20, 21]. Fix an ε > 0 and consider the two packets (1− ε, 1) and
(1, 2), where packet (w, d) represents a packet with weight w and deadline d. The
greedy algorithm sends the (1, 2) packet in the first slot, after which the (1 − ε, 1)
packet expires. The optimal algorithm, however, sends both packets. Thus we have a
class of instances on which the greedy algorithm’s competitive ratio can be arbitrarily
close to 2. The key limitation of the greedy algorithm is that it considers only the
weights of the packets but not the deadlines.

A natural modification to the greedy algorithm is to consider packets with a “suf-
ficiently large” weight, and pick the earliest-deadline packet among those [6, 9]: For
instance, pick an earliest-deadline packet with weight at least α times the maximum-
weight, for some α ∈ (0, 1). The algorithm that selects the earliest-deadline packet to
send is called EDF, and the algorithm selects the earliest-deadline packet with weight
at least α times the maximum-weight is called EDFα [6, 9]. Note that the greedy
algorithm is EDF1, whereas EDF is EDF0.

Unfortunately, EDFα for all α > 0 runs into the same difficulty as can be seen
in the following example. Fix some large integer t0 and consider the following set
of packets, all released at the very beginning. The set of packets consists of three
groups. The first group consists of a single packet (1, 2t0 + 2), i.e., a packet with
weight 1 that expires after step 2t0 + 1, while the two remaining groups have t0
packets each. The packets of the second group all have weights α − ε and deadlines
2, 3, . . . , t0 + 1 respectively, while those of the third group all have weights α and
deadlines t0 + 2, t0 + 3, . . . , 2t0 + 1 respectively. Note that all the packets can be
sent in an EDF manner, but EDFα only manages to send the packets from the first
and third group. As ε can be arbitrarily small while t0 arbitrarily large, EDFα’s
competitive ratio is no better than 2.

On the other hand EDF is not competitive at all as can be seen in the next
example. Fix some large integer t0 and consider the following set of packets, all
released at the very beginning. The first group is formed by t0 packets of weight ε
(arbitrarily small) and deadlines 2, 3, . . . , t0+1, while the second group is formed by
t0 packets (1, t0+1), i.e., packets of weight 1 that expire only after step t0. EDF sends
the worthless packets from the first group in every step, with the possible exception
of t0, whereas it is possible to send a packet of weight 1 from the second group in
every step up to t0. As ε can be arbitrarily small while t0 is arbitrarily large, EDF’s
competitive ratio is unbounded.

It can be noted that in the second example EDF has more than t0 packets of
weight 1 to choose from right in the beginning, while all the pending packets expire
after step t0 at the latest. Therefore it makes little sense to send a very light earliest-
deadline packet while heavy packets abound. The solution then is to first identify the
packets that it makes sense to send, and send either the earliest-deadline one or the
maximum-weight one of them, depending on the ratio of their weights. This is the
idea underlying the algorithm MG.

2.2. Algorithm MG. We start with some definitions.
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Definition 2.1. Provisional schedule [13, 15]. Given a set of pending packets
P , a provisional schedule S specifies which packet in P should be sent in which time
step.

Definition 2.2. Optimal provisional schedule [13, 15]. Given a set of pend-
ing packets P , an optimal provisional schedule S∗ is one that achieves the maximum
weighted throughput among all provisional schedules on pending packets P .

Clearly, we can calculate the optimal provisional schedule S∗ at time t by finding
a maximum-weight bipartite matching over pending packets (or by simpler combina-
torial algorithms.) There may be many optimal provisional schedules. To simplify
the analysis, we pick one such schedule, defined in terms of the following dominance
relation among the packets.

Definition 2.3. Dominance relation. For any two packets p and q pending
at a certain time, p is said to dominate q if either wp > wq and dp ≤ dq, or wp ≥ wq
and dp < dq.

Given the set S∗ of packets in an optimal provisional schedule, assign to every step
the earliest-deadline non-dominated packet from S∗ that has not yet been assigned.
The schedule thus obtained is the canonical schedule. Note that in the canonical
schedule, the transmitted packets are arranged in (weakly) increasing deadline order,
with ties broken in favor of heavier packets.

Algorithm MG is now easy to describe; its pseudocode is given in Algorithm 1.

Algorithm 1 MG.

1: In the time step t, find the (canonical) optimal provisional schedule S∗ from the
pending packets in the buffer (including the new arrivals) at time t.

