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Abstract

We study the multiple manifold problem, a binary classification task modeled on applications in
machine vision, in which a deep fully-connected neural network is trained to separate two low-dimensional
submanifolds of the unit sphere. We provide an analysis of the one-dimensional case, proving for a simple
manifold configuration that when the network depth L is large relative to certain geometric and statistical
properties of the data, the network width n grows as a sufficiently large polynomial in L, and the number of
ii.d. samples from the manifolds is polynomial in L, randomly-initialized gradient descent rapidly learns
to classify the two manifolds perfectly with high probability. Our analysis demonstrates concrete benefits
of depth and width in the context of a practically-motivated model problem: the depth acts as a fitting
resource, with larger depths corresponding to smoother networks that can more readily separate the class
manifolds, and the width acts as a statistical resource, enabling concentration of the randomly-initialized
network and its gradients. The argument centers around the “neural tangent kernel” of Jacot et al. and
its role in the nonasymptotic analysis of training overparameterized neural networks; to this literature, we
contribute essentially optimal rates of concentration for the neural tangent kernel of deep fully-connected
networks, requiring width n > Lpoly(dg) to achieve uniform concentration of the initial kernel over a
do-dimensional submanifold of the unit sphere $"0~1, and a nonasymptotic framework for establishing
generalization of networks trained in the “NTK regime” with structured data. The proof makes heavy use
of martingale concentration to optimally treat statistical dependencies across layers of the initial random
network. This approach should be of use in establishing similar results for other network architectures.
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1 Introduction

Data in many applications in machine learning and computer vision exhibit low-dimensional structure
(Fig. 1a). Although deep neural networks achieve state-of-the-art performance on tasks in these areas,
rigorous explanations for their performance remain elusive, in part due to the complex interaction between
models, architectures, data, and algorithms in neural network training. There is a need for model problems
that capture essential features of applications (such as low dimensionality), but are simple enough to admit
rigorous end-to-end performance guarantees. In addition to helping to elucidate the mechanisms by which
deep networks succeed, this approach has the potential to clarify the roles of various network properties
and how these should reflect the properties of the data.

These considerations lead us to formulate the multiple manifold problem (Fig. 1b), a binary classification
problem in which the classes are two disjoint submanifolds of the unit sphere S"~!, and the classifier is
a deep fully-connected feedforward network of depth L and width #n trained on N i.i.d. samples from a
distribution supported on the manifolds. The goal is to articulate conditions on the network architecture
and number of samples under which the learned classifier provably separates the two manifolds, guaranteeing
perfect generalization to unseen data. The difficulty of an instance of the multiple manifold problem is
controlled by the dimension of the manifolds dy, their separation A, and their curvature «, allowing us
to study the constraints imposed by these intrinsic properties of the data on the settings of the neural
network’s architectural hyperparameters such that the two manifolds can be separated by training with a
gradient-based method.

Our main result is an analysis of the one-dimensional case of the multiple manifold problem, which
reduces the analysis of the gradient descent dynamics to the construction of a certificate—showing that a cer-
tain deterministic integral equation involving the network architecture and the structure of the data admits
a solution of small norm. We construct such a certificate for the simple geometry in Fig. 3, guaranteeing
generalization in this setting.

Theorem 1 (informal). If dy = 1, one has:

(i) Suppose a certificate for M exists. Then if the network depth satisfies L 2 poly(x, C,,log(no)), the width
satisfies n 2 poly(L, log(Lny)), and the number of training samples satisfies N > poly(L), randomly-initialized
gradient descent on N i.i.d. samples rapidly learns a network that separates the two manifolds with overwhelming
probability. The constants C,, k depend only on the data density and the regularity of the manifolds.

(i) If L 2 AL, then a certificate exists for the configuration of M shown in Fig. 3.

Theorem 1 gives a provable generalization guarantee for a model classification problem with deep
networks on structured data that depends only on the architectural hyperparameters and properties of
the data. In addition, it provides an interpretable tradeoff between the architectural settings necessary to
separate the two manifolds: the network depth needs to be set according to the intrinsic difficulty of the
problem, and the network width needs to grow with the depth. Our analysis gives further insight into the
independent roles played by each of these parameters in solving the problem, with the depth acting as a
‘fitting resource’, making the network’s output more regular and easier to change, and the width acting
as a ‘statistical resource’, granting concentration of the network over the random initialization around a
well-behaved object that we can analyze. Moreover, the sample complexity of our result is dictated by
the intrinsic difficulty of the problem instance via the network depth; in particular, it persists even as the
network width is made very large.

