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Abstract. We formulate the problem of deciding which preference do-
mains admit a non-dictatorial Arrovian Social Welfare Function as one
of verifying the feasibility of an integer linear program. Many of the
known results about the presence or absence of Arrovian social welfare
functions, impossibility theorems in social choice theory, and properties
of majority rule etc., can be derived in a simple and unified way from
this integer program. We characterize those preference domains that ad-
mit a non-dictatorial, neutral Arrovian social welfare Function and give a
polyhedral characterization of Arrovian social welfare functions on single-
peaked domains.

1 Introduction

The Old Testament likens the generations of men to the leaves of a tree. It is
a simile that applies as aptly to the literature inspired by Arrow’s impossibil-
ity theorem [2]. Much of it is devoted to classifying those preference domains
that admit or exclude the existence of a non-dictatorial Arrovian social welfare
function (ASWF)1. We add another leaf to that tree. Specifically, we formu-
late the problem of deciding which preference domains admit a non-dictatorial
Arrovian social welfare function as one of verifying the feasibility of an integer
linear program. Many of the known results about the presence or absence of
Arrovian social welfare functions, impossibility theorems in social choice theory,
properties of the majority rule etc., can be derived in a simple and unified way
from this integer program. The integer program also leads to some interesting
new results such as (a) a characterization of preference domains that admit a
non-dictatorial, neutral Arrovian social welfare function; and (b) a polyhedral
characterization of Arrovian social welfare Functions on single-peaked domains.
1 An ASWF is a social welfare function that satisfies the axioms of the Impossibility

theorem.
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Let A denote the set of alternatives (at least three). Let Σ denote the set of
all transitive, antisymmetric and total binary relations on A. An element of Σ
is a preference ordering. The set of admissible preference orderings for members
of a society of n-agents (voters) will be a subset of Σ and denoted Ω. Let Ωn

be the set of all n-tuples of preferences from Ω, called profiles. An element of
Ωn will typically be denoted as P = (p1,p2, . . . ,pn), where pi is interpreted as
the preference ordering of agent i. (In the language of Le Breton and Weymark
[7], we assume the “common preference domain” framework; this assumption
can be relaxed, see Sect. 2.) An n-person social welfare function is a function
f : Ωn → Σ. Thus for any P ∈ Ωn, f(P) is an ordering of the alternatives. We
write xf(P)y if x is ranked above y under f(P). An n-person Arrovian social
welfare function (ASWF) on Ω is a function f : Ωn → Σ that satisfies the
following two conditions:
1. Unanimity: If for P ∈ Ωn and some x, y ∈ A we have xpiy for all i then

xf(P)y.
2. Independence of Irrelevant Alternatives: For any x, y ∈ A suppose
∃P,Q ∈ Ωn such that xpiy if an only if xqiy for i = 1, . . . , n. Then xf(P)y
if an only if xf(Q)y.

The first axiom stipulates that if all voters prefer alternative x to alternative
y, then the social welfare function f must rank x above y. The second axiom
states that the ranking of x and y in f is not affected by how the voters rank
the other alternatives. An obvious social welfare function that satisfies the two
conditions is the dictatorial rule: rank the alternatives in the order of the pref-
erences of a particular voter (the dictator). Formally, an ASWF is dictatorial
if there is an i such that f(P) = pi for all P ∈ Ωn. An ordered pair x, y ∈ A
is called trivial if xpy for all p ∈ Ω. In view of unanimity, any ASWF must
have xf(P)y for all P ∈ Ωn whenever x, y is a trivial pair. If Ω consists only of
trivial pairs then distinguishing between dictatorial and non-dictatorial ASWF’s
becomes nonsensical, so we assume that Ω contains at least one non-trivial pair.
The domain Ω is Arrovian if it admits a non-dictatorial ASWF.

The main contributions of this paper are summarized below.

• We provide an integer linear programming formulation of the problem of
finding an n-person ASWF. For each Ω we construct a set of linear inequal-
ities with the property that every feasible 0-1 solution corresponds to an
n-person ASWF.
• When restricted to the class of neutral ASWF’s the integer program yields a

simple and easily checkable characterization of domains that admit neutral,
non-dictatorial ASWF’s. This result contains as a special case the results of
Sen [14] and Maskin [8] about the robustness of the majority rule.
• For the case when Ω is single-peaked, we show that the polytope defined by

the set of linear inequalities is integral: the vertices of the polytope corre-
spond to ASWF’s and every ASWF corresponds to a vertex of the polytope.
This gives the first characterization of ASWF’s on this domain. The same
proof technique yields a characterization of the generalized majority rule on
single peaked domains, originally due to Moulin [10].
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• We show that the computational complexity of deciding whether a domain is
Arrovian depends critically on the way the domain is described. We propose a
graph-theoretical method to identify stronger linear inequalities for ASWF’s.
For cases with a small number of alternatives (3 or 4), our approach is able
to characterize the polytope of all ASWF’s. Thus for any Ω and any set of
alternatives size at most 4 we characterize the polyhedral structure of all
ASWF’s.

2 The Integer Program

Denote the set of all ordered pairs of alternatives by A2. Let E denote the set
of all agents, and Sc denote E \ S for all S ⊆ E.

To construct an n-person ASWF we exploit the independence of irrelevant
alternatives condition. This allows us to specify an ASWF in terms of which
ordered pair of alternatives a particular subset, S, of agents is decisive over.

Definition 1. For a given ASWF f , a subset S of agents is weakly decisive for
x over y if whenever all agents in S rank x over y and all agents in Sc rank y
over x, the ASWF f ranks x over y.

Since this is the only notion of decisiveness used in the paper, we omit the
qualifier ‘weak’ in what follows.

