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1 Introduction

Motivation. Scheduling and packet-routing have emerged as important prob-
lems in modern computer and communication systems. In this paper, we consider
such problems in the setting of an arbitrary synchronous, adversarial network.
In an adversarial network, the nature of the incoming traffic is decided by an
adversary, operating under a reasonable rate restriction. Such networks have at-
tracted attention in recent years as they appear to be a convenient and useful
way to model packet injections into a communication network; in addition, these
networks inspire algorithm developers to design robust algorithms that provide
a performance guarantee regardless of the nature of the incoming traffic. Thus,
the adversarial input model provides a valuable, complementary point of view
to that of the more traditional stochastic model.

Problem description. The communication network is modeled by a directed
graph G = (V, E) in which the nodes represent processors and the arcs (or
edges) represent links between processors. Two natural models arise, depending
on whether the adversary specifies a route for the packets she injects: In the non-
adaptive (or circuit-switched) model, the algorithm is required to route a packet
along the path specified by the adversary; in the adaptive (or packet-switched)
model, the adversary specifies only the origin and destination for each packet,
but does not specify a path. In this case, the algorithm is free to route a packet
along any path from its origin to its destination.

Packets are injected by an adversary subject to a natural rate restriction
specified in terms of two parameters r and w. For the non-adaptive model, the
packets injected by the adversary (and their associated paths) should be such
that in any time window of size w, the number of packets injected during this
window requiring any arc must be at most �rw�. For the adaptive model, the
analogous restriction is that the adversary must be able to associate paths to the
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packets injected in any time window of size w such that the number of packets
requiring any arc is at most �rw�. This condition can be conveniently captured
by an associated integer multicommodity flow problem having an optimal value
at most �rw�.

In this paper we focus on the adaptive model, although most of our results
can be extended to the non-adaptive model as well, with virtually no changes.
In fact, we focus on the adaptive model in which the adversary is allowed to
split packets and route them using multiple paths. Essentially, the restriction
on the adversary translates to an associated fractional multicommodity flow
problem having an optimal value at most rw. For this model, we consider the
problem of designing effective routing/scheduling algorithms. Our main result is
a simple algorithm for this problem that is stable (bounded number of packets
in the system), with a bound on the number of packets in the system that is
O(w/(1− r)) for any fixed network G. This implies a worst-case delay bound on
packets that is relatively small as well. A noteworthy feature of this result is that
this matches the traditional queueing-theoretic number-in-system bound, which
is usually O(1/(1 − r)). In the rest of this paper, we assume a fixed network G,
and so we often omit the dependence of the bounds on the network parameters.

Related work. Adversarial networks have received a lot of attention in recent
years. They were first introduced by Borodin et al. [9], and further elaborated by
Andrews et al. [3,4]. Later, these were seen to be non-trivial generalizations of
earlier models of Cruz [10]. The original papers of Borodin et al. [9] and Andrews
et al. [3,4] contain a wealth of interesting results, but mostly on the non-adaptive
case.

The models most closely related to our work were first introduced by Aiello
et al. [2]. In their work, they provided an elegant extension of the restriction on
the adversary, which was previously considered only for the non-adaptive case.
Furthermore, they constructed a distributed protocol with the number of pack-
ets in the system being O(w/(1 − r)). Their results were derived for the integer
(w, r) adversary. Motivated by the observation that this restriction is not effi-
ciently checkable, Gamarnik [12] introduced the fractional (w, r) adversary: here,
the adversary is allowed to associate fractional paths (“flows”) to the packets to
satisfy the load condition. An interesting question, then, is to quantify the per-
formance loss due to the increased power given to the adversary. Gamarnik [12]
constructed an algorithm such that the number in system is O(w2/(1 − r)2);
furthermore, he observed that a naive adaptation of the methods of Aiello et
all. [2] can at best lead to a bound of O(1/(1 − r)3).

In more recent work, Andrews et al. [5] derive distributed source routing and
scheduling algorithms with polynomial delay bounds using a discrete-review like
strategy; these delays bounds obviously translate to bounds on the number-in-
system. The algorithm described in this paper can also be viewed as a source
routing/scheduling algorithm, as the route for a packet is determined at its
source; the queue-length bounds we prove are stronger than those implicit in [5],
but our algorithm is centralized. For the special case in which there is only a
single destination, stronger bounds are known [6].
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Results. For the dynamic adaptive packet routing problem in an adversarial
queuing network with a fractional (w, r) adversary, we design an efficient al-
gorithm that keeps the queue-lengths bounded. Specifically, we show that the
number of packets in the system at any time t, Q(t), satisfies

Q(t) ≤ m(m + 2n + m2n2 + w)
1 − r

, (1)

where m and n are the number of arcs and nodes in the network. This matches
the known bound (as a function of w and r) for the same problem with an
integer (w, r) adversary. Our results immediately imply small delay bounds for
the packets as well.

