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Abstract 

In this paper we consider the problem of scheduling different classes 
of customers on multiple distributed servers to minimize an objec- 
tive function based on per-class mean response times. This problem 
arises in a wide range of distributed systems, networks and appli- 
cations. Within the context of our model, we observe that the op- 
timal sequencing strategy at each of the servers is a simple static 
priority policy. Using this observation, we argue that the globally 
optimal scheduling problem reduces to finding an optimal routing 
matrix under this sequencing policy. We formulate the latter prob- 
lem as a nonlinear programming problem and show that any interior 
local minimum is a global minimum, which significantly simplifies 
the solution of the optimization problem. In the case of Poisson ar- 
rivals, we provide an optimal scheduling strategy that also tends to 
minimize a function of the per-class response time variances. Ap- 
plying our analysis to various static instances of the general problem 
leads us to rederive many results, yielding simple approximation al- 
gorithms whose guarantees match the best known results. 

1 Introduction 

The fundamental problem of scheduling a set of distributed resources 
among different classes of customers to achieve some performance 
objective has received and continues to receive considerable atten- 
tion in the research literature. This is motivated by problems arising 
in a wide range of distributed computer applications and system en- 
vironments, as well as communication network environments. A 
particular recent instance of the general problem is motivated by 
scalable Web server systems where incoming Web requests are im- 
mediately routed to one of a set of computer nodes by a high-speed 
router, and each node independently executes the customers assigned 
to it following a local sequencing algorithm [6,9]. 

We consider the problem of scheduling different classes of cus- 
tomers on multiple distributed heterogeneous servers to minimize an 
objective function based on per-class mean response times. This op- 
timal scheduling problem consists of two distinct decisions: (i) the 
allocation of customers to the parallel servers; and (ii) the order of 
execution for the customers at each server. The first decision has the 
flavor of a global load-balancing optimization problem in which the 
customers are distributed among the multiple heterogeneous servers 
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to minimize the response-time objective function. The second deci- 
sion is local in nature and consists of solving an optimal sequencing 
problem: given a mix of customers at a server, determine the best 
order of service for the queued customers to satisfy the global ob- 
jective. In our present study we consider the structure of the optimal 
solution to the general problem of interest under the following re- 
strictions on these two decisions: 

l Allocation: Customers are allocated to servers in a probe- 
bilistic manner; i.e., immediately upon arrival, a customer is 
assigned to a server based on a matrix of routing probabilities. 
This is often called random splitring [26]. 

l Sequencing: The sequencing strategy is non-anticipative (i.e., 
does not require knowledge of the future), work-conserving 
(i.e., does not idle when there is work to do) and non-preemptive 
(i.e., the execution of a customer cannot be interrupted and 
subsequently resumed). 

The objective considered in this paper is to globally minimize a lin- 
ear function of the per-class mean response times. Similar tech- 
niques can be used to minimize a linear function of the per-class 
mean waiting times. Throughout this paper we use the terms cus- 
tomer and server in order to be completely general and not restricted 
to any particular application area. 

Our analysis of this optimal scheduling problem begins with 
the observation that the optimal sequencing strategy at each of the 
servers is a simple static priority policy. Using this observation, we 
argue that the globally optimal scheduling problem reduces to find- 
ing an optimal routing matrix under this sequencing policy. We for- 
mulate the latter problem as a nonlinear programming problem and 
show that it has at most one solution in the interior of the feasible 
domain and that any local minimum in the interior is a global mini- 
mum. This result significantly simplifies the solution of the general 
optimal scheduling problem. We first restrict our attention to Pois- 
son arrivals, in which case we derive an optimal scheduling policy 
that also tends to minimize a function of the per-class response time 
variances. We then consider the case of general arrivals by devel- 
oping a fluid-model formulation of the optimization problem and 
deriving an analogous set of results. The use of fluid models as 
approximations for queueing systems, often within the context of 
optimal control, has received and continues to receive considerable 
attention in the research literature; e.g., see [ 11, 4, 1, 131 and the 
references cited therein. 

Related scheduling problems have been examined in the research 
literature. Our scheduling problem is consistent with or a general- 
ization of the problems considered in [2, 16, 3, 6, 9, 51 and the rel- 
evant references therein. A number of these studies [6, 9, 51 have 
analyzed the performance of specific policies, as opposed to obtain- 
ing the globally optimal solution. Borst [3] considers the globally 
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suboptimal scheduling problem of finding the optimal routing ma- 
trix under an FCFS sequencing policy at each server, within the con- 
text of a system model similar to the Poisson arrival instance of the 
model assumed in our study. Our analysis addresses the globally 
optimal scheduling problem using different methods than those of 
Worst and yielding a scheduling strategy that also tends to have bet- 
ter per-class response time variance properties. Furthermore, our 
analysis of the fluid version of the optimization problem establishes 
a corresponding set of results that are not restricted to Poisson ar- 
rivals. The allocation component of the optimal scheduling prob- 
lem is somewhat related to a global load-balancing optimization 
problem that has received considerable attention in the literature; 
e.g., see [25, 26, 2, 161 and the references cited therein. Ross and 
Yao [16] consider a problem that is similar to a single-class instance 
of the problem studied in this paper, with the addition of a dedi- 
cated independent stream of customer arrivals to each server having 
non-preemptive priority over the other customers. Bonomi and Ku- 
mar [2] consider a model similar to that in [ 161 but with additional 
restrictions, and in both studies the objective is to minimize the aver- 
age response time taken over the two sets of customers where each 
arrival stream is a Poisson process. We note that additional linear 
equalities, which includes the dedicated stream of arrivals in [2, 161, 
can be easily accommodated in our approach. Hence, the schedul- 
ing problem, the models and the class of objective functions consid- 
ered in our study are more general than those examined in [2, 161. 
Moreover, we use different methods than those proposed in [2, 161 
to solve the general optimal scheduling problem, and in the case 
of Poisson arrivals we further address some properties of per-class 
response time variance. 

