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Optimal Scheduling of Multiclass Parallel Machines 

Jay Sethuraman* 

1 Introduction 

Motivated by our study of a general stochastic sched- 
uling optimization problem,’ we examine various static 
instances where the stochastic problems reduce to the 
corresponding deterministic scheduling problems with- 
out loss of generality. Following our solution approach 
for these special cases leads us to rederive many known 
results in a fairly elegant manner, yielding simple ap- 
proximation algorithms whose guarantees are shown to 
match the best known results. We believe that improve- 
ments in the approximation guarantees for some of these 
special cases will be possible by exploiting the convex 
programming techniques of our approach. 

We formulate the nonlinear scheduling optimization 
problem, we provide a convex relaxation, and then we 
present a simple (randomized) rounding scheme. The 
interested reader is referred to our technical report? for 
additional details, including proofs and references. 

2 Scheduling Problems 

Consider a system with n jobs and m machines. We 
use i to index the jobs and j to index the machines, 
under the constraints i = 1,. . . ,n and j = 1,. . . ,m 
unless noted otw. The processing requirement of job i 
on machine j is pij; define /.Lij Z pij-l. Our formulation 
is general enough to handle machines that are identical, 
uniform and unrelated; we will primarily work in the 
setting of unrelated machines - the most general case. 

The allocation question reduces to tiding an as- 
signment of jobs to machines that minimizes a weighted 
sum of job completion times, where q E IN and Ti de- 
note the weight and completion time for job i. Let zij 
be an indicator variable such that zij = 1 if job i is as- 
signed to machine j, and zij = 0 otw. Suppose for the 
moment that we know the optimal assignment of jobs 
to machines - this enables us to reduce the m machine 
scheduling problem to m independent single machine 
scheduling problems. For the objective under consider- 
ation, the single machine scheduling problem is solved 
by the cc1 rule: at machine j, all the jobs assigned to 
it are scheduled in such a way that job k is scheduled 
before job -! iff ck/.Lkj > Cepej. Motivated by this, we 
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assume that each machine orders all the n jobs in such 
a way that job k appears before job L! in the machine j 
ordering, denoted by k <j e, if ckpkj > Ce/Jlj. 

We know the optimal completion time of a job given 
an assignment of jobs to machines. Thus, we can formu- 
late our problem as that of finding the allocation vector 
which minimizes weighted completion time, subject to 
each job being allocated to a single machine. 

Observe that an application of the cp rule yields 
Ti = CG, Xij@ij + Ckcji xkjpkj), and thus the OP- 
timal solution to our nonlinear integer program does 
yield an optimal solution to the scheduling problem we 
started with. This formulation, however, has two po- 
tentially complicating factors: (i) the integrality restric- 
tions on the assignment variables, and (ii) the nonlin- 
earity of the objective function. It is quite easy to see 
that (i) is not a serious problem: a straightforward (ran- 
domized) rounding scheme can be used to prove the in- 
tegrality of the relaxation in which 0 < zij < 1 (a proof 
of this is embedded in the proof of Theorem 4.1 in §4). 
Hence, the nonlinear optimization problem given by: 

n m 
(NLPR) min C C Gxij (Pij + C XkjPkj) 

kl j=l kCji 

m 

s.t. 
I2 

Xij = 1, Zij 2 0, 
j=l 

is an exact nonlinear formulation of our scheduling 
problem in the sense that one can always find an 
integral optimal solution to this nonlinear programming 
problem. Although this is an interesting property, it 
does not simplify the problem because our relaxation is 
a nonlinear progr amming problem and thus is difiicult 
to solve. In $3 we will provide a convex relaxation which 
can be used to design approximation algorithms - 
of course, the known hardness results of this problem 
suggest that our convex relaxation is truly a relaxation 
and does not always provide the optimal solution to the 
scheduling problems considered. 

