
The Complexity of Computing the Random Priority Allocation

Matrix

Daniela Saban∗and Jay Sethuraman†

December 2013

Abstract

Consider the problem of allocating n objects to n agents who have strict ordinal pref-

erences over the objects. We study the Random Priority (RP) mechanism, in which an

ordering over the agents is selected uniformly at random; the first agent is then allocated

his most-preferred object, the second agent is allocated his most-preferred object among the

remaining ones, and so on. The output of this mechanism is a bi-stochastic allocation matrix,

in which entry (i, a) indicates the probability that agent i obtains object a (whenever objects

are indivisible), or the fraction of object a allocated to agent i (when objects are divisible).

Our main result is that the allocation matrix associated with the RP mechanism is hard

to compute, in a sense that can be made precise using the theory of computational com-

plexity. An important consequence is that an efficient algorithm to compute the allocation

matrix exactly is unlikely. In addition, we examine two decision problems associated with the

RP mechanism: deciding whether an agent gets an object with probability 1, and deciding

whether an agent gets an object with positive probability. We provide a polynomial-time

algorithm to solve the former and show that the latter is hard to decide. This hardness

result has two strong implications. First, it is not possible to design an efficient algorithm

to get a good (multiplicative) approximation to the RP allocation matrix (under suitable

complexity-theoretic assumptions). Second, for an assignment problem with inadmissible

objects, it is hard to decide whether or not a given subset of objects is matched in some

Pareto efficient matching.

1 Introduction

We consider the problem of allocating n objects to n agents, with each agent interested in

consuming at most one unit across all objects. Agents have strict ordinal preferences over

the objects. Perhaps the most common allocation mechanism for this problem is the priority

mechanism (also called the serial dictatorship (SD) mechanism): in such a mechanism, there

is a fixed ordering of the agents and the agents are invited to choose objects in that order.

∗Graduate School of Business, Columbia University, New York, NY; dhs2131@columbia.edu
†IEOR Department, Columbia University, New York, NY; jay@ieor.columbia.edu. Research supported by

NSF grant CMMI-0916453 and CMMI-1201045.

1

Thus, the agent who appears first in this ordering will pick his most-preferred object; the one

appearing second will pick his most-preferred object among the ones that remain, etc. The

priority mechanism is Pareto efficient, neutral (invariant to relabeling of the objects), non-bossy

(no agent can alter some other agent’s allocation without altering his own), strategy-proof, even

group strategy-proof, and easy to compute. Its one major drawback, however, is that it fails

anonymity—two agents wi th identical preferences and identical claims on the objects are not

treated equally by the mechanism because one of them will appear before the other in the fixed

ordering. A standard way to overcome this in a moneyless market is to randomize the initial

ordering of the agents, yielding the Random Priority (RP) mechanism. In the RP mechanism,

an ordering of the agents is chosen uniformly at random (each of the n! orderings being equally

likely), and the priority mechanism applied to the chosen ordering determines the outcome. Of

course, finding the outcome is an easy task once the ordering is selected.

An alternative way to think about the RP mechanism is in terms of the probabilistic allocation

that the agents receive under this mechanism—this can be expressed as a doubly-stochastic

matrix X with xia representing (i) the probability that agent i receives object a (if the objects are

indivisible); or (ii) the fraction of object a allocated to agent i (if the objects are divisible). The

RP mechanism has been extensively analyzed in the literature for the allocation of both divisible

and indivisible goods [5, 11], yet the computational complexity of finding the RP allocation

matrix X is not fully understood. Our main result is that determining X exactly or even

approximately is difficult in a sense that can be made precise using the theory of computational

complexity.

In computational complexity theory, a decision problem is a question with a yes or no answer,

depending on the values of some input parameters. As an example, the problem “Given a

preference profile P , does agent i get object a in the priority mechanism with respect to some

ordering σ of the agents?” is a decision problem. Indeed, we refer to this problem as the SD

Feasibility problem. Complexity theory is concerned with understanding the computational

resources needed to solve a problem, and to categorize problems into various complexity classes

depending on how “easy” or “difficult” it is to find a solution.

Perhaps the most famous complexity class is NP, which is defined as the set of decision

problems having efficiently verifiable solutions: a decision problem is in NP if given an instance

of the problem, we can easily check that the given instance is a “yes” instance, provided we

are given a polynomial-size solution that certifies this fact. As an example, consider the SD

Feasibility problem stated earlier. If the problem has n agents, and if indeed there is an

ordering σ of the agents such that the SD mechanism with respect to σ gives object a to agent

i, this can be easily verified in polynomial-time by running the SD mechanism with the ordering

σ. The ordering σ serves as the “solution” in the definition of NP, and certifies that the given

instance of the problem has a “yes” answer, and so the SD Feasibility problem is in NP. A

problem is hard for a given complexity class if it is as difficult as the most diff icult problems in

the class. An example of an NP-hard problem is the problem SAT: deciding if there exists an

assignment to the variables of a given Boolean formula so as to make the formula evaluate to

TRUE. Finally, when the problem is both a member of the class and hard for the class, we say

2

it is complete for that class. The problem SAT is a canonical NP-complete problem.

