Road Traffic Modeling with PDEs and Cellular Automata

Justin Lee and Linxuan Yang

References (1 of 2)

Aw, A., & Rascle, M. (2000). Resurrection of "Second Order" Models of Traffic Flow. *SIAM Journal on Applied Mathematics*, 60(3), 916-938. doi:10.1137/s0036139997332099

Cameron, M. (n.d.). Notes on Burger's Equation. Retrieved November 10, 2016, from http://www.math.umd.edu/~mariakc/burgers.pdf

Cooper, J. (1998). Introduction to partial differential equations with MATLAB. Boston: Birkhäuser.

- Goatin, P. (2005, October 23). The Aw-Rascle Traffic Flow Model with Phase Transitions. Retrieved November 10, 2016, from https://www.math.ntnu.no/conservation/2005/052.pdf
- Gorguis, A. (2006, February 1). A comparison between Cole–Hopf transformation and the decomposition method for solving Burgers' equations. *Applied Mathematics and Computation, 173*(1), 126-136. doi:10.1016/j.amc.2005.02.045
- Jin, W., & Zhang, H. (2001, August 30). Solving the Payne-Whitham Traffic Flow Model as a Hyperbolic System of Conservation Laws with Relaxation. Retrieved November 10, 2016, from http://www.its.uci.edu/~wjin/publications/jin2001PW.pdf

References (2 of 2)

LeVeque, R. J. (1992). Numerical methods for conservation laws. Basel: Birkhäuser Verlag.

- Kachroo, P., & Sastry, S. (n.d.). Traffic Flow Theory Mathematical Framework. Retrieved November 13, 2016, from http://faculty.unlv.edu/pushkin/TrafficFlowTheory.pdf
- Lighthill, M. J., & Whitham, G. B. (1955, May 10). On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads. Proceedings of the Royal Society A. doi:10.1098
- Nagel, K., & Schreckenberg, M. (1992, December). A Cellular Automaton Model for Freeway Traffic. Journal De Physique I, 2(12), 2221-2229. doi:10.1051/jp1:1992277
- Serra, S. A. (n.d.). The Method of Characteristics & Conservation Laws Conservation Laws. Retrieved November 10, 2016, from http://www.maa.org/press/periodicals/loci/joma/the-method-of-characteristics-conservation-laws-conservation-laws
- Van Dommelen, L. (n.d.). 3 . 5 The inviscid Burgers' equation FAMU-FSU College ... Retrieved November 10, 2016, from https://www.eng.fsu.edu/~dommelen/pdes/style_a/burgers.html

Outline

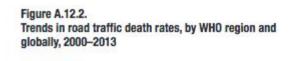
- Interest and Background
 - Traffic Inefficiencies, Autonomous Cars
- History of Highway Traffic Modeling
- Macroscopic Models
 - Intro to Conservation Laws, Characteristic Curves, the Riemann Problem
 - Lighthill-Whitham-Richards Model, Payne-Whitham, Aw-Rascle
 - Properties of Burger's Equation, Shocks, Cole-Hopf Transformation
- Microscopic Models
 - Cellular Automata Nagel, Schreckenberg
- Demo: Modeling a highway obstruction using cellular automata
- Future of the Field and Ourselves

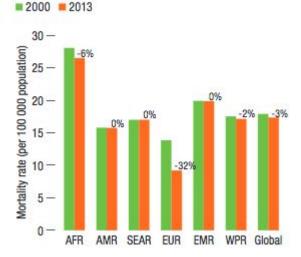
Motivation and Background

- Traffic jams and accidents
- Autonomous driving R&D by Tesla, Google, Uber, etc.



https://www.tesla.com/sites/default/files/styles/customer_2x_ mobile_1200x816/public/media-vimeo/154227644.jpg





http://www.who.int/gho/publications/world_health_statistics /2016/whs2016_AnnexA_RoadTraffic.pdf?ua=1&ua=1

History of Highway Traffic Modeling

- 1955: Lighthill and Whitham apply hydrodynamic theory to traffic modelling; Richards introduces shocks soon after (collectively, the LWR Model)
- 1970s: Payne and Whitham (PW) add another equation to LWR, analogous to fluid momentum
- 1992: Nagel and Schreckenberg pioneer microscopic traffic model using cellular automata to represent individual cars
- 1993: Newell develops shortcut method for one-link hydrodynamic model
- 2000: Aw-Rascle Model modifies PW for more realistic behavior

Macroscopic Models

Conservation Laws

• Scalar Conservation Laws: Any system of the form

 $u_t + F(u)_x = 0$

u(x, t): a linear density (mass / length)

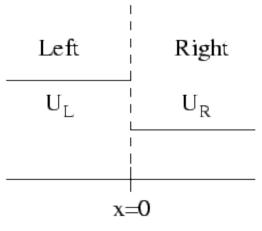
F(u): flux, more generally equal to uv where v is velocity of flow

- Where does this equation come from? Where does it get its name?
- Conservation of mass, energy, cars,