We also consider various static instances of the general optimal 
scheduling problem where a finite set of customers arrive at time 0 
and there are no other arrivals, in which cases the stochastic prob- 
lems reduce to the corresponding deterministic scheduling problems 
(where the processing times are replaced by their expected values) 
without loss of generality. Following our solution approach for these 
special cases leads us to rederive many results in a fairly elegant 
manner, yielding simple approximation algorithms whose guaran- 
tees match the best known results. Our approximation algorithms 
are based on the use of randomized rounding on a convex relax- 
ation, which is the first use of such a relaxation in the scheduling 
literature to our knowledge. We obtain an e-improvement over the 
previously known algorithm due to Schulz and Skutella [17]. For 
the special case in which all the servers are identical, our analysis 
provides an optimal closed-form solution to a simpler convex relax- 
ation. A derandomized version of our algorithm for this case also 
yields the algorithm due to Kawaguchi and Kyan [lo]. Furthermore, 
we believe that improvements in the approximation guarantees for 
some of the special cases considered will be possible by exploiting 
the convex programming techniques of our approach. 

The allocation strategy considered in this paper is static in the 
sense that the routing probabilities do not change dynamically with 
time nor do they depend upon the server queue lengths. While 
dynamic allocation policies have the potential to outperform static 
policies [12, 7, 231, implementing a dynamic policy can be non- 
trivial and these policies can incur considerable overheads. Static 
policies may therefore be preferable in certain practical situations, 
such as the distributed environments motivating our present study [6, 
9,5]. The use of our optimal scheduling solution in practice can also 
consist of periodic adjustments of the routing matrix of the alloca- 
tion strategy with changes in the system environment, such as vari- 
ations in the workload. Moreover, given an optimal routing matrix, 
one can use an equivalent deterministic version of the probabilistic 
routing scheme to obtain lower (response time) variance properties 
in a real system. This approach is consistent with that taken in [6,9] 
where a deterministic implementation of a static load-balancing pol- 
icy is used together with each computer node periodically informing 
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the router of changes in its load. 
The sequencing strategy considered in this paper is restricted to 

non-preemptive policies. While preemption has the potential to im- 
prove mean response times, it can involve considerable overhead in 
practice. We note, however, that the results presented in this paper 
directly hold for preemptive sequencing strategies under exponen- 
tial service time distributions. Furthermore, it can be established 
that the optimal preemptive sequencing policy is a dynamic indexing 
scheme based on the remaining service times for the customers [ 191. 
The rest of our results should then hold together with this sequenc- 
ing strategy, which is the subject of future work. 

The remainder of this paper is organized as follows. We first 
consider the general stochastic scheduling problem under indepen- 
dent Poisson arrival streams. Then in Section 3 we remove this as- 
sumption of Poisson arrivals and consider a fluid-model formulation 
of the general stochastic scheduling problem. Section 4 presents an 
analysis of static instances of the general problem, and our conclud- 
ing remarks are provided in Section 5. 

2 Poisson Arrival Case 

In this section we define more precisely the optimal scheduling prob- 
lem of interest under the assumption of Poisson arrivals, for which 
we derive an efficient solution. We first present the corresponding 
system model and define the linear mean response time objective 
function considered in our study. An analysis of the sequencing and 
random splitting aspects of the optimal scheduling problem is then 
derived in Sections 2.2 and 2.3, respectively. We end this section 
by developing an equivalent optimal scheduling policy that tends to 
also minimize a function of the per-class response time variances. 

2.1 The Model 

We consider a system model consisting of K independent customer 
classes and N heterogeneous parallel servers. Throughout this pa- 
per, we will use i to index the customer classes and j to index the 
servers under the constraints i = 1,2,. . . , K and j = 1,2,. . . , N, 
unless noted otherwise. Customers of class i arrive to the system 
from a Poisson source with rate Xi. The total customer arrival rate 
is given by X = c,“,, X;. Each customer is routed to one of the 
servers immediately upon its arrival according to a probability ma- 
trix P = hll<i<K~l~j<N~ independent of all else; i.e., a class i 
customer arrivdisindependently routed to server j with probabil- 
ity pij. The rate of customer arrivals to server j is therefore given 
by cF=, X;pij. The service time of a class i customer when exe- 
cuted on server j has a general distribution on lR.+ given by Fij (.), 
mutually independent of the arrival and routing processes. We as- 
sume that the servers differ only in their speeds, and we use sj to 
denote the speed of server j. Hence, Fij(t) = Fi(sjt); i.e., the base 
service-time distribution of class i customers is F;(t) with server j 
having service rate sj. Once started, each customer is executed to 
completion without interruption; i.e., there is no preemption. 

Most of our analysis requires only the first and second moments 
of the base service-time distributions F;(e), which we respectively 
denote by xi and zi2). When a class i customer is executed on 
server j, the expected service time is given by Zij = xi/sj and the 
second moment of the service time is given by 5::) = xj”)/s;. Let 
pi = X%x; be the traffic intensity for class i. The traffic intensity at 
server j can then be expressed as 4j = cF=r pipij. Since sj is the 
capacity of server j, necessary and sufficient conditions for stability 
(i.e., finite expected response times) are given by 

4j = F PiPij < Sj, j = 1,2 ,..., N. (1) 
i=l 
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The total traffic intensity of the system is p = cj”=, &, and the 

total capacity of the system is S = c,“,i sj. It then follows di- 
rectly from (I) that the system is stable as long as p < S, which we 
assume to be the case in what follows. 

Objective Function. A positive weight c; is associated with cus- 
tomers of class i. The scheduling objective of interest in this paper 
is to minimize the linear function 

K 

c 
c’ Xi*. 

‘A ’ 
(2) 

i=l 

within the context of the above system model, where 2’; is the ex- 
pected total amount of time spent in the system by class i customers. 
We shall refer to Ti as the mean response time for class i. 