By definition, the problem of determining each entry xia of the RP allocation matrix X is

equivalent to that of counting the number of orderings under which i obtains a when the SD

mechanism is used. Therefore, this problem is in the class #P, introduced by [14], which is

the complexity class associated with counting the number of solutions to problems in NP. We

show that computing the RP allocation is indeed #P-complete1, and thus suspected to be very

difficult.2

Even though the problem of finding the RP allocation matrix for a given instance is not

directly a decision problem, it can be solved as a sequence of decision problems of the following

form: “Given an integer K, a preference profile P , an agent i and an object a, are there at

least K orderings under which i is assigned a when the SD mechanism is used?”. Our #P-

completeness result already implies that this decision problem is NP-complete if K is part of

the input. Nevertheless, the decision problem might be easy to solve for some fixed values of K.

Towards that end, we study the computational complexity of the decision problems associated

with the two extreme values of K: deciding whether an agent has probability exactly one

of getting an object (K = n!), and deciding whether he has probability greater than zero

(K = 1). We provide a polynomial-time algorithm to solve the former and show that the latter

is NP-complete. We further show that the problem of deciding whether an agent has positive

probability of obtaining a object is equivalent to deciding whether there is a constrained Pareto

efficient matching in which a subset of objects must be matched. Computing matchings with

constraints has been a topic of interest to the research community, as it naturally arises in social

choice applications in which some type of affirmative action is imposed [1, 6]. To the best of

our knowledge, the complexity of finding constrained optimal matchings has only been analyzed

by [10], but they use the notion of popularity to define an optimal matching, as opposed to the

notion of Pareto efficiency used in this work.

The rest of this paper is organized as follows. In Section 2, we formally state the problem

and provide some useful definitions and notation. In Section 3, we show that computing the

RP allocation is #P-complete. In Section 4, we discuss the complexity of two decision prob-

lems associated with the RP mechanism. We provide a polynomial-time algorithm for deciding

whether an agent has probability exactly one of getting an object. In addition, we show that

deciding whether an agent has probability greater than zero of getting an object is NP-complete

and discuss the implications of this result. We end with some suggestions for further research

in Section 5.

1Independently of our work, this result was also obtained by Aziz, Brandt, and Brill [3] using a completely

different reduction.
2Toda’s theorem implies that, for any problem in the polynomial hierarchy, there is a deterministic polynomial-

time Turing reduction to a problem in #P, and therefore one call to a #P oracle suffices to solve any problem in

the polynomial hierarchy in deterministic polynomial time [13].

3

2 Preliminaries

An instance of the house allocation problem is a tuple I = (A,O, P) consisting of a set of

agents A, a set of objects O and a preference profile P = (P1, . . . , P|A|), where each Pi is a

strict ordering of the set of objects O. The ordering Pi represents agent i’s preferences over

the objects: given two objects a and b, we say that i prefers a to b if a appears before b in the

ordering Pi. We write a >Pi b or simply a >i b if i prefers a to b. Our preference model assumes

that each agent finds every object acceptable, although all the results hold more generally with

some obvious modifications. We also assume that |A| = |O| unless otherwise noted. We will

sometimes refer to an instance by just P as often the sets of agents and objects are clear from

context, and are implicit in P anyway.

A matching is a bijective function from the set of agents to the set of objects. Given a

matching µ, we say that µ(i) = a if agent i receives object a in the matching µ. A matching

µ is Pareto-efficient if there is no other matching ν such that ν(i) ≥i µ(i) for all agents i ∈ A,

with at least one inequality strict. That is, a matching is Pareto efficient if no agent can be

better off without requiring another agent to be worse off. A (Pareto-efficient) deterministic

mechanism is a function that assigns a (Pareto efficient) matching to every preference profile P .

A (Pareto efficient) randomized mechanism is a function that maps each preference profile P to

a distribution over (Pareto efficient) matchings.

Let Σ be the set of all orderings of A. For σ ∈ Σ , let σ(k) be the kth agent according to order

σ and σ−1(i) be the position of agent i in σ. Given a preference profile P and an ordering σ ∈ Σ,

the serial dictatorship (SD) mechanism (also known as priority mechanism) works as follows:

agent σ(1) is assigned his most-preferred object, then agent σ(2) is assigned his most-preferred

object among the remaining ones, and so on. The matching found by the SD mechanism on

a preference profile P and ordering σ is denoted SD(P, σ), or simply µσ when the preference

profile P is clear.