Cooper Pg. 31 - 33

Sidenote: Riemann Problem

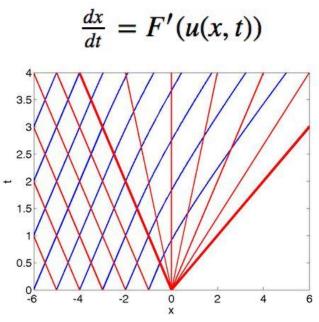
• The Riemann Problem: any conservation law problem along with initial data featuring a single discontinuity separating two constant states



http://www.uv.es/astrorela/simulacionnumerica/i mg525.png

Characteristic Curves

• Definition: any solution *x*(*t*) to the equation



http://www.wikiwaves.org/files/thumb/0/0d/Characteristic s_dam_break.jpg/500px-Characteristics_dam_break.jpg

Cooper Pg. 31 - 33

Characteristic Curves

- Important properties for scalar conservation laws:
 - 1) Along any characteristic curve *x*(*t*):

$$\frac{d}{dt}(u(x(t),t)=0$$

2) As a consequence, characteristics are of the form

$$x(t) = x_0 + F'(u(x_0, 0))t$$

- 3) From (2), we can say that information will travel at speed $F'(u(x_0, 0))$
 - E.g. any disturbance in u(x, t) will propagate at this speed

Cooper Pg. 31 - 33

Conservation Law Example: LWR Model

• Lighthill-Whitham-Richards Model: Linear "flow" of a lane of traffic on a highway

 $\rho_t + (\rho v)_x = 0$

 $\rho(x) = \text{density of cars at position } x$

v(x) = velocity of cars at position x

• If we are given a relationship $v = v(\rho)$, then we have a scalar conservation law in ρ

https://upload.wikimedia.org/wikipedia/commons/3/3e/I-8 0_Eastshore_Fwy.jpg

LeVeque Pg. 41 - 42

Conservation Law Example: LWR Model

A simple example of a density-velocity relationship:

$$v(\rho) = v_{max}(1 - \rho/\rho_{max})$$

- Agrees with intuition
 - Unobstructed traffic: $\rho = 0 \implies v(\rho) = v_{max}$ As density increases: $\rho = \rho_{max} \implies v(\rho) = 0$ 0
 - Ο

Payne-Whitham Model

• Proposed a two-equation traffic model comprised of LWR and another equation representing "momentum" conservation

$$\rho_t + (\rho v)_x = 0$$
$$v_t + v v_x = \frac{V(\rho) - v}{\tau} - \frac{(c_0^2 \rho)_x}{\rho}$$

Term	Meaning
$V(\rho)$	Equilibrium Speed
τ	Relaxation Time
$(V(\rho) - \nu)/\tau$	Relaxation

• Criticism: PW model flow is **isotropic**. Not realistic w.r.t. cars, because cars do not respond to speed of preceding cars - only those in front of them

Kachroo Pg. 34 - 37

Aw-Rascle Model

• Modification of PW to make traffic flow anisotropic:

$$\rho_t + (\rho v)_x = 0$$
$$\left[v + p(\rho)\right]_t + v \left[(v + p(\rho))\right]_x = \frac{V(\rho) - v}{\tau}$$

• The function $p(\rho)$ is akin to a fluid pressure, sometimes taken as $p(\rho) = c_0^2 \rho^{\gamma}$ where $\gamma > 0$ and $c_0 = 1$

Kachroo Pg. 34 - 37

Burgers' Equation

• A mathematical model of the motion of a viscous compressible gas

 $u_t + uu_x = \nu u_{xx}$

Where:

u = speed of the gas

- $\nu =$ kinematic viscosity
- x = spatial coordinate
- t = time

Solutions of Burgers' Equation

• When viscosity is not zero:

$$u(x,t) = \frac{u_R + u_L}{2} - \frac{u_L - u_R}{2} \tanh\left(\frac{(x - st)(u_L - u_R)}{4\nu}\right)$$

• When viscosity is zero (i.e. solution of inviscid Burgers' equation):

$$u_t + \left[\frac{1}{2}u^2\right]_x = 0$$
$$s = \frac{f(u_L) - f(u_R)}{u_L - u_R} = \frac{\text{jump in } f(u)}{\text{jump in } u}.$$

• Observe that this is an example of a conservation law with $F(u) = \frac{1}{2}u^2$

Weak Solutions of Burgers' Equation

Some definition of weak solution:

- a smooth function is a weak solution if and only if it solves the viscous Burger's equation
- weak solutions can be discontinuous
- discontinuous functions which satisfy the associated integral equation can be weak solutions
- We say u(x,t) is a weak solution of the conservation law with any φ(x, t) with compact support such that

$$\int_0^\infty \int_{-\infty}^\infty \phi_t u + \phi_x f(u) dx dt = 0$$

Weak solution with Riemann Problem:

Initial condition:
$$u(x,0) = \left\{ \begin{array}{cc} u_L & x < 0 \\ u_R & x > 0 \end{array} \right\}$$

Characteristics of Inviscid Burgers' Equation

The characteristics of $u_t + [\frac{1}{2}u^2]_x = 0$ are given by:

$$\frac{dx}{dt} = u(x,t).$$

With the following solution:

$$x(t) = u(x(0), 0)t + x(0) = u_0(x_0)t + x_0$$
, where $x_0 = x(0)$, $u_0(x) = u(x, 0)$.