Our result is modular, in the sense that a generalization guarantee is ensured for any geometry for
which one can construct a certificate. The key to our approach will be to approximate the gradient descent
dynamics with a linear discrete dynamical system defined in terms of the so-called neural tangent kernel
O(x, x’) defined on the manifolds. Due to the structure in the data, diagonalizing the operator corresponding
to this kernel is intractable in general, but we show that constructing a certificate—arguably an easier task,
because it requires producing a bound on the norm of a solution to an equation rather than producing
the solution itself—sulffices to guarantee that the error decreases rapidly during training given a suitably
structured network.

As an intermediate step in proving Theorem 1, we establish essentially optimal rates of concentration
for the neural tangent kernel of an arbitrarily deep fully-connected neural network.



Theorem 2 (informal). For any do-dimensional submanifold of the unit sphere, if n > Lpoly(do,logng), then
O(x, x") concentrates about a deterministic object uniformly over the product of the manifold with itself with over-
whelming probability.

Theorem 2 states that the key object governing the initial dynamics of the training algorithm we study
concentrates well as soon as the network width is linear in the network depth—previous results for these
rates of concentration were quadratic or worse [Aro+19a]. The main technical tool we use to establish
Theorem 2 is martingale concentration: these concentration inequalities are well-suited to controlling the
types of sequential random processes that appear when studying randomly-initialized deep networks,
and we believe that the approach we use here will be applicable to essentially any other compositionally-
structured network architecture.
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Figure 1: (a) Data in image classification with standard augmentation techniques, as well as other domains
in which neural networks are commonly used, lies on low dimensional class manifolds—in this case those
generated by the action of continuous transformations on images in the training set. Tangent vectors at a
point on the manifold corresponding to an application of a rotation or a translation are illustrated in green.
The dimension of the manifold is determined by the dimension of the symmetry group, and is typically
small. (b) The multiple manifold problem. Our model problem, capturing this low dimensional structure, is
the classification of low-dimensional submanifolds of a sphere S"~!. The difficulty of the problem is set
by the inter-manifold separation A and the curvature k. The depth and width of the network required to
provably reduce the generalization error efficiently are set by these parameters.

1.1 Related Work

Deep networks and low-dimensional structure. Goldt et al. [Gol+19] independently proposed the “hid-
den manifold model”, a model problem for learning shallow neural networks for binary classification of
structured data with motivations very similar to ours. Using a mean field approach, precise asymptotic
results for the generalization error for this model can be obtained in various regimes [Ger+20]. The data
model consists of gaussian samples from a low-dimensional subspace passed through a nonlinear func-
tion acting coordinatewise in the standard basis; in our case, studying an arbitrary density supported on
two Riemannian manifolds lends our data model increased generality. In the context of kernel regression
with the kernel given by the NTK of a two-layer neural network, Ghorbani et al. [Gho+20] study a data
generating model that consists of uniform samples from a low-dimensional subsphere corrupted additively
by independent uniform samples from a subsphere in the orthogonal complement, and a target mapping
that depends only on the low-dimensional part. The authors obtain asymptotic generalization guarantees



for this data model that reveal conditions under which the corruption degrades the performance of neural
tangent methods; as they acknowledge, a nonlinear model for data with low-dimensional structure may be
more suitable for modeling practically-occurring data, such as natural images. A number of other works
consider interactions between neural networks and data with low-dimensional structure in applications to
inverse problems [Hec+18; Ong+20; Moh+19; Bor+17; UVL18], with specific guarantees for sub-tasks in the
overall pipeline of training and evaluating the network.