The random priority (RP) mechanism (also called random serial dictatorship) selects an

ordering from Σ uniformly at random and then finds the outcome SD(P, σ), where σ is the

selected ordering. The outcome of the RP mechanism is a bi-stochastic allocation matrix X:

the rows are indexed by agents and the columns by objects, with the entry xia indicating the

probability that agent i will receive object a in the RP mechanism (in the case of indivisible

goods), or the fraction of a that i receives (in the case of divisible goods). To explicitly indicate

the dependence of the RP allocation matrix on the preference profile, we denote as X(P) or

RP (P), and its (i, a)th entry by X(P, i, a) or RP (P, i, a). It should be clear from the definition

of the RP mechanism that X(P, i, a) = RP (P, i, a) = |{σ ∈ Σ : µσ(i) = a}|/n!.

3 The complexity of Random Priority

As mentioned in Section 2, the definition of RP implies RP (P, i, a) = |{σ ∈ Σ : µσ(i) = a}|/n!.

Therefore, determining an entry (i, a) of the RP allocation matrix is equivalent to counting the

number of orderings under which i gets a. We refer to this problem as the SD Count problem,

4

which is formally defined as follows:

SD Count

Input. A strict preference profile P , associated with a set of agents A and a set of

objects O, an agent i and an object a

Output. The number of orderings σ ∈ Σ in which µσ(i) = a.

We now examine the complexity of the SD Count problem. Recall that SD Feasibility is

a problem in NP, and, as SD Count is the counting version of SD Feasibility, it is a problem

in the class #P . We will show that SD Count is indeed #P-complete.3 To do so, we introduce

the Linear Extension Count problem. A partially ordered set (or poset) is a set Q equipped

with an irreflexive and transitive relation <Q. A linear extension of a poset Q on n elements

is a linear ordering ≺ of the elements such that x ≺ y whenever x <Q y. The linear extension

count problem is defined as follows:

Linear Extension Count

Input. A partially ordered set Q.

Output. The number N(Q) of linear extensions of Q.

[4] proved that Linear Extension Count is #P-complete. We now show that Linear Ex-

tension Count can be reduced to SD Count, therefore establishing the hardness of the latter.

Theorem 1. SD Count is #P-complete .

Proof. Clearly, given an ordering σ ∈ Σ, one can verify in polynomial time whether µσ(i) = a,

and so SD Count is in #P . To show that SD Count is #P-complete, we reduce Linear

Extension Count to SD Count. Given a poset Q, consider the following instance of SD

Count with

A = {i : i ∈ Q} ∪ {F}, and, O = {oi : i ∈ Q} ∪ {oF }.

In words, we have one agent and one object for each element of the poset Q, a special agent F

and a special object oF . Each agent i 6= F ranks oj ahead of oi if and only if j <Q i in the poset

Q; he then ranks the object oi followed by the special object oF ; the remaining objects appear

after oF in any arbitrary order. Thus, the preferences for agent i will look as follows:

Pi = {oj : j <Q i}︸ ︷︷ ︸
in any arbitrary order

, oi, oF , {oj : j 6= i, F, j 6<Q i}︸ ︷︷ ︸
in any arbitrary order

.

Finally, the special agent F ranks the special object oF last, and has an arbitrary preference

ordering over the remaining objects.

Let σ be a fixed ordering of agents. Recall that σ(k) is the kth agent according to order σ

and σ−1(i) is the position of agent i in σ. We prove the result by showing that µσ(F) = oF if

and only if σ−1(F) = n + 1 and {σ(1), . . . , σ(n)} is a linear extension of Q. As a consequence,

3In independent recent work, Aziz, Brandt and Brill proved the same result using a different technique.

5

being able to determine the probability that the special agent F gets the special object oF under

the RP mechanism will imply an ability to compute the number of linear extensions of the given

poset Q. Because the latter problem is #P-complete, so is the former.

Suppose σ is such that µσ(F) = oF . As oF is agent F ’s last choice, it follows that (i)

σ−1(F) = n + 1; and (ii) every other agent received an object that they preferred to oF .

Therefore, for each i 6= F , µσ(i) ∈ {oj : j <Q i} ∪ {oi}. We claim that, in fact, µσ(i) = oi for

all i and we prove the result by induction on n. The claim is clearly true for all the minimal

elements of Q: if k is such an element, then the preference ordering corresponding to agent k in

the SD Count instance has ok as the first element and oF as the second; as each such k appears

before the special agent F and does not receive the object oF , it must be the case that each such

k receives object ok. Thus removing all the minimal elements from Q and their corresponding

objects from O does not change the assignment for the rest of the agents. This also implies that

for any pair of elements i, j ∈ Q with i <Q j, agent i appears before agent j in the ordering

σ: for otherwise, j appears before i, and object oi is still available when it is j’s turn to choose

an object, so µσ(j) should be at least as good as oi according to agent j, contradicting the fact

that µσ(j) = oj . This establishes that σ restricted to the first n positions is a linear extension

of Q.

