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1 Introduction

This paper is motivated by a study of the mechanism used to assign primary
school students in Singapore to secondary schools. The assignment process re-
quires that primary school students submit a rank ordered list of six schools
to the Ministry of Education. Students are then assigned to secondary schools
based on their preferences, with priority going to those with the highest exami-
nation scores on the Primary School Leaving Examination (PSLE). The current
matching mechanism is plagued by several problems, and a satisfactory resolu-
tion of these problems necessitates the use of a stable matching mechanism. In
fact, the student-optimal and school-optimal matching mechanisms of Gale and
Shapley [2] are natural candidates.

Stable matching problems were first studied by Gale and Shapley [2]. In a
stable marriage problem we have two finite sets of players, conveniently called the
set of men (M) and the set of women (W ). We assume that every member of each
set has strict preferences over the members of the opposite sex. In the rejection
model, the preference list of a player is allowed to be incomplete in the sense that
players have the option of declaring some of the members of the opposite sex as
unacceptable; in the Gale-Shapley model we assume that preference lists of the
players are complete. A matching is just a one-to one mapping between the two
sexes; in the rejection model, we also include the possibility that a player may be
unmatched, i.e. the player’s assigned partner in the matching is himself/herself.
The matchings of interest to us are those with the crucial stability property,
defined as follows: A matching µ is said to be unstable if there is a man-woman
pair, who both prefer each other to their (current) assigned partners in µ; this
pair is said to block the matching µ, and is called a blocking pair for µ. A
stable matching is a matching that is not unstable. The significance of stability
is best highlighted by a system where acceptance of the proposed matching is
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voluntary. In such a setting, an unstable matching cannot be expected to remain
intact, as the blocking pair(s) would soon discover that they could both improve
their match by joint action; the man and the woman involved in a blocking pair
could just “divorce” their respective partners and “elope.” To put this model
in context, the students play the role of “women” and the secondary schools
play the role of the “men.” Observe that there is a crucial difference between
the stable marriage model as described here, and the problem faced by the
primary school students in Singapore; in the latter, many “women” (students)
can be assigned to the same “man” (secondary school), whereas in the former we
require that the matching be one-to-one. In what follows, we shall restrict our
attention to the one-to-one marriage model; nevertheless, the questions studied
here, and the ideas involved in their resolution are relevant to the many-to-one
marriage model as well.

One of the main difficulties with using the men-optimal stable matching
mechanism is that it is manipulable by the women: some women can intentionally
misrepresent their preferences to obtain a better stable partner. Such (strategic)
questions have been studied for the stable marriage problem by mathematical
economists and game theorists; essentially, this approach seeks to understand
and quantify the potential gains of a deceitful player. Roth [7] proved that when
the men-optimal stable-matching mechanism is used, a man will never be better
off by falsifying his preferences, if all the other people in the problem reveal their
true preferences. Falsifying preferences will at best result in the (original) match
that he obtains when he reveals his true preferences. Gale and Sotomayor [4]
showed that when the man-propose algorithm is used, a woman w can still force
the algorithm to match her to her women-optimal partner, denoted by µ(w), by
falsifying her preference list. The optimal cheating strategy for woman w is to
declare men who rank below µ(w) as unacceptable. Indeed, the cheating strat-
egy proposed by Gale and Sotomayor is optimal in the sense that it enables the
women to obtain their women-optimal stable partner even when the man-propose
mechanism is being adopted. Prior to this study, we know of no analogous results
when the women are required to submit complete preference lists. This question
is especially relevant to the Singapore school-admissions problem: All assign-
ments are done via the centralized posting exercise, and no student is allowed
to approach the schools privately for admission purposes. In fact, in the current
system, students not assigned to a school on their list are assigned to schools
according to some pre-determined criterion set by the Ministry. Thus effectively
this is a matching system where the students are not allowed to remain “single”
at the end of the posting exercise. To understand whether the stable matching
mechanism is a viable alternative, we first need to know whether there is any
incentive for the students to falsify their preferences, so that they can increase
their chances of being assigned to “better” schools. The one-to-one version of
this problem is exactly the question studied in this paper: in the stable marriage
model with complete preferences, with the men-optimal matching mechanism,
is there an incentive for the women to cheat? If so, what is the optimal cheating
strategy for a woman? To our knowledge, the only result known about this prob-
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lem is an example due to Josh Benaloh (cf. Gusfield and Irving [5]), in which
the women lie by permuting their preference lists, and still manage to force the
men-optimal matching mechanism to return the women-optimal solution.

