
Optimal Crawling Strategies for Web Search Engines

J.L. Wolf, M.S. Squillante,
P.S. Yu

IBM Watson Research Center

fjlwolf,mss,psyug@us.ibm.com

J. Sethuraman
IEOR Department

Columbia University

jay@ieor.columbia.edu

L. Ozsen
OR Department

Northwestern University

ozsen@yahoo.com

ABSTRACT
Web Search Engines employ multiple so-called crawlers to
maintain local copies of web pages. But these web pages
are frequently updated by their owners, and therefore the
crawlers must regularly revisit the web pages to maintain
the freshness of their local copies. In this paper, we propose
a two-part scheme to optimize this crawling process. One
goal might be the minimization of the average level of stale-
ness over all web pages, and the scheme we propose can solve
this problem. Alternatively, the same basic scheme could
be used to minimize a possibly more important search en-
gine embarrassment level metric: The frequency with which
a client makes a search engine query and then clicks on a
returned url only to �nd that the result is incorrect. The
�rst part our scheme determines the (nearly) optimal crawl-
ing frequencies, as well as the theoretically optimal times to
crawl each web page. It does so within an extremely gen-
eral stochastic framework, one which supports a wide range
of complex update patterns found in practice. It uses tech-
niques from probability theory and the theory of resource al-
location problems which are highly computationally eÆcient
{ crucial for practicality because the size of the problem in
the web environment is immense. The second part employs
these crawling frequencies and ideal crawl times as input,
and creates an optimal achievable schedule for the crawlers.
Our solution, based on network
ow theory, is exact as well
as highly eÆcient. An analysis of the update patterns from
a highly accessed and highly dynamic web site is used to
gain some insights into the properties of page updates in
practice. Then, based on this analysis, we perform a set of
detailed simulation experiments to demonstrate the quality
and speed of our approach.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; G.2,3 [Mathematics of Computing]: Discrete
Mathematics, Probability and Statistics

General Terms
Algorithms, Performance, Design, Theory

1. INTRODUCTION
Web search engines play a vital role on the World Wide

Web, since they provide for many clients the �rst pointers to

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

web pages of interest. Such search engines employ crawlers
to build local repositories containing web pages, which they
then use to build data structures useful to the search pro-
cess. For example, an inverted index is created that typically
consists of, for each term, a sorted list of its positions in the
various web pages.
On the other hand, web pages are frequently updated by

their owners [8, 21, 27], sometimes modestly and sometimes
more signi�cantly. A large study in [2] notes that 23% of
the web pages change daily, while 40% of commercial web
pages change daily. Some web pages disappear completely,
and [2] reports a half-life of 10 days for web pages. The
data gathered by a search engine during its crawls can thus
quickly become stale, or out of date. So crawlers must reg-
ularly revisit the web pages to maintain the freshness of the
search engine's data.
In this paper, we propose a two-part scheme to optimize

the crawling (or perhaps, more precisely, the recrawling)
process. One reasonable goal in such a scheme is the mini-
mization of the average level of staleness over all web pages,
and the scheme we propose here can solve this problem.
We believe, however, that a slightly di�erent metric pro-
vides greater utility. This involves a so-called embarrass-

ment metric: The frequency with which a client makes a
search engine query, clicks on a url returned by the search
engine, and then �nds that the resulting page is inconsistent
with respect to the query. In this context, goodness would
correspond to the search engine having a fresh copy of the
web page. However, badness must be partitioned into lucky
and unlucky categories: The search engine can be bad but
lucky in a variety of ways. In order of increasing luckiness
the possibilities are: (1) The web page might be stale, but
not returned to the client as a result of the query; (2) The
web page might be stale, returned to the client as a result
of the query, but not clicked on by the client; and (3) The
web page might be stale, returned to the client as a result of
the query, clicked on by the client, but might be correct with
respect to the query anyway. So the metric under discussion
would only count those queries on which the search engine
is actually embarrassed: The web page is stale, returned to
the client, who clicks on the url only to �nd that the page
is either inconsistent with respect to the original query, or
(worse yet) has a broken link. (According to [17], and noted
in [6], up to 14% of the links in search engines are broken,
not a good state of a�airs.)
The �rst component of our proposed scheme determines

the optimal number of crawls for each web page over a �xed
period of time called the scheduling interval, as well as deter-

136

mining the theoretically optimal (ideal) crawl times them-
selves. These two problems are highly interconnected. The
same basic scheme can be used to optimize either the stale-
ness or embarrassment metric, and is applicable for a wide
variety of stochastic update processes. The ability to han-
dle complex update processes in a general uni�ed framework
turns out to be an important advantage and a contribution
of our approach in that the update patterns of some classes
of web pages appear to follow fairly complex processes, as
we will demonstrate. Another important model supported
by our general framework is motivated by, for example, an
information service that updates its web pages at certain
times of the day, if an update to the page is necessary. This
case, which we call quasi-deterministic, is characterized by
web pages whose updates might be characterized as some-
what more deterministic, in the sense that there are �xed
potential times at which updates might or might not oc-
cur. Of course, web pages with deterministic updates are a
special case of the quasi-deterministic model. Furthermore,
the crawling frequency problem can be solved under addi-
tional constraints which make its solution more practical in
the real world: For example, one can impose minimum and
maximum bounds on the number of crawls for a given web
page. The latter bound is important because crawling can
actually cause performance problems for web sites.
This �rst component problem is formulated and solved us-

ing a variety of techniques from probability theory [23, 28]
and the theory of resource allocation problems [12, 14]. We
note that the optimization problems described here must
be solved for huge instances: The size of the World Wide
Web is now estimated at over one billion pages, the update
rate of these web pages is large, a single crawler can crawl
more than a million pages per day, and search engines em-
ploy multiple crawlers. (Actually, [2] notes that their own
crawler can handle 50-100 crawls per second, while others
can handle several hundred crawls per second. We should
note, however, that crawling is often restricted to less busy
periods in the day.) A contribution of this paper is the in-
troduction of state-of-the-art resource allocation algorithms
to solve these problems.
The second component of our scheme employs as its in-

put the output from the �rst component. (Again, this con-
sists of the optimal numbers of crawls and the ideal crawl
times). It then �nds an optimal achievable schedule for the
crawlers themselves. This is a parallel machine scheduling
problem [3, 20] because of the multiple crawlers. Further-
more, some of the scheduling tasks have release dates, be-
cause, for example, it is not useful to schedule a crawl task on
a quasi-deterministic web page before the potential update
takes place. Our solution is based on network
ow theory,
and can be posed speci�cally as a transportation problem [1].
This problem must also be solved for enormous instances,
and again there are fast algorithms available at our disposal.
Moreover, one can impose additional real-world constraints,
such as restricted crawling times for a given web page.
We know of relatively few related papers in the research

literature. Perhaps the most relevant is [6]. (See also [2] for
a more general survey article.) In [6] the authors essentially
introduce and solve a version of the problem of �nding the
optimal number of crawls per page. They employ a stale-
ness metric and assume a Poisson update process. Their
algorithm solves the resulting continuous resource alloca-
tion problem by the use of Lagrange multipliers. In [7] the