2: Let
• e denote the first (i.e. earliest-deadline non-dominated) packet in the

buffer; (Note that e has the maximum weight among all earliest deadline
packets, as none of them dominates it.)
• h denote the first maximum-weight (i.e. heaviest non-dominated) packet

in the buffer. (Note that h has the earliest deadline among all maximum-
weight packets in the buffer, as none of them dominates it.)

3: if we ≥ wh/φ then
4: send e;
5: else
6: send h.
7: end if

2.3. Analysis of MG. As described above, a key contribution of our work
is to avoid the use of a potential function. The potential function approach is a
commonly used method in analyzing online algorithms [8]. However, in our analysis,
we do not use the potential function argument explicitly. Instead, our analysis relies
on modifying the adversary’s buffer judiciously in each step and on assigning an
appropriate credit to the adversary to account for these modifications. Then, we
bound the competitive ratio by comparing the modified adversary’s gain to that of
MG’s in each step.

Suppose that at some time t, MG and the adversary have identical buffers. Both
MG and the adversary will each process arriving packets and then send a packet, but
at the end of the time step, their buffer contents may be different. We then modify
the adversary’s buffer and make it identical to the algorithm’s buffer; but to do so,
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we may have to let the adversary collect additional weight. The crux of the analysis
is to show that the algorithm’s gain in this time step is at least 1/φ of the adversary’s
modified gain, which is the sum of the weight of the packet that the adversary sent and
the additional weight given to the adversary in modifying its buffer. At the beginning
of step t+1, both the algorithm and the (modified) adversary will start with identical
buffers; the result follows by a simple inductive argument.

Let Ot denote the set of packets that the (oblivious) adversary is supposed to
send in steps t, t+ 1, . . .; note that some of them may be released after step t. Then
a standard exchange argument yields,

Remark 1. The heaviest non-dominated packet h, without loss of generality,
belongs to Ot.

This and the next observation prove useful in the analysis.

Remark 2. Increasing the weight or deadline of any pending packet, or sending
an additional packet in a single step are advantageous to the adversary, i.e., can only
increase the total weight of Ot.

Without loss of generality, we make the following assumptions on Ot.
1. Ot is optimal, i.e., it has maximum total weight.
2. For each j ∈ Ot, either rj ≥ t or j is in the optimal provisional schedule S∗.
3. The adversary sends its packets in the canonical order, always sending the

earliest non-dominated packet from S∗.

Together with Remark 1, this yields the following lemma.

Lemma 2.4. For every step t there exists an optimum adversary schedule that
schedules either e or h first, where these denote, respectively, the earliest-deadline and
the heaviest non-dominated packet.

Proof. Pick any optimum adversary schedule in canonical order. If it contains e,
then e comes first by the canonical ordering and we are done.

Suppose then that the schedule does not contain e. But it does, without loss of
generality, contain h by Remark 1. We argue that the schedule can be reordered so
that h is sent now, regardless of the future arrivals.

For convenience, let p1, p2, . . . be the packets in the buffer; note that e = p1 and
h = pl for some l > 1. Since the packets are all schedulable in the absence of future
arrivals, dpi ≥ t + i. A packet pi is said to be critical if dpi = t + i. The adversary
does not schedule e = p1, but it does schedule h = pl, and possibly some packets that
appear in between. Since dpi ≥ t+ i, and as the deadline of every future arrival is at
least dh, none of the packets pi1 , pi2 , . . . , pij , pl in the adversary’s current schedule
is critical. So the sequence pl, pi1 , pi2 , . . . , pij (with no reordering after this prefix)
is a valid schedule for the adversary.

Theorem 2.5. MG is φ-competitive for packet scheduling with agreeable dead-
lines.

Proof. Fix a time t, and suppose MG and ADV have identical buffers. After
processing the arrivals at time t, the buffer contents of MG and ADV remain the
same.

The proof proceeds by considering various cases, depending on which packet MG
and ADV send. Recall that due to Lemma 2.4 and algorithm’s definition, each of MG
and ADV sends either e or h. Let vADV and vMG denote the values collected by the
(modified) adversary and the algorithm at time t. We prove that for each case in one
time step, vADV ≤ φ · vMG.

1. Suppose ADV and MG send the same packet j; (Note: this includes the case
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e = h.)

vADV = vMG = wj .

ADV and MG’s buffers are identical at the end of step t.
2. Suppose MG sends e, and ADV sends packet h.

As MG sends e, we ≥ wh/φ, and so we have

vADV = wh ≤ φ · we = φ · vMG.