For the converse, suppose that σ−1(F) = n+1 and that {σ(1), . . . , σ(n)} is a linear extension

of Q. Then agent σ(1) must correspond to a minimal element of the poset and must be assigned

object oσ(1) as that is his most-preferred object. Removing this agent and object from the

problem, we get a smaller instance with the same properties, and the result follows by induction,

once we observe that the result is trivially true for n = 1.

4 Decision problems associated with Random Priority

Given the preference profile P involving n agents and n objects, an integer 1 ≤ k ≤ n!, an agent

i and an object a, one can ask whether the number of orderings of the agents for which the SD

mechanism gives a to i is at least k. The #P-completeness of computing the RP allocation matrix

proves that this problem is NP-complete: for otherwise, we can determine the exact value of

RP (P, i, a) by solving O(n log n) instances of this problem, each with a different value of k. Here

we consider the same problem, but for fixed k; specifically, the two natural “extremal” values of

k—that of k = n! and k = 1. We address the following two questions: for a given preference

profile, (i) does agent i have a positive probability of getting object a (SD Feasibility)?; and

(ii) does agent i always get object a (SD Unique Assignment)?

4.1 The SD Feasibility problem

SD Feasibility

Input. A preference profile P , an agent i and an object a.

Output. Is there an ordering σ such that i obtains a in SD(P, σ)?

6

We show the somewhat surprising result that SD Feasibility is NP-complete by construct-

ing a reduction from the problem of finding a minimum-cardinality maximal matching in a

subdivision graph.

A matching in a graph G = (V,E) is a subset M of edges such that no two edges in M

share a vertex. The size of a matching M is the number of edges in M . A maximal matching

is a matching M with the property that M ∪ {e} is not a matching for any edge e ∈ E \M . A

minimum-cardinality maximal matching, or simply, minimum maximal matching is a maximal

matching of minimum size. The decision version of the minimum maximal matching problem

can be stated as follows:

Minimum Maximal Matching

Input. A graph G = (V,E) and an integer K.

Output. Is there a maximal matching in G of size at most K?

Let G = (V,E) be a given graph. The subdivision graph of G is obtained by splitting each

edge e ∈ E, and by locating a new vertex in the middle. Formally, it is the bipartite graph S(G)

with vertex set V ′ = V ∪ E, and edge set

E′ = {{e, v} | e ∈ E, v ∈ V, and v is incident with e in G}.

It is known that Minimum Maximal Matching is NP-complete on subdivision graphs [9].

Theorem 2. SD Feasibility is NP-complete.

Proof. Given σ, one can verify in polynomial time if i gets a under SD(P, σ) and therefore the

problem is in NP . To show that is NP-complete, we reduce Minimum Maximal Matching

on subdivision graphs to SD Feasibility. Let G′ = (V ′ := V ∪ E,E′) –a subdivision graph of

G = (V,E)– and K –an integer– be an instance of Minimum Maximal Matching. Suppose

V = {v1, . . . , vn}, E = {e1, . . . , em}. Each ei ∈ E connects two different vertices vpi and vqi
with pi < qi. Note that the subdivision graph has edges (ei, vpi) and (ei, vqi) for each ei ∈ E.

Without loss of generality, we may assume m ≥ n.

We construct an instance of SD Feasibility as follows:

• There are 3m + 1 agents—two agents for each ei ∈ E and m + 1 special agents. The

two agents corresponding to each ei are labeled e1i and e2i ; m special agents are denoted

F1, F2, . . . , Fm and the remaining special agent is denoted D.

• There are 3m+1 objects—m corresponding to the elements of E and labeled o1, o2, . . . , om;

n corresponding to the elements of V and labeled v1, v2, . . . , vn; m+1 special objects labeled

oF1 , . . . , oFm+1 , and finally m − n additional (dummy) objects, denoted d1, . . . , dm−n, to

enforce the constraint |A| = |O|. Thus the set of objects O = {o1, . . . , om}∪{v1, . . . , vn}∪
{oF1 , . . . , oFm+1} ∪ {d1, . . . , dm−n}.

The preferences are defined as follows:

7

• P (e1i) = oi, vpi , vqi , oFm+1 , oFm , . . . , oF1 .

• P (e2i) = oi, vqi , vpi , oFm+1 , oFm , . . . , oF1 .

• P (Fi) = oF1 , oF2 , . . . , oFm+1 .

• P (D) = oFm+1 , oFm , . . . , oF1 .

In any preference list, the objects not shown can be appended to that list arbitrarily. To

give some intuition behind the preference structure: agents F1, . . . , Fn rank all the special ob-

jects before any other object and rank them in ascending index order. The two edge agents

corresponding to ei rank their edge object oi first, followed by their vertex objects, but ordered

differently: the first copy ranks vpi before vqi whereas the second copy does the opposite; this

is then followed by all the special objects, but arranged in decreasing index order. Finally, the

special agent D ranks all the special objects in decreasing index order first. The ranking of the

other objects in the preference lists is not important.

We claim that there is a maximal matching M ⊆ E′ of G′ such that |M | ≤ K if and only if

there exists an ordering σ such that agent D obtains oFK+1
in SD(P, σ).

