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Abstract

In an adversarial queueing network, the incoming traffic is decided by an adversary, who

operates under a reasonable rate restriction. This model provides a valuable, complementary

point of view to that of the traditional queueing network model in which arrivals are modeled by

stochastic processes. As a result, the adversarial queueing network model has attracted a lot of

attention in recent years, especially as a way of modeling packet injections into a communication

network. Our main result is a simple, effective packet routing and scheduling algorithm with a

provably-good performance. Specifically, our algorithm keeps the system stable (bounded number

of packets in the system), with the bound on the number of packets in the system that is O((1−
r)−1), where r can be interpreted as the arrival rate of the packets into the communication

network. This improves upon the work of Gamarnik [12], who designed an algorithm for which

the number of packets in the system is O((1− r)−2); moreover, our result matches the traditional

queueing-theoretic number-in-system bound.

1 Introduction and Contributions

Scheduling and packet-routing have emerged as important issues in modern computer and commu-

nication systems. In this paper, we consider one such problem in the setting of an arbitrary syn-

chronous, adversarial network. In an adversarial queueing network, the incoming traffic is decided by

an adversary, who operates under a reasonable rate restriction. This queueing model has attracted

a lot of attention in recent years as it appears to be a convenient and useful way of modeling packet
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injections into a communication network. Moreover, this model has inspired algorithm developers to

design robust algorithms that provide a performance guarantee, while allowing for worst-case arrival

patterns “locally.” Thus, the adversarial input model provides a valuable, complementary point of

view to that of the traditional queueing network model in which arrivals are modeled by stochastic

processes.

Problem description. The communication network is modeled by a directed graph G = (V,E).

Nodes represent processors and arcs (or edges) represent links between processors. Packets are

injected over time by an adversary subject to a rate restriction, which we shall describe in a moment.

Two natural models arise, depending on whether or not the adversary specifies a route for the

packets she injects:

(a) In the non-adaptive (or circuit-switched) model, the adversary specifies a path P for each

packet p; the algorithm is required to route each packet along its associated path.

(b) In the adaptive (or packet-switched) model, the adversary specifies only the origin and desti-

nation for each packet, but does not specify a path. In this case, the algorithm is free to route

a packet along any path from its origin to its destination.

To get a non-trivial problem, it is necessary to restrict the power of the adversary. A reasonable,

even natural, restriction on the adversary for the two models is specified in terms of two parameters

r and w. For the non-adaptive model, the packets injected by the adversary (and their associated

paths) should be such that in any time window of size w, the number of packets injected during

this window requiring a particular arc must be at most brwc. The non-adaptive approach, however,

does not allow packets to dynamically adapt to congestions and deadlocks along their routes. This

limitation can be overcome by allowing the paths to be selected adaptively. For the adaptive model,

the analogous restriction is that the adversary must be able to associate paths to the packets injected

in any time window of size w such that the number of packets requiring a particular arc is at most

brwc. This condition can be most conveniently described by a certain integer multicommodity flow

problem having an optimal value at most brwc. An alternative model that uses a burstiness parameter

b and a rate parameter r has also been used in the literature to restrict the adversary, see [3] for

example. This model is also in terms of the “load” on any arc. Specifically, for each T ≥ 1, the load

on any arc due to packets injected in any window of length T must be at most rT + b. If r < 1,

which is the case of interest in this paper, Rosén [14] shows that these two models are equivalent.

(Rosén’s paper contains other nice observations relating these two input models.)
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In this paper we focus on the adaptive model, although most of our results can be extended,

with minor modifications, to the non-adaptive model as well. In fact, we focus on the adaptive

model in which the adversary is allowed to split packets and route them using multiple paths; the

algorithm, in contrast, is required to route each packet along a single path. This new restriction

gives the adversary more freedom, and so makes her more powerful: essentially the new restriction

translates to a certain fractional multicommodity flow problem having an optimal value at most rw.