Modify the adversary’s buffer by replacing e with the packet h; this only helps
the adversary (see Remark 2) as de ≤ dh and we ≤ wh hold by the definitions
of e and h, and the fact that they do not dominate one another. After this
modification, both ADV and MG have identical buffers, and vADV/vMG ≤ φ,
as required.

3. Suppose MG sends h and ADV sends e.
Note that wh > φ · we, and dh > de. We let the modified ADV send both e
and h in this time step and keep e in its buffer. This modification can only
help ADV, and its buffer after the modification is identical to MG’s buffer.
Now, vADV = we + wh, and vMG = wh. As wh > φ · we,

vADV

vMG
= 1 +

we
wh

< 1 +
1

φ
= φ.

These 3 cases cover all the possible actions of the algorithm and their conse-
quences.

2.4. Algorithm RMG. The randomized algorithm identifies the e and h pack-
ets just like MG does. But when it comes to decide whether e or h should be trans-
mitted, it chooses e with probability we/wh and h with the remaining probability. Its
pseudocode is given in Algorithm 2.

Algorithm 2 RMG.

1: In the time step t, find the (canonical) optimal provisional schedule S∗ from the
pending packets in the buffer (including the new arrivals) at time t.

2: Let
• e denote the first (i.e. earliest-deadline non-dominated) packet in the

buffer.
• h denote the first maximum-weight (i.e. heaviest non-dominated) packet

in the buffer.
3: Send e with probability we/wh and h with the remaining probability.

Theorem 2.6. RMG is 4/3-competitive for packet scheduling with agreeable
deadlines against an oblivious adversary.

Proof. The analysis is very similar to that of the analysis of MG. Again we note
that, by Lemma 2.4, ADV transmits either e or h. Let vADV and vRMG denote the
expected values collected by the (modified) adversary and the algorithm at time t.
We prove that

vADV = wh, (2.1)

vRMG ≥
3

4
wh, (2.2)
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which yields the result immediately.
To bound the first value we consider two cases.
1. Suppose ADV sends h.

In this case, vADV = wh, because we never let ADV send any additional
packet. Instead, as in the previous analysis, if RMG sends e, we replace e in
ADV’s buffer by h to keep the buffers of RMG and ADV identical.

2. Suppose ADV sends e.
In this case, just like in the previous analysis, to keep the buffers of RMG and
ADV identical, we let ADV send h as well and keep e in its buffer if RMG
sends h. Therefore

vADV = we +

(
1− we

wh

)
wh = wh.

This concludes the proof of (2.1).
For the second bound, we note that vRMG is simply the expected gain of RMG in

the step. Thus, by using the definition of expected gain, rearranging terms and lower
bounding the sum of two positive terms by one of the terms, we obtain

vRMG =
we
wh
· we +

(
1− we

wh

)
· wh =

1

wh

((
we −

wh
2

)2

+
3

4
w2
h

)
≥ 3

4
wh.

which concludes the proof of (2.2) and the theorem.

3. Conclusion. In this paper, we design online algorithms for buffer manage-
ment for agreeable-deadline packets. Our contributions include an optimal 1.618-
competitive deterministic algorithm MG and a 1.33-competitive randomized algo-
rithm RMG (against an oblivious adversary). In analyzing these algorithms, we in-
troduce a new analysis method, which does not rely on a potential function approach
explicitly. Instead, it modifies the adversary’s buffer to make it identical to the al-
gorithm’s, and assigns an appropriate credit to the adversary to account for these
modifications. We expect this approach to have further applications; there is already
one such example [19]. The very same example highlights the following feature of
our analysis: The framework works for general instances, for both deterministic and
randomized algorithms, in both oblivious and adaptive adversary model. Indeed, we
use the assumptions that the instance is fixed and has agreeable deadlines only to
exploit the structure of the adversary’s schedule, which in turn makes it possible to
obtain better competitive ratios in the analysis framework.

Note that for randomized algorithms against an oblivious adversary, there is still a
gap between the 5/4 lower bound and our 4/3 upper bound. For an adaptive adversary
the analogous gap is between the 4/3 lower bound and the e/(e − 1) upper bound,
which actually holds for the general case, not just for the agreeable deadline instances.
Incidentally, on 2-bounded instances our randomized algorithm RMG coincides with
an optimal algorithm against an adaptive adversary [7]. However, we were unable
to extend our analysis to the adaptive adversary model due to the random nature
of such an adversary’s schedule. We believe that shrinking either of these gaps is an
interesting open problem.
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