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Abstract

We propose a new cutting plane heuristic for the classical stable roommates problem. Our approach utilises a new

linear programming formulation for the problem, and the underlying geometric properties of the fractional solution to

construct the violated inequality. We test the approach on moderate size problems, with encouraging computational

performance. To further illustrate the versatility of this approach, we also show how it can be suitably extended to

handle variants of the basic stable roommates model. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a complete graph H with an even number
of vertices, and with weights on its edges, the
problem of ®nding a minimum weight perfect
matching in H has been studied extensively. In
fact, a complete polyhedral description of the
convex hull of the set of perfect matching has been

obtained by Edmonds [3]. In this paper, we study a
variant of the perfect matching problem, com-
monly known as the stable roommates problem. In
an instance of this problem, each node of the
graph represents a college student who wishes to
be assigned to a roommate from a list of possible
candidates. The key di�erence from the perfect
matching problem is that here, each student ranks
all the other students in decreasing order of de-
sirability. More formally, in the stable roommates
problem, we have a set of 2n persons who need to
be paired up as roommates. Each person has a
preference list ranking all the other persons, and
all preferences are strict. A matching is unstable
when two people are not paired in the matching,
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but prefer each other to their assigned roommates.
Such a pair is called a blocking pair. A matching is
stable if and only if there is no blocking pair. We
write k <i j if person i prefers person j to person k.
This problem is a generalization of the famous
stable marriage problem ®rst studied by Gale and
Shapley [5] in 1962. The problem, as stated above,
is slightly di�erent from some other papers in the
literature, where the focus is on ®nding a stable
(partial) matching in the graph H.

In sharp contrast to the stable marriage prob-
lem, the stable roommates problem need not have
a solution. Knuth [10], in one of his 12 unsolved
problems associated with stable matching, asked
whether the feasibility of an instance of the stable
roommates problem can be settled in polynomial
time. His question had been answered by Irving [8]
in the a�rmative, and also recently by Subrama-
nian [13] who related the problem to the more
general network stability problem (cf. Ref. [13]).

Feder [4] considered a special version of the
weighted stable roommates problem where the
preference list of each person is given by a set
fc�i; j�g (with distinct values), and

c�i; j� < c�i; k� only if k <i j for all i; j; k:

Using c�i; j� � c�j; i� as the weight of the edge
fi; jg, Feder showed that the optimal stable
roommates problem is NP-hard in this case.
Gus®eld and Pitt [7], using their 2-approximation
algorithm for a more general min-cost 2-SAT
problem, showed that the optimal stable room-
mates problem (with the above cost function) can
be approximated to within a factor of 2 from the
optimal. It remains an interesting open problem
whether one can do better than the bound of 2.

Abeledo and Rothblum [2] recently initiated the
study of the polyhedral structure of the stable
roommates problem. Generalizing Vande Vate's
formulation (cf. Refs. [11,12,15]) for the marriage
problem, they showed that many structural prop-
erties of the stable roommates problem can be
derived via linear-algebraic arguments, mainly via
linear programming duality. However, the pro-
posed polytope has a major weakness it is not
strong enough (to be used) to decide the existence
of a stable matching (i.e. there are infeasible in-
stances of the stable roommates problem for which

the associated polytope is non-empty). Their for-
mulation was recently improved by the authors
[14], who identi®ed a new class of valid inequalities
for the problem. This new LP formulation, with an
exponential number of constraints, is feasible if
and only if the stable roommates problem has a
solution. This opens up a new way to construct
near optimal stable roommates solution (if one
exists at all) via the LP approach. Furthermore,
the LP relaxation can be solved via the ellipsoid
algorithm. However, the separation routine for the
(exponentially many) constraints requires solving
a series of shortest path problems on an expanded
graph and appears to be computationally prohib-
itive. In this paper, we adapt the proof technique
in [14] to devise a new cutting-plane heuristic
(coupled with a rounding procedure) to solve the
optimal stable roommates problem. The heuristic
combines the power of rounding and cutting-plane
ideas into a conceptually simple approach. In fact,
under some restrictions on the cost function, the
heuristic always return a solution which is within
two times of the optimal stable roommates solu-
tion. In this aspect, our heuristic can be viewed as
a 2-approximation algorithm for the optimal sta-
ble roommates problem. The computational re-
sults show that the LP based method can be a
viable approach to obtain reasonably good solu-
tions for the optimal stable roommates problem in
a reasonable amount of time. Although this ap-
proach does not seem to be as fast as some of the
combinatorial methods (cf. Refs. [6,9]), its alge-
braic nature allows us to adapt the method to
several variants of the stable roommates problem.
To illustrate this, we show how the minimum re-
gret stable roommates solution can be obtained via
a simple linear programming formulation.