authors also study a similar problem (Poisson updates, but
with general crawl time distributions), with weights pro-
portional to the page update frequencies. They present a
heuristic to handle large problem instances. The problem of
optimizing the number of crawlers is tackled in [26], based
on a queueing-theoretic analysis, in order to avoid the two
extremes of starvation and saturation. In summary, there is
some literature on the �rst component of our crawler opti-
mization scheme, though we have noted above several poten-
tial advantages of our approach. To our knowledge, this is
the �rst paper that meaningfully examines the correspond-
ing scheduling problem which is the second component of
our scheme.
Another important aspect of our study concerns the sta-

tistical properties of the update patterns for web pages. This
clearly is a critical issue for the analysis of the crawling prob-
lem, but unfortunately there appears to be very little in the
literature on the types of update processes found in prac-
tice. To the best of our knowledge, the sole exception is a
recent study [19] which suggests that the update processes
for pages at a news service web site are not Poisson. Given
the assumption of Poisson update processes in most previous
studies, and to further investigate the prevalence of Poisson
update processes in practice, we analyze the page update
data from a highly accessed web site serving highly dynamic
pages. A representative sample of the results from our anal-
ysis are presented and discussed. Most importantly, these
results demonstrate that the interupdate processes span a
wide range of complex statistical properties across di�erent
web pages and that these processes can di�er signi�cantly
from a Poisson process. By supporting in our general uni-
�ed approach such complex update patterns (including the
quasi-deterministic model) in addition to the Poisson case,
we believe that our optimal scheme can provide even greater
bene�ts in real-world environments.
The remainder of this paper is organized as follows. Sec-

tion 2 describes our formulation and solution for the twin
problems of �nding the optimal number of crawls and the
idealized crawl times. We loosely refer to this �rst compo-
nent as the optimal frequency problem. Section 3 contains
the formulation and solution for the second component of
our scheme, namely the scheduling problem. Section 4 dis-
cusses some issues of parameterizing our approach, includ-
ing several empirical results on update pattern distributions
for real web pages based on traces from a production web
site. In Section 5 we provides experimental results showing
both the quality of our solutions and their running times.
Section 6 contains conclusions and areas for future work.

2. CRAWLING FREQUENCY PROBLEM

2.1 General Framework
We formulate the crawling frequency problem within the

context of a general model framework, based on stochastic
marked point processes. This makes it possible for us to
study the problem in a uni�ed manner across a wide range
of web environments and assumptions. A rigorous formal
de�nition of our general framework and its important math-
ematical properties, as well as a rigorous formal analysis of
various aspects of our general framework, are beyond the
scope of the present paper. We therefore sketch here the
model framework and an analysis of a speci�c instance of
this model, referring the interested reader to the sequel for

137

additional technical details. Furthermore, see [24] for addi-
tional details on stochastic marked point processes.
We denote by N the total number of web pages to be

crawled, which shall be indexed by i. We consider a schedul-
ing interval of length T as a basic atomic unit of decision
making, where T is suÆciently large to support our model
assumptions below. The basic idea is that these scheduling
intervals repeat every T units of time, and we will make de-
cisions about one scheduling interval using both new data
and the results from the previous scheduling interval. Let
R denote the total number of crawls possible in a single
scheduling interval.
Let ui;n 2 IR+ denote the point in time at which the nth

update of page i occurs, where 0 < ui;1 < ui;2 < : : : � T ,
i 2 f1; 2; : : : ; Ng. Associated with the nth update of page i
is a mark ki;n 2 IK, where ki;n is used to represent all im-
portant and useful information for the nth update of page i
and IK is the space of all such marks (called the mark space).
Examples of possible marks include information on the prob-
ability of whether an update actually occurs at the cor-
responding point in time (e.g., see Section 2.3.3) and the
probability of whether an actual update matters from the
perspective of the crawling frequency problem (e.g., a min-
imal update of the page may not change the results of the
search engine mechanisms). The occurrences of updates to
page i are then modeled as a stationary stochastic marked
point process Ui = f(ui;n; ki;n) ; n 2 INg de�ned on the
state space IR+ � IK. In other words, Ui is a stochastic se-
quence of points fui;1; ui;2; : : :g in time at which updates
of page i occur, together with a corresponding sequence of
general marks fki;1; ki;2; : : :g containing information about
these updates.
A counting process Nu

i (t) is associated with the marked
point process Ui and is given by N

u
i (t) � maxfn : ui;n � tg,

t 2 IR+. This counting process represents the number of
updates of page i that occur in the time interval [0; t]. The
interval of time between the n�1st and nth update of page i
is given by Ui;n � ui;n � ui;n�1, n 2 IN, where we de�ne
ui;0 � 0 and ki;0 � ;. The corresponding forward and back-
ward recurrence times are given by Au

i (t) � ui;Nu
i
(t)+1 � t

and Bu
i (t) � t � ui;Nu

i
(t), respectively, t 2 IR+. In this

paper we shall make the assumption that the time inter-
vals Ui;n 2 IR+ between updates of page i are indepen-
dent and identically distributed (i.i.d.) following an arbi-
trary distribution function Gi(�) with mean ��1i > 0, and
thus the counting process Nu

i (t) is a renewal process [23,
28], i 2 f1; 2; : : : ; Ng. Note that ui;0 does not represent the
time of an actual update, and therefore the counting process
fNu

i (t) ; t 2 IR+g (starting at time 0) is, more precisely, an
equilibrium renewal process (which is an instance of a de-
layed renewal process) [23, 28].
Suppose we decide to crawl web page i a total of xi times

during the scheduling interval [0; T] (where xi is a non-
negative integer less than or equal to R), and suppose we
decide to do so at the arbitrary times 0 � ti;1 < ti;2 < : : : <
ti;xi � T . Our approach in this paper is based on computing
a particular probability function that captures, in a certain
sense, whether the search engine will have a stale copy of web
page i at an arbitrary time t in the interval [0; T]. From this
we can in turn compute a corresponding time-average stale-
ness estimate ai(ti;1; : : : ; ti;xi) by averaging this probability
function over all t within [0; T]. Speci�cally, we consider the
arbitrary time ti;j as falling within the interval Ui;Nu

i
(ti;j)+1

� -

� -� -

...

...

...