Our bounds obviously apply in the special case when rates are associated
with origin-destination pairs. Specifically, suppose packets for a particular origin-
destination pair i, j arrive at rate rij . As long as an associated fractional multi-
commodity flow problem has optimal value at most 1, we can find a scheduling
policy with the number of packets bounded by the expression (1), where r can
be explicitly determined based on the rij and the network topology alone.

Our results are achieved by a combination of techniques: we use a discrete
review policy, which reduces the dynamic scheduling and routing problem to a
sequence of static, adaptive packet routing problems; using a rounding theorem
due to Karp et al. [13], we reduce each of these problems to a non-adaptive packet
scheduling problem; these packet scheduling problems can be solved effectively
using algorithms due to Bertsimas and Sethuraman [8] or Sevastyanov [14,15,16].

The rest of this paper is structured as follows: in Section 2 we describe the
model in more detail; Section 3 describes the scheduling/routing algorithm, and
formally specifies the details in each of the steps informally outlined above.

2 Model

The model we consider is the “adversarial queueing network” model advocated
by Borodin et al. [9], as modified by Aiello et al. [2]; we refer the reader to these
original papers for a thorough motivation of the adversarial model. The basic
model used throughout this paper can be described as follows: The communi-
cation network is modeled by a directed graph G = (V, E), with |V | = n and
|E| = m; this network is populated by packets, which originate in some node
of the network, and need to reach some other node of the network. Associated
with each arc (u, v) is an infinite buffer that stores the packets requiring the arc
(u, v). We assume a synchronous network, in which time is divided into steps,
conveniently numbered by the non-negative integers, and indexed by t. Packets
require unit time to traverse an arc, and each arc can process at most one packet
in a time step.

Packets are injected into the network by an adversary operating under a
restriction specified in terms of two parameters r and w. Restrictions of this sort
were first considered in [9,3,4] for the non-adaptive version, and were extended in
an elegant way by Aiello et al. [2] to the adaptive version as follows: Let Aij [t1, t2)
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be the set of packets injected into the network during the time interval [t1, t2],
with origin i and destination j, and let

A[t1, t2) =
⋃

i,j∈V

Aij [t1, t2).

An adversary is an integer (w, r) adversary for some r (0 < r < 1) and some
integer w ≥ 1 if and only if for any t, the adversary can associate a path to each
packet in A[t, t + w) such that every arc belongs to at most �rw� paths. (Note
that the adversary is not constrained to have a single path in her mind for the
packets she injects. A packet p injected at time t will belong to w different time
windows; the adversary is allowed to associate different paths to packet p at the
time instants t − w + 1, t − w + 2, . . . , t − 1, t.)

Consider the following integer multicommodity flow problem

(IMF) Min C(t)

subject to:∑

l:(i,l)∈E

xil
ij = Aij [t, t + w), ∀i, j ∈ V,

∑

k:(k,j)∈E

xkj
ij = Aij [t, t + w), ∀i, j ∈ V,

∑

l:(k,l)∈E

xkl
ij =

∑

l:(l,k)∈E

xlk
ij ∀i, j ∈ V, k �= i, j,

Ckl =
∑

i,j∈V

xkl
ij , ∀(k, l) ∈ E,

C(t) ≥ Ckl, ∀(k, l) ∈ E,

xkl
ij ≥ 0, integer,

where xkl
ij represents the number of packets that travel from node i to node j

that use the arc (k, l). It is easy to see that an adversary is an integer (w, r)
if and only if the optimal value, C∗(t), of (IMF ) is at least �rw�. Since the
integer (w, r) adversary is defined in terms of an integer multicommodity flow
problem, it is NP -complete to check whether or not an input stream generated
by an adversary respects the restrictions imposed. To overcome this limitation,
Gamarnik [12] considered a model in which the adversary is allowed to split
packets. An adversary is a fractional (w, r) adversary for some r (0 < r < 1)
and some integer w ≥ 1 if and only if for any t, the adversary can fractionally
schedule (or associate flows with) all the packets in A[t, t + w) such that the
load on each arc is at most rw. Equivalently, an adversary is a fractional (w, r)
adversary if and only if the linear programming relaxation of (IMF) has optimal
value at most rw. The fractional (w, r) adversary is less constrained, and hence
can generate input streams that are inadmissible for the integer (w, r) adversary.
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For the integer (w, r) adversary, Aiello et al. [2] constructed a routing and
scheduling policy for which the total number of packets in the system is

O

(
n5/2m5/2w

1 − r

)
.