A di�erent LP approach has also been proposed
recently by Abeledo and Blum [1]. However, their
work di�ers from ours in a variety of ways. (1) Their
LP approach solves a series of linear programming
problems in order to obtain a feasible solution to the
roommates problem, whereas our approach works
for the NP-hard optimal stable roommates prob-
lem. (2) The number of LPs solved in their approach
is polynomially bounded, whereas our approach
cannot guarantee a priori the number of cutting
planes needed before the algorithm terminates.
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The main contributions of this paper are sum-
marized as follows.
· We propose a simple cutting plane heuristic for

the optimal stable roommates problem, which
always returns a solution whose cost is within
a factor of two of the optimal.

· We perform an experiment to evaluate the per-
formance of this heuristic on moderate-sized
problems. Note that as far as we are aware, no
such computational studies have been per-
formed for the optimal stable roommates
problem. The heuristic is shown to perform ex-
ceptionally well on randomly generated instanc-
es. However, on some specially constructed
instances, the gap can be as large as 37%.

· We illustrate further applications of the LP ap-
proach to variants of the stable roommates
problem. Interestingly, our heuristic can be used
to solve the minimum regret stable roommates
problem.

2. Formulation of the problem

Abeledo and Rothblum [2] studied the proper-
ties of fractional solutions to the stable roommates
problem, which is also known as the stable
matching problem in the literature. They consider
the following relaxation:

�PFSM�X
j

xi;j � 1; 8i; �1�

X
l:l<ji

xl;j �
X
l:l<ij

xi;l � xi;j6 1; 8i; j; �2�

where �PFSM� denotes the set of fractional solutions
that satis®es constraints (1) and (2) as shown. Note
that when xi;j � 0 or 1 for all i; j, the variable xi;j

models the decision whether person i is matched to
person j. Hence �PFSM� contains in particular the
set of integral stable roommates solutions. Con-
straints (2) must be valid, since otherwise, j is
matched to someone inferior to i whereas i is
matched to someone inferior to j and so �i; j� is a
blocking pair. We call constraints (2) the paired
inequalities.

By considering the dual of �PFSM�, Abeledo and
Rothblum [2] proved an interesting result for
�PFSM�.

Lemma 1. Let x be a feasible solution in �PFSM�.
Then

xi;j > 0 implies
X
k:k<ij

xi;k �
X

k:k6 ji

xk;j � 1:

An analogous result holds for the stable mar-
riage case and is the basis of some of the most
beautiful results in that area (cf. Ref. [14] for a
recent approach utilizing the above property). One
of the drawbacks of the formulation in �PFSM� is
that one can construct infeasible instances of the
stable roommates problem for which a polyhedron
associated with �PFSM� is non-empty. So �PFSM�
cannot be used to address the feasibility question
for the stable roommates problem. A natural way
to improve the above formulation is to include the
odd-set constraints from the matching polytopeP

i;j2S xi;j6 bjSj=2c for every set S of odd cardi-
nality. However, it turns out that even the odd-set
constraints are not strong enough to guarantee
feasibility.

Let xu;v � 1 if �u; v� is an edge in the matching, 0
otherwise. Consider distinct nodes i; j; k such that j
prefers k to i. For the matching to be stable, the
following must be valid:

S�i; j; k� � 1

2

X
l6 ji

xl;j

 
�
X
l6 k j

xl;k

!
6 1

2
;

since the above is dominated by the paired in-
equalities (2) in �PFSM�.