For this model, we consider the problem of designing effective routing/scheduling algorithms. Our

main result is a simple algorithm for this problem that is stable (bounded number of packets in the

system), with a bound on the number of packets in the system that is O(w/(1 − r)) (the constant

depends on m, n, where m and n are the number of arcs and nodes in the network, but we have

explicitly specified the dependence on the parameters of the adversary). A noteworthy feature of

this result is that it matches the traditional queueing-theoretic number-in-system bound, which is

typically O(1/(1−r)). Our main result implies a worst-case delay bound on packets that is relatively

small as well.

Related work. Adversarial networks have received a lot of attention in recent years. They were

first introduced by Borodin et al. [9], and further elaborated on by Andrews et al. [3, 4]. Later,

these were seen to be non-trivial generalizations of earlier models of Cruz [10]. The original papers

of Borodin et al. [9] and Andrews et al. [3, 4] contain a wealth of interesting results, but mostly on

the non-adaptive case.

The models most closely related to our work were first introduced by Aiello et al. [2]. In their

work, they provided an elegant extension of the restriction on the adversary, which was previously

considered only for the non-adaptive case. Furthermore, they constructed a distributed schedul-

ing/routing protocol such that the number of packets in the system was O(n5/2m5/2w/(1 − r)).

Their results were derived for the integer (w, r) adversary. Recall that in this model, the adversary

must be able to associate paths with each packet injected in any window of size w so that the load

on any arc is at most brwc. Motivated by the observation that this restriction is not efficiently

checkable, Gamarnik [12] introduced the fractional (w, r) adversary. In this setting, the adversary

is allowed to associate fractional paths (“flows”) to the packets to satisfy the load condition. An

interesting question, then, is to quantify the performance loss due to the increased power given to the

adversary. Gamarnik [12] constructed an algorithm such that the number of packets in the network

is O(w2/(1 − r)2); furthermore, he observed that a naive adaptation of the methods of Aiello et

all. [2] can at best lead to a bound of O(1/(1− r)3).
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In more recent work, Andrews et al. [5] derive distributed source routing and scheduling algorithms

with polynomial delay bounds using a discrete-review like strategy; these delays bounds naturally

imply bounds on the number-in-system. The algorithm described in this paper can also be viewed

as a source routing/scheduling algorithm, as the route for a packet is determined at its source; the

queue-length bounds we prove are stronger than those implicit in [5], but our algorithm is centralized.

For the special case in which there is only a single destination, stronger bounds are known [6].

Results. For the dynamic adaptive packet routing problem in an adversarial queueing network

with a fractional (w, r) adversary, we design an efficient scheduling/routing algorithm that keeps the

queue-lengths bounded. Specifically, we show that the number of packets in the system at any time

t, Q(t), satisfies

Q(t) ≤ m(m + 2n + mn3 + w)
1− r

, (1)

where m and n are the number of arcs and nodes in the network, and r < 1. This matches the known

bound (as a function of w and r) for the same problem with an integer (w, r) adversary. Our results

immediately imply small delay bounds for the packets as well.

Our bounds obviously apply in the special case when rates are associated with origin-destination

pairs. Specifically, suppose packets for a particular origin-destination pair i, j arrive at rate rij . As

long as an associated fractional multicommodity flow problem has optimal value at most 1, we can

find a scheduling policy with the number of packets bounded by the expression (1), where r can be

explicitly determined based on the rij and the network topology alone.

Our main result is achieved by a combination of techniques: We use a discrete-review policy, which

reduces the dynamic scheduling/routing problem to a sequence of static, adaptive packet routing

problems; using a rounding theorem due to Karp et al. [13], we reduce each of these problems to a

non-adaptive packet scheduling problem; these packet scheduling problems can be solved effectively

using algorithms due to Bertsimas and Sethuraman [8] or Sevastyanov [15, 16, 17]. This approach

also highlights an intimate connection between two seemingly unrelated problems: the problem of

controlling a dynamic queueing network effectively, and the problem of finding a “good” schedule for

a static job-shop scheduling problem.