Given a maximal matching M of G′ with |M | = ` ≤ K, we construct an ordering σ of the

agents such that D obtains oFK+1
in SD(P, σ). Observe that in the graph G′, the vertex ei is

connected to exactly two vertices vpi and vqi , so at most one of these two edges can be in M .

• If (ei, vpi) ∈ M , rank agent e2i ahead of e1i ; if (ei, vqi) ∈ M , rank agent e1i ahead of e2i . If

M has ` edges, this step will determine 2` agents, and these agents are ranked ahead of

all the other agents; but we are free to order these 2` agents any way we like as long as we

respect the relative ranking of the pair of agents corresponding to a fixed edge ei as just

mentioned.

• From the remaining (m − `) edges in G′ that are unmatched in M , select a subset S of

exactly m−K edges (note that this is possible as ` ≤ K). For each ei ∈ S, rank agent e1i
before e2i .

• Rank agent D.

• Complete the ordering by adding the remaining edge agents and the agents Fj , 1 ≤ j ≤ m,

in an arbitrary order.

We now show that agent D will receive the object oFK+1
in the ordering just constructed.

If ei is matched, then one of its copies will be assigned oi and the other copy will be assigned

vpi or vqi , depending on whether ei was matched to vqi or vpi . In any case, if ei is matched,

both e1i and e2i will receive one of their first two choices. For each agent ei ∈ S, agent e1i will

get oi and so e2i cannot be assigned oi; moreover, by the maximality of M , it must be that both

vpi and vqi are matched in M , and so the objects vpi and vqi are already assigned to a higher

priority agent in our ordering. Thus, agent e2i must be assigned a special object oFj for some j.

8

Since |S| = m −K, oFm+1 , oFm , . . . , oFK+2
will be taken by the agents {e2i : ei ∈ S}. The next

agent in the ordering is agent D, who according to his preferences will get oFK+1
. Thus, given a

maximal matching of size at most K, the constructed ordering σ is such that agent D obtains

oFK+1
in SD(P, σ), which establishes the “only if” part of the claim.

Now suppose that there exists an ordering σ such that agent D obtains oFK+1
in SD(P, σ).

We argue that there is an ordering in which all agents of type e appear before any special agent

of type F , and such that D still receives oFK+1
. To that end, suppose D is the lth agent in σ.

First, note that at most K agents of type F can be before D in σ. Furthermore, if we consider

an ordering obtained from σ by removing all agents of type F that appear before D and placing

them after D, the allocation of all agents of type e before position l will remain the same by

the structure of the preferences. Therefore, we may assume that σ only contains agents of type

eji before position l. In addition, for every σ′ that differs from σ in the ordering after position

l, the allocation of the first l agents (including D) will not change. Hence, we may assume that

all agents of type eji appear before agents of type Fj in σ.

Effectively, we have established that if there is an ordering in which D receives object oFK+1
,

then there is an ordering in which all the “edge” agents appear before any special agent of type

F , and such that D still receives oFK+1
. In the rest of the proof, we assume that the given

ordering is of this type.

Let M = {(ei, vj) : e1i or e2i obtain vj under σ}. We argue that M must be a maximal

matching of G. First, we show that M is a matching. Because all agents of type e appear before

any agent of type F in σ, exactly one of {e1i , e2i }—the one that appears earlier—will obtain oi for

every 1 ≤ i ≤ m. Hence, at most one of {e1i , e2i } can be allocated an object of type v, implying

that each ei appears in at most one edge in M . On the other hand, by the definition of the serial

dictatorship mechanism, each object of type v is allocated to at most one agent, and therefore

it can appear in at most one edge in M . Hence, we conclude that M is indeed a matching. The

maximality of M follows by the preference structure: if vpi is unmatched, then when it was the

turn of the second copy of ei to choose an object, vpi was not chosen; this can happen only if

that copy of ei ch ose vqi ; in particular, ei must be matched. A similar argument applies when

vqi is unmatched. We conclude that M is a maximal matching of G. It remains to be shown

that M has size at most K. Note that m agents of type e get their associated objects and at

least m−K get objects of type oFj . Then, at most K agents of type e will get an object of type

vj , and |M | ≤ K which completes the proof.

hose vqi ; in particular, ei must be matched. A similar argument applies when vqi is un-

matched. We conclude that M is a maximal matching of G. It remains to be shown that M has

size at most K. Note that m agents of type e get their associated objects and at least m −K
get objects of type oFj . Then, at most K agents of type e will get an object of type vj , and

|M | ≤ K which completes the proof.

9

4.1.1 Implications of the hardness of the SD Feasibility problem.

Theorem 2 has two strong implications. The first implication is related to the inapproximability

of the RP mechanism. During the past decades, it has been shown that it is possible to design

polynomial-time algorithms for approximately counting the number of solutions of some #P-

complete problems. Indeed, #P-complete problems admit only two possibilities: they either

allow polynomial approximability to any required degree, or they cannot be approximated [12].