The above inequality can be extended to an odd
cycle version. Suppose i0; i1; . . . ; iC (C even) are
such that ik prefers ik�1 to ikÿ1, where the indices
are taken modulo (C � 1). Then by adding up the
above inequality, we haveXC

k�0

S�ikÿ1; ik; ik�1�6 C � 1

2
:

Note that the nodes in the cycle need not be dis-
tinct. The coe�cients of all variables appearing in
the left hand side are integral. Hence by rounding
down the right hand side, we have the following
odd cyclic preference inequality:
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XC

k�0

S�ikÿ1; ik; ik�1�6 C � 1

2

� �
:

Thus we obtain an improved formulation for the
stable roommates problem:

�PSR�X
j

xi;j � 1; 8i; �3�X
l:l<ji

xl;j �
X
l:l<ij

xi;l � xi;j6 1; 8i; j; �4�

XC

k�0

S�ikÿ1; ik; ik�1�6 C � 1

2

� �
;

ikÿ1 <ik ik�1; k � 0; . . . ;C; �5�
xi;j P 0; 8i; j; �6�
where �PSR� denotes the set of fractional solutions
that satis®es constraints (3)±(6).

Teo and Sethuraman [14] showed the following
theorem.

Theorem 2. �PSR� is non-empty if and only if the
corresponding stable roommates problem is feasible.

3. Cutting-plane heuristic

We propose an approach to construct good
stable roommate solutions based on solving the
resulting LP over the polytope �PSR�. Although
the latter has an exponential number of con-
straints, we propose a heuristic which combines
rounding and cutting-plane techniques to produce
near-optimal solutions. In general, separating the
odd cyclic preference inequalities involves com-
puting O�n2� shortest-path solutions in an asso-
ciated network with nodes corresponding to
triplets �i; j; k� obtained from the roommates
problem. This appears to be computationally
prohibitive. In this section, we propose a more
e�cient routine to construct a stable roommate
solution from the LP. The generic method is as
follows.

Cutting-plane heuristic:
Step 1. Solve the LP over �PFSM�. If �PFSM� is

empty, the problem has no feasible stable room-
mates solution. Otherwise, proceed to Step 2.

Step 2. Round the fractional solution to obtain
a partial matching and (possibly) a union of dis-
joint cycles.

Step 3. Test for odd cycles in an auxiliary graph
associated with the solution obtained in Step 2. If
no odd cycle is found, go to Step 4, else use the
odd cycle to construct a violated inequality for the
fractional solution. Add the violated inequality to
the partial LP formulation and re-optimize. Re-
peat Step 2.

Step 4. If no odd cycle is found, round the
current solution to obtain a stable roommates
solution.

Consider the problem minfcx: x 2 �PSR�g.
Suppose the cost coe�cients satisfy the following
U-shape property:

for each i; there exists a person ig such that

c�i; j� < c�i; k� if k <i j <i ig or

c�i; j� < c�i; k� if ig <i j <i k:

In this case, we have the following theorem.

Theorem 3. The cost of the solution obtained by the
cutting-plane heuristic is within a factor of two of
the optimal cost.

We now elaborate on the above procedure and
show that the method indeed produces a valid
solution to the stable roommates problem. The
proof of Theorem 3 would follow immediately
from the way we construct the matching.

3.1. Solving �PFSM�

We solve the LP using CPLEX on a SUN
SPARC 10 workstation. To speed up the compu-
tation, we ®rst compute a feasible solution for the
LP by reducing the problem associated with �PFSM�
to an appropriate stable marriage instance (de-
scribed below); we use the Gale±Shapley algorithm
to construct a solution easily. Let H 0 denote the set
of nodes fi0: i 2 Hg, and let �H ;H 0� be a complete
equi-bipartite graph with 4n nodes (i.e. 2n on each
partite set). Consider the following instance of the
stable marriage problem. The sets H and H 0 as-
sume the role of men and women respectively; the
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preference list of each node i in H over the set of
nodes in H 0 is given by