The rest of this paper is structured as follows: in § 2 we describe the model in more detail;

in § 3, we describe the scheduling/routing algorithm, and specify the details in each of the steps

informally outlined earlier and in §2. We end the paper by mentioning related open problems for

future research.
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2 Model

The model we consider is the “adversarial queueing network” model advocated by Borodin et al. [9],

as modified by Aiello et al. [2]; we refer the reader to these original papers for a thorough motivation

of the adversarial model. The basic model used throughout this paper can be described as follows:

The communication network is modeled by a directed graph G = (V,E), where V and E denote the

node set and directed arc set in the graph G; this network is populated by packets, which originate in

some node of the network, and need to reach some other node of the network. Thus, nodes represent

processors (or switches), and arcs represent links between processors (switches). Associated with

each arc (u, v) is a buffer residing at node u; this buffer stores the packets that need to traverse the

arc (u, v). (Buffers are assumed to be large enough so that packets are never dropped because of

a full buffer.) We assume a synchronous network, in which time is divided into steps, conveniently

numbered by the non-negative integers, and indexed by t. Packets require unit time to traverse an

arc; thus, each arc can process at most one packet in a time step, and each packet can traverse at

most one arc in a time step.

Packets are injected into the network by an adversary. In the basic model proposed in [9], the

adversary specifies the path for each packet she injects into the network. The adversary is free to

inject packets and specify the paths for these packets as long as she obeys a rate constraint, r, over

any time interval. Specifically, if AP [t1, t2) denote the number of packets injected into the network

during the time interval [t1, t2) that require path P , then,∑
P :e∈P

AP [t1, t2) ≤ dr(t2 − t1)e,

for any edge e in G.

This model was generalized to allow (bounded) burstiness by Andrews et al. [3, 4], who required

the adversary to obey a rate constraint over a time window w. This is captured by requiring∑
P :e∈P

AP [t, t + w) ≤ drwe.

This model was extended in an elegant way by Aiello et al. [2] to the case in which the adversary

specifies only the origin node and destination node for the packets she injects, but does not specify the

path. Let Aij [t1, t2) be the set of packets injected into the network during the time interval [t1, t2),

with origin i and destination j, and let

A[t1, t2) =
⋃

i,j∈V

Aij [t1, t2).

In this setting, the restriction on the adversary translates to the following definition:

5



Definition. An adversary is an integer (w, r) adversary for some r (0 < r < 1) and some integer

w ≥ 1 if and only if for any t, the adversary can associate a path to each packet in A[t, t + w) such

that every arc belongs to at most brwc paths.

Remark. An important point to note is that the adversary is not constrained to have a single path

in her mind for the packets she injects. A packet p injected at time t will belong to w different

time windows; the adversary is allowed to associate different paths to packet p at the time instants

t− w + 1, t− w + 2, . . . , t− 1, t.

It is easy to see that an adversary is an integer (w, r) adversary if and only if

C∗(t) ≤ brwc,

where C∗(t) is defined as the optimal value of the integer multicommodity flow problem

(IMF) min C(t)

subject to: ∑
l:(i,l)∈E

xil
ij = Aij [t, t + w), ∀i, j ∈ V,

∑
k:(k,j)∈E

xkj
ij = Aij [t, t + w), ∀i, j ∈ V,

∑
l:(k,l)∈E

xkl
ij =

∑
l:(l,k)∈E

xlk
ij ∀i, j ∈ V, k 6= i, j,

Ckl =
∑

i,j∈V

xkl
ij , ∀(k, l) ∈ E,

C(t) ≥ Ckl, ∀(k, l) ∈ E,

xkl
ij ≥ 0, integer.

Note that xkl
ij represents the number of packets from the origin i to destination j that use the arc (k, l).

The first three constraints are flow balance constraints on the packets with origin i and destination

j.