2.2 Optimal Sequencing 

Let us initially suppose that we have obtained the routing matrix P’ 
for the globally optimal scheduling policy. It follows from the prop- 
erties of the class of allocation policies under consideration that the 
servers are equivalent to multiclass M/G/l queues. In particular, 
server j is a K-class non-preemptive M/G/l queue with per-class 
arrival rates XiPij. The mean per-class response times will depend 
on the sequencing strategy employed at the server. 

Our interest is in finding the sequencing strategy that minimizes 
the objective function in equation (2). Smith [21] showed that the 
optimal sequencing strategy which minimizes such a linear function 
of expected response times in a multiclass M/G/l queue is a fixed 
priority policy, often referred to as the cp rule. Specifically, he es- 
tablished the following result. 

Proposition 2.1 Consider a K-class non-preemptive M/G/I queue, 
with class i arrival rate A; and class i service time distribution G; 
having mean x;. Let Ti denote the expected response time of class 
i customers, let ci be a positive constant associated with class i, 
and define X = cF=, Xi. Then, the scheduling policy JII that gives 
priority to class i customers over class k whenever Ci / 2; 2 ck 1x1s 
minimizes CF=, ci +Ti. 

Observe from Proposition 2.1 that the scheduling policy II which 
minimizes the response time objective function in (2) is the same 
for all servers. This follows from the assumption that the servers are 
identical except for their speed and thus no class is given “prefer- 
ential treatment” by any server. For convenience, and without loss 
of generality, we assume that the customer classes are labeled such 
that 

Cl - Yc2, l-5? z- - . . . .- 
Xl x2 XK’ 

This labeling ensures that under the optimal scheduling policy the 
priority ordering of the customer classes at any server follows the 
index order: class k is given priority over class e if k < !. Since we 
assume that servers differ only in their speed, the optimal ordering 
<j for server j is independent of j and is denoted by <. Then, 
from standard queueing theory (e.g., refer to [I 11, noting that our 
priority ordering of the customer classes is the opposite of what is 
considered in [l l]), the mean waiting time of class k customers in 
the multiclass M/G/l queue of Proposition 2.1 is given by 

wk = 2(1 - c,,, d1 - c,,, Pf) ’ 
(3) 

and the corresponding mean class-k response time can be expressed 
as 

Tk = wk+xk. (4) 

This simple analysis shows that our optimal scheduling prob- 
lem is as hard as finding the optimal routing matrix P’. Observe 
also that the optimal sequencing policy is identical for all servers 
and does not depend on P’ . The optimal sequencing policy instead 
depends only on the first moment of the service time distributions 
of the customers. Knowing the optimal sequencing policy enables 
us to express the expected response times of the customer classes 
in terms of P’ . Thus, the globally optimal scheduling problem re- 
duces to the problem of finding the optimal routing matrix under 
the optimal sequencing policy, and this problem can be posed as an 
optimization problem which is addressed in the next section. 

2.3 Optimal Random Splitting 

Based on the above analysis, we formulate the problem of finding 
an optimal routing matrix as a nonlinear programming problem. Let 
each server order all of the customers assigned to it according to the 
priority rule of Proposition 2.1 in Section 2.2. 

Note that the arrival rate of class i customers to server j is Xipij. 
From equation (3), the mean waiting time of a class i customer at 
server j can then be expressed as 

Wij = 
cF=‘=, AkPkjxg) 

2(1 - ck:k<i Pkj)(’ - Ck:k<i Pkj) ’ 
(5) 

where pkj = Xkpkjxkj. We therefore have 

N Xi&j 
Wi = C TWij 

j=l ’ 

from which together with (4) we obtain 

N N 

Ti = C Pij(Wij + Xij) = Wi + Cx;,Pij 
j=l j=l 

c,“=, AkPkjxg) 

2(1 - ck<i pkj)(l - xk_<; pkj) + “‘j ‘@I 

Using the analysis and observations of Sections 2.1 and 2.2 to- 
gether with (1) and (6), our optimal scheduling problem reduces to 
finding the optimal routing matrix P* = j~$]r<~<~,r<~<~ that 

- - ’ - - solves the following optimization problem: 

K N 

(RS) min C Ci 2 C pij 

i=l j=l 

cf=‘=, AkPkjxE) 

2(1 - Ck:k<ipkj)(’ - ck:k<i Pkj) fxij - 
c pij = 1, Vi, 
j=l 

2 
XiXipij < Sj, Vj, 

i=l 

pij > 0, Vi, j. 

The optimization problem (RS) is a nonlinear programming prob- 
lem and it appears to be difficult to solve in general. However, we 
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establish the following theorem which considerably simplifies the 
task of solving this optimization problem. 

Theorem 2.2 Any local minimum ofproblem (RS) in the interior of 
the feasible domain is a global minimum. 

Proof Sketch: Let 3(p) denote our objective function, and thus 

CiXiPij 1 

(l - Ck:k<i Pkj)(’ - Ck:k~i pkj) + ’ ’ 

22 Ci Xi pij Xij. 

j=l i=l 

With a change of variables, setting ?Jii = CL=, pkj, our original 
variables pij can be written in terms of uij as follows: 

pij = 
"ij - “(i-l)j 

XiXij . 

K 

Furthermore, the term c 
Ci Xipij 

izl (l - ck:k<i Pkj)(’ - Ck:k<; Pkj) sim- 

plifies to 
K I \ 

c 1 Ci G+l 

i=l 
l-Uij 

( G-- . 
“(i+l).i J 

Using these simplifications, we can express our objective function 
3 as a function of the uij variables. 