k0 <i j0 if and only if c�i; j� < c�i; k�:
Since c�i; i0� is not de®ned in the original stable
roommates problem, we assume that c�i; i0� � 1.
Hence i0 is the worst partner for i in the stable
marriage instance. Similarly, the preference list for
each node i0 in H 0 is given by

k <i0 j if and only if c�i; j� < c�i; k�:
A feasible stable marriage solution can be ob-
tained in �H ;H 0� easily using the Gale±Shapley's
algorithm. However, we note that not all feasible
marriage solution can be transformed to a feasible
solution in �PFSM�. The main di�culty lies in the
case when i is matched to i0 by the Gale±Shapley
algorithm. However, we claim that if this is the
case, the original stable roommates problem has
no feasible solution. To see this, ®rst observe that
since i0 and i are matched to their worst possible
partners, and since the Gale±Shapley algorithm
produces a men-optimal solution, i must be mat-
ched to i0 in every stable marriage solution. On the
other hand, suppose H has a feasible stable
roommates solution in which i is matched to j. By
splitting �i; j� to �i; j0� and �i0; j�, we obtain a stable
marriage solution where i is not matched to i0.
Thus if i is matched to i0, we can conclude that the
original stable roommates problem is infeasible.
(The algorithm would have terminated in this
case.) Otherwise, we recombine the stable marriage
solution in the following way:

x�i; j� � 1 if i$ j0; i0 $ j;

x�i; j� � 1=2 if i$ j0 or i0 $ j but not both;

x�i; j� � 0 otherwise;

and obtain a (possibly) half-integral solution to
�PFSM�.

3.2. Rounding

For each node i, we arrange the nÿ 1 intervals
(left-open, right-closed), of lengths given by the xi;j

for each j 6� i to cover the interval (0,1], according
to increasing preference of i. (We refer to this as

the arrangement according to i.) Recall thatP
j xi;j � 1, and hence, these intervals, properly

sequenced, cover the interval (0,1]. If i prefers j to
k, then the interval corresponding to xi;j is placed
to the right of that corresponding to xi;k. Fur-
thermore, each xi;j appears twice, once each in the
arrangement according to i and j. See Fig. 1 for a
geometrical representation of the above. Note also
the geometrical implication of Lemma 1 with this
arrangement.

If k is the index such that xi;k, in the above
arrangement covers the point 1/2 in the interval,
then round xi;k to 1, and set match�i� � k;
prematch�k� � i.

We construct a graph G with node set consist-
ing of the set of roommates and a directed edge
�i; j� if xi;j is rounded to 1 according to the ar-
rangement by i.

Suppose for some k 6� l; match�k� � i �
match�l�. By the way we round,

X
p:p6 k i

xk;p P 1=2;
X

p:p<k i

xk;p < 1=2;X
p:p6 li

xl;p P 1=2;
X
p:p<li

xl;p < 1=2:

By Lemma 1, sinceX
p:p<ik

xi;p �
X

p:p6 k i

xk;p � 1;
X

p:p<il

xi;p �
X

p:p6 li

xl;p � 1;

Fig. 1. Geometry of the fractional solution.
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we haveX
p:p<ik

xi;p6 1=2;
X

p:p6 ik

xi;p > 1=2;X
p:p<il

xi;p6 1=2;
X

p:p6 il

xi;p > 1=2;

hence k � l which is a contradiction.
The above argument shows that, without loss of

generality, we may assume that G consists of union
of directed cycles and partial matching (i.e. when
match�i� � k and match�k� � i for some nodes i; k).