For each non-trivial element (x, y) ∈ A2, we define a 0-1 variable as follows:

dS(x, y) =
{

1, if the subset S of agents is decisive for x over y;
0, otherwise.

If (x, y) ∈ A2 is a trivial pair then by default we set dS(x, y) = 1 for all S �= ∅.
Given an ASWF f , we can determine the associated d variables as follows:

for each S ⊆ E, and each non-trivial pair (x, y), pick a P ∈ Ωn in which agents
in S rank x over y, and agents in Sc rank y over x; if xf(P)y, set dS(x, y) = 1,
else set dS(x, y) = 0.

In the rest of this section, we identify some conditions satisfied by the d
variables associated with an ASWF f .
Unanimity: To ensure unanimity, for all (x, y) ∈ A2, we must have

dE(x, y) = 1. (1)

Independence of Irrelevant Alternatives: Consider a pair of alternatives
(x, y) ∈ A2, a P ∈ Ωn, and let S be the set of agents that prefer x to y in P.
(Thus, each agent in Sc prefers y to x in P.) Suppose xf(P)y. Let Q be any
other profile such that all agents in S rank x over y and all agents in Sc rank y
over x. By the independence of irrelevant alternatives condition xf(Q)y. Hence
the set S is decisive for x over y. However, had yf(P)x a similar argument would
imply that Sc is decisive for y over x. Thus, for all S and (x, y) ∈ A2, we must
have

dS(x, y) + dSc(y, x) = 1. (2)
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A consequence of Eqs. (1) and (2) is that d∅(x, y) = 0 for all (x, y) ∈ A2.
Transitivity: To motivate the next class of constraints, it is useful to consider
the majority rule. If the number n of agents is odd, the majority rule can be
described using the following variables:

dS(x, y) =
{

1, if |S| > n/2,
0, otherwise.

These variables satisfy both (1) and (2). However, if Ω admits a Condorcet
triple (e.g., p1,p2,p3 ∈ Ω with xp1yp1z, yp2zp2x, and zp3xp3y), then such a
rule does not always produce an ordering of the alternatives for each preference
profile. Our next constraint (cycle elimination) is designed to exclude this and
similar possibilities.

Let A, B, C, U , V , and W be (possibly empty) disjoint sets of agents whose
union includes all agents. For each such partition of the agents, and any triple
x, y, z,

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (3)

where the sets satisfy the following conditions (hereafter referred to as conditions
(*)):

A �= ∅ only if there exists p ∈ Ω, xpzpy,

B �= ∅ only if there exists p ∈ Ω, ypxpz,

C �= ∅ only if there exists p ∈ Ω, zpypx,

U �= ∅ only if there exists p ∈ Ω, xpypz,

V �= ∅ only if there exists p ∈ Ω, zpxpy,

W �= ∅ only if there exists p ∈ Ω, ypzpx.

The constraint ensures that on any profile P ∈ Ωn, the ASWF f does not
produce a ranking that “cycles”.

Theorem 1. Every feasible integer solution to (1)-(3) corresponds to an ASWF
and vice-versa.

Proof. Given an ASWF, it is easy to see that the corresponding d vector satisfies
(1)-(3). Now pick any feasible solution to (1)-(3) and call it d. To prove that d
gives rise to an ASWF, we show that for every profile of preferences from Ω,
d generates an ordering of the alternatives. Unanimity and Independence of
Irrelevant Alternatives follow automatically from the way the dS variables are
used to construct the ordering.

Suppose d does not produce an ordering of the alternatives. Then, for some
profile P ∈ Ωn, there are three alternatives x, y and z such that d ranks x over
y, y over z and z over x. For this to happen there must be three non-empty sets
H, I, and J such that

dH(x, y) = 1, dI(y, z) = 1, dJ(z, x) = 1,
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Fig. 1. The sets and the associated orderings

and for the profile P, agent i ranks x over y (resp. y over z, z over x) if and
only if i is in H (resp. I, J). Note that H ∪ I ∪ J is the set of all agents, and
H ∩ I ∩ J = ∅.

Let
A← H \ (I ∪ J), B ← I \ (H ∪ J), C ← J \ (H ∪ I),

U ← H ∩ I, V ← H ∩ J, W ← I ∩ J.

Now A (resp. B, C, U , V , W ) can only be non-empty if there exists p in Ω with
xpzpy (resp. ypxpz, zpypx, xpypz, zpxpy, ypzpx).

In this case constraint (3) is violated since

dA∪U∪V (x, y)+dB∪U∪W (y, z)+dC∪V ∪W (z, x) = dH(x, y)+dI(y, z)+dJ(z, x) = 3.

��
For the case n = 2, constraint (3) can be simplified as follows: (i) if for some

p,q ∈ Ω and x, y, z ∈ A, we have xpypz and yqzqx, then

dS(x, y) ≤ dS(x, z), (4)
dS(z, x) ≤ dS(y, x); (5)

and (ii) if for some p ∈ Ω and x, y, z ∈ A, we have xpypz, then

dS(x, y) + dS(y, z) ≤ 1 + dS(x, z), (6)
dS(z, y) + dS(y, x) ≥ dS(z, x). (7)

These inequalities, discovered earlier by Kalai and Muller [5], are called decisive-
ness implications. Thus, Constraints (3) generalize the decisiveness implication
conditions to n ≥ 3. We will sometimes refer to (1)-(3) as IP.