We then take the Lagrangian of 3 by relaxing the “assignment” 
constraints. Using 6i to be the multiplier corresponding to the ith 
customer class, we can write the Lagrangian L for this problem as 

L(U, 6) = 3(U) f 2 di 5 uij ~i~~~el’j. 

i=l j=l 

We now differentiate L(u, 6) with respect to the new variables 
uij and set the derivatives equal to zero. After some algebraic ma- 
nipulations, we obtain an equation of the form 

(1 - Uij)2 ZZ rij, 

where rij does not depend on uij and is linear in the other variables 
6i. Such an equation has at most one root in the interval (0,l). n 

As noted above, Theorem 2.2 significantly simplifies the so- 
lution of the nonlinear programming problem (RS). For example, 
starting from an interior point and applying standard gradient meth- 
ods, we can find a local minimum of the objective function. If this 
happens to be in the interior of the domain, then we are done; oth- 
erwise, we iterately apply this algorithm starting from all of the 
lower-dimensional faces. While this property still does not guar- 
antee polynomial-time solvability, it will often lead to efficient so- 
lutions for many problems in practice. 

2.4 Minimizing Response Time Variance 

Let T: denote the mean response time of class i customers un- 
der the optimal routing matrix P’ obtained from the solution of 
the optimization problem (RS) based on Theorem 2.2, and under 
the priority rule of Proposition 2.1 at each server. Our analysis in 

the previous sections establishes that the performance vector T’ = 
(T;,T,‘,...,TiT) minimizes the objective function in equation (2). 
However, there clearly can be multiple scheduling policies that achieve 
T*. In this section, we develop a scheduling method that realizes 
T* while tending to also minimize a function of the per-class re- 
sponse time variances. 

Squillante and Tsoukatos [24] consider an optimal sequencing 
strategy for minimizing a function of per-class second moment mea- 
sures of response time within the context of the multiclass non- 
preemptive M/G/l queue of Proposition 2.1, which is formulated 
as an optimization problem under appropriate constraints and is solved 
by applying the Kuhn-Tucker Theorem. They show that a structural 
property of the optimal solution is to equalize a per-class function of 
the response time for each individual customer, over all customers 
and all classes. One can then argue, as in [24], that an approach 
which tends to exhibit this structural property for a particular in- 
stance of the objective function is based on the use of general time- 
based functions to control the allocation of resources to classes of 
customers [8]. Time-function scheduling is in part a generalization 
of the linear time-dependent priority discipline [ 1 l] in which the pri- 
ority of each customer increases (linearly) according to a per-class 
function of its time in the system and the customer with the highest 
instantaneous priority value in the queue is selected for execution at 
each scheduling epoch. This is based on the observation that, un- 
der linear time-dependent priorities, customers tend to be given the 
server once they reach priority values which are fairly similar across 
all of the customers. In particular, it can be easily established in the 
heavy traffic limit as p^ + 1 that a linear time-function scheduling 
strategy will satisfy [ 141 

Uk ’ wk = 7 

for all classes k, where Uk is the slope of the class /c time-function, 
p^is the traffic intensity of the queue, and 7 > 0. 

We therefore derive a particular instance of time-function schedul- 
ing for the servers that, together with the optimal routing matrix 
P’, achieves T’ and also tends to minimize a function of the per- 
class response time variances. Consider a stable multiclass non- 
preemptive M/G/l queue with class /Z arrival rate ik and class k 
service time distribution Gk having mean & and second moment 
?$‘; throughout this section we will use the class index k under the 
constraints k = 1,2,. . . , K, unless noted otherwise. A linear time- 
dependent queueing discipline is employed with per-class priority 
function Slopes (Tk such that (~1 > u2 1 . . . 2 UK. It can be easily 
shown that the expected waiting time for customers of class k in this 
queueing system is given by [ 1 l] 

- c,“=,+, &z(l - Ui/Uk) 

1 - cf-;‘p^l(lmfJk/ui) ’ 
(7) 

where & = ik& and p^ = Cf=‘=, &. Note the very simple depen- 
- 

dence that vk has on the slope parameters, namely that these slopes 
only appear as ratios. 

Without loss of generality, let UK = 1. Following [Is, 221, we 
define 

K 

Qlk = 
c 

iiZi2) 

i=l w -PI 
- 2 FiGi, 

i=k+l 

k--1 

Pk = l-Cp?I 

i=l 

9 = 
i=k+l 
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Equation (7) can then be rewritten as 

which upon substituting the relations vk = vk+r - &/ok and 
/&+I = ,& - & from the above definitions and simplifying yields 

-(wk@k+l - ak) Z~I (wkpk+l - Qk)’ + dukwkvk+l 
Uk = 

vy 

2wkvk+l 
, 

fork=1 ,..., K-l.Sinceul>uz>...>uK=l,wehave 

-(wkpk+l - ak) + @kpk+, - ak)’ + duki?kvk+l 
Uk = 

2wkvk,1 
1 

(S) 

fork = l,... , K - 1. This expression can then be used in a 
straightforward manner together with the above definitions and re- 
lations to recursively obtain the values UK-~, . . ., ui of the linear 
time-function policy that will achieve the given performance vector 
(t?l,@z )..., 5i5.f). 

Hence, by Setting XI, = &p;,, zk = Xkj, $c’ = zE) and 

??k = W~j, where the values of WG corresponding to the optimal 
performance vector T’ are known from our analysis in the previ- 
ous sections (see equation (.5)), we have the desired result for the 
equivalent linear time-function sequencing policy at server j. 

3 General Arrival Case 

We now remove the assumption of Poisson arrivals by considering a 
fluid-model approximation of the optimal scheduling problem con- 
sidered in Section 2. A fluid approximation of a stochastic system is 
its deterministic, continuous analog that models the asymptotic be- 
havior of the queueing system. We first provide a formal description 
of the corresponding fluid control problem. Then an analysis of the 
sequencing and random splitting aspects of the fluid optimization 
problem is derived respectively in Sections 3.3 and 3.4. 