- the characteristics are straight lines
- they may intersect
- they do not necessarily cover the entire (x, t) space

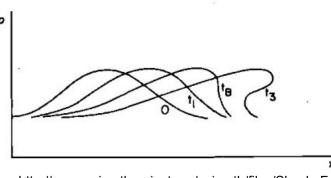
Shocks in Inviscid Burgers' and Wave Break Time

Consider two characteristic curves $x(t) = u_0(x_1)t + x_1$, $x(t) = u_0(x_2)t + x_2$

If the function $u'_0(x)$ is negative at some point, then Inviscid Burger's Equation will develop a shock (a point at which the function is multivalued) exactly at time

$$T_b = -\frac{1}{\min_{x \in \mathbb{R}} u_0'(x)}$$

- Shocks describe a very thin area with a rapid "break," and all weak solutions are discontinuous after this point
- Resulting discontinuity travels at a known speed



http://www.azimuthproject.org/azimuth/files/Shock_For mation_Burgers_Equation.png

Cole-Hopf Transformation (Diffusion Equation)

Transform Burgers' equation

$$u_t + uu_x = vu_{xx}$$

Into the heat equation

$$\phi_t = v \phi_{xx}.$$

Solution with infinite domain:

Solution with finite domain:

$$\phi(x,t) = \frac{1}{2(\pi v t)^{\frac{1}{2}}} \int_{-\infty}^{+\infty} e^{\frac{-(x-\xi)^2}{4vt}} u_0(\xi) d\xi.$$

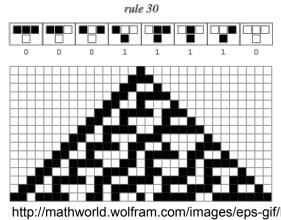
$$u(x,t) = \frac{2\nu\pi}{l} \frac{\sum_{n=1}^{\infty} e^{\frac{-\nu n^2 \pi^2}{l^2} t} n A_n \sin\left(\frac{n\pi x}{l}\right)}{A_0 + \sum_{n=1}^{\infty} e^{\frac{-\nu n^2 \pi^2}{l^2} t} A_n \cos\left(\frac{n\pi x}{l}\right)}$$

Gorguis Pg. 127 - 129

Microscopic Models

Cellular Automata

- A discrete model consisting of:
 - An array of cells in a finite number of states
 - A "rule" (i.e. update function) that determines the change in state for each cell after one time step
- Notable figures: Ulam, Von Neumann, Conway, Wolfram

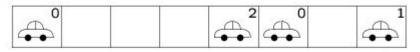


http://mathworld.wolfram.com/images/eps-gif/Ele mentaryCARule030_700.gif

https://en.wikipedia.org/wiki/Cellular_automaton

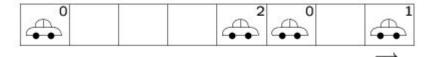
Nagel-Schreckenberg Model

- Kai Nagel and Michael Schreckenberg at the University of Cologne, Germany
- "A Cellular Automaton Model for Freeway Traffic" (1992)
- Four-component stochastic cellular model in discrete time:
 - Acceleration
 - Reducing speed in reaction to cars in front
 - Randomization of velocity (i.e. a slowdown probability)
 - Car speed based on velocity (# of cells to advance a vehicle)
- One car per cell, velocity $v \in \{0, \dots, 5\}$



Nagel-Schreckenberg Model

• "It has been shown that a discrete model approach for traffic flow is not only computationally advantageous, but that it contains some of the important aspects of the fluid-dynamical approach to traffic flow such as the transition from laminar to start-stop traffic in a natural way... Thereby, it retains more elements of individual behavior of the driver."



Nagel-Schreckenberg Model

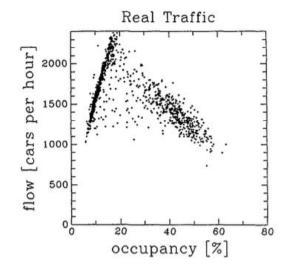


Fig.5. — Traffic flow q (in cars per hour) vs. occupancy (in cars per hour) from measurements in reality. Occupancy is the percentage of the road which is covered by vehicles (after [17]).

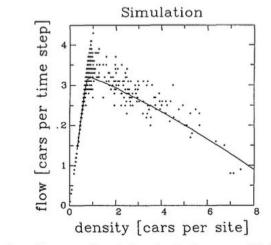


Fig.4. — Traffic flow q (in cars per time step) vs. density (in cars per site) from simulation results $(L = 10^4)$. Dots are averages over 100 time steps, the line represents averages over 10^6 time steps.

Demo

- <u>https://github.com/morethanoneanimal/Nagel-Schreckenberg-simulation</u>
 - A Python project with customizable simulations of n-lane road traffic with obstacles