General Domains. The IP characterization obtained above can be generalized
to the case in which the domain of preferences for each voter is non-identical. In
general, let D be the domain of profiles over alternatives. In this case, for each
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set S, the dS variables need not be well-defined for each pair of alternatives x, y,
if there is no profile in which all agents in S (resp. Sc) rank x over y (resp. y over
x). dS is thus only defined for (x, y) if such profiles exist. Note that dS(x, y) is
well-defined if and only if dSc(y, x) is well-defined. With this proviso inequalities
(1) and (2) remains valid. We only need to modify (3) to the following:

Let A, B, C, U , V , and W be (possibly empty) disjoint sets of agents
whose union includes all agents. For each such partition of the agents,
and any triple x, y, z,

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (8)

where the sets satisfy the following conditions (hereafter referred to as
condition (**)):

A �= ∅ only if there exists pi, i ∈ A, with xpizpiy,

B �= ∅ only if there exists pi, i ∈ B, with ypixpiz,

C �= ∅ only if there exists pi, i ∈ C, with zpiypix,

U �= ∅ only if there exists pi, i ∈ U, with xpiypiz,

V �= ∅ only if there exists pi, i ∈ V, with zpixpiy,

W �= ∅ only if there exists pi, i ∈W, with ypizpix.

and (p1, . . . ,pn) ∈ D.

The following theorem is immediate from our discussion. We omit the proof.

Theorem 2. Every feasible integer solution to (1), (2) and (8) corresponds to
an ASWF on domain D and vice-versa.

This yields a new characterization of non-dictatorial profile domains D, and
can be used to obtain a simple proof of a result due to Fishburn and Kelly [4]
on super non-Arrovian domains; we state this result without proof.

A domain D is called super non-Arrovian if it is non-Arrovian and every
domain D′ containing D is also non-Arrovian. Furthermore, if dS is well defined
for every pair of alternatives x, y and every S, we say that the domain D satisfies
the near-free doubles condition.

Theorem 3 (Fishburn and Kelly [4]). A domain D is super-non-Arrovian
if and only if it is non-Arrovian and satisfies the near-free doubles condition.

3 Applications

Arrow’s Theorem. Our first use of IP is to provide a simple proof of Arrow’s
theorem.

Theorem 4 (Arrow’s Impossibility theorem). When Ω = Σ, the 0-1 solu-
tions to the IP correspond to dictatorial rules.
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Proof: When Ω = Σ, we know from constraints (4-5) and the existence of all
possible triples that dS(x, y) = dS(y, z) = dS(z, u) for all alternatives x, y, z, u.
We will thus write dS in place of dS(x, y) in the rest of the proof.

We show first that dS = 1⇒ dT = 1 for all S ⊂ T . Suppose not. Let T be the
set containing S with dT = 0. Constraint (2) implies dT c = 1. Choose A = T \S,
U = T c and V = S in (3). Then, dA∪U∪V = dE = 1, dB∪U∪W = dT c = 1 and
dC∪V ∪W = dS = 1, which contradicts (3).

The same argument implies that dT = 0 ⇒ dS = 0 whenever S ⊂ T . Note
also that if dS = dT = 1, then S ∩ T �= ∅, otherwise the assignment A =
(S∪T )c, U = S, V = T will violate the cycle elimination constraint. Furthermore,
dS∩T = 1, otherwise the assignment A = (S∪T )c, U = T\S, V = S\T, W = S∩T
will violate the cycle elimination constraint. Hence there exists a minimal set S∗

with dS∗ = 1 such that all T with dT = 1 contains S∗. We show that |S∗| = 1.
If not there will be j ∈ S with dj = 0, which by (2) implies dE\{j} = 1. Since
dS∗ = 1 and dE\{j} = 1, dE\{j}∩S∗ ≡ dS∗\{j} = 1, contradicting the minimality
of S∗. ��

Born Loser rule. For subsequent applications we introduce the born loser rule.
For each j, we define the born loser rule with respect to j (denoted by Bj) in the
following way: (i) set d

Bj

E (x, y) = 1 for every x, y ∈ A2; (ii) set d
Bj

∅ (x, y) = 0 for
every x, y ∈ A2; and (iii) for every non-trivial pair (x, y), and for any S �= ∅, E,
d

Bj

S (x, y) = 0 if S � j, d
Bj

S (x, y) = 1 otherwise.

Theorem 5. For any j and n > 2, the born loser rule Bj is a non-dictatorial
n-person ASWF if and only if for all x, y, z, there do not exist p1,p2,p3 in Ω
with

xp1zp1y, xp2yp2z, zp3xp3y,

Proof. It is clear that by definition, dBj satisfies (1, 2). To see that it satisfies
(3), observe that in every partition of the agents, one of the sets obtained must
contain j. Say j ∈ A ∪ U ∪ V . If d

Bj

A∪U∪V (x, y) = 0, then (3) is clearly valid. So
we may assume that d

Bj

A∪U∪V (x, y) = 1. This happens only when A∪U ∪V = E
(or if (x, y) is trivial, which in turns imply that all the other sets are empty). We
may assume U, V �= ∅ and j ∈ A, otherwise (3) is clearly valid. But according to
condition (*), this implies existence of p1,p2,p3 in Ω with

xp1zp1y, xp2yp2z, zp3xp3y,

which is a contradiction.
So, dBj satisfies (1-3) and hence corresponds to an ASWF. When n > 2, Bj

is clearly non-dictatorial. ��

Anonymous and Neutral Rules. Two additional conditions that are some-
times imposed on an ASWF are anonymity and neutrality. An ASWF is called
anonymous if its ranking over pairs of alternatives remains unchanged when the
labels of the agents are permuted. Hence dS(x, y) = dT (x, y) for all (x, y) ∈ A2
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whenever |S| = |T |. In particular a dictatorial rule is not anonymous. An ASWF
is called neutral if its ranking over any pair of alternatives depends only on the
pattern of agents’ preferences over that pair, not on the alternatives’ labels.
Neutrality implies that dS(x, y) = dS(a, b) for any (x, y), (a, b) ∈ A2. Thus the
value of dS(·, ·) is determined by S alone. When anonymity and neutrality are
combined, dS(·, ·) is determined by |S| alone. In such a case, we write dS as dr

where r = |S|. If n is even, it is not possible for an anonymous ASWF to be
neutral because Eq. (2) cannot be satisfied for |S| = n/2. The IP (1)-(3) can
be used to derive a number of old and new results regarding anonymous and
neutral ASWF’s in a unified way; we state these results next.