Bu
i (ti;j)

Ui;Nu
i
(ti;j)+1

ui;Nu
i
(ti;j) ti;j ui;Nu

i
(ti;j)+1 ti;j+1

Au
i (ti;j)

Figure 1: Example of Stationary Marked Point Pro-
cess Framework

between the two updates of page i at times ui;Nu
i
(ti;j) and

ui;Nu
i
(ti;j)+1, and our interest is in a particular time-average

measure of staleness with respect to the forward recurrence
time Au

i (ti;j) until the next update, given the backward re-
currence time Bu

i (ti;j). Figure 1 depicts a simple example
of this situation.
More formally, we exploit conditional probabilities to de-

�ne the following time-average staleness estimate

ai(ti;1; : : : ; ti;xi) =

1

T

xiX
j=0

Z ti;j+1

ti;j

�Z
1

0

P [A;B;C]

P [B]
gBu

i
(v)dv

�
dt; (1)

where A = fUi;ni;j+1 � t � ti;j + vg, B = fUi;ni;j+1 > vg,
C = fki;ni;j+1 2 Kg, ti;0 � 0, ti;xi+1 � T , ni;j � Nu

i (ti;j),
gBu

i
(�) is the stationary density for the backward recurrence

time, and K � IK is the mark set of interest for the staleness
estimate under consideration. Note that the variable v is
used to integrate over all possible values of Bu

i (ti;j) 2 [0;1).
Further observe the dependence of the staleness estimate on
the update patterns for web page i.
When K = IK (i.e., all marks are considered in the de�ni-

tion of the time-average staleness estimate), then the inner
integral above reduces as follows:

Z
1

0

Gi(t� ti;j + v)�Gi(v)

1�Gi(v)
gBu

i
(v)dv =

Z
1

0

�
1�

Gi(t� ti;j + v)

Gi(v)

�
gBu

i
(v)dv; (2)

where Gi(t) � 1�Gi(t) is the tail distribution of the interup-
date times Ui;n, n 2 IN. From standard renewal theory [23,
28], we have gBu

i
(t) = �iGi(t), and thus after some simple

algebraic manipulations we obtain

ai(ti;1; : : : ; ti;xi) =

1

T

xiX
j=0

Z ti;j+1

ti;j

�
1 � �i

Z
1

0

Gi(t� ti;j + v)dv

�
dt: (3)

Naturally we would also like the times ti;1; : : : ti;xi to be
chosen so as to minimize the time-average staleness estimate
ai(ti;1; : : : ; ti;xi), given that there are xi crawls of page i.
Deferring for the moment the question of how to �nd these
optimal values t�i;1; : : : t

�

i;xi
, let us de�ne the function Ai by

setting

Ai(xi) = ai(t
�

i;1; : : : ; t
�

i;xi): (4)

Thus, the domain of this function Ai is the set f0; : : : ; Rg.
We now must decide how to �nd the optimal values of the

xi variables. While one would like to choose xi as large as
possible, there is competition for crawls from the other web
pages. Taking all web pages into account, we therefore wish

138

to minimize the objective function

NX
i=1

wiAi(xi) (5)

subject to the constraints

NX
i=1

xi = R; (6)

xi 2 f0; : : : ; Rg: (7)

Here the weights wi will determine the relative importance
of each web page i. If each weight wi is chosen to be 1, then
the problem becomes one of minimizing the time-average
staleness estimate across all the web pages i. However, we
will shortly discuss a way to pick these weights a bit more
intelligently, thereby minimizing a metric that computes the
level of embarrassment the search engine has to endure.
The optimization problem just posed has a very nice form.

Speci�cally, it is an example of a so-called discrete, separa-
ble resource allocation problem. The problem is separable by
the nature of the objective function, written as the summa-
tion of functions of the individual xi variables. The problem
is discrete because of the second constraint, and a resource
allocation problem because of the �rst constraint. For de-
tails on resource allocation problems, we refer the interested
reader to [12]. This is a well-studied area in optimization
theory, and we shall borrow liberally from that literature.
In doing so, we �rst point out that there exists a dynamic

programming algorithm for solving such problems, which has
computational complexity O(NR2).
Fortunately, we will show shortly that the function Ai is

convex, which in this discrete context means that the �rst
di�erences Ai(j + 1) � Ai(j) are non-decreasing as a func-
tion of j. (These �rst di�erences are just the discrete ana-
logues of derivatives.) This extra structure makes it possible
to employ even faster algorithms, but before we can do so
there remain a few important issues. Each of these issues
is discussed in detail in the next three subsections, which
involve: (1) computing the weights wi of the embarrassment
level metric for each web page i; (2) computing the func-
tional forms of ai and Ai for each web page i, based on
the corresponding marked point process Ui; and (3) solving
the resulting discrete, convex, separable resource allocation
problem in a highly eÆcient manner.
It is important to point out that we can actually handle a

more general resource allocation constraint than that given
in Equation (7). Speci�cally, we can handle both minimum
and maximum number of crawls mi and Mi for each page i,
so that the constraint instead becomes xi 2 fmi; : : : ;Mig:
We can also handle other types of constraints on the crawls
that tend to arise in practice [4], but omit details here in
the interest of space.

2.2 Computing the Weights wi

Consider Figure 2, which illustrates a decision tree tracing
the possible results for a client making a search engine query.
Let us �x a particular web page i in mind, and follow the
decision tree down from the root to the leaves.
The �rst possibility is for the page to be fresh: In this case

the web page will not cause embarrassment to the search
engine. So, assume the page is stale. If the page is never
returned by the search engine, there again can be no em-
barrassment: The search engine is simply lucky in this case.

BAD BUT LUCKY

Query correct

Page not clicked

Page not returned

GOOD: Page fresh

UGLY: Query incorrect

Page clicked

Page returned

Page stale

Figure 2: Embarrassment Level Decision Tree

What happens if the page is returned? A search engine will
typically organize its query responses into multiple result
pages, and each of these result pages will contain the urls
of several returned web pages, in various positions on the
page. Let P denote the number of positions on a returned
page (which is typically on the order of 10). Note that the
position of a returned web page on a result page re
ects
the ordered estimate of the search engine for the web page
matching what the user wants. Let bi;j;k denote the proba-
bility that the search engine will return page i in position j
of query result page k. The search engine can easily estimate
these probabilities, either by monitoring all query results or
by sampling them for the client queries.
The search engine can still be lucky even if the web page i

is stale and returned: A client might not click on the page,
and thus never have a chance to learn that the page was
stale. Let cj;k denote the frequency that a client will click
on a returned page in position j of query result page k.
These frequencies also can be easily estimated, again either
by monitoring or sampling.
One can speculate that this clicking probability function

might typically decrease both as a function of the overall
position (k� 1)P + j of the returned page and as a function
of the page k on which it is returned. Assuming a Zipf-
like function [29, 15] for the �rst function and a geometric
function to model the probability of cycling through k � 1
pages to get to returned page k, one would obtain a click-
ing probability function that looks like the one provided in
Figure 3. (According to [4] there is some evidence that the
clicking probabilities in Figure 3 actually rise rather than
fall as a new page is reached. This is because some clients
do not scroll down { some do not even know how to do so.
More importantly, [4] notes that this data can actually be
collected by the search engine.)
Finally, even if the web page is stale, returned by the

search engine, and clicked on: The changes to the page
might not cause the results of the query to be wrong. This
truly lucky loser scenario can be more common than one
might initially suspect, because most web pages typically do
not change in terms of their basic content, and most client
queries will probably try to address this basic content. In
any case, let di denote the probability that a query to a stale

139

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Page 1 Page 2 Page 3 ... Page P

Position

P
ro

b
a

b
ili

ty
 o

f
C

lic
k
in

g

Probability of Clicking as Function of Page and Position

Figure 3: Probability of Clicking as Function of Po-
sition/Page

version of page i yields an incorrect response. Once again,
this parameter can be easily estimated.
Assuming, as seems reasonable, that these three types of

events are independent, one can compute the total level of
embarrassment caused to the search engine by web page i
as

wi = di
X
j

X
k

cj;kbi;j;k: (8)

Note that although the functional form of the above equa-
tion is a bit involved, the value of wi is simply a constant
from the perspective of the resource allocation problem.

