ELEN 4810 Homework 4

Analytical Questions

4.27 Because we sample at twice the bandlimit, the composite system is LTI when restricted to bandlimited inputs.

(a) The continuous-time frequency response is

\[H_c(j\Omega) = \begin{cases} H_d(e^{j\Omega T}) & |\Omega| < \pi/T \\ 0 & \text{else} \end{cases} \]

\[= \begin{cases} e^{j\Omega T/2} - e^{-j\Omega T/2} & |\Omega| < \pi/T \\ 0 & \text{else} \end{cases}. \]

(b) Here, \(x_d[n] = \frac{\sin(\Omega_M n T)}{\Omega_M n T} = \frac{\sin(n\pi)}{n\pi} \). Because the input is bandlimited, the composite system is LTI, and so \(Y_c(j\Omega) = H_c(j\Omega)X_c(j\Omega)\). In time domain, and using the expression for \(H_c\), we obtain

\[y_c(t) = \frac{x_c(t + T/2) - x_c(t - T/2)}{T}. \]

Plugging in \(x_c(t) = \frac{\sin(\Omega_M t)}{\Omega_M t}\) yields an explicit expression for \(y_c(t)\), namely,

\[y_c(t) = \frac{\sin(\Omega_M t + \pi/2)}{\pi t + \pi/2} - \frac{\sin(\Omega_M t - \pi/2)}{\pi t - \pi/2}. \]

Because \(y_c(t)\) is an ideal discrete-to-continuous reconstruction of \(y_d[n]\), we have \(y_d[n] = y_c(nT)\). An explicit expression can be obtained by plugging in:

\[y_d[n] = \frac{1}{T} \left\{ \frac{\sin(n\pi + \pi/2)}{n\pi + \pi/2} - \frac{\sin(n\pi - \pi/2)}{n\pi - \pi/2} \right\} \]

\[= (-1)^n \frac{1}{T\pi(n^2 - 1/4)}. \]

4.30 As follows:
8.28 (a) \(X[k] = \sum_{n=0}^{5} (6-n)W_6^{kn} \). This follows very directly from the formula for the DFT and the fact that \(x[n] = 6-n \) for \(0 \leq n \leq 5 \). Any equivalent expression is ok.

(b) \(W[k] \) is a the DFT of a cyclic shift of \(x[n] \) by two samples. In your sketch, you should have \(w[0] = 2, w[1] = 1, w[2] = 6, w[3] = 5, w[4] = 4 \) and \(w[5] = 3 \).

d) \(x \) has length 6, and \(h \) has length 3. The linear convolution \(x * h \) will have length \(3+6-1 = 8 \). So, we may choose any \(N \geq 8 \).

e) Length \(L \) cyclic convolution of \(h \) and \(x \) is equivalent to linear convolution of \(h \) with an \(L \)-periodized version of \(x \). Namely, if we set \(x_1[n] = x[n \text{ mod} L] \), then for \(n \in \{0, 1, \ldots, L - 1\} \), \(x_1 * h[n] = x @_L h[n] \). If we wish to minimize the number of samples that we need to add, you can check that we need only add \(M - 1 \) samples to the left of zero, setting

\[
x_1[n] = \begin{cases} x[n \text{ mod} L] & -(M - 1) \leq n \leq L - 1 \\ 0 & \text{else.} \end{cases}
\]

8.30 (a) Let \(\tilde{h}[n] = h[-n] \) be a time-reversed version of \(h \). Notice that \(\tilde{h} \) is supported from \(n = -31, \ldots, -18 \). The \(n \)-th element of the convolution \(y = x * h \) is just

\[
y[n] = \sum_{\ell} x[\ell] \tilde{h}[n - \ell].
\]
This is a dot product of y with a version of \hat{h} which has been shifted to the right by n samples:

$$y[n] = \langle x, D_n \hat{h} \rangle.$$ \hspace{1cm} (10)

The shifted version $D_n \hat{h}$ is supported from $-31 + n, \ldots, -18 + n$. The smallest n for which this overlaps with the support $21, \ldots, 31$ of x occurs when

$$-18 + N_1 = 21,$$

while the largest n for which $D \hat{h}$ overlaps with x is

$$-31 + N_2 = 31.$$ \hspace{1cm} (12)

So, the output y is supported from $N_1 = 39$ to $N_2 = 62$.

(b) For $n = 0, \ldots, 31$, let

$$\bar{x}_1[n] = x_1[n + 21 \text{ mod } 32]$$

$$\bar{h}_1[n] = h_1[n + 18 \text{ mod } 32].$$ \hspace{1cm} (13)

Notice that the linear convolution $\bar{x}_1 * \bar{h}_1[n]$ is simply $y[n + 39]$. Moreover, because length(\bar{x}_1) + length(\bar{h}_1) − 1 ≤ 32, linear convolution and cyclic convolution of these two signals are equivalent. So

$$\text{DFT}^{-1}\{\tilde{H}[k] \tilde{X}[k]\}[n] = y[n + 39], \hspace{1cm} n = 0, 1, \ldots, 32.$$ \hspace{1cm} (15)

By the cyclic shift property of the DFT,

$$Y[k] = \tilde{H}[k] \tilde{X}[k] \exp \left(-j \frac{2\pi k \times 39}{32} \right),$$

and so

$$\text{DFT}^{-1}\{Y\}[n] = \text{DFT}^{-1}\{\tilde{H} \tilde{X}\}[n - 39 \text{ mod } 32],$$ \hspace{1cm} (17)

giving

$$y_1[n] = y[(n - 39 \text{ mod } 32) + 39].$$ \hspace{1cm} (18)

(c) Both sequences are treated as length 32, we can set $N = 32 + 32 - 1 = 63$. For any $N < 63$, there will be spurious (incorrect) nonzero components in the output for $y[0], \ldots, y[63 - N - 1]$.