3.1 Fluid Model 

Consider the system model of Section 2.1 with the following modi- 
fications. Customers arrive and depart in a continuous, deterministic 
fashion, and thus can be thought of as aflow of&id; in this section 
we will use the terms “fluid” and “customer” interchangeably. Cus- 
tomers of class i arrive to the system in a continuous manner with 
rate Xi, and require Zj time units of processing. A fixed fraction 
nii of the class i fluid is routed to server i according to the routina 
-i&ix P s [Pij]l<i<K.l<j<N, independent of all-else. The tot2 
amount of time required io>r<cess one unit of class i fluid on server 
j is xi/Sj. For t 5 0, we iet Lij (t) be the amount of class i fluid 
at server j at time t, where the set of initial queue lengths Lij(O) 
are assumed to be given. Since the quantities L,j(O) will be used 
often we drop the “time” argument and use Lij instead. Customers 
of class i incur holding costs at rate ci. In other words, ci is the 
cost incurred by a class i customer in the system per unit time. Our 
scheduling objective now is to minimize the total holding costs in- 
curred until the system empties for the first time, starting from the 
given initial state L;j. To do this we need to find the routing matrix 
P‘ and the local sequencing strategies at the servers that result in a 
schedule of minimum cost. 

To put this problem in perspective, it is helpful to make a few 
remarks about the objective function considered in the fluid and the 
stochastic systems. In a stochastic system, we typically would like 
to find a scheduling policy that minimizes a linear function of re- 
sponse times in steady-state. By Little’s law, this is equivalent to 
minimizing a (different) linear function of expected queue lengths 
in steady-state. In the fluid model, however, we are interested in 
minimizing the total holding costs incurred until the system empties 
starting from a specified state, which is related to the queue length 
processes of the system. Hence, the hope is that the solution of 
the fluid model, as a function of the initial state, will be useful in 
determining a near-optimal policy for controlling the stochastic sys- 
tem of interest. For example, fluid-model formulations have been 
recently used to successfully study general stochastic scheduling 
problems [4, 1, 131 (different from those considered here). 

In the rest of this section we formulate and prove structural prop- 
erties for the fluid model of the stochastic system considered in Sec- 
tion 2.1. We do not address in this paper the question of how a fluid 
control can be translated to a control for the stochastic system; refer 
to [4, 1, 131. 

3.2 Formulation 

We now can provide a precise formulation of the fluid approxima- 
tion corresponding to the stochastic system of Section 2. Necessary 
and sufficient conditions for stability (i.e., the Auid system empties 
in finite time) are given by equation (1), and thus the system is stable 
as long as p < S which we assume in what follows. 

The fluid control problem corresponding to the stochastic sys- 
tem then can be formulated as follows: 

(CTL) min ciLij(t)dt 

s.t. 
Lj(t) = Xipij - Z;jlUij(t), 

K 

CUijCt) L l, 
i=l 

L(0) = given, 

J-J(t), w(t) 2 0, t 1 0, 

where Lij (t) denotes the derivative of Lii (t) with respect to t. 
In our formulation pij and Uij(t) are the decision variables, 

where pij is the fixed fraction of class i fluid routed to server j, 
and Uij (t) describes the fraction of server j capacity allocated to 
service class i fluid at time t. Observe that if Lij(O) = 0 for all 
i, j (i.e., if all of the initial queue lengths are zero), the fluid optimal 
solution will incur zero cost. This is an immediate consequence of 
the stability condition (1). 

3.3 Optimal Sequencing 

Let us initially suppose that we have obtained the optimal routing 
matrix P’ . It follows from the properties of the class of allocation 
policies considered that the servers are equivalent to multiclass fluid 
queues. Recall that our interest is in finding the sequencing strat- 
egy that provides the globally optimal scheduling solution. Avram, 
Bertsimas and Ricard [I] showed that the optimal sequencing strat- 
egy which minimizes a linear function of expected response times 
in a multiclass fluid queue is a priority policy, often referred to as 
the CCL rule. Interestingly, the optimal policy is the same for the 
stochastic system as long as the interarrival times are exponentially 
distributed. Specifically, they proved the following proposition. 
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Proposition 3.1 Consider a multiclass~uid queue with K customer 
classes. Let Xi be the class i arrival rate and let xi be the service 
time of class i customers, where pi = Xixi. Let Li (t) be the amount 
of class i customers in the system at time t. Then, the schedulingpol- 
icy n that gives priority to class i customers over class k whenever 
ci/xi 2 ck/~g minimizes Jam Cl”,, ciLi(t)dt. 

Observe from Proposition 3.1 that the scheduling policy II which 
minimizes the weighted sum of fluid queue lengths is the same for 
all servers. This follows from the assumption that servers are iden- 
tical except for their speed and thus no class is given “preferential 
treatment” by any server. Without loss of generality, assume that 
customers classes are labeled such that c;/Zi 2 ci+l/~i+l. Under 
the optimal policy, customer class i is given priority over customer 
class k if i < k. 

We now evaluate the cost of class i customers in the multiclass 
fluid queue of Proposition 3.1. We emphasize that we are looking 
at a particular multiclass fluid queue, namely the one described in 
Proposition 3.1. 