2.3 Computing the Functions ai and Ai

As previously noted, the functions to be computed in this
section depend upon the characteristics of the marked point
process Ui = f(ui;n; ki;n) ; n 2 INg which models the up-
date behaviors of each page i. We consider three types of
marked point processes that represent di�erent cases which
are expected to be of interest in practice. The �rst two
cases are based on the use of Equation (3) to compute the
functions ai and Ai under di�erent distributional assump-
tions for the interupdate times Ui;n of the marked point
process Ui; speci�cally, we consider Gi(�) to be exponen-
tial and general distribution functions, respectively, where
the former has been the primary case considered in previ-
ous studies and the latter is used to state a few important
properties of this general form (which are used in turn to ob-
tain the experimental results presented in Section 4). The
third case, which we call quasi-deterministic, is based on a
�nite number of speci�c times ui;n at which page i might be
updated, where the corresponding marks ki;n represent the
probability that the update at time ui;n actually occurs.

2.3.1 Exponential Distribution Function Gi

Consider as a simple but prototypical example the case
in which the time intervals Ui;n 2 IR+ between updates of

page i are i.i.d. following an exponential distribution with
parameter �i, i.e., Gi(t) = 1� e��it and Gi(t) = e��it [28].
In this case we also assume that all updates are of interest
irrespective of their associated mark values (i.e., K = IK).
Suppose as before that we crawl a total of xi times in the

scheduling interval at the arbitrary times ti;1; : : : ti;xi . It
then follows from Equation (3) that the time-average stale-
ness estimate is given by

ai(ti;1; : : : ; ti;xi)

=
1

T

xiX
j=0

Z ti;j+1

ti;j

�
1 � �i

Z
1

0

e��i(t�ti;j+v) dv

�
dt

=
1

T

xiX
j=0

Z ti;j+1

ti;j

�
1 � e��i(t�ti;j)

�
dt: (9)

After some minor algebraic manipulations, we obtain that
the time-average staleness estimate is given by

ai(ti;1; : : : ; ti;xi) = 1 +
1

�iT

xiX
j=0

�
e��i(ti;j+1�ti;j) � 1

�
: (10)

Letting Ti;j = ti;j+1 � ti;j for all 0 � j � xi, then the
problem of �nding Ai reduces to minimizing

1 +
1

�iT

xiX
j=0

�
e��iTi;j � 1

�
(11)

subject to the constraints

0 � Ti;j � T; (12)
xiX
j=0

Ti;j = T: (13)

Modulo a few constants, which are not important to the
optimization problem, this now takes the form of a con-
tinuous, convex, separable resource allocation problem. As
before, the problem is separable by the nature of the objec-
tive function. It is continuous because of the �rst constraint,
and it is a resource allocation problem because of the second
constraint; it is also convex for the reasons provided below.
The key point is that the optimum value is known to occur

at the value (T �i;1; : : : ; T
�

i;xi
) where the derivatives T�1e��iT

�

i;j

of the summands in Equation (11) are equal, subject to the
constraints 0 � T �i;j � T and

Pxi
j=0 T

�

i;j = T . The general

result, originally due to [9], was the seminal paper in the
theory of resource allocation problems, and there exist sev-
eral fast algorithms for �nding the values of T �i;j . See [12]
for a good exposition of these algorithms. In our special
case of the exponential distribution, however, the summands
are all identical, and thus the optimal decision variables as
well can be found by inspection: They occur when each
T �i;j = T=(xi + 1). Hence, we can write

Ai(xi) = 1 +
xi + 1

�iT

�
e��iT=(xi+1) � 1

�
; (14)

which is easily shown to be convex.

2.3.2 General Distribution Function Gi

Now let us consider the same scenario as the previous
section but where the distribution of the interupdate times
Ui;n 2 IR+ for page i is an arbitrary distribution Gi(�) with
mean ��1i . Then we observe from Equation (3) a few impor-
tant properties of this general form. First, it is clear from

140

this formula that the summands remain separable. Given
that all the summands are also identical, the optimal deci-
sion variables occur when each T �i;j = T=(xi + 1) as in the
exponential case.

2.3.3 Quasi-Deterministic Case
Suppose the marked point process Ui consists of a de-

terministic sequence of points fui;1; ui;2; : : : ; ui;Qi
g de�n-

ing possible update times for page i, together with a se-
quence of marks fki;1; ki;2; : : : ; ki;Qi

g de�ning the probabil-
ity of whether the corresponding update actually occurs.
Here we eliminate the i.i.d. assumption of Section 2.1 and
consider an arbitrary sequence of speci�c times such that
0 � ui;1 < ui;2 < : : : < ui;Qi

� T . Recall that ui;0 �
0 and de�ne ui;Qi

� T for convenience. The update at
time ui;j occurs with probability ki;j . If ki;j = 1 for all
j 2 f1; : : : ; Qig, then the update pattern reduces to being
purely deterministic. We shall assume that the value ki;0
can be inferred from the crawling strategy employed in the
previous scheduling interval(s). Our interest is again on de-
termining the time-average staleness estimate Ai(xi) for xi
optimally chosen crawls.
A key observation is that all crawls should be done at the

potential update times, because there is no reason to delay
beyond when the update has occurred. This also implies
that we can assume xi � Qi + 1, as there is no reason to
crawl more frequently. (The maximum of Qi + 1 crawls
corresponds to the time 0 and the Qi other potential update
times.) Hence, consider the binary decision variables

yi;j =

�
1; if a crawl occurs at time ui;j ;
0; otherwise:

(15)

If we crawl xi times, then we have
PQi

j=0 yi;j = xi.
Note that, as a consequence of the above assumptions and

observations, the two integrals in Equation (1) reduce to a
much simpler form. Speci�cally, let us consider a staleness
probability function �p(yi;0; : : : ; yi;Qi

; t) at an arbitrary time
t, which we now compute. Recall that Nu

i (t) provides the
index of the latest potential update time that occurs at or
before time t, so that Nu

i (t) � Qi. Similarly, de�ne

Ji(t) = maxfj : ui;j � t; yi;j = 1; 0 � j � Qig
+; (16)

which is the index of the latest potential update time at or
before time t that is actually going to be crawled. Clearly
we can also unambiguously use Ji;j to abbreviate the value
of Ji(t) at any time t for which j = Nu

i (t). Now we have

�p(yi;0; : : : ; yi;Qi
; t) = 1�

Nu
i (t)Y

j=Ji(t)+1

(1� ki;j); (17)

where a product over the empty set, as per normal conven-
tion, is assumed to be 1.
Figure 4 illustrates a typical staleness probability func-

tion �p. (For visual clarity we display the freshness function
1� �p rather than the staleness function in this �gure.) Here
the potential update times are noted by circles on the x-
axis. Those which are actually crawled are depicted as �lled
circles, while those that are not crawled are left un�lled.
The freshness function jumps to 1 during each interval im-
mediately to the right of a crawl time, and then decreases,
interval by interval, as more terms are multiplied into the
product (see Equation (17)). The function is constant dur-

P
R

O
B

A
B

IL
IT

Y

0 TTIME

1

0

Figure 4: Freshness Probability Function for Quasi-
Deterministic Web Pages

ing each interval { that is precisely why Ji;j can be de�ned.