Analyses of neural network training. To reason analytically about the complicated training process, we
adopt the neural tangent kernel approach [JGH18]: when the network width is sufficiently large relative to
the depth, the kernel @II(\] (x, x") that governs the dynamics of gradient algorithms changes so little that the
progress of gradient descent is determined by properties of the network at random initialization. The first
works to instantiate these ideas in a nonasymptotic setting obtained convergence guarantees for training
deep neural networks on finite datasets [ALS18; Du+18]. These results cannot be used directly to obtain
generalization guarantees for structured data because they depend on the minimum distance between data
points, which necessarily goes to zero as the number of samples increases. By exploiting more structure in
the data, generalization results have been obtained [ALL18; Aro+19b; JT19; Oym+19; CG19] that apply to
shallow networks, teacher-student learning scenarios, and/or hold conditional on the existence of certain
small-norm interpolators. In this connection, we highlight the results of Allen-Zhu and Li [AL20], who
obtain generalization results for deep network architectures (with skip connections) and a realistic training
algorithm when the target mapping is implemented by a neural network; and Ji and Telgarsky [JT19], who
give a generalization bound for shallow networks applicable to the data model shown in Figure 3, to which
part (ii) of Theorem 1 applies. Other works have obtained generalization guarantees using generalization
bounds for kernel methods [Gho+19; LRZ19; Gho+20; MZ20] using the fact that the linearized predictor in
the NTK regime can be linked to a kernel method [Aro+19a].

A parallel line of works [MMN18; TR20; MMM19; CB20; Fan+20] approach the problem by studying
an infinite-width limit of neural network training that yields a different training dynamics. Approaches of
this type are of interest because there is no restriction to short-time dynamics, and the limit of the dynamics
can often be characterized in terms of a well-structured object, such as a max-margin classifier [CB20]. On
the other hand, it is often difficult to prove finite-time convergence to the limit. Approaches that simplify
the discrete-time gradient descent dynamics of training by analyzing instead a continuous-time gradient
flow [JT20; Suz20] enjoy similar advantages, with the caveats that difficulties inherent in the discretization
process lead these results to often be non-algorithmic, and that issues of global existence for the flow can be
challenging to treat.

2 Problem Formulation and Main Results

2.1 Data Model

We consider data supported on the union of two class manifolds M = M, U M_, where M, and M_ are
two disjoint, smooth, regular, simple curves taking values in S™-1 with ng > 3. We denote the data measure
supported on M that generates our samples as u*, and require that it admits a density p with respect to the
Riemannian measure on M. We will need to worst-case aspects of the density p in our argument; we write

Pmin = inf P(x)} Pmax = SUp P(x)
xeM xeM

For our bounds in certain places to be nonvacuous, we will need pmin > 0. We denote by x a uniform bound
on the curvature of the two curves, and because we consider submanifolds of the unit sphere, ¥ > 1. The
separation between class manifolds is written as

A= min /(x,x'),
xeMy,x’ e M-

and we require A > 0. We denote by disty4(:, -) the Riemannian distance between two points on the same
connected component of M. We add one additional regularity assumption on the curves: we assume there



exist constants 0 < ¢y <1, K > 1 such that
Vs € (0,ca/x], (x,x") € MueX My, x € {+,-} : Z(x,x") <s = disty(x,x’) < Kjs. 2.1

It will be convenient to define a global regularity constant C, = K)Z\/ c/z\, and we note that C, > 1. The
assumption (2.1) essentially implies that on the typical scale of the curvature, the manifolds do not contain
points that are close in the spherical distance yet far in the Riemannian distance. In other words, each
connected component avoids ‘almost intersecting itself” below such scales. Additional details about these
assumptions are provided in Appendix A.2.

2.2 Problem Formulation

Given the data measure u* supported on M described in Section 2.1, we can formulate our target function

as fi : M — {£1}, with
_ +1 x¢€ M+
wo= {7 T

which we learn using a fully-connected neural network with ReLU activations and access to i.i.d. samples
from u® and their corresponding labels. We parameterize our neural network with weights W' € R,
Wl e R™" if ¢ € {2,...,L}, and W' € R™" which we collect as 8 = (W!,..., W), and write the
iterates of the forward pass as

a%(x) =x; ag(x) = [Weag_l(x)]Jr, (=1,2,...,L,

which we also refer to as features or activations, with the network output written as fg(x) = W“lal‘;(x),

and the prediction error as Co(x) = fo(x) — fi(x). For an ii.d. sample (x1,...,xn) from u*, we write
N
1%

=% SN, 6y, for the empirical measure associated to the sample, and we consider the training objective

1 1 < 2
£00)=3 [ (Cot) dux) - a7 2 Ul = £ @2)

i.e. the empirical risk evaluated with the square loss. Our algorithm for optimizing (2.2) is vanilla gradient
descent with constant step size 7 > 0: after randomly initializing the parameters G(I)\] as Wi ~ g N (0,2/n)
if { € [L]and W G N (0,1) independently of the sample from u*, we consider the sequence of iterates

oy, = 0 — VL (BY), (2.3)

where VL ~ represents a ‘formal gradient” of the empirical loss, which we define in detail in Appendix A.1.!
This choice of initialization guarantees stable forward propagation prior to training: in expectation, the initial
feature norms at each layer are unity, and the network output matches the scale of f.