Since the integer (w, r) adversary is defined in terms of an integer multicommodity flow problem, it

is difficult to check whether or not an input stream generated by an adversary respects the restrictions

imposed. Motivated by this consideration, Gamarnik [12] considers a fractional (w, r) adversary,

defined below.
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Definition. An adversary is a fractional (w, r) adversary for some r (0 < r < 1) and some integer

w ≥ 1 if and only if for any t, the adversary can fractionally schedule all the packets in A[t, t+w) such

that the load on each arc is at most rw. Equivalently, an adversary is a fractional (w, r) adversary

if and only if the linear programming relaxation associated with the integer multicommodity flow

problem (IMF) has optimal value at most rw.

The fractional (w, r) adversary is less constrained, and hence can generate input streams that

are inadmissible for the integer (w, r) adversary. For the integer (w, r) adversary, Aiello et al. [2]

constructed a routing and scheduling policy for which the total number of packets in the system is

O

(
n5/2m5/2w

1− r

)
.

In fact, their algorithm is distributed and uses only local information. Gamarnik [12] designed a

centralized algorithm for the fractional (w, r) adversary for which the total number of packets in the

system is

O

(
n4m3 + w2m

(1− r)2

)
.

Moreover, he observed that a naive application of the algorithm of Aiello et al. results in an algorithm

for which the total number of packets in the system grows as O(1/(1 − r)3). Gamarnik [12] left

open the problem of designing an algorithm for which the total number of packets in the system is

O(1/(1−r)), matching the bound of Aiello et al. [2] for the integer (w, r) adversary. Our main result

is an algorithm with this performance bound. We achieve this using a combination of techniques

that have proved to be useful in a host of other problems: these include a scheduling algorithm for

large job shop scheduling problems due to Bertsimas and Sethuraman [8], and the rounding theorem

due to Karp et al. [13]. We emphasize that, unlike the adversary, the scheduling algorithm is not

allowed to split a packet, but is required to route each packet along a single path.

To avoid ambiguity, we specify explicitly the sequence of events occurring at any time step: first,

packets traverse arcs; next, the adversary injects new packets into the nodes; and finally, packets

that reach their destination are absorbed by the corresponding node.

3 The routing and scheduling algorithm

A high-level overview of the algorithm is as follows:

(a) The dynamic routing and scheduling problem in adversarial networks can be reduced to a

sequence of static, adaptive packet routing problems;
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(b) Each of these adaptive packet routing problems can be solved as a (non-adaptive) packet

scheduling problem with a small number of paths;

(c) Each of these packet scheduling problems can be solved effectively; and

(d) the performance loss in each of these steps is relatively negligible.

The rest of this section is devoted to showing the details involved in each of these steps.

Reduction to static, adaptive, packet routing. The dynamic routing and scheduling problems

in adversarial queueing networks can be reduced to a sequence of adaptive packet routing problems.

The reduction is achieved by using a class of discrete-review policies. In any such policy, the system

is reviewed at discrete points in time, say, at

T0 ≡ 0+, T1, T2, . . . , Ti, Ti+1, . . . .

Policies differ in the way in which the review epochs are picked; we shall not expand on this point

any further because our algorithm picks these review epochs in a natural way, as described below.

Suppose Ti is a review epoch chosen by our algorithm. At Ti, we solve an adaptive packet routing

problem, with the inputs given by {Akl[Ti−1, Ti)}. In other words, the packets considered by the

scheduling/routing algorithm at time Ti are precisely those that were injected into the network at

or after the previous review epoch; these are routed to their respective destinations using a “good”

adaptive packet routing algorithm. The epoch at which all of these packets are routed to their

destinations defines the next review epoch Ti+1. Note that packets that arrived at or after Ti are

ignored by the adaptive packet routing algorithm until Ti+1. Clearly, the review epochs chosen by are

a function of the adaptive packet routing algorithm used; and the effectiveness of such a policy will

critically depend on how good the adaptive packet routing algorithm actually is. We shall analyze

this next.