In fact, their algorithm is distributed and uses only local information. Gamar-
nik [12] designed a centralized algorithm for the fractional (w, r) adversary for
which the total number of packets in the system is

O

(
n4m3 + w2m

(1 − r)2

)
.

Gamarnik [12] left open the problem of designing an algorithm for which the to-
tal number of packets in the system is O(w/(1−r)), matching the bound of Aiello
et al. [2] for the integer (w, r) adversary. Our main result is an algorithm with
this performance bound. We achieve this using a combination of techniques that
have proved to be useful in a host of other problems: these include a scheduling
algorithm for large job shop scheduling problems due to Bertsimas and Sethu-
raman [8], and the rounding theorem due to Karp et al. [13].

To avoid ambiguity, we specify explicitly the sequence of events occurring at
any time step: first, packets traverse arcs; next, the adversary injects new packets
into the nodes; and finally, packets that reach their destination are absorbed by
the corresponding node.

3 The Routing and Scheduling Algorithm

An overview of the algorithm is as follows:

(a) The dynamic routing and scheduling problem in adversarial networks can
be (approximately) solved as a sequence of static, adaptive packet routing
problems;

(b) Each of these adaptive packet routing problems can be (approximately)
solved as a (non-adaptive) packet scheduling problem with a small number
of paths;

(c) Each of these packet scheduling problems can be (approximately) solved;
and

(d) the performance loss in each of these steps is relatively negligible.

The rest of this section is devoted to showing the details involved in each of
these steps.

Reduction to static, adaptive, packet routing. The dynamic routing and
scheduling problems in adversarial queueing networks can be reduced to a se-
quence of adaptive packet routing problems by using discrete review policies. In
any such policy, the system is reviewed at discrete points in time, say, at

T0 ≡ 0+, T1, T2, . . . , Ti, Ti+1, . . . .
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Policies differ in the way in which the review epochs are picked; we shall not
expand on this point any further because our algorithm picks these review epochs
in a natural way, as described below.

Suppose Ti is a review epoch chosen by our algorithm. At Ti, we solve an
adaptive packet routing problem, with the inputs given by {Akl[Ti−1, Ti)}. In
other words, the packets considered by the algorithm at time Ti are precisely
those that were injected into the network at or after the previous review epoch;
these are routed to their respective destinations using a “good” adaptive packet
routing algorithm. The epoch at which all of these packets are routed to their
destinations defines the next review epoch Ti+1. Note that packets that arrived
at or after Ti are ignored by the adaptive packet routing algorithm until Ti+1.
Clearly, the review epochs chosen by are a function of the adaptive packet routing
algorithm used; and the effectiveness of such a policy will critically depend on
how good the adaptive packet routing algorithm actually is. We shall analyze
this next.

At the epoch Ti, we shall process all the packets that arrived during the
interval [Ti−1, Ti). Let Wi be the optimal value of the associated fractional mul-
ticommodity flow problem. It is clear that every algorithm will require at least
Wi units of time to process this input; specifically, in the absence of arrivals at
or after Ti, no algorithm can process all of the input by time t < Ti−1 + Wi.

Suppose our adaptive packet routing algorithm is able to route all of these
packets to their destinations in at most Wi + f steps, for some (constant) f that
depends only m and n, but not on the input to the packet routing problem. (It is
important that f be independent of Wi.) Thus, f is a measure of the inefficiency
of the adaptive packet routing algorithm, and bears directly on the amount of
“work” seen by the algorithm at the next review epoch. Given this, how large
can Wi+1 be? Clearly, Wi+1 represents the maximum load on any arc due to
arrivals in [Ti, Ti+1), which by our assumption is contained in [Ti, Ti + Wi + f).
Therefore,

Wi+1 ≤
⌈

(Ti+1 − Ti)
w

⌉
rw <

(
(Ti+1 − Ti)

w
+ 1

)
rw < r(Ti+1 −Ti) + w, (2)

since r < 1.
A recursive application of Eq. (2) implies

lim sup
i→∞

Wi ≤ f + w

1 − r
.