2 Optimal Cheating in the Stable Marriage Problem

Before we derive the optimal cheating strategy we consider a (simpler) question:
Suppose woman w is allowed to reject proposals. Is it possible for woman w to
identify her women-optimal partner by observing the sequence of proposals in
the men-propose algorithm? Somewhat surprisingly, the answer is yes! Our algo-
rithm to compute the optimal cheating strategy is motivated by the observation
that if a woman simply rejects all the proposals made to her, then the best (ac-
cording to her true preference list) man among those who have proposed to her
is her women-optimal partner. Hence by rejecting all her proposals, a woman
can extract information about her best possible partner. Our algorithm for the
optimal cheating strategy builds on this insight: the deceitful woman rejects as
many proposals as possible, while remaining engaged to some man who proposed
earlier in the algorithm. Using a backtracking scheme, the deceitful woman can
use the matching mechanism repeatedly to find her optimal cheating strategy.

2.1 Finding Your Optimal Partner

We first describe algorithm OP—an algorithm to compute the women-optimal
partner for w using the man-propose mechanism. (Recall that we do this under
the assumption that woman w is allowed to remain single.)

Algorithm OP

1. Run the man-propose algorithm, and reject all proposals made to w. At the
end, w and a man, say m, will remain single.

2. Among all the men who proposed to w in Step 1, let the best man (according
to w) be m1.

Theorem 1. m1 is the women-optimal partner for w.

Proof: Let µ(w) denote the women-optimal partner for w. We modify w’s pref-
erence list by inserting the option to remain single in the list, immediately after
µ(w). (We declare all men that are inferior to µ(w) as unacceptable to w.) Con-
sequently, in the man-propose algorithm, all proposals inferior to µ(w) will be
rejected. Nevertheless, since there exists a stable matching with w matched to
µ(w), our modification does not destroy this solution. It is also well known that
the set of people who are single is the same for all stable matchings (cf. Roth
and Sotomayor [8], pg. 42). Thus, w must be matched in all stable matchings
with the modified preference list. The men-optimal matching for this modified
preference list must match w to µ(w). In particular, µ(w) must have proposed to
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w during the execution of the man-propose algorithm. Note that until µ(w) pro-
poses to w, the man-propose algorithm for the modified list runs exactly in the
same way as in Step 1 of OP . The difference is that Step 1 of OP will reject the
proposal from µ(w), while the man-propose algorithm for the modified list will
accept the proposal from µ(w), as w prefers µ(w) to being single. Hence, clearly
µ(w) is among those who proposed to w in Step 1 of OP , and so m1 ≥w µ(w).

Suppose m1 >w µ(w). Consider the modified list in which we place the option
of remaining single immediately after m1. We run the man-propose algorithm
with this modified list. Again, until m1 proposes to w, the algorithm runs ex-
actly the same as in Step 1 of OP , after which the algorithm returns a stable
partner for w who is at least as good as m1. This gives rise to a contradiction
as we assumed µ(w) to be the best stable partner for w.

Observe that under this approach, the true preference list of w is only used
to compare the men who have proposed to w. We do not need to know her exact
preference list; we only need to know which man is the best among a given set of
men, according to w. Hence the information set needed here to find the women-
optimal partner of w is much less than that needed when the woman-propose
algorithm is used. This is useful for the construction of the cheating strategy as
the information on the “optimal” preference list is not given a-priori and is to
be determined.

2.2 Cheating Your Way to a Better Marriage

Observe that the preceding procedure only works when woman w is allowed
to remain single throughout the matching process, so that she can reject any
proposal made to her in the algorithm. Suppose we do not give the woman an
option to declare any man as unacceptable. How do we determine her best stable
partner? This is essentially a restatement of our original question: who is the
best stable partner woman w can have when the man-propose algorithm is used
and when she can lie only by permuting her preference list.

A natural extension of Algorithm OP is for woman w to: (i) accept a proposal
first, and then reject all future proposals. (ii) From the list of men who proposed
to w but were rejected, find her most preferred partner; repeat the Gale-Shapley
algorithm until the stage when this man proposes to her. (iii) Reverse the earlier
decision and accept the proposal from this most preferred partner, and continue
the Gale-Shapley algorithm by rejecting all future proposals. (iv) Repeat (ii)
and (iii) until the woman cannot find a better partner from all other propos-
als. Unfortunately, this elegant strategy does not always yield the best stable
partner a woman can achieve under our model. The reason is that this greedy
improvement technique does not allow for the possibility of rejecting the cur-
rent best partner, in the hope that this rejection will trigger a proposal from
a better would-be partner. Our algorithm in this paper does precisely that. Let
P (w) = {m1, m2, . . . mn} be the true preference list of woman w, and let
P (m, w) be a preference list for w that returns m as her men-optimal partner.
Our algorithm constructs P (m, w) iteratively, and consists of the following steps:
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1. Run the man-propose algorithm with the true preference list P (w) for woman
w. Keep track of all men who propose to w. Let the men-optimal partner for
w be m, and let P (m, w) be the true preference list P (w).