3.3. Testing for violated inequalities

Suppose G contains an odd directed cycle
C � �i0; i2; . . . ; iC�, where match�ik� � ik�1 (and
iC�1 � i0), then sinceX
p:p6 lkÿ1

ik

xikÿ1;p P 1=2;

we haveXC

k�0

S�ikÿ1; ik; ik�1�P C � 1

2
;

which immediately gives rise to a violated odd
cyclic preference inequality for the fractional so-
lution. We add the cuts to the LP and re-optimize.
Otherwise we proceed to identify more compli-
cated odd cyclic preference inequalities from G.
We add directed arcs �i; j� and �j; i� to the graph G
if the following holds:

j prefers i to match�j� but not prematch�j�; and

i prefers j to match�i� but not prematch�i�:
Call the new graph G0. The set of edges in E�G0� n
E�G� is called the set of obstructing pairs. We now
look for odd cycles in G0 by a breadth-®rst search,
and re-optimize the LP if we can ®nd any. All odd
cycles in G0 would similarly give rise to violated
odd cyclic preference inequalities for the fractional
solution.

The main motivation for looking for odd cycles
in G0 arises in the proof of Theorem 2 (cf. Ref.
[14]). Note also that the above procedure does not
ensure that the fractional solution obtained from
the LP satis®es all odd cyclic preference inequali-

ties as our attention is only directed to those that
can be obtained as odd cycles in G0. However, the
next step shows that as long as G0 does not contain
any odd cycle, we can round the fractional solu-
tion to a feasible stable roommates solution.

3.4. Constructing a feasible stable roommates solu-
tion

Let x denote the fractional solution obtained
after the previous step. The graph G0 associated
with x is then bipartite. The nodes fall into two
separate sets A and B. Assign each node i in A to
match�i�. (Equivalently, each node j in B is matched
to prematch�j�). Note that the edge �i;match�i�� is in
G0. Let M denote the perfect matching obtained in
this way. We show that M is a feasible stable
roommates solution.

Claim. �i; j� is a blocking pair in M only if (i) �i; j� is
an obstructing pair, and (ii) fi; jg � A.

Proof. Let �i; j� be a blocking pair for the matching
M. We prove the statement by considering several
cases.

Case 1: Suppose fi; jg � B. By the de®nition of
a blocking pair, j >i prematch�i� (the interval xi;j is
on the right of interval xi;prematch�i� for node i, i.e.,
strictly in (1/2,1)), then by Lemma 1, for the ar-
rangement by j, the subinterval spanned by xi;j lies
strictly in (0,1/2). Hence prematch�j� >j i (interval
xj;prematch�j� on the right of interval xi;j for node j).
This contradicts the fact that �i; j� is a blocking
pair.

Case 2: Suppose i 2 A; j 2 B. Then the match-
ing M contains �i;match�i��; �prematch�j�; j�. Now
i >j prematch�j� implies j <i match�i� (by Lemma
1, and the same reasoning in Case 1). Hence �i; j�
cannot be a blocking pair. Similarly, we can rule
out the case when i 2 B; j 2 A.

The above two cases prove that fi; jg � A.
So the matching M contains �i;match�i��;
�j;match�j��. Since fi; jg is a blocking pair,
j >i match�i�. If j P iprematch�i�, then i6 jmatch�j�
by Lemma 1, contradicting the fact that �i; j� is a
blocking pair. Hence we must have prematch�i�
>i j >i match�i�. By symmetry, we also have
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prematch�j� >j i >j match�j�, i.e., �i; j� is an ob-
structing pair. h

However, by the construction of G0, and since
G0 is bipartite, the set A does not contain any
obstructing pair. We therefore conclude that there
is no blocking pair in M, i.e. M is a stable room-
mates solution.

The proof of Theorem 3 then follows (see also
Ref. [14]).

Proof of Theorem 3. Let �i; j� be an edge in M, and
let ik denote the index with the least cost among all
c�i; k� as k varies.