Now we can compute the corresponding time-average prob-
ability estimate as

�a(yi;0; : : : ; yi;Qi
) =

QiX
j=0

ui;j [1�
jY

k=Ji;j+1

(1� ki;j)]: (18)

The question of how to choose the optimal xi crawl times is
perhaps the most subtle issue in this paper. We can write
this as a discrete resource allocation problem, namely the
minimization of Equation (18) subject to the constraints

yi;j 2 f0; 1g and
PQi

j=0 yi;j = xi. The problem with this
is that the decision variables yi;j are highly intertwined in
the objective function. While our optimization problem can
be solved exactly by the use of so-called non-serial dynamic
programming algorithms, as shown in [12], or can be solved
as a general integer program, such means to obtain the prob-
lem solution will not have good performance. Hence, for
reasons we shall describe momentarily, we choose to employ
a greedy algorithm for the optimization problem: That is,
we �rst estimate the value of Ai(1) by picking that index
0 � j � Qi for which the objective function will decrease
the most when yi;j is turned from 0 to 1. In the general
inductive step we assume that we are given an estimate for
Ai(xi � 1). Then to compute Ai(xi) we pick that index
0 � j � Qi with yi;j = 0 for which the objective func-
tion decreases the most upon setting yi;j = 1. It can be
shown that the greedy algorithm does not, in general, �nd
the optimal solution. However, the average freshness can be
easily shown to be an increasing, submodular function (in
the number of crawls), and so the greedy algorithm is guar-
anteed to produce a solution with average freshness at least
(1 � 1=e) of the best possible [18]. For the special case we
consider, we believe the worst-case performance guarantee
of the greedy algorithm is strictly better. We therefore feel
justi�ed in suggesting the greedy algorithm as a heuristic to

141

�nd Ai in general. Moreover, it is trivial to check that the
function Ai, when estimated in this way, is convex: If, given
two successive greedy choices, the �rst di�erence decreases,
then the second greedy choice would have been chosen before
the �rst one.

2.4 Solving the Discrete Separable Convex
Resource Allocation Problem

As noted, the optimization problem described above is a
special case of a discrete, convex, separable resource alloca-
tion problem. The problem of minimizing

NX
i=1

Fi(xi) (19)

subject to the constraints

NX
i=1

xi = R (20)

and

xi 2 fmi; : : : ;Mig (21)

with convex Fis is very well studied in the optimization lit-
erature. We point the reader to [12] for details on these
algorithms. We content ourselves here with a brief overview.
The earliest known algorithm for discrete, convex, sepa-

rable resource allocation problems is essentially due to Fox
[9]. More precisely, Fox looked at the continuous case, noting
that the Lagrange multipliers (or Kuhn-Tucker conditions)
implied that the optimal value occurred when the derivatives
were as equal as possible, subject to the above constraints.
This gave rise to a greedy algorithm for the discrete case
which is usually attributed to Fox. One forms a matrix in
which the (i; j)th term Di;j is de�ned to be the �rst di�er-
ence: Di;j = Fi(j+1)�Fi(j). By convexity the columns of
this matrix are guaranteed to be monotone, and speci�cally
non-decreasing. The greedy algorithm initially sets each xi
to be mi. It then �nds the index i for which xi + 1 � Mi

and the value of the next �rst di�erence Di;xi is minimal.
For this index i� one increments xi� by 1. Then this process
repeats until Equation (20) is satis�ed, or until the set of
allowable indices i empties. (In that case there is no fea-
sible solution.) Note that the �rst di�erences are just the
discrete analogs of derivatives for the continuous case, and
that the greedy algorithm �nds a solution in which, modulo
Constraint (21), all �rst di�erences are as equal as possible.
The complexity of the greedy algorithm is O(N +R logN).
There is a faster algorithm for our problem, due to Galil

and Megiddo [11], which has complexity O(N(logR)2). The
fastest algorithm is due to Frederickson and Johnson [10],
and it has complexity O(maxfN;N log(R=N)g). The al-
gorithm is highly complex, consisting of three components.
The �rst component eliminates elements of the D matrix
from consideration, leaving O(R) elements and taking O(N)
time. The second component iterates O(log(R=N)) times,
each iteration taking O(N) time. At the end of this compo-
nent only O(N) elements of the D matrix remain. Finally,
the third component is a linear time selection algorithm,
�nding the optimal value in O(N) time. For full details on
this algorithm see [12]. We employ the Frederickson and
Johnson algorithm in this paper.
There do exist some alternative algorithms which could

be considered for our particular optimization problem. For

example, the quasi-deterministic web page portion of the
optimization problem is inherently discrete, but the portions
corresponding to other distributions can be considered as
giving rise to a continuous problem (which is done in [6]).
In the case of distributions for which the expression for Ai

is di�erentiable, and for which the derivative has a closed
form expression, there do exist very fast algorithms for (a)
solving the continuous case, and (b) relaxing the continuous
solution to a discrete solution. So, if all web pages had
such distributions the above approach could be attractive.
Indeed, if most web pages had such distributions, one could
partition the set of web pages into two components. The
�rst set could be solved by continuous relaxation, while the
complementary set could be solved by a discrete algorithm
such as that given by [10]. As the amount of resource given
to one set goes up, the amount given to the other set would
go down. So a bracket and bisection algorithm [22], which
is logarithmic in complexity, could be quite fast. We shall
not pursue this idea further here.

3. CRAWLER SCHEDULING PROBLEM
Given that we know how many crawls should be made for

each web page, the question now becomes how to best sched-
ule the crawls over a scheduling interval of length T . (Again,
we shall think in terms of scheduling intervals of length T .
We are trying to optimally schedule the current scheduling
interval using some information from the last one.) We shall
assume that there are C possibly heterogeneous crawlers,
and that each crawler k can handle Sk crawl tasks in time
T . Thus we can say that the total number of crawls in time
T is R =

PC
k=1 Sk. We shall make one simplifying assump-

tion that each crawl on crawler k takes approximately the
same amount of time. Thus we can divide the time inter-
val T into Sk equal size time slots, and estimate the start
time of the lth slot on crawler k by Tkl = (l� 1)=T for each
1 � l � Sk and 1 � k � C.
We know from the previous section the desired number of

crawls x�i for each web page i. Since we have already com-
puted the optimal schedule for the last scheduling interval,
we further know the start time ti;0 of the �nal crawl for web
page i within the last scheduling interval. Thus we can com-
pute the optimal crawl times t�i;1; :::; t

�

i;xi
for web page i dur-

ing the current scheduling interval. For the stochastic case it
is important for the scheduler to initiate each of these crawl
tasks at approximately the proper time, but being a bit early
or a bit late should have no serious impact for most of the
update probability distribution functions we envision. Thus
it is reasonable to assume a scheduler cost function for the
jth crawl of page i, whose update patterns follow a stochas-
tic process, that takes the form S(t) = jt � t�i;j j. On the
other hand, for a web page i whose update patterns follow
a quasi-deterministic process, being a bit late is acceptable,
but being early is not useful. So an appropriate scheduler
cost function for the jth crawl of a quasi-deterministic page
i might have the form

S(t) =

�
1 if t < t�i;j
t� ti;j otherwise

(22)