Now we can articulate the quantitative version of the task in Theorem 1: we say the parameters obtained
at iteration k of gradient descent (2.3) separate the manifolds M if the classifier implemented by the neural
network with the parameters 0} labels the two manifolds correctly, i.e. if

Vx € My, sign (fef(x)) =+1 and Vx e M_, sign (fekN(x)) =-1. (2.4)

In the sequel, we will denote evaluation of quantities such as the features and prediction error at parameters
along the gradient descent trajectory using a subscript k, with an omitted subscript denoting evaluation at
the initial k = 0 parameters, and we will add a superscript N to parameters such as the prediction error
to emphasize that they are evaluated at the parameters generated by (2.3). For example, in this notation
we express CBkN as ij . In addition, we will use 6y = 6(1)\] to denote the random initial parameters. We will

emphasize the dependence of certain quantities on these random initial parameters notationally, including
the initial network function fg,.

1We introduce these definitions to cope with nonsmoothness of the ReLU [ - ];. Our formal gradient definitions coincide with the
expressions one obtains by applying the chain rule to differentiate £ LN at points where the ReLU is differentiable, and we make use
of this fact to proceed with these formal gradients in a manner almost identical to the differentiable setting.



2.3 Gradient Descent and Error Dynamics

Because it is difficult to endow the network parameters generated by the gradient descent iteration (2.3)
with a specific interpretation, we prefer to reason about how the network error CkN evolves under gradient
descent. We calculate (in Lemma B.7):

N ()= V) - /M O (x, )TN (') du (), 25)

where we have defined the integral kernel

1
®]I<\](x/ x') = /0' <er§(\1 (x"), erlfj_hglyl\l(eg)(x)> dt,

where, as in the definition of the gradient iteration (2.3), V fg, denotes a formal gradient of the initial network
function with respect to the parameters, which is defined in detail in Appendix A.1.

To use (2.5) to control the error during training, we need to deal with the kernel @)kN appearing in (2.5),
which is a complicated time-dependent random process over the initial weights, and additionally contend
with the randomness in the empirical measure . We deal with these challenges by proving that the error
evolution (2.5) is well-approximated under suitable conditions on the network architecture and the sample
size by a nominal error evolution, defined as

(. () = C°(x) —© /M Ox, ¥)C(x) du (') (26)

with identical initial conditions CS" = (, where the kernel in the above expression is the so-called neural
tangent kernel given by

O, %) = (Vfo,(x), Vfo )- 27)

The nominal update (2.6) is linear, time-invariant, and stable when 7 is set appropriately small. In addition,
when 7 is set appropriately small and the network is sufficiently overparameterized, we show that training
proceeds in the “NTK regime”, where @kN remains close to ® in L* (M x M) and the progress of the gradient
dynamics (2.5) can be tied to the progress of the nominal dynamics (2.6).

2.4 Main Results and Proof Outline

The bulk of our work goes into reducing the progress of the nominal error dynamics (2.6) to a deterministic
problem in analysis that we call the certificate problem, by analogy to the “dual certificate” proof technique
familiar from the theory of compressed sensing. Defining a kernel on M x M by

L-1L-1 ) ’
A NN P (L(x,x"))
O(x,x) = 22 (1 - ) (2.8)

sinv

where go(” ) denotes the ¢-fold composition of the function ¢(v) = cos™! ((1 — Z)cosv + =2

defining a piecewise constant approximation to C by

), and additionally

(W=~ + [ o)),
the certificate problem asks us to construct a function g of sufficiently small Liw norm such that for all
xeM,
2(x) = /M O(x, ¥)g(x') du(¥).

The certificate problem is thus a linear integral equation with data that depend on the manifold M, the
data measure u*, and the network width and depth. As the notation suggests, © and ( are high-probability



approximations to the NTK © and the initial error C, respectively, and the role these two quantities play in
the progress of gradient descent via the nominal dynamics (2.6) suggests an intimate connection between
certificates and dynamics. Indeed, our main result is that conditional on the existence of a certificate of
suitably small norm for M, gradient descent defined in (2.3) provably separates the two manifolds in time
polynomial in the network depth.