The former possibility is captured in the definition of a fully polynomial randomized approxima-

tion scheme (FPRAS). Formally, consider a problem whose counting version f is #P-complete.

A randomized algorithm A is an FPRAS for this problem if, for each instance x and error pa-

rameter ε > 0, Pr[|A(x)− f(x)| ≤ εf(x)] ≥ 3/4, and the running time of A is polynomial in |x|
and 1/ε. If the decision version of a counting problem is NP-compl ete, it is suspected that the

counting problem itself cannot admit an FPRAS. Therefore, we have the following corollary:

Corollary 1. The RP mechanism cannot admit an FPRAS.4

Although the RP allocation matrix cannot be efficiently approximated, it is possible to

distinguish efficiently (with high probability) the entries of the RP allocation matrix with high

values from those with low values. Given preference profile P , an agent i and an object a,

suppose we sample r orderings independently and uniformly at random and, for each ordering

σj with 1 ≤ j ≤ r, we set Xj = 1 if SD(i, a, σj) = 1 and Xj = 0 otherwise. Note that

Pr[Xj = 1] = RP (i, a). Let X =
∑r

j=1Xj , and let RP r(i, a) = X/r be our estimate for the real

value of RP (i, a) when using a sample of size r. One question that naturally arises is how large

does r needs to be in order to be able to distinguish, with high probability, if a certain entry

RP (i, a) = 0 or is it bigger than a certain q > 0.

We can now use the Hoeffding’s inequality [8] to obtain the following bound:

Pr
(
|RP r(i, a)−RP (i, a)| ≥ δ

)
≤ 2 exp

(
−2r2δ2

)
This means that the probability that the estimate deviates more than δ from the real value

of the RP entry is exponentially small in r and δ.

A second implication of Theorem 2 is related to the complexity of computing Pareto effi-

cient matchings under constraints. We first highlight a different way of thinking about the SD

Feasibility problem: Let U(i, a) be the set of objects agent i prefers over a according to Pi.

We say that M is a partial Pareto efficient matching if every agent in M prefers the object he

is matched to over all objects unmatched in M , and no trade involving a subset S of agents in

M can make all agents in S better off. Note that the unmatched agents might find unmatched

objects admissible, and therefore M may not be a Pareto efficient matching.

It is easy to see that there exists an ordering under which agent i is allocated object a if

and only if there is a partial Pareto efficient matching in which all the objects in U(i, a) are

4A more formal statement will be that the counting version of NP-complete problems cannot admit an FPRAS

unless NP = RP, which is the complexity class consisting of problems that can be solved in randomized polynomial

time.

10

matched and a is unmatched. As a does not have to be matched, this is equivalent to finding a

(partial) Pareto efficient matching in the reduced instance I\{a}\{i} = (A\{i},O\{a}, P\{a}) with

the constraint that all objects in U(i, a) be matched.

Based on this idea, we define the Constrained Pareto Efficient Matching problem

as follows:

Constrained Pareto Efficient Matching

Input. A preference profile P in which agents may have inadmissible objects, a subset

of objects Q.

Output. Is there a Pareto efficient matching in which all objects in Q are matched?

An immediate corollary of Theorem 2 is the following:

Corollary 2. Constrained Pareto Efficient Matching is NP-complete .

In a recent paper, Haeringer and Iehlé [7] study stability in two-sided matchings when the

preferences for only one side of the market are known. In a two-sided matching model, each side

of the market has preferences over the other side. For consistency with the existing literature,

we refer to the sides of the market as men and women respectively. A matching is said to be

stable if every matched agent finds his match acceptable, and if there is no pair of agents who

would prefer to be matched to each other rather than to their current match (if any). In the

model analyzed in [7], only the preferences of the women are known. While we do not know

the preferences of the men, we do know that a man m finds a women w acceptable if and only

if w ranks m somewhere in her preference ordering. Their goal is to say whether a pair of

agents can be matched at a stable matching for some preference profile. Haeringer and Iehlé de

signed a dynamic-programming algorithm for this problem with an exponential running time in

the size of the input, but left open the possibility of a polynomial-time algorithm to solve this

decision problem. Here we show that their problem is closely related to the problem of finding a

constrained Pareto efficient matching in a one-sided matching problem, and so is NP-complete:

the one-sided allocation problem with strict (but possibly incomplete) preferences is obtained

by viewing the women as agents and men as objects. As before, let U(w,m) be the set of men

that w strictly prefers to m.

Claim 1. In the above setting, a woman w and a men m can be matched at a stable matching

for some preference profile if and only if there is a Pareto efficient matching for the women in

which all the men in U(w,m) are matched (in the problem where m and w are omitted).