Recall that Ω admits a Condorcet triple if there are x, y and z ∈ A and p1,
p2 and p3 ∈ Ω such that xp1yp1z, yp2zp2x, and zp3xp3y.

The following results are well known and follow directly from the IP charac-
terization:

Theorem 6. (Sen [14]) For an odd number of agents, the majority rule is an
ASWF on Ω if and only if Ω does not contain a Condorcet triple.

Theorem 7. (Maskin [8]) Suppose there are at least 3 agents. If Ω admits an
anonymous, neutral ASWF, then Ω has no Condorcet triples.

Theorem 8. (Maskin [8]) Suppose that g is anonymous, neutral, satisfies una-
nimity and independence of irrelevant alternatives, and is not the majority rule.
Then there exists a domain Ω on which g is not an ASWF but the majority rule
is.

The next result, which is new, shows that checking whether Ω admits a
neutral, non-dictatorial ASWF reduces to checking whether the majority rule or
the born loser rule is an ASWF on that domain. Notice that no parity assumption
on the number of voters is needed.

Theorem 9. For n ≥ 3, a domain Ω admits a neutral, non-dictatorial ASWF
if an only if the majority rule or the born loser rule is an ASWF on Ω.

Proof. If either the majority rule or the born loser rule is an ASWF on Ω,
Ω clearly admits a neutral, non-dictatorial ASWF. Suppose then Ω admits a
neutral, non-dictatorial ASWF, but neither the majority rule nor the born loser
rule is an ASWF on Ω. Since the majority rule is not an ASWF, Ω admits a
Condorcet triple {a, b, c}. Since the born loser rule is not an ASWF on Ω, by
corollary 1 there exist p1,p2,p3 in Ω and x, y, z ∈ A with

xp1zp1y, xp2yp2z, zp3xp3y.

We will need the existence of these orderings to construct a partition of the
agents that satisfies the cycle elimination constraints. The proof will mimic the
proof of Arrow’s theorem (Theorem 4) given earlier.

Neutrality implies that dS(x, y) = dS(y, z) = dS(z, u) for all alternatives
x, y, z, u. We will thus write dS in place of dS(x, y) in the rest of the proof.
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First, dS = 1 ⇒ dT = 1 for all S ⊂ T . Suppose not. Let T be the set
containing S with dT = 0. Constraint (2) implies dT c = 1. Choose A = T \ S,
U = T c and V = S in (3). We can do this because of p1,p2,p3. Then, dA∪U∪V =
dE = 1, dB∪U∪W = dT c = 1 and dC∪V ∪W = dS = 1, which contradicts (3).

The same argument implies that dT = 0 ⇒ dS = 0 whenever S ⊂ T . Note
also that if dS = dT = 1, then S ∩ T �= ∅, otherwise the assignment A =
(S ∪ T )c, U = S, V = T will violate the cycle elimination constraint.

Next we show that dS∩T = 1. Suppose not. Consider the assignment U =
E\S, V = S\T and W = S∩T . We can choose such a partition because {a, b, c}
form a Condorcet triple. For this specification, dA∪U∪V = dE\{S∩T} = 1. Since
T ⊂ B ∪ U ∪W , dB∪U∪W = 1 and dC∪V ∪W = dS = 1, which contradicts (3).

Hence there exists a minimal set S∗ such that dS∗ = 1 and all T with dT = 1
contains S∗. We show that |S∗| = 1. If not there will be j ∈ S with dj = 0, and
hence dE\{j}∩S∗ = 1, contradicting the minimality of S∗. ��

A simple consequence of this result is the following theorem due to Kalai and
Muller [5]. The proof is new.

Theorem 10. A non-dictatorial solution to (1, 2, 4 - 7) exists for the case
n = 2 agents if and only if a non-dictatorial solution to (1-3) exists for any n.

Proof. Given a 2 person non-dictatorial AWSF, we can build an ASWF for the
n-person case by focusing only on the preferences submitted by the first two
voters and ranking the alternatives using the 2-person ASWF. This is clearly a
non-dictatorial ASWF for the n-person case. Hence we only need to give a proof
of the converse.

Let d∗ be a non-dictatorial solution to (1-3). Suppose d does not imply a
neutral ASWF. Then there is a set of agents S such that d∗

S(x, y) is non-zero for
some but not all (x, y) ∈ A2. Hence, d1 = d∗

S , d2 = d∗
Sc would be a non-dictatorial

solution to (1, 2, 4–7).
Suppose then d implies a neutral ASWF. By the previous theorem we can

choose d to be either the majority rule or the born loser rule. In the first case,
we can build a 2 person ASWF by using a dummy voter with a fixed ordering
from Ω and using the (3 person) majority rule. In the second case, we can build
a 2 person ASWF by adding a dummy born loser. ��

The following refinement to Maskin’s result also follows directly from Theo-
rem 9.

Theorem 11. Let the number of agents be odd. Suppose Ω does not contain any
Condorcet triples, and suppose there exist p1,p2,p3 in Ω and x, y, z ∈ A with

xp1zp1y, xp2yp2z, zp3xp3y.

Then, the majority rule is the only anonymous, neutral ASWF on Ω.