In terms of scheduling notation, the above crawl task is said
to have a release time of ti;j . See [3] for more information
on scheduling theory.
Virtually no work seems to have been done on the schedul-

ing problem in the research literature on crawlers. Yet there

142

S
L

O
T

 S

S
L

O
T

 1

SUPPLY=1 DEMAND=1

CRAWL TASK R

CRAWL TASK 1

CRAWLER C

CRAWLER 1

Figure 5: Transportation Problem Network

is a simple, exact solution for the problem. Speci�cally, the
problem can be posed and solved as a transportation problem
as we shall we now describe. See [1] for more information on
transportation problems and network
ows in general. We
describe our scheduling problem in terms of a network.
We de�ne a bipartite network with one directed arc from

each supply node to each demand node. The R supply
nodes, indexed by j, correspond to the crawls to be sched-
uled. Each of these nodes has a supply of 1 unit. There will
be one demand node per time slot and crawler pair, each of
which has a demand of 1 unit. We index these by 1 � l � Sk
and 1 � k � C. The cost of arc jkl emanating from a supply
node j to a demand node kl is Sj(Tkl). Figure 5 shows the
underlying network for an example of this particular trans-
portation problem. Here for simplicity we assume that the
crawlers are homogeneous, and thus that each can crawl the
same number S = Sk of pages in the scheduling interval T .
In the �gure the number of crawls is R = 4, which equals
the number of crawler time slots. The number of crawlers
is C = 2, and the number of crawls per crawler is S = 2.
Hence R = CS.
The speci�c linear optimization problem solved by the

transportation problem can be formulated as follows.

Minimize
MX
i=1

NX
j=1

MX
k=1

Ri(Tjk)fijk (23)

such that

MX
i=1

fijk = 1 8 1 � j � N and 1 � k �M; (24)

NX
j=1

MX
k=1

fijk = 1 8 1 � i �M; (25)

fijk � 0 8 1 � i; k �M and 1 � j � N: (26)

The solution of a transportation problem can be accom-
plished quickly. See, for example, [1].

Although not obvious at �rst glance, the nature of the
transportation problem formulation ensures that there exists
an optimal solution with integral
ows, and the techniques
in the literature �nd such a solution. Again, see [1] for
details. This implies that each fijk is binary. If fijk = 1
then a crawl of web page i is assigned to the jth crawl of
crawler k.
If it is required to �x or restrict certain crawl tasks from

certain crawler slots, this can be easily done: One simply
changes the costs of the restricted directed arcs to be in�nite.
(Fixing a crawl task to a subset of crawler slots is the same
as restricting it from the complementary crawler slots.)

4. PARAMETERIZATION ISSUES
The use of our formulation and solution in practice re-

quires calculating estimates of the parameters of our gen-
eral model framework. In the interest of space, we sketch
here some of the issues involved in addressing this problem,
and refer the interested reader to the sequel for additional
details.
Note that when each page i is crawled we can easily ob-

tain the last update time for the page. While this does not
provide information about any other updates occurring since
the last crawl of page i, we can use this information together
with the data and models for page i from previous scheduling
intervals to statistically infer key properties of the update
process for the page. This is then used in turn to construct
a probability distribution (including a quasi-deterministic
distribution) for the interupdate times of page i.
Another important aspect of our approach concerns the

statistical properties of the update process. The analysis
of previous studies has essentially assumed that the update
process is Poisson [6, 7, 26], i.e., the interupdate times for
each page follow an exponential distribution. Unfortunately,
very little has been published in the research literature on
the properties of update processes found in practice, with
the sole exception (to our knowledge) of a recent study [19]
suggesting that the interupdate times of pages at a news ser-
vice web site are not exponential. To further investigate the
prevalence of exponential interupdate times in practice, we
analyze the page update data from another web site environ-
ment whose content is highly accessed and highly dynamic.
Speci�cally, we consider the update patterns found at the
web site for the 1998 Nagano Olympic Games, referring the
interested reader to [16, 25] for more details on this envi-
ronment. Figure 6 plots the tail distributions of the time
between updates for each of a set of 18 individual dynamic
pages which are representative of the update pattern be-
haviors found in our study of all dynamic pages that were
modi�ed a fair amount of time. In other words, the curves
illustrate the probability that the time between updates to
a given page is greater than t as a function of time t.
We �rst observe from these results that the interupdate

time distributions can di�er signi�cantly from an exponen-
tial distribution. More precisely, our results suggest that
the interupdate time distribution for some of the web pages
at Nagano have a tail that decays at a subexponential rate
and can be closely approximated by a subset of the Weibull
distributions; i.e., the tail of the long-tailed Weibull interup-
date distribution is given by G(t) = e��t

�

, where t � 0,
� > 0 and 0 < � < 1. We further �nd that the interupdate
time distribution for some of the other web pages at Nagano
have a heavy tail and can be closely approximated by the

143

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

Pr
ob

. t
im

e
be

tw
ee

n
up

da
te

s
>

 t

Time t (in seconds)

Tail Distribution of Update Process

web page 1
web page 2
web page 3
web page 4
web page 5
web page 6
web page 7
web page 8
web page 9

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

Pr
ob

. t
im

e
be

tw
ee

n
up

da
te

s
>

 t

Time t (in seconds)

Tail Distribution of Update Process

web page 10
web page 11
web page 12
web page 13
web page 14
web page 15
web page 16
web page 17
web page 18

Figure 6: Tail Distributions of Update Processes

class of Pareto distributions; i.e., the tail of the Pareto in-
terupdate time distribution is given by G(t) = (�=(� + t))�,
where t � 0, � > 0 and 0 < � < 2. Moreover, some of the
periodic behavior observed in the update patterns for some
web pages can be addressed with our quasi-deterministic
distribution.
The above analysis is not intended to be an exhaustive

study by any means. Our results, together with those in [19],
suggest that there are important web site environments in
which the interupdate times do not follow an exponential
distribution. This includes the quasi-deterministic instance
of our general model, which is motivated by information
services as discussed above. The key point is that there
clearly are web environments in which the update process
for individual web pages can be much more complex than
a Poisson process, and our general formulation and solution
of the crawler scheduling problem makes it possible for us to
handle such a wide range of web environments within this
uni�ed framework.

5. EXPERIMENTAL RESULTS
Using the empirical data and analysis of the previous sec-

tion we now illustrate the performance of our scheme. We
will focus on the problem of �nding the optimal number of
crawls, comparing our scheme with two simpler algorithms.
Both of these algorithms were considered in [6], and they
are certainly natural alternatives. The �rst scheme might
be called proportional. We simply allocate the total amount
of crawls R according to the average update rates of the vari-
ous web pages. Modulo integrality concerns, this means that
we choose xi / �i. The second scheme is simpler yet, allo-
cating the number of crawls as evenly as possible amongst
the web pages. We label this the uniform scheme. Each of
these schemes can be amended to handle our embarrassment
metric weights. When speaking of these variants we will use
the terms weighted proportional and weighted uniform. The
former chooses xi / wi�i. The latter is something of a mis-
nomer: We are choosing xi / wi, so this is essentially a
slightly di�erent proportional scheme. We can also think
of our optimal scheme as weighted, solving for the smallest
objective function

PN
i=1 wiAi. If we solve instead for the

smallest objective function
PN

i=1Ai, we get an unweighted
optimal algorithm. This is essentially the same problem
solved in [6], provided, of course, that all web pages are
updated according to a Poisson process. But our scheme
will have much greater speed. Even though this algorithm
omits the weights in the formulation of the problem, we must
compare the quality of the solution based on the weighted
objective function value.