Theorem 1. Let M be a one-dimensional Riemannian manifold satisfying our regularity assumptions. For any
0 < 6 < 1/e, choose L so that
L > Kmax{C,~log’(1/6)log** (Cy~nolog(1/6)) ,x*Ca},
set
n = K'L”1og’(1/6)log'®(Lny),
and fix © > 0 such that
C c

— <7< —.
nL? nL

IfN > L', and if there exists a function g € Liw such that

A
’

é:/ O+, x)g(x") du™(x); Hg”Lzm < —f;;(M), (2.9)
M ¢ n

min

then with probability at least 1 — 5, the parameters obtained at iteration | L%/**/(nt)] of gradient descent on the finite
sample loss L x yield a classifier that separates the two manifolds.
The constants ¢,C,C’,K,K" > 0 are absolute, the constants x, C are respectively the curvature and global
max{ i P M1+ Pmax)®
(min {u= (M) =M}

For one-dimensional instances of the two manifold problem with sufficiently deep and overparame-
terized networks trained in the small-step-size regime, Theorem 1 completely reduces the analysis of the
gradient iteration (2.3) to the certificate problem. From a qualitative perspective, the network resource
constraints imposed by Theorem 1 are natural:

regularity constants defined in Section 2.1, and the constant C .~ is equal to

1. The network depth L is set by geometric and statistical properties of the data with only a mild poly-
logarithmic dependence on the ambient dimension 7y, which reflects the role of depth in controlling
the capability of the network to fit functions.

2. The network width 7 is set by the depth L: the inductive structure of the network causes quantities
that depend on the initial random weights 0¢ to concentrate worse as the depth is increased, which
can be counteracted by setting the width appropriately large.

3. The sample complexity of N > L reflects the capacity of the network via the depth, and is in particular
independent of the width n, which can thus be interpreted as purely a statistical resource.

In addition, the conclusion of Theorem 1 implies not just that the expected generalization error with respect
to u™ of a binary classifier is zero, but the stronger (2.4), i.e. that the generalization error will be zero for
any choice of test distribution supported on M simultaneously. Finally, we remark that the equality imposed
on the width n and the lower bound on the step size 7 are not fundamental: our analysis only requires that
n remains polynomial in L, and 7 inverse polynomial in L, with any increases in the exponents reflected
in larger values of the absolute constants appearing in Theorem 1. We state the equality on #n because the
lower bound L is already comically large; this scaling is entirely due to worst-case bounds on the change
in the neural tangent kernel © during gradient descent, and any improvement in the understanding of these
changes or in understanding dynamics beyond the NTK regime would reduce this exponent considerably.

An analysis of the progress of the gradient iteration (2.3) in the NTK regime will generally reduce to
the study of a nominal update similar to (2.6), and in this context the certificates approach to dynamics
shines. A direct approach to proving decrease in the nominal error via (2.6) might be to construct the



eigenfunctions of the compact operator on Li"" corresponding to integration against the kernel ® and prove
that the initial error C aligns well with eigenfunctions corresponding to large eigenvalues, but determining
these eigenfunctions is intractable for general data geometries and distributions. In contrast, the certificates
approach performs this alignment implicitly via the norm constraint on the solution to the linear integral
equation in (2.9), and it is robust to the introduction of the analytically-convenient approximations ® and

C. We demonstrate the construction of certificates for the family of simple, highly-symmetric geometries
shown in Figure 3, and leave the case of general one-dimensional manifolds for future work.

Proposition 1. Let M be an r-instance of the two circles geometry studied in Appendix C.1.1 and shown in Figure 3,
with r > 1/2. If L > max{K, (n/2)(1 — r2)~Y/2}, then there exists a certificate g satisfying (2.9).

Proposition 1 shows that a certificate exists for the geometry shown in Figure 3 as soon as L is larger than
a constant multiple of the inverse separation A™!, even as the separation approaches zero. We conjecture
that a similar phenomenon holds in general, possibly with additional dependencies on the curvature and
global regularity parameters of M.