At the epoch Ti, we shall process all the packets that arrived during the interval [Ti−1, Ti). Let Wi

be the optimal value of the associated fractional multicommodity flow problem. It is clear that every

scheduling/routing algorithm will require at least Wi units of time to process this input; specifically,

in the absence of arrivals at or after Ti, no scheduling/routing algorithm can process all of the input

by time t < Ti−1 + Wi.

Suppose our adaptive packet routing algorithm is able to route all of these packets to their

destinations in at most Wi + f steps, for some (constant) f that depends only m and n, but not on
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the input to the packet routing problem. (It is important that f be independent of Wi.) Thus, f

is a measure of the inefficiency of the adaptive packet routing algorithm, and bears directly on the

amount of “work” seen by the algorithm at the next review epoch. Given this, how large can Wi+1

be? Clearly, Wi+1 represents the maximum load on any arc due to arrivals in [Ti, Ti+1), which by

our assumption is contained in [Ti, Ti + Wi + f). Therefore,

Wi+1 ≤
⌈
(Ti+1 − Ti)

w

⌉
rw <

(
(Ti+1 − Ti)

w
+ 1

)
rw < r(Ti+1 − Ti) + w ≤ rWi + f + w, (2)

since r < 1.

A recursive application of Eq. (2) implies

lim sup
i→∞

Wi ≤ f + w

1− r
.

Thus, letting Q(t) denote the total number of packets in the system at time t, we have

Q(t) ≤ m lim sup
i→∞

Wi ≤ m(f + w)
1− r

. (3)

Thus, the dynamic routing/scheduling problem in an adversarial queueing network can be solved

as a sequence of static, adaptive packet routing problems, as long as each of these problems is solved

relatively well; in particular, the queue-length bound of Eq. (3) will hold as long as the makespan of

the static, adaptive packet routing problem is within an additive constant of the associated congestion

lower-bound.

Identifying a small set of “good” paths. Our goal now is to consider a static, adaptive packet

routing algorithm. Let t be a review epoch, and let Wt be the optimal value of the (fractional)

multicommodity flow problem defined by the packets present in the system at time t. Specifically, if

Aij is the number of packets in the system with origin i and destination j at time t, then, Wt is the

smallest value for which the set of linear inequalities

∑
l:(i,l)∈E

xil
ij = Aij , ∀i, j ∈ V,

∑
k:(k,j)∈E

xkj
ij = Aij , ∀i, j ∈ V,

∑
l:(k,l)∈E

xkl
ij =

∑
l:(l,k)∈E

xlk
ij ∀i, j ∈ V, k 6= i, j,

Ckl =
∑

i,j∈V

xkl
ij , ∀(k, l) ∈ E,
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Wt ≥ Ckl, ∀(k, l) ∈ E,

xkl
ij ≥ 0.

is feasible. Let (x) be such a feasible solution. Note that without loss of generality, we can assume

that Aij > 0. Given x, we can also assume that there does not exist any cycle with positive flow;

hence we can decompose the solution (arc-flows) into flows along paths Pk, k = 1, . . . ,K (where

K ≤ m), with the (fractional) flow value on path Pk being yPk
, and such that

∑
k:(i,j)∈E(Pk)

yPk
=

∑
u,v∈V

xi,j
u,v ≤ Wt,

and ∑
k:o(Pk)=i,d(Pk)=j

yPk
= Aij .

In the expressions above, o(Pk) and d(Pk) denote the origin and destination of path Pk. We refer

the reader to Ahuja et al. [1] for a discussion on flow decomposition.