In our experiments we consider combinations of di�erent
types of web page update distributions. In a number of
cases we use a mixture of 60% Poisson, 30% Pareto and
10% quasi-deterministic distributions. In the experiments
we choose T to be one day, though we have made runs for
a week as well. We set N to be one million web pages, and
varied R between 1.5 and 5 million crawls. We assumed that
the average rate of updates over all pages was 1.5, and these
updates were chosen according to a Zipf-like distribution
with parameters N and �, the latter chosen between 0 and
1 [29, 15]. Such distributions run the spectrum from highly
skewed (when � = 0) to totally uniform (when � = 1). We
considered both the staleness and embarrassment metrics.
When considering the embarrassment metric we derived the
weights in Equation (8) by considering a search engine which
returned 5 result pages per query, with 10 urls on a page.
The probabilities bi;j;k with which the search engine returns
page i in position j of query result page k were chosen by
linearizing these 50 positions, picking a randomly chosen
center, and imposing a truncated normal distribution about
that center. The clicking frequencies cj;k for position j of
query page k are chosen as described in Section 2.2, via a
Zipf-like function with parameters 50 and � = 0, with a geo-
metric function for cycling through the pages. We assumed
that the client went from one result page to the next with
probability 0.8. We choose the lucky loser probability di of
web page i yielding an incorrect response to the client query
by picking a uniform random number between 0 and 1. All
curves in our experiments display the analytically computed
objective function values of the various schemes.
Figure 7 shows two experiments using the embarrassment

metric. In the left-hand side of the �gure we consider the
results under di�erent mixtures of update distributions by

144

1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

R/N

E
m

ba
ra

ss
m

en
ts

 p
er

 1
00

0
Q

ue
rie

s

Embarassment as Function of Crawl/Web Page Ratio

Optimal
Proportional
Uniform

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Theta

E
m

ba
ra

ss
m

en
ts

 p
er

 1
00

0
Q

ue
rie

s

Embarassment as Function of Zipf−like Parameter

Optimal Schemes
Proportional Schemes
Uniform Schemes

Figure 7: Two Embarrassment Metric Examples

varying the ratio of R to N from 1.5 to 5. We consider
here a true Zipf distribution for the update frequencies {
in other words we choose Zipf-like parameter � = 0. There
are six curves, namely optimal, proportional and uniform in
both weighted and unweighted versions. (The unweighted
optimal curve is the result of employing unit weights during
the computation phase, but displaying the weighted opti-
mal objective function.) By de�nition the unweighted opti-
mal scheme will not perform as well as the weighted opti-
mal scheme, which is indeed the best possible solution. In
all other cases, however, the unweighted variant does better
than the weighted variant. So the true uniform policy does
the best amongst all of the heuristics, at least for the exper-
iments considered in our study. This somewhat surprising
state of a�airs was noticed in [6] as well. Both uniform
policies do better than their proportional counterparts. No-
tice that the weighted optimal curve is, in fact, convex as a
function of increasing R. This will always be true.
In the right-hand side of Figure 7 we show a somewhat

di�ering mixture of distributions. In this case we vary the
Zipf-like parameter � while holding the value of R to be 2.5
million (so that R=N = 2:5). As � increases, thus yielding
less skew, the objective functions generally increase as well.
This is appealing, because it shows in particular that the
optimal scheme does very well in highly skewed scenarios,
which we believe are more representative of real web environ-
ments. Moreover, notice that the curves essentially converge
to each other as � increases. This is not too surprising, since
the optimal, proportional and uniform schemes would all re-
sult in the same solutions precisely in the absence of weights
when � = 1. In general the uniform scheme does relatively
better in this �gure than it did in the previous one. The
explanation is complex, but it essentially has to do with the
correlation of the weights and the update frequencies. In
fact, we show this example because it puts uniform in its
best possible light.
In Figure 8 we show four experiments where we varied

the ratio of R to N . These �gures depict the average stale-
ness metric, and so we only have three (unweighted) curves
per �gure. The top left-hand �gure depict a mixture of up-
date distribution types, and the other three �gures depict, in
turn, pure Poisson, Pareto and quasi-deterministic distribu-

tions. Notice that these curves are cleaner than those in Fig-
ure 7. The weightings, while important, introduce a degree
of noise into the objective function values. For this reason
we will focus on the non-weighted case from here on. The y-
axis ranges di�er on each of the four �gures, but in all cases
the optimal scheme yields a convex function of R=N (and
thus of R). The uniform scheme performs better than the
proportional scheme once again. It does relatively less well
in the Poisson update scenario. In the quasi-deterministic
�gure the optimal scheme is actually able to reduce average
staleness to 0 for suÆciently large R values.
In Figure 9 we explore the case of Pareto interupdate dis-

tributions in more detail. Once again, the average staleness
metric is plotted as a function of the parameter � in the
Pareto distribution; refer to Section 4. This distribution is
said to have a heavy tail when 0 < � < 2, which is quite
interesting because it is over this range of parameter values
that the optimal solution is most sensitive. In particular, we
observe that the optimal solution value is rather
at for val-
ues of � ranging from 4 toward 2. However, as � approaches
2, the optimal average staleness value starts to rise which
continues to increase in an exponential manner as � ranges
from 2 toward 0. These trends appear to hold for all three
schemes, with our optimal scheme continuing to provide the
best performance and uniform continuing to outperform the
proportional scheme. Our results suggest the importance
of supporting heavy-tailed distributions when they exist in
practice (and our results of the previous section demonstrate
that they do indeed exist in practice). This is appealing be-
cause it shows in particular that the optimal scheme does
very well in these complex environments which may be more
representative of real web environments than those consid-
ered in previous studies.
The transportation problem solution to the scheduling

problem is optimal, of course. Furthermore, the quality of
the solution, measured in terms of the deviation of the ac-
tual time slots for the various tasks from their ideal time
slots, will nearly always be outstanding. Figure 10 shows an
illustrative example. This example involves the scheduling
of one day with C = 10 homogeneous crawlers and 1 million
crawls per crawler. So there are 10 million crawls in all.
Virtually all crawls occur within a window of plus or mi-

145

1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

R/N

A
ve

ra
ge

 S
ta

le
ne

ss

Average Staleness as Function of Crawl/Web page ratio

Optimal Scheme
Proportional Scheme
Uniform Scheme

1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

R/N

A
ve

ra
ge

 S
ta

le
ne

ss

Average Staleness as Function of Crawl/Web page ratio, Poisson Updates

Optimal Scheme
Proportional Scheme
Uniform Scheme

1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

R/N

A
ve

ra
ge

 S
ta

le
ne

ss

Average Staleness as Function of Crawl/Web page ratio, Pareto Updates

Optimal Scheme
Proportional Scheme
Uniform Scheme

1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

R/N

A
ve

ra
ge

 S
ta

le
ne

ss

Average Staleness as Function of Crawl/Web page ratio, Quasi−Deterministic Updates

