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Motivation and Background

e Traffic jams and accidents

e Autonomous driving R&D by Tesla, Google, Figure A.12.2.
Trends in road traffic death rates, by WHO region and
globally, 2000-2013
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History of Highway Traffic Modeling

1955: Lighthill and Whitham apply hydrodynamic theory to traffic modelling;
Richards introduces shocks soon after (collectively, the LWR Model)
1970s: Payne and Whitham (PW) add another equation to LWR, analogous
to fluid momentum

1992: Nagel and Schreckenberg pioneer microscopic traffic model using
cellular automata to represent individual cars

1993: Newell develops shortcut method for one-link hydrodynamic model

2000: Aw-Rascle Model modifies PW for more realistic behavior



Macroscopic Models



Conservation Laws

e Scalar Conservation Laws: Any system of the form

ut + F(u)x — 0
u(x, t): a linear density (mass / length)

F(u): flux, more generally equal to uv where v is velocity of flow

e \Where does this equation come from? Where does it get its name?
e Conservation of mass, energy, cars, ....

Cooper Pg. 31 - 33



Sidenote: Riemann Problem

e The Riemann Problem: any conservation law problem along with initial data
featuring a single discontinuity separating two constant states

Left Right
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Characteristic Curves

e Definition: any solution x(t) to the equation

% = F'(u(x, 1))

http://www.wikiwaves.org/files/thumb/0/0d/Characteristic
Cooper pg_ 31-33 s_dam_break.jpg/500px-Characteristics_dam_break.jpg



Characteristic Curves

e Important properties for scalar conservation laws:
1) Along any characteristic curve x(1):

2 (u(x(1),1) = 0
t
2) As a consequence, characteristics are of the form

x(®) = xg + F'(u(xy, 0))t

3) From (2), we can say that information will travel at speed F’(u(xg, 0))
o E.g. any disturbance in u(x, t) will propagate at this speed

Cooper Pg. 31 - 33



Conservation Law Example: LWR Model

e Lighthill-Whitham-Richards Model: Linear
“flow” of a lane of traffic on a highway

pt + ('OV)x — O
p(x) = density of cars at position x

v(x) = velocity of cars at position x

e If we are given a relationship v = v(p), then
we have a scalar conservation law in p

LeVeque Pg. 41 - 42
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Conservation Law Example: LWR Model

e A simple example of a density-velocity relationship:

V() = Vmax(1 = plpmax)

e Agrees with intuition

o Unobstructed traffic:.  p =0 = w(p) = Viax
o Asdensity increases: P = pmax = V(p) =0

LeVeque Pg. 41 - 42



Payne-Whitham Model

e Proposed a two-equation traffic model comprised of LWR and another
equation representing “momentum” conservation

) Term Meaning
Pr+(pV)x = Vip) Equilibrium Speed

. c2 T Relaxation Time
Vit VUy= rp)-v - ( Op)" (V(p) =v)/t | Relaxation

T p

e Criticism: PW model flow is isotropic. Not realistic w.r.t. cars, because cars
do not respond to speed of preceding cars - only those in front of them

Kachroo Pg. 34 - 37



Aw-Rascle Model

e Modification of PW to make traffic flow anisotropic:

pr+(pv)y=0
Vip)-v

[v+pp)], +v[(w+ple))], =

e The function p(p) is akin to a fluid pressure, sometimes taken as

p(p) = cop”

wherey >0and ¢y =1

Kachroo Pg. 34 - 37



Burgers’ Equation

e A mathematical model of the motion of a viscous compressible gas

U + UUy = Vlyx
Where:
u = speed of the gas
v = kinematic viscosity
X = spatial coordinate

t = time

Cameron Pg. 1



Solutions of Burgers’ Equation

e \When viscosity is not zero:

() = MR Mot (o) )

e \When viscosity is zero (i.e. solution of inviscid Burgers’ equation):
ur + [3u. =0

_ fu) ~ f(ur) _ jump in f(u)