Suppose match�i� � j. In the arrangement ac-
cording to i, the interval corresponding to x�i;j
spans �a; b� where a < 1=2 and b P 1=2. Hence for
the arrangement according to node j, x�i;j spans
�1ÿ b; 1ÿ a� (by Lemma 1). If ik 6 ij, then since c
satis®es the U-shape condition,

c�i; j� � 1

2
6 c�i; j� b

� 
ÿ 1

2

�
�
X
l:l>ij

x�i;l

!
6 c�i; j�x�i;j �

X
l:l>ij

c�i; l�x�i;l:

On the other hand, if ik >i j, then

c�i; j� � 1

2
6 c�i; j� 1

2

� 
ÿ a
�
�
X
l:l<ij

x�i;l

!
6 c�i; j�x�i;j �

X
l:l<ij

c�i; l�x�i;l:

Hence c�i; j�6 2
P

l c�i; l�x�i;l:
Similarly, c�j; i�6 2

P
l c�j; l�x�j;l. So we haveP

�i;j�2M�c�i; j� � c�j; i�� 6 2
P�c�i; j� � c�j; i��x�i;j

and the result follows. h

4. Computational experience

We have implemented and tested the procedure
on various random instances of the problem. The
priority of each person is generated randomly.
c�i; j� is uniformly distributed between 0 and 100.
In this scheme, i prefers j to k if c�i; j� < c�i; k�.
The cost of matching i to j is then c�i; j� � c�j; i�.
We perform the experiments on problems with size
upto 60 people. For each set of people, we perform
the experiment on 500 random instances of the
problem. Table 1 shows the performance of the
algorithm.

The second and third columns give the number
of instances where integral optimal solutions can
be constructed directly by solving over �PFSM� and
�PSR� respectively. The numbers in the brackets
indicate the number of instances the formulations
are feasible. The fourth and ®fth columns list the
means and standard deviations of the optimal so-
lutions found by our technique. The last column
lists the average performance of our rounding
heuristic when integral solutions cannot be found
by the LP.

We note that solving over �PFSM� has limited
applicability, because of the wide disparity be-
tween LP and IP feasibility. For example, in the
case of 60 people, only 337 (out of 500) instances
are IP feasible, whereas 495 (out of 500) are fea-
sible for �PFSM�. Our cutting-plane heuristic solves
333 (out of 337) problems to optimality. This
suggests that our approach is viable for problems
of this size. In those few cases where an optimal
solution could not be found, the rounding heuris-
tic produces a near-optimal solution most of the
time. Another interesting observation is that the
standard deviation does not vary much with an

Table 1

Random instances

Size �PFSM� �PSR� Mean S.D. Bound

10 405(460) 438(438) 275.57 56.58 ±

20 348(465) 396(404) 414.94 60.48 1.05

30 311(480) 396(399) 517.11 65.73 1.06

40 280(490) 360(364) 602.20 63.99 1.02

50 270(497) 373(379) 680.10 63.33 1.02

60 246(495) 333(337) 744.39 63.16 1.01
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increase in the problem size. But further testing is
needed in order to validate this.

In order to better evaluate the rounding heu-
ristic, we designed a second experiment, in which
we generate only feasible stable roommate in-
stances. This is achieved by ®xing a matching (with
costs c�i; j� � 50 for all �i; j� in the matching) and
generating other costs in such a way that this
matching is stable. This results in a drastic di�er-
ence in performance of the LP based approach.
The number of cuts needed to solve a problem in
this class increases drastically. We perform the
experiment on 100 such instances. Our results are
tabulated in Table 2.

Here, the second and third columns list the
number of instances which are solved to optimality
by �PFSM� and �PSR� respectively. Again, we see
that the cuts improve the formulation consider-
ably. We have been able to solve more than 40% of
these problems upto optimality. However, com-
pared to the ®rst experiment, the rounding heu-
ristic does not perform as well. Among those that
cannot be sloved to optimality, the average gap is
close to 21% for the instances with size 60, and the
maximum gap is about 37%.

5. Applications of the LP approach

Although feasibility issues of the stable room-
mates problem can be settled in O�n2� time which
is asymptotically optimal, we feel that it is still of
interest to study the roommates problem from a
polyhedral perspective; in part, because this ap-
proach allows us to use the the well-developed
linear programming theory in elegant ways. It also
allows us to unify the treatment of many of the

known results. We have described various appli-
cations of this approach in our previous paper [14].
In this section, we describe further applications of
the LP approach to the roommates problem.