2.4.1 Proof Outline

We sketch the proof of Theorem 1 below. Additional details of some important aspects of the proof are
discussed in Section 3, and the full proof is given in Appendix B. Proving the separation property (2.4)
essentially requires us to obtain control of ||CkN lL=(m), and by an interpolation inequality (Lemma B.13) it

suffices to control the generalization error ||Clk\’ ;2 and the smoothness (measured through the Lipschitz
ue

constant) of Ci\] . We start with the generalization error, picking up from where we left off at the end of
Section 2.3: the triangle inequality gives

1Nz, < NEelie, + 160 = &l (2.10)

which allows us to divide the analysis into two subproblems: characterizing the nominal dynamics (Lem-
mas B.5 and B.11), and the nominal-to-finite transition (Lemma B.6). Beginning with the nominal dynamics,
we use (2.6) to write

Cp = (1d-1@)"[C],
where ® denotes the operator on Lfrx’ corresponding to integration against the kernel ® and Id denotes the
identity operator. The expression (2.7) and compactness of M imply that ® is a positive, compact operator

(Lemma B.8), so these dynamics are stable when 7 is chosen larger than the operator norm of ®. However,
the rate of decrease of ||C;°||;2_ with k could still be extremely slow if the initial error C has significant
ue

components in the direction of eigenfunctions of ® corresponding to small eigenvalues, and because ® acts
roughly like a convolution operator, we expect there to exist eigenvalues arbitrarily close to zero. By solving

the certificate problem (2.9), we can assert that this does not occur as long as the kernel 6 approximates ©
well, as illustrated in Figure 2b.> One of our main technical contributions is to establish this approximation
guarantee in the regime where the width n scales linearly with the depth L; later parts of the argument end
up setting the more pessimistic scaling in Theorem 1. Additionally, for these and other concentration issues,
we are able to work with manifolds of dimension dy > 1.

Theorem 2. Let M be a dy-dimensional complete Riemannian submanifold of S™~. Then if
n > C'Ldjlog*(CpnoL), one has with probability at least 1 — n=10

sup
(x,x)EMXM

! L-1 o O(L(x, %) .
O(x,x’) - > Z cos ((p(l})(l(x/ x'))) 1_[ (1 - T) < Cn1/2L3/2d(2) log= (Cpqnng),
= r=t

where @' denotes the £-fold composition of p(v) = cos™ ((1 — £) cos v + L), the constants C, C’ > 0 are absolute,
and the constant C pq > 0 depends only on the number of connected components of M, and additionally on the lengths
of the class manifolds when dy = 1.

2Here we additionally require that ¢ approximates (; we prove (Lemma D.11) a high-probability C/L approximation for this term.
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Figure 2: (a) Depth acts as a fitting resource. As L increases, the rotationally-invariant kernel 6 decays more
rapidly as a function of angle between the inputs Z(x, x") (n is held constant). Below the curves we show an

isometric chart around a point x € M. Once the decay scale of © is small compared to the inter-manifold
distance A and the curvature of M_, the network output can be changed at x while only weakly affecting its
value on M_. This is one mechanism that relates the depth required to solve the classification problem to
the data geometry. (b) Width acts as a statistical resource. The dynamics at initialization are governed by O, a
random process over the network parameters. As n is increased, the normalized fluctuations of © around

© decrease (here L = 10). These two phenomena are related, since the fluctuations also grow with depth,
as evinced by the scaling in Theorem 2.

The proof of Theorem 2 involves a treatment of dependencies between weights as they appear in the
kernel © in an essentially optimal way using martingale concentration, and a sharp concentration estimate
for the process by which the angles between features evolve as they are propagated through the initial
network. We discuss these issues in more detail in Section 3.1.> With our approximation to © justified, we
show that for any sufficiently small step size T and number of iterations k, solving the certificate problem
(2.9) guarantees appropriate decrease of the nominal generalization error; additional details are discussed
in Section 3.3. The key property that we use in constructing certificates in Proposition 1 is that as the depth

L increases, the kernel © sharpens and localizes (Fig. 2a): the conditions on L in Theorem 1 guarantee that
the sharpness is sufficient to ensure that the cross-manifold integrals in the certificate problem are small
in magnitude, which leads to rapid decrease of the nominal error. Our precise characterization of this
phenomenon is presented in Appendix C.