Thus, letting Q(t) denote the total number of packets in the system at time
t, we have

Q(t) ≤ m lim sup
i→∞

Wi ≤ m(f + w)
1 − r

. (3)

Thus, the dynamic routing/scheduling problem in an adversarial queueing
network can be solved as a sequence of static, adaptive packet routing problems,
as long as each of these problems is solved relatively well; in particular, the
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queue-length bound of Eq. (3) will hold as long as the makespan of the static,
adaptive packet routing problem is within an additive constant of the associated
congestion lower-bound.

Identifying a small set of “good” paths. Our goal now is to consider a
static, adaptive packet routing algorithm. Let t be a review epoch, and let Aij

be the number of packets in the system with origin i and destination j at time
t. Let Wt be the optimal value of the (fractional) multicommodity flow problem
(IMF) defined by the packets present in the system at time t, and let (x) be such
a solution. Note that without loss of generality, we can assume that Ai,j > 0.
Given x, we can also assume that there does not exist any cycle with positive
flow; hence we can decompose the solution (arc-flows) into flows along paths Pk,
k = 1, . . . , K, with the (fractional) flow value on path Pk being yPk

, and such
that ∑

k:(i,j)∈E(Pk)

yPk
=

∑

u,v∈V

xi,j
u,v ≤ Wt,

and ∑

k:o(Pk)=i,d(Pk)=j

yPk
= Ai,j .

In the expressions above, o(Pk) and d(Pk) denote the origin and destination
of path Pk. We refer the reader to Ahuja et al. [1] for a discussion on flow
decomposition.

Our task now is to select precisely Ai,j paths from i to j, without affecting
the congestion along any arc adversely; in other words, we need to round the
fractional solution (x) to an integral 0-1 solution in a suitable manner. We do
this by using the following rounding algorithm of [13]:

Theorem 1. ([13]) Let A be a real valued s1 × s2 matrix, and y be a real-
valued s2-vector. Let b be a real valued vector such that Ay = b and t̂ be a
positive real number such that, in every column of A, (i) the sum of all the
positive entries is at most t̂ and (ii) the sum of all the negative entries is at
least −t̂. Then we can compute an integral vector y such that for every i, either
yi = �yi� or yi = �yi� and Ay = b where bi − bi < t̂ for all i. Furthermore, if y
contains d non-zero components, the integral approximation can be obtained in
time O(s3

1 lg(1 + s2/s1) + s3
1 + d2s1 + s1s2).

To use Theorem 1, we first transform our linear system above to the following
equivalent form:

∑

k:(i,j)∈E(Pk)

yPk
≤ Wt ∀ (i, j) ∈ E(G)

∑

k:o(Pk)=i,d(Pk)=j

(−m)yPk
= −mAi,j ∀ i, j ∈ V.

The set of variables above is {yPk
: k = 1, . . . , K}. Note that yPk

∈ [0, 1] for
all these variables. Furthermore, in this linear system, the positive column sum
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is bounded by the maximum length of the paths, which in turn is bounded by m,
the number of arcs in the graph. The negative column sum is also bounded by
−m. Thus, the parameter t̂ for this linear system, in the notation of Theorem 1,
can be taken to be m. Hence by Theorem 1, we can obtain in polynomial time
an integral solution y satisfying

∑

k:(i,j)∈E(Pk)

yPk
≤ Wt + m ∀ (i, j) ∈ E(G)

∑

k:o(Pk)=i,d(Pk)=j

(−m)yPk
< −mAi,j + m ∀ i, j ∈ V.

For each i, j, we have
∑

k:o(Pk)=i,d(Pk)=j

yPk
> Ai,j − 1.

Note the crucial role of the strict inequality. Thus, we have selected at least Ai,j

paths from i to j; furthermore, the congestion along every arc is bounded by
Wt + m.

To summarize what we have achieved: starting from an arc flow solution, we
used flow decomposition and an application of the rounding theorem to derive
an integer solution such that the load on any arc is increased by at most m.
Each “commodity” (i.e., origin-destination pair) is now routed along at most
m paths. We can now reformulate this adaptive packet routing problem as a
(non-adaptive) packet scheduling problem as follows: think of each path from i
to j as a type, and assume that yk packets have to be sent from i to j along path
Pk. (To avoid cumbersome notation, we have dropped the dependence of y on
the origin-destination pair.) In essence, we have used the rounding algorithm to
compute a small set of good paths for the adaptive packet routing problem; we
now pretend that the problem to be solved is really a packet scheduling problem
in which an explicit path is associated with each packet; the number of packets to
be routed along a given path is determined by applying the rounding algorithm
on an optimal (fractional) multicommodity flow solution.