2. Suppose mj proposed to w in the Gale-Shapley algorithm. By moving mj to
the front of the list P (m, w), we obtain a preference list for w such that the
men-optimal partner will be mj . Let P (mj , w) be this altered list. We say
that mj is a potential partner for w.

3. Repeat step 2 for every man who proposed to woman w in the algorithm;
after this, we say that we have exhausted man m, the men-optimal partner
obtained with the preference list P (m, w).

4. If a potential partner for w, say man u, has not been exhausted, run the
Gale-Shapley algorithm with P (u, w) as the preference list of w. Identify
new possible partners and their associated preference lists, and classify man
u as exhausted.

5. Repeat Step 4 until all possible partners of w are exhausted. Let N denote
the set of all possible (and hence exhausted) partners for w.

6. Among the men in N let ma be the man woman w prefers most. Then
P (ma, w) is an optimal cheating strategy for w.

The men in the set N at the end of the algorithm have the following crucial
properties:

– For each man m in N , there is an associated preference list for w such the
Gale-Shapley algorithm returns m as the men-optimal partner for w with
this list.

– All other proposals in the course of the Gale-Shapley algorithm come from
other men in N . (Otherwise, there will be some possible partners who are
not exhausted.)

With each run of the Gale-Shapley algorithm, we exhaust a possible partner,
and so we need at most n Gale-Shapley algorithms before termination.

Theorem 2. π = P (ma, w) is an optimal strategy for woman w.

Proof: (by contradiction) We use the convention that r(m) = k if man m is the
kth man on woman w’s list. Let π∗ = {mp1, mp2, . . . , mpn} be the preference list
that gives rise to the best stable partner for w under the man-propose algorithm.
Let this man be denoted by mpb, and let woman w strictly prefer mpb to ma

(under her true preference list). Recall that we use r(m) to represent the rank
of m under the true preferences of w; by our assumption, r(mpb) < r(ma),
i.e., mpb is ranked higher than ma. Observe that the order of the men who
do not propose to woman w is irrelevant and does not affect the outcome of
the Gale-Shapley’s algorithm. Furthermore, men of rank higher than r(mpb) do
not get to propose to w, otherwise we can cheat further and improve on the
best partner for w, contradicting the optimality of π∗. Thus we can arbitrarily
alter the order of these men, without affecting the outcome. Without loss of
generality, we may assume that 1 = r(mp1) < 2 = r(mp2) < . . . < q = r(mpb).
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Since r(mpb) < r(ma), ma will appear anywhere after mpb in π∗: thus, ma can
appear in any position from mpb+1 to mpn.

Now, we modify π∗ such that all men who (numerically) rank lower than ma

but higher than mpb (under true preferences) are put in order according to their
ranks. This is accomplished by moving all these men before ma in π∗. With that
alteration, we obtain a new list π̃ = {mq1, mq2, . . . , mqn} such that:

(i) 1 = r(mq1) < 2 = r(mq2) < . . . < s = r(mqs).

(ii) mq1 = mp1 . . . mqb = mpb, where the position of those men who rank higher
than mpb is unchanged.

(iii) r(ma) = s + 1, ma ∈ {mqs+1, mqs+2, . . . mqn}.
(iv) The men in the set {mqs+1, mqs+2, . . . mqn} retain their relative position

with respect to one another under π∗.

Note that the men-optimal partner of w under π̃ cannot come from the set
{mqs+1, mqs+2, . . . mqn}. Otherwise, since the set of men who proposed in the
course of the algorithm must come from {mqs+1, mqs+2, . . .mqn}, and since the
preference list π∗ retains the relative order of the men in this set, the same
partner would be obtained under π∗. This leads to a contradiction as π∗ is
supposed to return a better partner for w. Hence, we can see that under π̃, we
already get a better partner than under π.