" ur-—up jump in u

o Observe that this is an example of a conservation law with F(u) = %uz

Cameron Pg. 3



Weak Solutions of Burgers’ Equation

Some definition of weak solution:

a smooth function is a weak solution if and only if it solves the viscous Burger’'s equation

weak solutions can be discontinuous

discontinuous functions which satisfy the associated integral equation can be weak solutions

We say u(x,t) is a weak solution of the conservation law with any @(x, t) with compact support such

that a0 OO
/ / osu+ ¢ f(u)dzdt = 0
0 —00

Weak solution with Riemann Problem:

up, <0
Initial condition: u(z,0) = { up >0 }

Cameron Pg. 6



Characteristics of Inviscid Burgers’ Equation
The characteristics of u: + [3u’]- =0 are given by:

dx

= = u(z,t).

With the following solution:
z(t) = u(z(0),0)t + z(0) = ug(zg)t + z9, where zy=2z(0), wug(z)=u(z,0).

e the characteristics are straight lines
e they may intersect
e they do not necessarily cover the entire (x, t) space

Cameron Pg. 5



Shocks in Inviscid Burgers’ and Wave Break Time

Consider two characteristic curves x(t) = uo(x1)t + x1, x(t) = ug(x)t + x5

If the function uj(x) is negative at some point, then Inviscid Burger's Equation will
develop a shock (a point at which the function is multivalued) exactly at time

1
T = ~ e 4
P
e Shocks describe a very thin area with a rapid “break,” and
all weak solutions are discontinuous after this point .
e Resulting discontinuity travels at a known speed Ui .

http://www.azimuthproject.org/azimuth/files/Shock_For

Cameron Pg. 5 : .
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Cole-Hopf Transformation (Diffusion Equation)

Transform Burgers’ equation
Uy + UUy = VUyy

Into the heat equation

d)f = vd’xx-
Solution with infinite domain: Solution with finite domain:
o &2 “.3 nA nmx
$(x,8) = / e up(¢)de. u(x, t) = 2;7{ 21 sin (*)
2(7rvt) Ay + Zn le 2 A cos (rm)

Gorguis Pg. 127 - 129



Microscopic Models



Cellular Automata

e A discrete model consisting of:
o An array of cells in a finite number of states
o A “rule” (i.e. update function) that determines the change in state for each cell
after one time step

e Notable figures: Ulam, Von Neumann, Conway, Wolfram rule 30
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https://en.wikipedia.org/wiki/Cellular_automaton http://mathworld. wolfram.com/images/eps-gif/Ele
- mentaryCARule030_700.gif



Nagel-Schreckenberg Model

Kai Nagel and Michael Schreckenberg at the University of Cologne, Germany

“A Cellular Automaton Model for Freeway Traffic” (1992)

Four-component stochastic cellular model in discrete time:
o Acceleration
o Reducing speed in reaction to cars in front
o Randomization of velocity (i.e. a slowdown probability)

o Car speed based on velocity (# of cells to advance a vehicle)

One car per cell, velocity v € {0,...,5}

http://www.thp.uni-koeln.de/~as/Mypage/konfig.gif




Nagel-Schreckenberg Model

e ‘It has been shown that a discrete model approach for traffic flow is not only
computationally advantageous, but that it contains some of the important
aspects of the fluid-dynamical approach to traffic flow such as the transition
from laminar to start-stop traffic in a natural way... Thereby, it retains more

elements of individual behavior of the driver.”

http://www.thp.uni-koeln.de/~as/Mypage/konfig.gif
Nagel, et al. (1992)



Nagel-Schreckenberg Model

Real Traffic Simulation
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reality. Occupancy is the percentage of the road which is covered by vehicles (after [17]).

Nagel, et al. (1992)



Demo

e https://qithub.com/morethanoneanimal/Nagel-Schreckenberg-simulation
o A Python project with customizable simulations of n-lane road traffic with obstacles



https://github.com/morethanoneanimal/Nagel-Schreckenberg-simulation