Solving the packet scheduling problem. The dynamic routing/scheduling
problem on an adversarial network is now reduced to a simpler, static, packet
scheduling problem. For convenience, we describe the input to this packet schedul-
ing problem slightly differently. The packet scheduling problem consists of K
types of packets; packets of type k require a path Pk through the network, are
initially available at o(Pk) ∈ V , and need to reach d(Pk) ∈ V ; there are nk

packets of type k. The objective is to find a schedule for all of these packets that
minimizes makespan. Each packet requires unit time to traverse an arc; each arc
can process one packet per unit time. Obviously, this is an NP -hard problem.
Fortunately, we do not need to find an optimal schedule; all we need is a schedule
with makespan within an additive constant of the associated congestion lower
bound. Note that this additive constant could depend on m, n, K, but cannot
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depend on n1, n2, . . . , nk themselves; this is because in the packet scheduling in-
stances that will arise in the solution of the adversarial network will have m, n,
and K will be independent of r and w, the parameters of the adversary, whereas
the nk will depend on r and w. We briefly outline two solution methods to this
packet scheduling problem, and specify the corresponding bounds.

Fluid synchronization algorithm. The packet scheduling problem outlined
here is a special case of the job shop scheduling problem with the makespan
objective considered by Bertsimas and Sethuraman [8]. In that work, they con-
sider a fluid relaxation of the job shop scheduling problem, which can be viewed
as a continuous analog of the discrete job shop scheduling problem. Using an
optimal solution to the fluid relaxation, they find nominal start times for each
packet at each of the arcs it has to visit; these nominal start times are carefully
constructed in a recursive manner, based on both the optimal fluid solution and
the partial discrete schedule.

More precisely, suppose type k packets need to visit arcs ak,1, ak,2, . . . , ak,ik

in that order. Suppose W is the maximum load on any arc. The scheduling
algorithm discussed in [8] first determines the fluid start and completion times
for each packet at each stage. The fluid start time, FSk,j(n), of the nth type k
packet at (its) stage j (arc ak,j) is defined to be (n−1)W/nk; the corresponding
fluid completion time FCk,j(n) is nW/nk.

Since the fluid relaxation processes packets continuously, each type k packet is
processed by all its stages simultaneously at a uniform rate nk/W ; for this reason,
the fluid start and completion times for any packet is independent of its “stage,”
and depends only on the packet number. In trying to “round” this fluid schedule
to an implementable discrete schedule, we need to overcome two difficulties: first,
the fluid relaxation treats packets as continuous entities, with the effect that the
same packet can be “scheduled” by multiple arcs simultaneously; and second,
the fluid relaxation allows arcs to split their effort across multiple packet types,
as long as the overall effort allocated by each arc is at most 1 per unit time.
In other words, the fluid relaxation views both the packets and the processing
resources as being infinitely divisible. (The resulting lower bound is naturally
just the congestion lower bound; the dilation bound does not arise because of
the continuous nature of the jobs.)

The fluid start of a given packet at a given stage may be viewed as the ideal
start time of that packet at that stage, but clearly, this is an unrealistic ideal.
Motivated by the question of defining a more realistic target start time for each
packet at each stage, Bertsimas and Sethuraman [8] defined nominal start times;
these are defined in terms of the fluid start and completion times as well as the
partial discrete schedule. The nominal start time, NSk,j(n), of the nth type k
packet at its stage j (arc ak,j) is defined by

NSk,1(n) = FSk,1(n),

NSk,i(1) = DSk,i−1(1) + 1, i > 1,

NSk,i(n) = max

{
NSk,i(n − 1) +

W

nk
, DSk,i−1(n) + 1

}
, n, i > 1,
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where DSk,i−1(n) is the start time of the nth type k packet at stage (i− 1) (arc
ak,(i−1)) in the discrete schedule.

Bertsimas and Sethuraman [8] proposed a simple scheduling rule (called
“fluid synchronization algorithm”) based on these nominal start times: when-
ever a node has to make a processing decision, it schedules an available packet
with the earliest nominal start time. Note that whenever a packet is chosen to
be scheduled at a certain node, its nominal processing time at its next stage can
be calculated; so the nominal start times for every packet queued at a node will
be known.