Proof. Suppose there is a Pareto efficient matching M in which all the men in U(w,m) are

matched. In this matching, clearly no unmatched woman can have an acceptable unmatched

man. Suppose each matched man ranks his partner in M first; m ranks w first; and the

preferences of the unmatched men are arbitrary. The resulting matching is stable: every matched

man is married to his top-ranked woman; and none of the other men are acceptable to any

available woman. This verifies the ”if” part of the Claim.

11

To show the converse, suppose m and w are matched in some stable matching M . As M is

stable, there are no blocking pairs. This means that all the men in U(w,m) are matched, and

that every woman must prefer her own match over any unmatched man. Thus the unmatched

men in M will play no further role. If M is not Pareto efficient (in the problem in which m

and w are omitted), consider the following (TTC-like) reallocation of the matched pairs: there

is a node for each woman; and there is an arc (w′, w′′) if and only if w′′ is matched to the

most-preferred partner of w′; any cycles that form are cleared (so that the women involved in

the cycle effect a Pareto improving swap), and the procedure is recursively applied. Throughout

this procedure, the set of matched men does not change; in particular, every man in U(w,m)

remains matched; and the final outcome is a Pareto efficient matching.

4.2 The SD Unique Assignment problem

SD Unique Assignment

Input. A preference profile P , an agent i and an object a.

Output. Is it true that for every ordering σ ∈ Σ, agent i obtains a in SD(P, σ)?

Given an instance I = (A,O, P) and an object a ∈ O, we define the reduced instance

I\{a}\{i} = (A\{i},O\{a}, P\{a}), where P\{a} represents the preferences P truncated so that

every agent only lists as admissible those objects that he strictly prefers to a.

We start with the following lemma.

Lemma 1. Given an agent i and an object a, µσ(i) = a for all σ ∈ Σ if and only if:

(1) a is agent i’s top-choice.

(2) In every ordering σ such that σ(i) = n, µσ(j) >j a for all j 6= i ∈ A (that is, in every

ordering in which i is the last agent, all other agents get an object they like better than a).

Proof. Suppose µσ(i) = a for all σ ∈ Σ. Condition (1) must be trivially satisfied, as otherwise i

will not choose a whenever σ−1(i) = 1. Furthermore, consider an ordering σ such that σ−1(i) =

n. Since a is not assigned to any of the first n − 1 agents, it follows that all of them must get

objects they prefer to a. The converse is even simpler: if conditions (1) and (2) are satisfied,

object a would be available when it is agent i’s turn to choose, and so i will be assigned a.

Lemma 1 forms the basis of Algorithm 1, which solves the SD Unique Assignment problem

by verifying both conditions. Condition (1) can be easily checked. To verify condition (2), note

that every ordering σ ∈ Σ induces a Pareto efficient matching and every efficient matching can

be implemented with (at least) one ordering σ. Hence, condition (2) fails to hold if and only if

there is a Pareto efficient matching in the reduced problem I\{a}\{i} of size at most n− 2. In that

case, at least one object and one agent of I\{a}\{i} must remain unmatched. The key idea is to first

identify those objects that are candidates to remain unmatched in a Pareto efficient matching

for the reduced problem, and solve a matching problem for each object in turn to find whether

there exists a Pareto efficient matching in which they remain unmatched.

12

Algorithm 1 SD Unique Assignment

Input: An instance I = (A,O, P), and agent i ∈ A and an object a ∈ O
Output: Is it true that, for every ordering σ ∈ Σ, agent i obtains a in SD(P, σ)?

If object a is not agent i’s top choice, return FALSE.

Consider the reduced instance I ′ = (A′,O′, P ′) = I\{a}\{i} .

Let S = {o ∈ O′ : o /∈ P ′j for some j ∈ A′}.
For each o ∈ S:

Let A(o) = {j ∈ A′ : o ∈ P ′j} (set of agents that find o admissible).

Consider the bipartite graph G(o) = ((A′,O′\{o}), E), where (k, j) ∈ E if and only if

agent k finds object j admissible in I ′ and likes j better than o.

Find a maximum matching M in G(o), with the constraint that every vertex in A(o)

must be matched.

If such a matching exists, return FALSE.

Return TRUE.

Theorem 3. Algorithm 1 solves the SD Unique Assignment problem in polynomial time.

Proof. Clearly, Algorithm 1 runs in polynomial time. To show the correctness of the algorithm,

we may assume that object a is agent i’s most-preferred object, as otherwise i will not always

be assigned a. Consider the reduced instance I ′ = (A′,O′, P ′) = I\{a}\{i} . Since every ordering

σ ∈ Σ induces a Pareto efficient matching and every efficient matching can be implemented with

(at least) one ordering σ, condition (2) fails to hold if and only if we are able to find an efficient

matching in the reduced problem I ′ of size at most n − 2. Note that, in that case, at least

one object and one agent of I ′ must remain unmatched. Let o be an unmatched object in an

efficient matching M . Clearly, o must be inadmissible for at least one agent in I ′ (in particular,

it must be inadmissible for all unmatched agents in M). Therefore, we will first identify those

objects that are candidates to remain unmatched in a Pareto efficient matching for the reduced

problem, and then we will solve a matching problem for each object in turn to find whether

there exists a Pareto efficient matching in which they remain unmatched.