Proof.(Sketch) From the proof to Theorem 9, we know that if dS corresponds
to a neutral ASWF, and if there exist p1,p2,p3 in Ω and x, y, z ∈ A with
xp1zp1y, xp2yp2z, zp3xp3y, then dS is monotonic. i.e., dS ≤ dT if S ⊂ T . By
May’s Theorem, it has to be the majority rule since the majority rule is the only
ASWF that is anonymous, neutral and monotonic. ��
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Single-peaked Domains. The domain Ω is single-peaked with respect to a
linear ordering q over A if Ω ⊆ {p ∈ Σ : for every triple (x, y, z) if xqyqz then
it is not the case that xpy and zpy}. The class of single-peaked preferences has
received a great deal of attention in the literature. Here we show how the IP
can be used to characterize the class of ASWF’s on single peaked domains. We
prove that the constraints (1–3), along with the non-negative constraints on the
d variables, are sufficient to characterize the convex hull of the 0-1 solutions.

Theorem 12. When Ω is single-peaked the set of non-negative solutions satis-
fying (1-3) is an integral polytope. All ASWF’s are extreme point solutions of
this polytope.

Proof. (Sketch) It suffices to prove that every fractional solution satisfying (1-3)
can be written as a convex combination of 0-1 solutions satisfying the same set of
constraints. Let q be the linear ordering with respect to which Ω is single-peaked.

Let dS(·) be a (possibly) fractional solution to the linear programming re-
laxation of (1-3). We round the solution d to the 0-1 solution d′ in the following
way:

– Generate a random number Z uniformly between 0 and 1.
– For a, b ∈ A with aqb, and S ⊂ E, then
• d′

S(a, b) = 1, if dS(a, b) > Z, 0 otherwise;
• d′

S(b, a) = 1, if dS(b, a) ≥ 1− Z, 0 otherwise.

The 0-1 solution d′
S generated in the above manner clearly satisfies constraints

(1). To verify that it satisfies constraint (2), consider a set T ⊆ E, an arbitrary
pair of alternatives a, b, and suppose without loss of generality aqb. From the
linear programming relaxation, we know that either dT (a, b) > Z or dT (b, a) ≥
1− Z (since the two variables add up to 1), but not both. Thus, exactly one of
d′

T (a, b) or d′
T (b, a) is set to 1.

We show next that all the constraints in (3) are satisfied by the solution d′
S(·).

Consider three alternatives a, b, c, and constraint (3) (with a, b, c replacing the
role of x, y, z) can be re-written as:

dA∪U∪V (a, b) + dB∪U∪W (b, c) + dC∪V ∪W (c, a) ≤ 2.

Suppose aqbqc. Then in constraints (3), by the single-peakedness property,
we must have A = V = ∅. In this case, the constraint reduces to dU (a, b) +
dB∪U∪W (b, c) + dC∪W (c, a) ≤ 2.

We need to show that d′
U (a, b) + d′

B∪U∪W (b, c) + d′
C∪W (c, a) ≤ 2. By choos-

ing the sets in constraints (3) in a different way, with U ′ ← U , B′ ← B,
W ′ ← W ∪ C, C ′ ← ∅, we have a new inequality dU ′(a, b) + dB′∪U ′∪W ′(b, c) +
dC′∪W ′(c, a) ≤ 2, which is equivalent to dU (a, b)+1+dC∪W (c, a) ≤ 2. Hence we
must have dU (a, b)+dC∪W (c, a) ≤ 1. Note that since aqb and bqc, our rounding
scheme ensures that d′

U (a, b)+d′
C∪W (c, a) ≤ 1. Hence d′

U (a, b)+d′
B∪U∪W (b, c)+

d′
C∪W (c, a) ≤ 2.

To finish the proof, we need to show that constraint (3) holds for different
orderings of a, b and c under q; the above argument can be easily extended to



204 Jay Sethuraman, Chung-Piaw Teo, and Rakesh V. Vohra

handle all these cases to show that constraint (3) is valid. Integrality of the
polytope follows directly from this rounding method. We omit the details here.

��
The argument above shows the set of ASWF’s on single-peaked domains

(wrt q) has a property similar to the generalized median property of the stable
marriage problem (see Teo and Sethuraman [15]).

Theorem 13. Let f1, f2, . . . , fN be distinct ASWF’s for the single-peaked do-
main Ω (with respect to q). Define a function Fk : Ωn → Σ with the property:

The set S under Fk is decisive for x over y if
xqy, and S is decisive for x over y for at least k + 1 of the ASWF
fi’s; or
yqx, and S is decisive for x over y for at least N − k of the ASWF
fi’s.

Then Fk is also an ASWF.

One consequence of Theorem 13 is that when Ω is single-peaked, it is Ar-
rovian, since the dictatorial ASWF’s can be used to construct non-dictatorial
ASWF in the above manner. For instance, consider the case n = 2. Let f1 and f2
be the dictatorial rule associated with agent’s 1 and 2 respectively. The function
F1 constructed above reduces to the following ASWF:

If xqy, the social welfare function ranks x above y if and only if both agents
prefer x over y.
If yqx, the social welfare function ranks y above x if and only if none of the
agents prefer x above y.

Generalized Majority Rule. Moulin [10] has introduced a generalization of
the majority rule called the generalized majority rule. A Generalized majority
rule (GMR) M for n agents is of the following form:

– Add n-1 dummy agents, each with a fixed preference drawn from Ω.
– x is ranked above y under M if and only if the majority (of real and dummy

agents) prefer x to y.

Each instance of a GMR can be described algebraically as follows. Fix a
profile R ∈ Ωn−1 and let R(x, y) be the number of orderings in R where x is
ranked above y. Given any profile P ∈ Ωn, GMR ranks x above y if the number
of agents who rank x above y under P is at least n − R(x, y). To check that
GMR is an ASWF on single peaked domains, set

gS(x, y) = 1 iff |S| ≥ n−R(x, y)

and zero otherwise. It is easy to check that g satisfies (1)-(3) when Ω is single
peaked.