Our task now is to select precisely Aij paths from i to j, without affecting the congestion along

any arc adversely; in other words, we need to round the fractional solution (x) to an integral 0-1

solution in a suitable manner. We do this by using the following rounding algorithm of [13]:

Theorem 1 ([13]) Let A be a real valued r × s matrix, and y be a real-valued s-vector. Let b be a

real valued vector such that Ay = b and t be a positive real number such that, in every column of

A, (i) the sum of all the positive entries is at most t and (ii) the sum of all the negative entries

is at least −t. Then we can compute an integral vector y such that for every i, either yi = byic or

yi = dyie and Ay = b where bi − bi < t for all i. Furthermore, if y contains d non-zero components,

the integral approximation can be obtained in time O(r3 lg(1 + s/r) + r3 + d2r + sr).

To use Theorem 1, we first transform our linear system above to the following equivalent form:

∑
k:(i,j)∈E(Pk)

yPk
≤ Wt ∀ (i, j) ∈ E(G)

∑
k:o(Pk)=i,d(Pk)=j

(−m)yPk
= −mAij ∀ i, j ∈ V.

The set of variables above is {yPk
: k = 1, . . . ,K}. Furthermore, in this linear system, the positive

column sum is bounded by the maximum length of the paths, which in turn is bounded by m, the

number of arcs in the graph. The negative column sum is also bounded by −m. Thus, the parameter

10



t for this linear system, in the notation of Theorem 1, can be taken to be m. Hence by Theorem 1,

we can obtain in polynomial time an integral solution y satisfying

∑
k:(i,j)∈E(Pk)

yPk
≤ Wt + m ∀ (i, j) ∈ E(G)

∑
k:o(Pk)=i,d(Pk)=j

(−m)yPk
< −mAij + m ∀ i, j ∈ V.

For each i, j, we have ∑
k:o(Pk)=i,d(Pk)=j

yPk
> Aij − 1.

Note the crucial role of the strict inequality. Thus, we have selected at least Aij paths from i to j;

furthermore, the congestion along every arc is bounded by Wt + m.

To summarize what we have achieved: starting from an arc flow solution, we used flow decom-

position and an application of the rounding theorem to derive an integer solution such that the

load on any arc is increased by at most m. Each “commodity” (i.e., origin-destination pair) is now

routed along at most m paths. We can now reformulate this adaptive packet routing problem as a

(non-adaptive) packet scheduling problem as follows: think of each path from i to j as a type, and

assume that yk packets have to be sent from i to j along path Pk. (To avoid cumbersome notation,

we have dropped the dependence of y on the origin-destination pair.) In essence, we have used the

rounding algorithm to compute a small set of good paths for the adaptive packet routing problem;

we now pretend that the problem to be solved is really a packet scheduling problem in which an

explicit path is associated with each packet; the number of packets to be routed along a given path

is determined by applying the rounding algorithm on an optimal (fractional) multicommodity flow

solution.

Solving the packet scheduling problem. The dynamic routing/scheduling problem on an ad-

versarial network is now reduced to a simpler, static, packet scheduling problem. For convenience,

we describe the input to this packet scheduling problem slightly differently. The packet scheduling

problem consists of K types of packets; packets of type k require a path Pk through the network, are

initially available at o(Pk) ∈ V , and need to reach d(Pk) ∈ V ; there are nk packets of type k. The

objective is to find a schedule for all of these packets that minimizes makespan. Each packet requires

unit time to traverse an arc; each arc can process one packet per unit time. Our goal now is to find

a schedule for this packet scheduling problem whose makespan is within an additive constant of the

associated congestion lower bound. Note that this additive constant could depend on m, n, K, but
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cannot depend on n1, n2, . . . , nk themselves; this is because in the packet scheduling instances that

will arise in the solution of the adversarial network, m, n, and K will be independent of r and w, the

parameters of the adversary, whereas the nk will depend on r and w. We briefly outline two solution

methods to this packet scheduling problem, and specify the corresponding bounds.