First we look at the ``minimum regret'' version
of the roommates problem. Here, in seeking a
``minimum regret'' stable matching, we try to
make the person who is worst-o� as happy as
possible; a person's happiness is measured by the
position of his roommate in his preference list. The
regret of a person i, when matched to person j, is
given by r�i; j�, where r�i; j� indicates the rank of
person j in i's list. It is well-known that the mini-
mum regret version is solvable in O�n2� (cf. Ref.
[6]) which is asymptotically optimal. As an appli-
cation of the LP approach, we show that this
problem can be solved via a single LP.

The key tool needed is Theorem 3. Let

d�i; j� � r�i; j�p;
where p is selected so that

r�i; j�P > 4nr�k; l�p; whenever r�i; j� > r�k; l�:

Theorem 4. The solution obtained by the cutting
plane heuristic for the problem: minfdx: x 2 �PSR�g
is the minimum regret stable roommates solution.

In fact, the above theorem can be generalized
further. For each person i, consider the following
min±max deviation problem:

�MMD� min max
i
jr�i; j�

�
ÿ D�i�j: xij � 1

�
;

where D�i� denote the desired rank of person i's
roommate on his list, and the minimization is over
all feasible vectors x that de®ne a stable room-

Table 2

Feasible instances

Size �PFSM� �PSR� Mean S.D. Avg/Max

10 35 92 472.18 31.74 1.09/1.17

20 7 71 915.78 72.58 1.10/1.19

30 1 60 1392.54 86.80 1.13/1.24

40 0 44 1900.86 91.16 1.16/1.30

50 0 44 2398.51 115.72 1.19/1.36

60 0 47 2811.09 123.50 1.21/1.37
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mates solution. For the rest of this section, we will
write (MMD) as an abbreviation for the min±max
deviation problem.

The minimum regret problem can be reduced to
the above, with D�i� � 0 for all i. We show next
that (MMD) can also be solved in polynomial time
via the LP approach.

Let

d�i; j� � jr�i; j� ÿ D�i�jp;
where p is selected so that

jr�i; j� ÿ D�i�jP > 4njr�k; l� ÿ D�k�jp;
whenever

jr�i; j� ÿ D�i�j > jr�k; l� ÿ D�k�j:
Note that p is polynomially bounded, as we can

set p to be log�4n�= log��nÿ 1�=�nÿ 2�� �
O�n log�n��. Furthermore, d�i; j� > d�i; k� if and
only if jr�i; j� ÿ D�i�j > jr�k; l� ÿ D�k�j, so that
Theorem 3 holds for the cost function d.

Theorem 5. The solution obtained by the cutting
plane heuristic for the problem minfdx: x 2 �PSR�g
is an optimal stable roommates solution to (MMD).

Proof. Suppose not. Let x� (resp. x0) be an optimal
(resp. heuristic) solution to (MMD). Let �k; l� be a
match with the maximum deviation in x�, i.e.
jr�k; l� ÿ D�k�j is maximum among all edges �i; j�
with x�ij � 1. Furthermore, suppose jr�i; j� ÿ D�i�j
> jr�k; l� ÿ D�k�j for some �i; j� such that x0�i; j�
� 1. Then d�i; j� � jr�i; j� ÿ D�i�jP > 4n jr�k; l� ÿ
D�k�jp � 4nd�k; l�. In this case, dx0 > d�i; j� >
4nd�k; j� > 2dx�, which contradicts the fact that
x0 is within 2 times of the optimal solution for the
problem minfdx: x 2 �PSR�g. h

A major issue in the study of the stable room-
mates problem is fairness. The egalitarian objec-
tive function attempts to optimize the total social
welfare by minimizing the sum

P
i

P
j 6�i r�i; j�xij.