The main result of [8] adapted to this special case can be stated as follows:

Theorem 2. Consider a (non-adaptive) packet scheduling problem with K job
types and m arcs. Given initially nk jobs of type k = 1, 2, . . . , K, suppose the
maximum load on any arc is W , and let W ∗ be the optimal makespan. Then,
the fluid synchronization algorithm produces a schedule with makespan time WD

such that
W ≤ W ∗ ≤ WD ≤ W + n(K + 2). (4)

Sevastyanov’s algorithm. In the mid-seventies, interesting approximation al-
gorithms were derived for several shop scheduling problems. These algorithms
were based on beautiful, geometric arguments, and were discovered indepen-
dently by Belov and Stolin [7], Sevastyanov [14], and Fiala [11]. These methods
constructed schedules for job shop scheduling problems with an additive error
term that depended only on the number of machines, and the maximum pro-
cessing time of a job, but not on the number of jobs. Since it is not central to
this paper (and in the interest of space), we do not discuss these algorithms in
detail; we refer the interested reader to the original papers cited earlier as well
as the excellent survey of Sevastyanov [17]. The strongest of these results, due to
Sevastyanov [15,16], provides a schedule of length at most (n−1)(mn2+2n−3).

Remark. Note that depending on K, this may or may not be better than the
schedule provided by the fluid synchronization algorithm. For the adaptive case,
it is seen that the guarantee provided by the fluid synchronization algorithm is
slightly better than the one provided by Sevastyanov’s algorithm. Moreover, the
fluid-based algorithm is not computationally intensive at all, and is very simple
to implement. On the other hand, for the non-adaptive case, the adversary may
insist that the algorithm route packets along exponentially many paths; in this
case, the guarantee provided by the fluid-based method is unattractive, and
Sevastyanov’s method is clearly better.

The main result. Our main result is obtained by putting all of these steps
together. Fix a review epoch i, with Wi being the work seen by the scheduler
at this epoch. Then, step 2 results in an instance of the non-adaptive packet
scheduling problem with maximum congestion at most Wi + m; using the fluid
synchronization algorithm for this packet scheduling problem results in a sched-
ule with length at most Wi + m + n(K + 2). Noting that there are at most n2
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commodities, and that each of which may use at most m paths, we conclude that
the schedule computed at epoch i will have length at most Wi +m+n2m2 +2n.
Thus, the inefficiency parameter f is at most m+2n+m2n2; using this in Eq. (3),
we have

Q(t) ≤ m(f + w)
1 − r

≤ m(m + 2n + m2n2 + w)
1 − r

, (5)

where Q(t) represents the number of packets in the system at time t.
For Sevastyanov’s algorithm a similar guarantee can be shown to hold. We

omit the details.
Our results can now be formally stated as the following theorem.

Theorem 3. Consider an adversarial queueing network under a fractional (w, r)
adversary. If r < 1, then the discrete review scheduling policy constructed keeps
the number of packets in the system bounded at all times. In particular, the total
number of packets in the system at time t, Q(t), satisfies

Q(t) ≤ m(m + 2n + m2n2 + w)
1 − r

.


�
An immediate corollary is that for adversarial queueing networks in which

the arrival rates for packets with origin i and destination j is rij , an algorithm
for which the number in system is O(w/(1 − r)), can be designed, where r can
be explicitly computed based on the rij using a fractional multicommodity flow
formulation. Gamarnik [12] considered this model and showed that stable policies
exist for this system if and only if the associated fractional multicommodity flow
problem has value at most 1. (The r in the expression for the number-in-system
bound is exactly the optimal solution to this multicommodity flow problem.)

Since the number in system is relatively small, one can expect the proposed
algorithm to provide good delay guarantees for all the packets as well. This can
be formally established using the fact than any packet stays in the system for at
most two review periods. Discussion on this topic is deferred to the full version
of this paper, as is the discussion of results on the non-adaptive version of the
problem. At this point, we simply note that these techniques lead to excellent
performance guarantees for the non-adaptive version of the problem as well.

Future work. Several outstanding questions remain; we point out two explic-
itly. First, we hope to consider the case r = 1; this seems difficult to understand,
and may in fact exhibit different behavior depending on whether the adversary
is fractional (w, r) or integer (w, r) restricted. Moreover, the algorithm we pro-
pose is (semi) centralized, although the queue-length information is used only at
the discrete review epochs. In contrast, Aiello et al. [2] proposed a distributed
algorithm for the integer (w, r) adversary. It will be interesting to design a dis-
tributed algorithm for the problem considered here. We hope to address this in
future work as well.
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