Now, since the preference list π returns ma with r(ma) = s + 1, we may
conclude that the set N (obtained from the final stage of the algorithm) does not
contain any man of rank smaller than s+1. Thus N ⊆ {mqs+1, mqs+2, . . . mqn}.
Suppose mqs+1, mqs+2, . . . , mqw do not belong to the set N , and mqw+1 is the
first man after mqs who belongs to the set N . By construction of N , there
exists a permutation π̂ with mqw+1 as the stable partner for w under the men-
optimal matching mechanism. Furthermore, all of those who propose to w in
the course of the algorithm are in N , and hence they are no better than ma to
w. Furthermore, all proposals come from men in {mqw+1, mqw+2, . . .mqn}, since
N ⊆ {mqs+1, mqs+2, . . .mqn}.

By altering the order of those who did not propose to w, we may assume that
π̂ is of the form {mq1, mq2, . . . , mqs−1, mqs, . . . , mqw, mqw+1, . . .}, where the first
qw+1 men in the list are identical to those in π̃. But, the men-optimal stable so-
lution obtained using π̂ must also be stable under π̃, since w is match to mqw+1,
and the set of men she strictly prefers to mqw+1 is identical in both π̂ and π̃.
This is a contradiction as π̃ is supposed to return a men-optimal solution better
than ma. Thus π∗ does not exist, and so π is optimum and ma is the best stable
partner w can get by permuting her preference list.

We now present an example to illustrate how our heuristic works.
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Example 1: Consider the following stable marriage problem:

1 2 3 4 5 1 1 1 2 3 5 4
2 3 4 5 1 2 2 2 1 4 5 3
3 5 1 4 2 3 3 3 2 5 1 4
4 3 1 2 4 5 4 4 5 1 2 3
5 1 5 2 3 4 5 5 1 2 3 4

True Preferences of the Men True Preferences of the Women

We construct the optimal cheating strategy for woman 1.

– Step 1: Run Gale-Shapley with the true preference list for woman 1; her men-
optimal partner is man 5. Man 4 is the only other man who proposes to her
during the Gale-Shapley algorithm. So P (man5, woman1) = (1, 2, 3, 5, 4).

– Step 2-3: Man 4 is moved to the head of woman 1’s preference list; i.e.,
P (man4, woman1) = (4, 1, 2, 3, 5). Man 5 is exhausted, and man 4 is a
potential partner.

– Step 4: As man 4 is not yet exhausted, we run the Gale-Shapley algorithm
with P (man4, woman1) as the preference list for woman 1. Man 4 will be
exhausted after this, and man 3 is identified as a new possible partner, with
P (man3, woman1) = (3, 4, 1, 2, 5).

– Repeat Step 4: As man 3 is not yet exhausted, we run Gale-Shapley with
P (man3, woman1) as the preference list for woman 1. Man 3 will be ex-
hausted after this. No new possible partner is found, and so the algorithm
terminates.

Example 1 shows that woman 1 could cheat and get a partner better than the
men-optimal solution. However, her women-optimal partner in this case turns
out to be man 1. Hence Example 1 also shows that woman 1 cannot always assure
herself of getting the women-optimal partner through cheating, in contrast to
the case when rejection is allowed in the cheating strategy.

3 Strategic Issues in the Gale-Shapley Problem

By requiring the women to submit complete preference lists, we are clearly re-
stricting their strategic options, and thus many of the strong structural results
known for the model with rejection may not hold in this model. This is good
news, for it reduces the incentive for a woman to cheat. In the rest of this section,
we present some examples to show that the strategic behaviour of the women
can be very different under the models with and without rejection.

3.1 The Best Possible Partners (Obtained from Cheating) May Not
Be Women-Optimal

In the two-sided matching model with rejection, it is not difficult to see that the
women can always force the man-propose algorithm to return the women-optimal
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solution (e.g. each woman rejects all those who are inferior to her women-optimal
partner). In our model, where rejection is forbidden, the influence of the women
is far less, even if they collude. A simple example is when each woman is ranked
first by exactly one man. In this case, there is no conflict among the men, and
in the men-optimal solution, each man is matched to the woman he ranks first.
(This situation arises whenever each man ranks his men-optimal partner as his
first choice.) In this case, the algorithm will terminate with the men-optimal
solution, regardless of how the women rank the men in their lists. So ruling out
the strategic option of remaining single for the women significantly affects their
ability to change the outcome of the game by cheating.