Observe that the fluid system gives priority to class i customers 
over class k customers if i < k. Since the customer arrivals are 
continuous and deterministic, the fluid system will always serve cus- 
tomers. To better understand the sequencing policy we describe it 
in more detail. Initially the fluid will serve customers of class one. 
Since the effective arrival rate of class 1 customers is smaller than 
the rate at which they are served, class 1 customers will eventually 
deplete; at this point the server (in the fluid system) is ready to serve 
class two customers. Observe, however, that if the server devotes its 
full capacity to serve class 2 customers, class 1 customers will start 
accumulating, and will regain priority. Thus, in an optimal sequenc- 
ing policy, the server will devote some of its capacity to maintain 
higher priority classes at zero levels, while working on a lower pri- 
ority customer class. In our example, the server will devote some 
capacity to maintain class 1 customers at level zero, and devote the 
rest of the capacity to class 2 customers. Generalizing this, when 
the server has depleted all classes up to class (i - l), an appropri- 
ate fraction of its capacity will be devoted to keeping all the higher 
priority customer classes at level zero, and the remaining capacity 
will be devoted to class i customers. (Contrast this with the optimal 
sequencing policy in the stochastic system.) Clearly, the amount of 
“effort” required to maintain a class at level zero can be computed 
easily: the server has to ensure that such customer classes deplete 
exactly at the rate at which they arrive. 

f-p 
T 

0 T-1 Ti t 

Figure 1: Inventory level of class i 

Let T; be the time at which class i customers deplete from the 
fluid system, and let pi = 2;‘. By the definition of depletion times, 
and by our ordering of the customer classes, u;(t) = 0 fort 5 ‘I’i-1, 

and ui (t) = pi for t > !I’i. This immediately shows that the total 
amount of “effort” required by the server to keep classes one through 
(i - 1) empty is C,:,.+ pk, and thus U;(t) = (1 - c,:,,; pk) for 
E-1 < t 5 Ti. Using the fact that class i customers arrive at rate 
Xi, we see that 

Ti = Ti-1 + 
Li + Ti-lXi 

Pi(l- C k:k<i Pk) - Xi. 

Solving these sets of linear equations, we obtain 

Ti = (1 - ct;,$ PAI (i: > k=l Lkxk 
(9) 

Using equation (9) for Ti, we can find the cost incurred by class 
i customers as follows. The total inventory of class i customers is 
the area under the curve shown in Figure 1. The total inventory of 
class i customers is 

i LiTi- + Ti(Li + AiT;-1) 
I 

, 

and thus the total cost of class i customers is given by 

LiTi- +Ti(Li + AiT;-1) , 

where Ti is given by equation (9). 
This simple analysis shows that our optimal scheduling problem 

is as hard as finding the optimal routing matrix P*. Notice also that 
the optimal sequencing policy is identical for all servers and does 
not depend on P’ The optimal sequencing policy instead depends 
only on the weights and the service times of the customer classes. 
Knowing the optimal sequencing policy enables us to express our 
objective (the total cost incurred) in terms of P’. Thus, as in Sec- 
tion 2, the problem of finding the optimal routing matrix can be 
posed as an (nonlinear) optimization problem, which is considered 
in the next section. 

3.4 Optimal Random Splitting 

Based on the above analysis, we formulate the problem of finding 
an optimal routing matrix as a nonlinear programming problem. Let 
each server order all of the customers assigned to it according to 
the priority rule of Proposition 3.1. Since we assume that servers 
differ only in their speed, the optimal ordering <j for server j is 
independent of j and is denoted by <. For convenience, and without 
loss of generality, we assume that the customer classes are relabeled 
such that 

c1>2$!& 
Xl x2 ZK 

This labeling ensures that the priority ordering of the customer 
classes at any server is the index order: class i is given priority over 
class k if i < k. Let T;j be the depletion time of class i customers 
at server j. From our analysis in Section 3.3, we have 

Tij = ’ 
sj(l - Ck:k<i Pkj) 

(&kjxk), (10) 

where pkj = Xkpkjxkj. The total costs incurred by class i cus- 
tomers at server j are then given by 

+ T;j(Lij + XipijT(i-l)j) . (11) 
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Using the analysis and observations in Sections 3.1 and 3.3 to- 
gether with (1) and (1 l), our optimal scheduling problem reduces 
to finding the optimal routing matrix P’ z [plJ^]l<i<K;15j<N that -- - 
solves the following optimization problem: 

(FRS) min FF*ij 

i=l j=l 
s.t. 

2 
p,‘j = 1, Vi, 

j=l 

K 

i=l 

PE', > 0, Vi, j. 

The optimization problem (PRS) is a nonlinear programming 
problem and it appears to be difficult to solve in general. How- 
ever, we establish the following theorem which considerably sim- 
plifies the task of solving this problem (for reasons analogous to 
those given in Section 2.3). 

Theorem 3.2 Any local minimum of problem (FRS) in the interior 
of the feasible domain is a global minimum. 

Proof : The proof follows by an argument identical to the one used 
in the proof of Theorem 2.2. n 

4 Static Problems 

In this section we turn our attention to static instances of the stochas- 
tic scheduling problems considered in Sections 2 and 3. When we 
restrict ourselves to these static cases in which a finite set of cus- 
tomers arrive at time 0 and there are no other arrivals, a formulation 
based on the above analysis leads us to rederive many results yield- 
ing simple approximation algorithms whose guarantees match the 
best known results. These results have been previously summarized 
in [ 181, and they were independently obtained by Skutella in [20]. 

We first describe the static problems considered and provide an 
exact nonlinear formulation, and then we present a convex relax- 
ation of this formulation in Section 4.2. We describe a simple (ran- 
domized) scheme that rounds a fractional solution of this relaxation 
to an integer solution in Section 4.3, where we also prove perfor- 
mance guarantees for each of the problems considered. Note that in 
investigating these static problems, we can restrict ourselves to de- 
terministic scheduling problems without loss of generality; for the 
static stochastic problems, the processing times are replaced by their 
expected values, and thus they reduce to the deterministic case. 

4.1 Problem description and formulation 

We first formulate the scheduling problem under consideration as 
an integer program. Consider a system with K customers and N 
servers. Viewing each customer as belonging to its own class, we 
use i to index the customers, whereas j continues to index the servers. 
The processing requirement of customer i on server j is .ZiJ ; for con- 
venience, define /Aij = 2lj-l. We emphasize that our formulation 
is general enough to handle the following three cases of interest: 

(a) Identical servers: Zij = zi and is independent of j. 

(b) Uniform servers: Z;j = Zi/sj, where z; is the processing 
time requirement of customer i (recall that sj is the speed of 
server j). 