GMR has two important properties. The first is that it is anonymous and
second that it is monotonic.
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Definition 2. An ASWF is monotonic if when one switches from the profile P
to Q by raising the ranking of x ∈ A for at least one agent, then f(Q) will not
rank x lower than it is in f(P).

Theorem 14 (Moulin). An ASWF that is anonymous and monotonic on a
single-peaked domain Ω must be a generalized majority rule

Proof. Let dS be a solution to (1)-(3), corresponding to an anonymous and
monotonic ASWF on the domain Ω. Let q be the underlying order of alterna-
tives. For each (x, y) ∈ A2, by anonymity, dS(x, y) depends only on the cardi-
nality of S. Monotonicity implies dS(x, y) ≤ dT (x, y) if S ⊆ T . Thus

dS(x, y) = 1 if and only if |S| ≥ e(x, y)

for some number e(x, y). To complete the proof we need to determine a profile
R ∈ Ωn−1 such that

n−R(x, y) = e(x, y) ∀(x, y) ∈ A2.

Since dS(x, y) + dSc(y, x) = 1, we have

e(x, y) + e(y, x) = n + 1

for all (x, y) and (y, x). Note that e(x, y) ≥ 1 and e(x, y) ≤ n. Furthermore,
if xqyqz, then by (4) and (5), dS(x, y) ≤ dS(x, z) and hence e(x, y) ≥ e(x, z).
Similarly, we have e(y, x) ≤ e(z, x), e(z, y) ≥ e(z, x) and e(x, z) ≥ e(y, z).

We use the geometric construction used in the earlier proof to construct the
profile R ∈ Ωn−1.

– To each (x, y) such that xqy, associate the interval [0, e(x, y)] and label it
l(x, y).

– To each (x, y) such that yqx, associate the interval [n + 1 − e(x, y), n + 1]
and label it l(x, y).

We construct preferences in R in the following way:

– For each k = 1, 2, . . . , n− 1, if l(x, y) covers the point k + 0.5, then the kth
dummy voter ranks y over x. Otherwise the dummy voter ranks x over y.

Since the intervals l(x, y) and l(y, x) are disjoint and cover [0, n+1] the procedure
is well-defined. If R(x, y) is the number of dummy voters who rank x above y in
this construction it is easy to see that n − R(x, y) = e(x, y), which is what we
need. It remains then to to show that the profile constructed is in Ωn−1.

Claim. The procedure returns a linear ordering of the alternatives.

Proof. Suppose otherwise and consider three alternatives x, y, z where the pro-
cedure (for some dummy voter) ranks x above y, y above z and z above x.
Hence the intervals l(x, y), l(y, z) and l(z, x) do not cover the point k + 0.5.
From symmetry, it suffices to consider the following two cases:



206 Jay Sethuraman, Chung-Piaw Teo, and Rakesh V. Vohra

– Case 1. Suppose xqyqz. Since l(x, z) covers the point k + 0.5 and e(x, y) ≥
e(x, z), l(x, y) must cover the point k + 0.5, a contradiction.

– Case 2. Suppose yqxqz. Now, there exists p and p′ in Ω with zpxpy and
xp′yp′z, hence l(z, x) ≥ l(z, y). This is impossible as l(z, y) covers the point
k + 0.5 but l(z, x) does not.

Hence the ordering constructed is a linear order. ��
Claim. The linear orderings constructed for the dummy voters correspond to
orderings from Ω.

Proof. If not there exist k and xqyqz with the kth dummy voter ranking y
below x and z. i.e. l(x, y) does not cover the point k+0.5 and l(y, z) does. Hence
e(x, y) < e(y, z). Now, using xqyqz, we have

dS(x, y) ≤ dS(x, z), dS(x, z) ≤ dS(y, z).

So
e(x, y) ≥ e(x, z), e(x, z) ≥ e(y, z),

which is a contradiction. ��

Muller-Satterthwaite Theorem. A social choice function maps profiles of
preferences into a single alternative. These are objects that have received as
much attention as social welfare functions. It is therefore natural to ask if the
integer programming approach described above can be used to obtain results
about social choice functions. Up to a point, yes. The difficulty is that knowing
what alternative a social choice function will pick from a set of size two, does
not, in general, allow one to infer what it will choose when the set of alternatives
is extended by one. However, given the additional assumptions imposed upon a
social choice function one can surmount this difficulty. We illustrate how with
an example.

The analog of Arrow’s impossibility theorem for social choice functions is
the Muller-Satterthwaite theorem [11]. The counterpart of Unanimity and the
Independence of Irrelevant Alternatives condition for social choice functions are
called pareto optimality and monotonicity. To define them, denote the preference
ordering of agent i in profile P by pi.

1. Pareto Optimality: Let P ∈ Ωn such that xpy for all p ∈ P. Then
f(P) �= y.

2. Monotonicity: For all x ∈ A, P,Q ∈ Ωn if x = f(P) and {y : xpiy} ⊆ {y :
xqiy} ∀i then x = f(Q).

We call a social choice function that satisfies pareto-optimality and mono-
tonicity an Arrovian social choice function (ASCF).

Theorem 15 (Muller-Satterthwaite). When Ω = Σ, all ASCF’s are dicta-
torial2.
2 The more well known result about strategy proof social choice functions is due to

Gibbard [3] and Satterthwaite [13]. It is a consequence of Muller-Satterthwaite [11].
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Proof: For each subset S of agents and ordered pair of alternatives (x, y), denote
by [S, x, y] the set of all profiles where agents in S rank x first and y second, and
agents in Sc rank y first and x second. By the hypothesis on Ω this collection is
well defined.