3 Convex Relaxations 

To clarify the exposition, we fix a machine j and assume 
that our n jobs are labeled such that 1 <j 2 <j 
. - . <j n. Under these assumptions, the contribution 
Fj of machine j to the total cost can be written as 
Fj = cF=, cixij (pij + xk<i xkjPkj)- 
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When the zij are restricted to be either 0 or 1, we 
have xzj = zij. Simple algebraic manipulations yield 

n k-l 

(3.1) x TckzkjpljZtj = 2 2 CfxtjpkjxkJ. 

k=lf=l kc1 f=k-il 

We then can write the following two expressions for Fj 

n I( k-l 

(3.2) Fj = c Ckpkjxkj + 7 ~~ckxkjptjxij, 

k=l k=lL=l 

(3.3) =k ckpkjx:j + 2 2 CCxLjpkjfkj. 

k-1 k=l t=k+l 

Adding equations (3.2) and (3.3), we have 

Fj = CkPkjxkj + 2 2 CLPkjXkjxlj + - 
k-1 k=l f=k+l 

(3.4) 

n k-l 

cc CkPfjxkjZfj + 
c 

* CkpkjX:j). 

k=lf=l k=l 

To see why Fj given by equation (3.4) is convex, we 
first End the Hessian of Fj , Hj, which is an n x n matrix 

with its (lc, Z)eh entry given by: (Hj)kt = C.&j, if e 3 k; 
(Hj)kt = ckpej, if .! 5 k. TO prove that Fj is convex, 
it suffices to show that Hj is a positive semideiinite 
matrix. This is immediate from the ordering of the 
jobs; recall that all jobs were ordered so that crprj 2 
C2P2j 2 -0. 2 kpnj, which readily yields a proof of the 
semidefmiteness of Hj- In fact, if there are no ties, the 
Hessian is positive definite. 

This simple change of using 2~j instead of zij at 
appropriate places has helped us convert a nonconvex 
function to a convex one. While this change does 
not affect the integer program, it results in a weaker 
relaxation, which is convex. The convex relaxation of 
the parallel machine scheduling problem is then: 

m 

(UPM) min c 6 
jtl 

s.t. 5 2 k(k CkPkj (Zkj + Zzj) + 

k=l 

2 2 2 CIpkjxkjWj), 

kc1 i=k+l 

Fj 2 gcipijxij, 

i=l 

m 

c Xij = 1, Xij 2 0. 
j=l 

All of the constraints in the convex relaxation are 
straightforward and follow from our discussion. We have 
added the second constraint to the relaxation because 
it is a linear constraint that certainly yields a lower 
bound on the optimal value for the integer problem: 
this constraint does not make a difference to the quality 
of the relaxation in the case of identical or uniform 
machines, but strengthens the relaxation for the case 
of unrelated machines. 

4 Rounding 

The convex relaxation proposed in $3 can be solved ef- 
ficiently using standard techniques. Given such a solu- 
tion, we consider the following straightforward RR algo- 
rithm. Step 1: Solve the convex programming problem 
(UPM), and obtain the optimum routing matrix X*. 
Step 2: Route job i to machine j with probability xFj. 

THEOREM 4.1. Algorithm RR produces a schedule 
whose cost is within a factor of $ of the optimal cost 
for all three versions of the parallel machine scheduling 
problem.’ 

Although our relaxation (UPM) is written as a gen- 
eral convex progr amming problem, we can rewrite it 
as a semidefinite programming problem using standard 
techniques. Moreover, we have described our rounding 
scheme assuming that we can find an optimal solution 
to the convex relaxation. In practice, however, we can 
only find an e-approximate solution. The same round- 
ing scheme can be used with an c-approximate solution 
while retaining the same performance guarantee. Fi- 
nally, our rounding scheme can be derandomized using 
the method of conditional probabilities. This deran- 
domized rounding algorithm can be coupled with the E- 
approximate solution to actually find an integer solution 
with value no worse than 3/2 times the optimum. This 
is an e-improvement over the previously best known al- 
gorithm due to Schulz and Skutella. 

For the special case of identical machines, the 
guarantee we can prove is still only 3/2. However, 
just as Schulz and Skutella point out, the derandomized 
version of algorithm RR is exactly the algorithm due to 
Kawaguchi and Kyan, who prove a guarantee of e 
using complicated arguments. Interestingly, for this 
special case, an optimal solution to the simpler convex 
relaxation (IPM), formulated exactly as (UPM) without 
the second constraint, can be solved in closed form 
where &j = $ is an optimal solution. Moreover, we 
can still prove that algorithm RR applied to an optimal 
solution of (IPM) will yield an integer solution which is 
no worse than 3/2 times the optimum. 
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