(c) Unrelated servers: aij depends on both i and j and is an 
arbitrary positive integer. 

For the most part we will work in the setting of unrelated servers, as 
it is the most general case. 

Since the problem under consideration is a static problem, the 
allocation question reduces to finding an optimal assignment of cus- 
tomers to servers at time zero. Recall that a positive (integer) weight 
ci is associated with customer i and our objective is to minimize 
x7=, ci!Pi, where Ti is the completion time of customer i. 

Let pij be an indicator variable which is one if customer i is as- 
signed to be processed at server j and zero otherwise. Suppose for 
the moment that we know the optimal assignment of customers to 
servers - this enables us to reduce the N server scheduling prob- 
lem to N independent single server scheduling problems. For the 
objective under consideration, the single server scheduling problem 
is solved by the C,Q rule [21]: at server j, all the customers assigned 
to server j are scheduled in such a way that customer Ic is sched- 
uled before customer e if and only if Ckpkj > Cfptj. Motivated by 
this sequencing policy, we assume that each server orders all the K 
customers in such a way that customer k appears before customer 
fJ in the ordering corresponding to server j (denoted by k <j a) if 
CkPkj 1 cLP!j- 

Note that we know the optimal completion time of a customer 
given an assignment of customers to servers. Thus, we can for- 
mulate our problem as that of finding the allocation vector which 
minimizes weighted completion time. Specfically, 

K N / \ 

min z z ciPij (% + gz P.i”.i) 
2’ 

s.t. 

N 

c pij = 1, Vi, 
j=l 

Pij E (0, I}, Vi, j. 

A few remarks about this formulation are in order. First, observe 
that an application of the cp rule yields 

Ti=cPij Zij + 
j=l 

and thus the optimal solution to our nonlinear integer program does 
yield an optimal solution to the scheduling problem we started with. 
Second, this formulation has potentially two complicating factors: 
(i) the integrality restrictions on the assignment variables; and (ii) 
the nonlinearity of the objective function. It is quite easy to see that 
(i) is not a serious problem: a straightforward (randomized) round- 
ing scheme can be used to prove the integrality of the relaxation in 
which the pij can assume any value between zero and one (a proof 
of this is embedded in the proof of Theorem 4.1 in Section 4.3). 
Hence, the nonlinear optimization problem given by: 

(NLPR) min g $cfPij (in + giPkjzJG) 

s.t. 
2 pij = 1, Vi, 
j=l 

Pij L 0, Vi, j; 

is an exact nonlinear formulation of our scheduling problem in the 
sense that one can always find an integral optimal solution to this 
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nonlinear programming problem. Although this is an interesting 
property, it does not simplify our problem because our relaxation is 
a nonlinear programming problem and thus is difficult to solve. In 
the next section we will provide a convex relaxation which can be 
used to design approximation algorithms - of course, the known 
hardness results of this problem suggest that our convex relaxation 
is truly a relaxation and does not always provide the optimal solution 
to the scheduling problems considered. 

4.2 Convex relaxations 

To clarify the exposition, we fix a server j and assume that our K 
customers are labeled such that 1 <j 2 <j . . . <j K. Under these 
assumptions, the contribution Xj of server j to the total cost can be 
Written ES Xj = xi”=, Cipij (Zij i- ~k,xpkjZkj). 

When the Pij are restricted to be ert er zero or one, we have 
p$ = Pij. Simple algebraic manipulations yield 

K k-l K K 

cc Ckpkjzljplj = c c CrPljzkjPkj. (12) 

k=lL=l k=l L=k+l 4.3 Rounding 

We then can write two expressions for Xj using these observations: 

K k-l 

k=l k=l C=l 

K 

= 
c Ckzkjdj + 2 2 CtpLjzkjpkj. (14) 

k=l k=l L=k+l 

Adding equations (13) and (14), we have 

ckzkjPkj + 2 2 C!zkjpkjplj + 

k=l L=k+l 

K k-l K \ 

cc CkzljPkjPtj + CkzkjpEj ) . (15) 

k=lL=l k=l / 

To see why Xj given by equation (15) is convex, we first find 
the Hessian of Xj. The Hessian of Xi, denoted by Hj, is a K x K 
matrix with its (k, Z)th entry given by 

(Hj)kl = Clzkj eyk 
Ckzlj elk 

TO prove that Xj is convex, it suffices to show that Hj is a posi- 
tive semidefinite matrix. This is immediate from the ordering of the 
customers; recall that all customers were ordered so that crplj 2 
CZ/JZj 2 .*. > CK/.hKj, which readily yields a proof of the semidef- 
initeness of Hj. In fact, if there are no ties, the Hessian is positive 
definite. 

This simple change of using Pt instead of Pij at appropriate 
places has helped us convert a nonconvex function to a convex one. 
While this change does not affect the integer program, it results in 
a weaker relaxation, which fortunately is convex. The convex re- 
laxation of the parallel server scheduling problem we started with 
is: 

(UPM) min exj 
j=l 

s.t. 

Ckzkj(pkj +pij) + 

ClzkjPkjPlj , ‘Jj, (16) 

k=l l=k+l 

K 

Xj 2 C CiZijpij, Vj, (17) 
i=l 

5 ’ 
pij = 1, Vi 

j=l 

Pij L 0, VC.7. 

All of the constraints in the convex relaxation are straightfor- 
ward and follow from our discussion. We have added equation (17) 
to the relaxation because it is a linear constraint that certainly yields 
a lower bound on the optimal value for the integer problem. This 
constraint does not make a difference to the quality of the relaxation 
in the case of identical or uniform servers, but it strengthens the 
relaxation for the case of unrelated servers. 

The convex relaxation proposed in the previous section can be solved 
efficiently using standard techniques. Given a solution to the re- 
laxation, we consider the following straightforward rounding algo- 
rithm. 

ALGORITHM RR 

Step 1: Solve the convex programming problem (UPM), 
and obtain the optimum routing matrix P’ . 