For any profile P ∈ [S, x, y] it follows by pareto optimality that f(P) ∈ {x, y}.
By monotonicity, if f(P) = x for one such profile P then f(P) = x for all
P ∈ [S, x, y].

Suppose then for all P ∈ [S, x, y] we have f(P) �= y. Let Q be any profile
where all agents in S rank x above y, and all agents in Sc rank y above x. We
show next that f(Q) �= y too.

Suppose not. That is f(Q) = y. Let Q′ be a profile obtained by moving x and
y to the top in every agents ordering but preserving their relative position within
each ordering. So, if x was above y in the ordering under Q, it remains so under
Q′. Similarly if y was above x. By monotonicity f(Q′) = y. But monotonicity
with respect to Q′ and P ∈ [S, x, y] implies that f(P) = y a contradiction.

Hence, if there is one profile in which all agents in S rank x above y, and all
agents in Sc rank y above x, and y is not selected, then all profiles with such a
property will not select y. This observation allows us to describe ASCF’s using
the following variables.

For each (x, y) ∈ A2 define a 0-1 variable as follows:

– gS(x, y) = 1 if when all agents in S rank x above y and all agents in Sc rank
y above x then y is never selected,

– gS(x, y) = 0 otherwise.

If E is the set of all candidates we set gE(x, y) = 1 for all (x, y) ∈ A2. This
ensures pareto optimality.

Consider a P ∈ Ωn, (x, y) ∈ A2 and subset S of agents such that all agents
in S prefer x to y and all agents in Sc prefer y to x. Then, gS(x, y) = 0 implies
that gSc(y, x) = 1 to ensure a selection. Hence for all S and (x, y) ∈ A2 we have

gS(x, y) + gSc(y, x) = 1 . (9)

We show that the variables gS satisfy the cycle elimination constraints. If
not there exists a triple {x, y, z}, and set A, B, C, U, V, W such that the cycle
elimination constraint is violated. Consider the profile P where each voter ranks
the triple {x, y, z} above the rest, and with the ordering of x, y, z depending
on whether the voter is in A, B, C, U , V or W . Since gA∪U∪V (x, y) = 1,
gB∪U∪W = 1, and gC∪V ∪W = 1, none of the alternatives x, y, z is selected for
the profile P. This violates pareto optimality, a contradiction.

Hence gS satisfies constraints (1-3). Since Ω = Σ, by Arrow’s Impossibility
Theorem, gS corresponds to a dictatorial solution. ��

4 Decomposability, Complexity and Valid Inequalities

A domain is called decomposable if and only if there is a non-trivial solution
(not all 1’s or all 0’s) to the system of inequalities (1, 2, 4–7) for the case
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n = 2. The main result of [5] (cf. Theorem 10) can be phrased as follows: the
domain Ω is non-dictatorial if and only if it is decomposable. This result allows
one to formulate the problem of deciding whether Ω is arrovian as an integer
program involving a number of variables and constraints that is polynomial in
|A|. However, the set A is not the only input to the problem. The preference
domain Ω is also an input. If Ω is specified by the set of permutations it contains,
and if it has exponentially many permutations (say O(2|A|), the the straight
forward input model needs at least O(2|A|) bits. Recall the number of decision
variables for the integer program for 2-person ASWF’s is polynomial in |A|.
Furthermore, the time complexity of verifying the existence of triplets in Ω
can trivially be performed in time O(n32|A|). Hence the decision version of the
decomposability conditions can be solved in time polynomial in the size of the
input.

Suppose, however, instead of listing the elements of Ω, we prescribe a poly-
nomial time oracle to check membership in Ω. The complexity issue of deciding
whether the domain is decomposable now depends on how we encode the mem-
bership oracle, and not on the number of elements in Ω. In this model, we exhibit
an example to show that checking whether a triplet exists in Ω is already NP-
hard.

Let G be a graph with vertex set V . Let ΩG consist of all orderings of V
that correspond to a Hamiltonian path in G. Given any triple (u, v, w) ∈ V ,
the problem of deciding if G admits a Hamiltonian path in which u precedes v
precedes w is NP-complete3. Hence the problem of deciding whether there is a
preference ordering p in Ω with upvpw is already NP-complete.

Thus, given an Ω specified by hamiltonian paths, it is already NP-hard just
to write down the set of inequalities specified by the decomposability conditions!

One way to by-pass the above difficulties is to focus on ordering on triplets
that are realized by some preferences in Ω. The input to the complexity question
is thus the set of orderings on triplets (O(n3) size) that are admissible in Ω. We
will focus on this input model for the rest of the paper.

Ignore, for the moment, inequalities of types (6) and (7). The constraint
matrix associated with the inequalities of types (1, 2, 4, 5) and 0 ≤ d(x, y) ≤
1 ∀(x, y) ∈ A2 is totally unimodular. This is because each inequality can be re-
duced to one that contains at most two coefficients of opposite sign and absolute
value of 1 4. Hence the extreme points are all 0-1. If one or more of these extreme
points was different from the all 0’s solution and all 1’s solution we would know
that Ω is Arrovian. If the only extreme points were the all 0’s solution and all
1’s solution that would imply that Ω is not Arrovian.

Thus difficulties with determining the existence of a feasible 0-1 solution
different from the all 0’s and all 1’s solution have to do with the inequalities
of the form (6) and (7). Notice that any admissible ordering (by Ω) of three

3 If not, we can apply the algorithm for this problem thrice to decide if G admits a
Hamiltonian cycle.

4 It is well known that such matrices are totally unimodular. See for example, Theorem
11.12 in [1].
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alternatives gives rise to an inequality of types (6) and (7). However some of
them will be redundant. Constraints (6, 7) are not redundant only when they
are obtained from a triplet (x, y, z) with the property:

There exists p such that xpypz but no q ∈ Ω such that yqzqx or zqxqy.