By repeating the above analysis for all the other women in Example 1, we
conclude that the best possible partner for woman 1, 2, 3, 4, and 5 are re-
spectively man 3, 1, 2, 4, and 3. An interesting observation is that woman 5
cannot benefit by cheating alone (she can only get her men-optimal partner no
matter how she cheats). However, if woman 1 cheats using the preference list
(3, 4, 1, 2, 5), woman 5 will also benefit by being matched to man 5, who is first
in her list.

3.2 Multiple Strategic Equilibria

Suppose each woman w announces a preference list P (w). The set of strategies
{π(1), π(2), . . . , π(n)} is said to be in strategic equilibrium if none of the women
has an incentive to deviate unilaterally from this announced strategy. It is easy
to see that if a woman benefits from announcing a different permutation list
(instead of her true preference list), then every other woman would also benefit,
i.e. every other woman will get a partner who is at least as good as her men-
optimal partner (cf. Roth and Sotomayor [8] ).

Theorem 3. If a single woman can benefit by cheating, then the game has mul-
tiple strategic equilibria.

Proof: A strategic equilibrium can be constructed by repeating the proposed
cheating algorithm iteratively, improving the partner for some woman at each
iteration. (Notice that the partner of a woman at the end of iteration j is at
least as good as her partner at the beginning of the iteration j.) The algorithm
will thus terminate at a strategic equilibrium, where at least one woman will
be matched to someone whom she (strictly) prefers to her men-optimal part-
ner. Another strategic equilibrium is obtained if each woman w announces a
list of the form {m1, m2, . . . , mn}, with m1 being her men-optimal partner and
m2, m3, . . . , mn in the same (relative) order as in her true preference list. Clearly
the man-propose algorithm will match woman w to m1, since moving m1 to the
front of w’s preference list does not affect the sequence of proposals in the man-
propose algorithm. No woman can benefit from cheating, as all other women
are already matched to their announced first-ranked partner. Thus we have con-
structed two strategic equilibria.
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3.3 Does It Pay To Cheat?

Roth [7] shows that under the man-propose mechanism, the men have no incen-
tives to alter their true preference lists. In the rejection model, however, Gale
and Sotomayor [3] show that a woman has an incentive to cheat as long as she
has at least two distinct stable partners. Pittel [6] shows that the average num-
ber of stable solutions is asymptotic to nlog(n)/e, and with high probability,
the rank of the women-optimal and men-optimal partner for the woman are re-
spectively log(n) and n/log(n). Thus in typical instances of the stable marriage
game under the rejection model, most of the women will not reveal their true
preference lists.

Many researchers have argued that the troubling implications from these
studies are not relevant in practical stable marriage game, as the model assumes
that the women have full knowledge of each individual’s preference list and the
set of all the players in the game. For the model we consider, it is natural to
ask whether it pays (as in the rejection model) for a typical woman to solicit
information about the preferences of all other participants in the game. We run
the cheating algorithm on 1000 instances, generated uniformly at random, for
n = 8 and the number of women who benefited from cheating is tabulated in
Table 1.

Number of Women who benefited 0 1 2 3 4 5 6 7 8
Number of observations 740 151 82 19 7 1 0 0 0

Table 1

Interestingly, the number of women who can gain from cheating is surprisingly
low. In fact, in 74% of the instances, the men-optimal solution is their only
option, no matter how they cheat. The average percentage of women who benefit
from cheating is merely 5.06%.

To look at the typical strategic behaviour on larger instances of the stable
marriage problem, we run the heuristic on 1000 random instances for n = 100.
The cumulative plot is shown in Figure 1. In particular, in more than 60% of
the instances at most 10 women (out of 100) benefited from cheating, and in
more than 96% of the instances at most 20 women benefited from cheating.
The average number of women who benefited from cheating is 9.52%. Thus, the
chances that a typical woman can benefit from acquiring complete information
(i.e., knowing the preferences of the other players) is pretty slim in our model.

We have repeated the above experiment for large instances of the Gale-
Shapley model. Due to computational requirements, we can only run the ex-
periment on 100 random instances of the problem with 500 men and women.
Again the insights obtained from the 100 by 100 cases carry over: the number
of women who benefited from cheating is again not more than 10% of the to-
tal number of the women involved. In fact, the average was close to 6% of the
women population in the problem. This suggests that the number of women who
can benefit from cheating in the Gale-Shapley model with n women grows at a
rate which is slower than a linear function of n. However, detailed probabilistic
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Fig. 1. Benefits of cheating: cumulative plot for n = 100

analysis of this phenomenon is a challenging problem that is beyond the scope
of the present paper.

A practical advice for all women in the stable marriage game, using men-
optimal matching mechanism: “don’t bother to cheat !”
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