Step 2: Route customer i to server j with probability 
* 

Pij . 

Theorem 4.1 Algorithm RRproduces a schedule whose cost is within 
a factor of $ of the optimal cost for all three versions of the parallel 
server scheduling problem. 

Proof: Let the optimum solution to the convex program (UPM) be 
denoted by P* with optimum value Y’ = cy=, XT. The inte- 
ger solution resulting from the randomized rounding algorithm is 
denoted by p with value Y = ~~=, Xj. We will analyze the con- 

tribution of server j (to the total cost) and show that E[Xj] 5 $X;. 
Since we do independent rounding, we have 

E[ISkj&j] = JQ%cjIEb~jI. (18) 
Moreover, the contribution of server j to the total cost can be ex- 
pressed as 

K i-l 

Xj = c Cipij (Zij + c zkjpkj). (19) 
i=l kc1 

Using equations (18) and (19), we can compute the expected 
cost E[Xj] due to server j as follows. 

E[xj] = E 5 Ci@ij(Zij + ~ ZkjlSkj) 

i=l kc1 1 
i-l 

= Ci&j(Zij + C Zkjpkj) 

k=l I 

= E [C;Zij&j] + C E [Cifhjpkjzkj] 

k=l 
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K i-l 

= 
CI 

G Zijp,fj + C Ciptp;j Zkj 
1 

i=l t kc1 I 

K K i-l 

c 
CiZzjPlj + 

cc 

* * 
ZZ Cipijpkjzkj. cm 

i=l i=l k=l 

However, from constraints (16) and (17) we have 

k=l I=k+l 

(22) 

We then obtain from equations (12) and (21) 

K 

XT - f ~~kzkj(p;j)’ + i CckakjpEj 2 

k=l k=l 

K K i-l 

c 
GZijp:j + cc ciprjpijzkj. (23) 

i=l i=l k=l 

Substituting equation (22) in the left hand side of (23) yields 

k=l 

K K i-l 

c 
CiZijpzj f x x cip,fjpLjzkj. (24) 

i=l i=l k=l 

The right hand side of equation (24) is simply E[Xj]. The left 
hand side of equation (24) simplifies to %XT - cf=‘=, ckzkj (p;j)‘. 

Noting that cf=‘=, Ckzkj(~i~)~ iS a non-negative qUantity yields 
E[Xj] < ZXT, n 

Remarks 

(a) We have described our rounding scheme assuming that we can 
find an optimal solution to the convex relaxation. In practice, 
however, we can only find an e-approximate solution. The 
same rounding scheme can be used with an e-approximate 
solution while retaining the same performance guarantee. 

(b) Our rounding scheme can be derandomized using the method 
of conditional probabilities. This derandomized rounding al- 
gorithm can be coupled with the e-approximate solution to 
actually find an integer solution with value no worse than 3/2 
times the optimum. This is an c-improvement over the previ- 
ously best known algorithm due to Schulz and Skutella [ 171. 

(c) The argument leading to equation (20) also establishes the 
integrality of the nonlinear programming relaxation (NLPR). 

4.3.1 Identical Servers 

For the special case in which all of the servers are identical, the 
guarantee we can prove is still only 3/2. However, just as in [17], 
the derandomized version of algorithm RR is exactly the algorithm 

due to Kawaguchi and Kyan [lo], who prove a guarantee of F 
using complicated arguments. Interestingly, for this special case, an 
optimal solution to the simpler convex relaxation, namely 

(IPM) min exj 
j=l 

s.t. 

eckzkjbkj +PEj) + 

k=l 

ClZkjPkjPlj , v.i, 

kc1 I=k+l 

5 
pij = 1, Vii, 

j=l 

Pij 2 0, Vi, j; 
can be computed in closed form: setting pij = & yields an optimal 
solution to (IPM). Moreover, we can still prove that algorithm RR 
applied to an optimal solution of (IPM) will yield an integer solution 
which is no worse than 3/2 times the optimum. 

Theorem 4.2 The convexprogramming problem (IPM) can be solved 
in closed form for the special case of identical parallel servers. in 
this case, l;ij = &for all i, j is an optimal solution. 

Proof: We prove this by showing that the solution fiij = & satisfies 
the Kuhn-Tucker conditions. (This suffices because our optimiza- 
tion problem is convex.) For convenience, we set X = ~~=, Xj 

and hi(p) = ~~=, pij - 1. It then suffices to show that the set of 
NK equations 

Ax@) + &&+.@) = 0 
k=l 

can be solved for the ni. Simple computations show that the (i, j)” 
equation in this system (corresponding to the customer i at server j) 
is 

cizi 1 2y I 2ci c;z: zk + 2zi C~=i+l ck + ‘Iii = o, 
N N 

which is independent of j and hence can be solved for 21;. n 

5 Conclusions 

In this paper we studied the problem of scheduling different classes 
of customers on multiple distributed heterogeneous servers to mini- 
mize a general objective function based on per-class mean response 
times. This problem arises in a wide range of distributed computer 
applications and system environments, as well as communication 
network environments. We first observed within the context of our 
model that the optimal sequencing strategy at each of the servers 
is a simple static priority policy. We then argued based on this ob- 
servation that the global scheduling problem reduces to finding an 
optimal routing matrix under this sequencing policy. We formulated 
the latter problem as a nonlinear programming problem and showed 
that any interior local minimum is a global minimum, which signif- 
icantly simplifies the solution of the optimization problem. In the 
case of independent Poisson arrival streams, we provided an opti- 
mal scheduling strategy that also tends to minimize a function of 
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the per-class response time variances. We then considered the case 
of general arrivals by developing a fluid-model formulation of the 
optimization problem and deriving an analogous set of results. Ap- 
plying our analysis to various static instances of the general problem 
led us to rederive many results yielding simple approximation algo- 
rithms whose guarantees match the best known results. 
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