Such a triplet is called an isolated triplet.
Call the inequality representation of Ω, by inequalities of types (1, 2, 4, 5),

the unimodular representation of Ω. Note that all inequalities in the unimodular
representation are of the type d(x, u) ≤ d(x, v) or d(u, x) ≤ d(v, x). Furthermore,
d(x, u) ≤ d(x, v) and d(u, y) ≤ d(v, y) appear in the representation only if there
exist p,q with upx and vpx and xqu and xqv.

This connection allows us to provide a graph-theoretic representation of the
unimodular representation of Ω as well as a graph-theoretic interpretation of
when Ω is not Arrovian.

With each non-trivial element of A2 we associate a vertex. If in the unimod-
ular representation of Ω there is an inequality of the form d1(a, b) ≤ d1(x, y)
where (a, b) and (x, y) ∈ A2 then insert a directed edge from (a, b) to (x, y). Call
the resulting directed graph DΩ .

If (x, y) is a trivial pair (and hence (x, y) /∈ DΩ), then d1(x, y) is automat-
ically fixed at 1, and d1(y, x) fixed at 0. An inequality of the form d1(x, y) ≤
d1(x, z) (or d1(z, y)) cannot appear in the unimodular representation, for any
alternative z in A. Otherwise there must be some p ∈ Ω with ypx. Similarly, if
(x, y) is trivial, d1(y, x) ≥ d1(z, x) (or d1(y, z)) cannot appear in the unimodular
representation, for any alternative z in A. Thus fixing the values of d1(x, y) and
d1(y, x) arising from a trivial pair (x, y) does not affect the value of d1(a, b) for
(a, b) ∈ DΩ .

A subset S of vertices in DΩ is closed if there is no edge directed out of S.
That is, there is no directed edge with its tail incident to a vertex in S and
its head incident to a vertex outside S. Notice that d1(x, y) = 1 ∀(x, y) ∈ S
and 0 otherwise (and together with those arising from the trivial pairs) is a
feasible 0-1 solution to the unimodular representation of Ω if S is closed. Hence
every closed set in DΩ corresponds to a feasible 0-1 solution to the unimodular
representation. The converse is also true.

Theorem 16. If DΩ is strongly connected then Ω is non-Arrovian.

Proof. The set of all vertices of DΩ is clearly a closed set. The solution cor-
responding to this closed set is the ASWF where agent 1 is the dictator. The
empty set of vertices is closed and this corresponds to agent 2 being the dictator.
If DΩ is strongly connected5, these are the only closed sets in the graph. Since
any ASWF must correspond to some closed set in DΩ , we conclude that Ω is
non-Arrovian. ��

We note that verifying whether a directed graph is strongly connected can
be done efficiently. See [1] for details. Note also that if Ω does not contain any
isolated triplets, then Ω is Arrovian if and only DΩ is not strongly connected.
5 A directed graph is strongly connected if there is a directed cycle through every

pair of vertices.
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We describe next a sequential lifting method to derive valid inequalities for
the problem to strengthen the LP formulation, using the directed graph DΩ

defined previously. We say that the node u dominates the node v if there is a
directed path in DΩ from v to u (i.e. d(u) ≥ d(v)).

Sequential Lifting Method:

– For each isolated triplet (x, y, z), we have the inequality

1 + d(x, z) ≥ d(x, y) + d(y, z). (10)

– Let D(x, y) (and resp. D(y, z)) denote the set of nodes in DΩ that are
dominated by the node (x, y) (resp. (y, z)) in DΩ .

– For each node (a, b) in DΩ , if

u ∈ D(a, b) ∩D(x, y) �= ∅, v ∈ D(a, b) ∩D(y, z) �= ∅,
then the constraint arising from the isolated triplet can be augmented by
the following valid inequalities:

d(a, b) + d(x, z) ≥ d(u) + d(v). (11)

To see the validity of the above constraint, note that by the definition of dom-
ination, we have d(x, y) ≥ d(u), d(y, z) ≥ d(v), d(a, b) ≥ d(u), d(a, b) ≥ d(v). If
d(a, b) = 0, then d(u) = d(v) = 0 and hence (11) is trivially true. If d(a, b) = 1,
then (11) follows from (10).

We have successfully verified that the sequential lifting method finds the
convex hull of the set of all ASWF’s whenever the number of alternatives is at
most four. A natural question is if whether the sequential lifting method will
gives rise to all facets even for the case |A| ≥ 5; we do not yet know, although
we suspect the answer to be negative.

5 Conclusions

In this paper, we study the connection between Arrow’s Impossibility Theorem
and Integer Programming. We show that the set of ASWF’s can be expressed
as integer solutions to a system of linear inequalities. Many of the well known
results connected to the impossibility theorem are direct consequences of the
Integer Program. Furthermore, the polyhedral structure of the IP formulation
warrants further study in its own right. We have initiated the study on this
class of polyhedra by characterizing the polyhedral structure of ASWF’s on
single peaked domain. We have also demonstrated by an extensive computational
experiment that the sequential lifting method proposed in this paper can be used
to obtain the complete polyhedral description of ASWF’s when the number of
alternatives is small. Several interesting problems still remain:

1. Given a domain Ω specified by certain membership oracle, is it possible to
check for existence of non-dictatorial ASWF’s in polynomial time? Is the
problem in the class NP?
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2. The LP relaxation of our proposed IP formulation characterizes the ASWF’s
for single peaked domain. What are the domains that can be characterized
by the LP relaxation given by the sequential lifting method?

3. Can the conditions for ASCF’s be written down as a system of integer linear
inequalities?

We leave the above questions for future research.
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