The minimum regret model focused instead on the
individual welfare, by attempting to minimize the
maximum regret (maxfr�i; j�xij: i 6� jg) in the sta-
ble roommates solution. While the former is NP-
hard, the latter is easy. In general, however, the
choice of the ideal roommates solution should be

based on a proper trade-o� between the total
welfare (egalitarian model) and the individual
welfare (min-regret model). In the rest of this
section, we propose an LP model to achieve this.
Our model performs the trade-o� of the two
functions by using two parameters a and b as
follows:

min a
X

i

X
j 6�i

r�i; j�xij

 !
� bW

s:t:X
j

xi;j � 1; 8i; �7�X
l<ji

xl;j �
X
l<ij

xi;l � xi;j6 1; 8i; j; �8�X
j 6�i

r�i; j�xij6W; 8i; �9�

XC

k�0

S�ikÿ1; ik; ik�1�6 C � 1

2

� �
;

ikÿ1 <ik ik�1; k � 0; . . . ;C; �10�
xi;j P 0; 8i; j: �11�
Let �PBEI� denote the set of fractional solutions
that satis®es constraints (7)±(11) in the above
balanced egalitarian/individual formulation. By
varying the parameters a and b, the above model
allows us to ®nd a stable roommates solution
which has the right mix of the egalitarian and min-
regret solutions.

This model is NP-hard, as it includes the egal-
itarian model as a special case. However, we show
that the following procedure returns a near-opti-
mal solution.

Step 1. Solve the LP over �PBEI�. If �PBEI� is
empty, the problem has no feasible stable room-
mates solution. Otherwise, proceed to Step 2.

Step 2. Round the fractional solution (as in
Section 2) to obtain a stable roommate solution.

Theorem 6. The solution obtained by the above
procedure is a stable roommates solution whose cost
is within twice the optimal cost.

Proof of Theorem 5. Let M denote the stable
matching obtained by the rounding procedure,
and x� the optimal fractional solution.
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From the proof to Theorem 3, we haveX
�i;j�2M

�r�i; j� � r�j; i��6 2
X
�r�i; j� � r�j; i��x�i;j:

This follows mainly from the fact that if �i; j� 2 M ,
then the interval corresponding to x�i;j spans �a; b�
where a < 1/2 and b P 1/2 or a6 1/2 and b > 1/2.
This geometric property also implies

r�i; j�6 2
X
k 6�i

r�i; k�x�i;k:

Hence

max
�i;j�2M

r�i; j�6 2W;

and the result follows. h

In general, solving over �PBEI� can be di�cult
due to the exponential number of odd cyclic con-
straints. Our heuristic can be easily adapted to
handle this problem, by replacing its Step 1 by the
following

Step 1(a). Solve the LP over �PBEI�, excluding
the set of odd cyclic preference inequalities. If
there is no fractional solution, the problem has no
feasible stable roommates solution. Otherwise,
proceed to Step 1(b).

Step 1(b). Round the fractional solution to
obtain a partial matching and (possibly) a union of
disjoint cycles.

Step 1(c). Test for odd cycles in an auxiliary
graph associated with the solution obtained in
Step 1(b). If no odd cycle is found, go to Step 2,
else use the odd cycle to construct a violated in-
equality for the fractional solution. Add the vio-
lated inequalities to the partial LP formulation
and re-optimize. Repeat Step 1(b).Again, we have
the following theorem.

Theorem 7. The solution obtained by the above
cutting plane heuristic is a stable roommates solu-
tion with cost within two times of the optimal cost.

6. Conclusions

In this paper, we study the stable roommates
problem from a polyhedral perspective. We pro-

pose a reasonably e�cient cutting plane heuristic
for the classical NP-hard egalitarian stable room-
mates problem. Our computational results on
randomly generated instances show that its typical
performance bound is within 6% of the optimal for
randomly generated instances. For a di�erent class
of problem instances, we show that the observed
worst case gap between the LP relaxation and its
optimal can be as large as 37%.

We describe how the LP approach can be used
to generate near optimal solutions for a general
stable roommates model that incorporates the
egalitarian and min-regret objective function. For
the pure min-regret version (and its generalization,
the min±max deviation problem), we show that in
fact the LP approach can be used to construct an
optimal solution. We also propose a new LP
model to address fairness issues in the roommates
problem. Our approach gives rise to a 2-approxi-
mation algorithm for this problem.
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