Let S = {o ∈ O′ : o /∈ P ′j for some j ∈ A′}, that is, the objects in S are those that are

inadmissible for at least one agent and thus are candidates for being unmatched in some efficient

matching of I ′. For each object o ∈ S, let A(o) = {j ∈ A′ : o ∈ P ′j} be the set of agents that

find object o admissible. Whenever o is unmatched, all agents in A(o) must be matched to an

object they like better than o. For each o ∈ S, we can either find a Pareto efficient matching

in which o is unmatched or we can show that no such matching exists as follows: Consider a

bipartite graph G(o) = ((A′,O′\{o}), E), where (k, j) ∈ E if and only if agent k finds object

j admissible in I ′ and likes j better than o. Find a maximum matching M in G(o), with the

constraint that every vertex in A(o) must be matched. If no such matching exists, the n o must

13

be matched in every Pareto efficient matching of I. Otherwise, note that M contains at most

n − 2 edges as |O\{o}| = n − 2, but it might not be efficient. This matching, however, can be

transformed into an efficient matching by performing a set of Pareto improvements, as described

in [2]. Nevertheless, no Pareto improvement can involve o as all agents that find o admissible

were assigned better objects than o and the rest do not find o admissible. Hence, we were able

to find a Pareto efficient matching of size at most n − 2 and thus show that i does not always

get a.

5 Discussion

Due to its simplicity and compelling properties, the RP mechanism is one of the most popular

mechanisms for allocating objects. The hardness results in this paper imply that any mechanism

that relies on the knowledge of the RP allocation matrix is likely to be impractical when the

number of objects is large. This is the case, for instance, if one uses the RP mechanism to

allocate divisible objects, assuming agents still have unit demand.

We have shown that the RP allocation is not only hard to compute in general, but also hard

to approximate. However, in some cases in which the preference domain is restricted, the RP

allocation can be easy to compute. One example is the work by [5], who consider a scheduling

problem involving unit-length jobs and deadlines, which could be different for different jobs. For

this special case, the RP allocation can be computed efficiently. A natural question of interest

is to determine precisely the conditions under which one can compute the RP allocation in

polynomial time, or to identify other natural problems where such a result is possible.

Acknowledgements

We thank Rocco Servedio and Xi Chen for their comments on the paper and for a useful dis-

cussion about approximation algorithms with an additive error. We thank Guillaume Haeringer

and Vincent Iehlé for telling us about their recent work and for posing the problem of identifying

stable pairs in a two-sided matching problem where the preferences of the agents are known only

on one side of the market.

References

[1] Atila Abdulkadiroglu. College admissions with affirmative action. International Journal of

Game Theory, 33:525 – 549, 2005.

[2] David J. Abraham, Katarina Cechlarova, David F. Manlove, and Kurt Mehlhorn. Pareto

optimality in house allocation problems. In Algorithms and Computation, volume 3341 of

Lecture Notes in Computer Science, pages 3–15. 2005.

[3] Haris Aziz, Felix Brandt, and Markus Brill. The computational complexity of random serial

dictatorship. In WINE, 2013.

14

[4] Graham Brightwell and Peter Winkler. Counting linear extensions is #p-complete. In

STOC, pages 175–181, 1991.

[5] Hervé Crés and Hervé Moulin. Scheduling with opting out: Improving upon random pri-

ority. Operations Research, 49(4):565–577, 2001.

[6] Lars Ehlers, Isa Hafalir, Bumin Yenmez, and Muhammed Yildirim. School choice with

controlled choice constraints: Hard bounds versus soft bounds. GSIA Working Papers

2012-E20, Carnegie Mellon University, Tepper School of Business, November 2011.

[7] Guillaume Haeringer and Vincent Iehlé. Two-sided matching with one-sided preferences.

preprint.

[8] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal

of the American statistical association, 58(301):13–30, 1963.

[9] J. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal on Discrete

Mathematics, 6(3):375–387, 1993.

[10] Telikepalli Kavitha and Meghana Nasre. Popular matchings with variable job capacities. In

Proceedings of the 20th International Symposium on Algorithms and Computation, ISAAC

’09, pages 423–433. Springer-Verlag, 2009.

[11] Mark A Satterthwaite and Hugo Sonnenschein. Strategy-proof allocation mechanisms at

differentiable points. The Review of Economic Studies, 48(4):pp. 587–597, 1981.

[12] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly

mixing markov chains. Information and Computation, 82(1):93 – 133, 1989.

[13] Seinosuke Toda. On the computational power of pp and (+)p. In 30th Annual Symposium on

Foundations of Computer Science, 30 October-1 November 1989, Research Triangle Park,

North Carolina, USA, pages 514–519, 1989.

[14] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189 – 201, 1979.

15