Fluid synchronization algorithm. The packet scheduling problem outlined here is a special

case of the job shop scheduling problem with the makespan objective considered by Bertsimas and

Sethuraman [8]. In that work, they consider a fluid relaxation of the job shop scheduling problem,

which can be viewed as a continuous analog of the discrete job shop scheduling problem. Using an

optimal solution to the fluid relaxation, they find nominal start times for each packet at each of the

arcs it has to visit; these nominal start times are carefully constructed in a recursive manner, based

on both the optimal fluid solution and the partial discrete schedule.

To make this more precise, suppose type k packets need to visit arcs ak,1, ak,2, . . . , ak,ik in that

order. Suppose W is the maximum load on any arc. The scheduling algorithm discussed in [8] first

determines the fluid start and completion times for each packet at each stage, defined as follows:

Fluid Start time (FSk,j(n)): This is the start time of the nth type k packet at (its) stage j

(arc ak,j) in the fluid relaxation given by

FSk,j(1) = 0, (4)

FSk,j(n) = FSk,j(n− 1) +
W

nk
, n > 1. (5)

Fluid Completion time (FCk,j(n)): This is the completion time of the nth type k packet

at (its) stage j in the fluid relaxation, and is given by

FCk,j(n) = FSk,j(n) +
W

nk
. (6)

Notice that the fluid relaxation processes packets continuously; each type k packet is processed

by all its stages simultaneously at a uniform rate nk/W , so that all of the nk packets of type k

will be scheduled by time W . In trying to “round” this fluid schedule to an implementable discrete

schedule, we need to overcome two difficulties: first, the fluid relaxation treats packets as continuous

entities, with the effect that the same packet can be “scheduled” by multiple arcs simultaneously; and

second, the fluid relaxation allows arcs to split their effort across multiple packet types, as long as

the overall effort allocated by each arc is at most 1 per unit time. In other words, the fluid relaxation
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views both the packets and the processing resources as being infinitely divisible. The resulting lower

bound is naturally just the congestion lower bound; the dilation bound does not arise because of the

continuous nature of the jobs.

The fluid start time of a given packet at a given stage may be viewed as the ideal start time of that

packet at that stage, but clearly, this is an unrealistic ideal. Motivated by the question of defining a

more realistic target start time for each packet at each stage, Bertsimas and Sethuraman [8] defined

nominal start times; these are defined in terms of the fluid start and completion times as well as the

partial discrete schedule. The precise definitions are as follows.

Discrete Start time (DSk,j(n)): This is the start time of the nth type k packet at its stage

j (arc ak,j) in the discrete schedule. (This is what we would like to determine.)

Nominal Start time (NSk,j(n)): The nominal start time of the nth type k packet at its

stage j (arc ak,j) is defined as follows.

NSk,1(n) = FSk,1(n),

NSk,i(1) = DSk,i−1(1) + 1, i > 1,

NSk,i(n) = max
{

NSk,i(n− 1) +
W

nk
, DSk,i−1(n) + 1

}
, n, i > 1.

Bertsimas and Sethuraman [8] proposed a simple scheduling rule (called “fluid synchronization

algorithm”) based on these nominal start times: whenever a node has to make a processing decision,

it schedules an available packet with the earliest nominal start time. Note that whenever a packet

is chosen to be scheduled at a certain node, its nominal processing time at its next stage can be

calculated; so the nominal start times for every packet queued at a node will be known.

The main result of [8] adapted to this special case can be stated as follows:

Theorem 2 Consider a (non-adaptive) packet scheduling problem with K job types and m arcs.

Given initially nk jobs of type k = 1, 2, . . . ,K, suppose the maximum load on any arc is W , and let

W ∗ be the optimal makespan. Then, the fluid synchronization algorithm produces a schedule with

makespan time WD such that

W ≤ W ∗ ≤ WD ≤ W + n(K + 2). (7)
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Sevastyanov’s algorithm. In the mid-seventies, interesting approximation algorithms were de-

rived for several shop scheduling problems. These algorithms were based on beautiful, geometric

arguments, and were discovered independently by Belov and Stolin [7], Sevastyanov [15], and Fi-

ala [11]. These methods constructed schedules for job shop scheduling problems with an additive

error term that depended only on the number of machines, and the maximum processing time of

a job, but not on the number of jobs. Since it is not central to this paper (and in the interest of

space), we do not discuss these algorithms in detail; we refer the interested reader to the original

papers cited earlier as well as the excellent survey of Sevastyanov [18]. The strongest of these results

is due to Sevastyanov [16, 17], which provides a schedule of length with an additive error of at most

(n− 1)(mn2 + 2n− 3).