Optimal Scheme
Proportional Scheme
Uniform Scheme

Figure 8: Four Average Staleness Metric Examples: Mixed, Poisson, Pareto and Quasi-Deterministic

1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Average alpha

A
v
e

ra
g

e
 S

ta
le

n
e

s
s

Average Staleness as Function of Pareto Parameter

Optimal Scheme
Proportional Scheme
Uniform Scheme

Figure 9: Pareto Example

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

Deviation from Optimal Time Slot

P
e

rc
e

n
t

Distribution of Actual/Ideal Task Time Slots

Poisson, Pareto
Quasi−Deterministic

Figure 10: Transportation Problem Example

146

nus 20 time slots. We also highlight the quasi-deterministic
tasks, to notice that they occur on or after their ideal time
slots, as required. The quasi-deterministic crawls amounted
to 20% of the overall crawls in this example. The bottom
line is that this scheduling problem will nearly always yield
optimal solutions of very high absolute quality.
The crawling frequency scheme was implemented in C and

run on an IBM RS/6000 Model 50. In no case did the al-
gorithm require more than a minute of elapsed time. The
crawler scheduling algorithm was implemented using IBM's
Optimization Subroutine Library (OSL) package [13], which
can solve network
ow problems. Problems of our size run
in approximately two minutes.

6. CONCLUSION
Given the important role of search engines in the World

Wide Web, we studied the crawling process employed by
such search engines with the goal of improving the quality
of the service they provide to clients. Our analysis of the
optimal crawling process considered both the metric of stal-
eness, as done by the few studies in this area, and the met-
ric of embarrassment, which we introduced as a preferable
goal. We proposed a general two-part scheme to optimize
the crawling process, where the �rst component determines
the optimal number of crawls for each page together with
the optimal times at which these crawls should take place if
there were no practical constraints. The second component
of our scheme then �nds an optimal achievable schedule for
a set of crawlers to follow. An important contribution of
the paper is this formulation which makes it possible for us
to exploit very eÆcient algorithms These algorithms are sig-
ni�cantly faster than those considered in previous studies.
Our formulation and solution is also more general than pre-
vious work for several reasons, including the use of weights
in the objective function and the handling of signi�cantly
more general update patterns. Given the lack of published
data on web page update patterns, and given the assumption
of exponential interupdate times in the analysis of the few
previous studies, we analyzed the page update data from
a highly accessed web site serving highly dynamic pages.
The corresponding results clearly demonstrate the bene�ts
of our general uni�ed approach in that the distributions of
the times between updates to some web pages clearly span
a wide range of complex behaviors. By accommodating
such complex update patterns, we believe that our optimal
scheme can provide even greater bene�ts in real-world envi-
ronments than previous work in the area.

Acknowledgement. We thank Allen Downey for pointing
us to [19].

7. REFERENCES
[1] R. Ahuja, T. Magnanti and J. Orlin, Network Flows,

Prentice Hall, 1993.
[2] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and

S. Raghavan, \Searching the Web", ACM
Transactions on Internet Technology, 1(1), 2001.

[3] J. Blazewicz, K. Ecker, G. Schmidt and J. Weglarz,
Scheduling in Computer and Manufacturing Systems,
Springer-Verlag, 1993.

[4] A. Broder, Personal communication.
[5] J. Challenger, P. Dantzig, A. Iyengar, M. S.

Squillante, and L. Zhang. EÆciently serving dynamic
data at highly accessed web sites. Preprint, May 2001.

[6] J. Cho and H. Garcia-Molina, \Synchronizing a
Database to Improve Freshness", ACM SIGMOD
Conference, 2000.

[7] E. Co�man, Z. Liu and R. Weber, \Optimal Robot
Scheduling for Web Search Engines", INRIA Research
Report, 1997.

[8] F. Douglas, A. Feldmann and B. Krishnamurthy,
\Rate of Change and other Metrics: A Live Study of
the World Wide Web", USENIX Symposium on
Internetworking Technologies and Systems, 1999.

[9] B. Fox, \Discrete Optimization via Marginal
Analysis", Management Science, 13:210-216, 1966.

[10] G. Frederickson and D. Johnson, \The Complexity of
Selection and Ranking in X+Y and Matrices with
Sorted Columns", Journal of Computer and System
Science, 24:197-208, 1982.

[11] Z. Galil and N. Megiddo, \A Fast Selection Algorithm
and the Problem of Optimum Distribution of E�orts",
Journal of the ACM, 26:58-64, 1981.

[12] Ibaraki, T., and Katoh, N., \Resource Allocation
Problems: Algorithmic Approaches", MIT Press,
Cambridge, MA, 1988.

[13] International Business Machines Corporation,
Optimization Subroutine Library Guide and Reference,
IBM, 1995.

[14] N. Katoh and T. Ibaraki, \Resource Allocation
Problems", in Handbook of Combinatorial
Optimization, D-Z. Du and P. Pardalos, editors,
Kluwer Academic Press, 2000.

[15] D. Knuth, The Art of Computer Programming, vol. 2,
Addison Wesley, 1973.

[16] A. Iyengar, M. Squillante and L. Zhang, \Analysis
and Characterization of Large-Scale Web Server
Access Patterns and Performance", World Wide Web,
2:85-100, 1999.

[17] S. Lawrence and C. Giles, \Accessibility of
Information on the Web", Nature, 400:107-109, 1999.

[18] G. Nemhauser and L. Wolsey, Integer and
Combinatorial Optimization, J. Wiley, 1988.

[19] V. N. Padmanabhan and L. Qiu. \The Content and
Access Dynamics of a Busy Web Site: Findings and
Implications", ACM SIGCOMM '00 Conference, 2000.

[20] M. Pinedo, Scheduling: Theory, Algorithms and
Systems, Prentice-Hall, 1995.

[21] J. Pitkow and P. Pirolli, \Life, Death and Lawfulness
on the Electronic Frontier", CHI Conference on
Human Factors in Computing Systems, 1997.

[22] W. Press, B. Flannery, S. Teukolsky and W.
Vetterling, Numerical Recipes, Cambridge University
Press, 1986.

[23] S. M. Ross. Stochastic Processes. John Wiley and
Sons, Second Edition, 1997.

[24] K. Sigman. Stationary Marked Point Processes: An
Intuitive Approach. Chapman and Hall, 1995.

[25] M. Squillante, D. Yao and L. Zhang, \Web TraÆc
Modeling and Web Server Performance Analysis",
IEEE Conference on Decision and Control, 1999.

[26] J. Talim, Z. Liu, P. Nain and E. Co�man,
\Optimizing the Number of Robots for Web Search
Engines", Telecommunication Systems Journal,
17(1-2):234-243, 2001.

[27] C. Wills and M. Mikhailov, \Towards a Better
Understanding of Web Resources and Server
Responses for Improved Caching", WWW Conference,
1999.

[28] R. W. Wol�. Stochastic Modeling and the Theory of
Queues. Prentice Hall, 1989.

[29] G. Zipf, Human Behavior and the Principle of Least
E�ort, Addison-Wesley, 1949.

147