Remark. Note that depending on K, this may or may not be better than the schedule provided

by the fluid synchronization algorithm. For the adaptive case, it is seen that the guarantee provided

by the fluid synchronization algorithm is slightly better than the one provided by Sevastyanov’s

algorithm. Moreover, the fluid-based algorithm is not computationally intensive at all, and is very

simple to implement. On the other hand, for the non-adaptive case, the adversary may insist that

the algorithm route packets along exponentially many paths; in this case, the guarantee provided by

the fluid-based method is unattractive, and Sevastyanov’s method is clearly better.

The main result. Our main result is obtained by putting all of these steps together. Fix a review

epoch i, with Wi being the work seen by the scheduler at this epoch. Then, step 2 results in an

instance of the non-adaptive packet scheduling problem with maximum congestion at most Wi + m;

using the fluid synchronization algorithm for this packet scheduling problem results in a schedule

with length at most Wi + m + n(K + 2). Noting that there are at most n2 commodities, and that

each of which may use at most m paths, we conclude that the schedule computed at epoch i will

have length at most Wi +m+n3m+2n. Thus, the inefficiency parameter f is at most m+2n+mn3;

using this in Eq. (3), we have

Q(t) ≤ m(f + w)
1− r

≤ m(m + 2n + mn3 + w)
1− r

, (8)

where Q(t) represents the number of packets in the system at time t. For Sevastyanov’s algorithm a

similar guarantee can be shown to hold. We omit the details.

Our results can now be formally stated as the following theorem.
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Theorem 3 Consider an adversarial queueing network under a fractional (w, r) adversary. If r < 1,

then the discrete-review scheduling policy constructed keeps the number of packets in the system

bounded at all times. In particular, the total number of packets in the system at time t, Q(t),

satisfies

Q(t) ≤ m(m + 2n + mn3 + w)
1− r

.

An immediate corollary is that for adversarial queueing networks in which the arrival rates for

packets with origin i and destination j is rij , an effective scheduling/routing algorithm, for which

the number in system is O(w/(1 − r)), can be constructed, where r can be explicitly computed

based on the rij using a fractional multicommodity flow problem. Gamarnik [12] considered this

model and showed that stable policies exist for this system if and only if the associated fractional

multicommodity flow problem has value at most 1. (The r in the expression for the number-in-system

bound is exactly the optimal solution to this multicommodity flow problem.)

Since the number in system is relatively small, one can expect that the scheduling algorithm

could guarantee small delays for all the packets as well. This, of course, turns out to be true. By

construction, every packet stays in the system for at most two review periods, and our analysis

implies an explicit bound on the length of these delay periods. Note that these techniques lead to

excellent performance guarantees for the non-adaptive version of the problem as well.

4 Conclusions and future work

Our main contribution in this paper is the design of an effective algorithm for routing and sequencing

packets in adversarial queueing networks that achieves a small worst-case delay. Several outstanding

question remain, two of which deserve to be mentioned: First, the “critical” case r = 1 is of interest;

this seems especially difficult to understand, and may in fact exhibit very different behavior depending

on whether the adversary is fractional (w, r) or integer (w, r) restricted. Second, the algorithm we

propose is (semi) centralized, although the queue-length information is used only at the discrete

review epochs. In contrast, Aiello et al. [2] proposed a distributed algorithm for the integer (w, r)

adversary. It will be interesting to design a distributed algorithm for the problem considered here.
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