To complete the proof, we will justify the nominal-to-finite transition in (2.10). Starting from the update
equations (2.5) and (2.6), subtracting and rearranging gives an update equation for the difference:

CkN - =(1d-70) [CkN—1 -Gy - T®g—1 [CkN—1] +10 [CkN—1] :

In particular, if 7 is chosen less than the operator norm of ®, we can take norms on both sides of the previous
equation, apply the triangle inequality, then exploit a telescoping series cancellation to obtain the difference

bound
k-1

ey =il <))
g

s=0

/ OV (-, )N () dpV (') - / (-, )N (') du™(¥) @.11)
M M

2
L#‘”

There are two obstacles to controlling the norm terms on the RHS of (2.11): the kernels ®Y are distinct
from the kernel ® due to changes in the weights that occur during training, and the empirical measure uv

3We remark that although the expression that © concentrates around in Theorem 2 is not exactly the kernel © that we have defined
in (2.8), these two expressions are essentially interchangeable in the scaling regime of Theorem 1 (Lemma C.9). We proceed with (2.8)
for added technical convenience.
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incurs a sampling error relative to the population measure u*. To address the first challenge, we measure
the changes to the NTK during training in a worst-case fashion as

AY = max [lOf - ®HL°°(M><M)’

and train in the NTK regime, where the network width 7 is larger than a large polynomial in the depth L
and the total training time k7 is no larger than L/n. These conditions imply that with high probability Af{\[
is no larger than a constant multiple of 1!~ poly(L, dy) for a small constant 6 > 0, so that the amortized
changes during training k7A}’ can be made small by sufficient overparameterization. We provide additional
details of this argument in Section 3.2. By the preceding argument, we can use the triangle inequality and
Jensen’s inequality to pass from the norm term in (2.11) to a difference-of-measures term which integrates
against ©, and by Theorem 2, we can replace the integration against © by an integration against a smooth,
deterministic kernel, which leads to a bound

7
2
Lo

k-1
=¥l < Rt Lodo) e 3

/M P12, NN ) (e () — due ()

where Ry is a residual term that we argue is small in the NTK regime with high probability, and for concision
we write {1 to denote the function of Z(x, x’) that appears in Theorem 2. To control the remaining term, we
make use of a basic result from optimal transport theory, which states that for any probability measure u
on the Borel sets of a metric space X and corresponding empirical measure uN, one has for every Lipschitz
function f

/X £ () - AN ) < | fllupW (i 1),

where W(-, -) denotes the 1-Wasserstein metric, and concentration inequalities for empirical measures in
the 1-Wasserstein metric [WB19]. To apply this result to our setting, it is necessary to control the change
throughout training of the Lipschitz constant of CN, and one must also account for the fact that the metric
space in our setting is M, which has two distinct connected components. We treat the first issue using an
inductive argument, and our treatment of the second issue (Lemma B.12) leads to the dependence on the
degree of class imbalance demonstrated in the constant C,~ in Theorem 1. We provide additional details in
Section 3.4.

3 Key Proof Elements and Technical Tools

3.1 Initial Kernel and Predictor Control: Martingale Concentration and Angle Con-
traction

The initial kernel © is a complicated random process defined over the weights (W1, ..., WL*1). To control it,
we first show for fixed (x, x’) that @(x, x’) concentrates with high probability, and then leverage approximate
continuity properties to pass to uniform control of ®. We describe pointwise control in this section, and
discuss uniformization in Section 3.4. The kernel (2.7) can be written in the form

-1
O(x, %) = (@' (x), a () + Y (a'(x), a' (¥ (B! (x), B (),
=0
where ﬁe(x) = (WL+1P1L(x) fe W“zPIM(x))* will be referred to as backward features, and Py, () is a projection
onto {a!(x) > 0}. We consider (f°(x), B°(x)) as a representative example: up to a small residual term, this
random variable can be expressed as a sum of martingale differences. Formally, for ¢ € [L], let F* denote

the o-algebra generated by all weight matrices up to layer ¢, with #° denoting the trivial o-algebra. We can
then write

L+1

[(B°(x), B°(x)) — go(v°)] < Z gWE W) —E[gWE, .., W) | FE [+ R(x, %) (3)
=1
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for some functions g; and controllable residual R(x,x’), where v* = /(x,x’). If we fix all the variables
in 7471, the fluctuations in the {-th summand will be due to W' alone. Intuitively, since each weight
matrix appears at most once in °(x),* it will appear at most twice in gy, and therefore g, will have a sub-
exponential distribution conditioned on ‘=1 and concentrate well around its conditional expectation. This
property stems from the compositional structure of the network, with independent sources of randomness
introduced at every layer, and is essentially agnostic to other details of the architecture. The concentration of
the summands in (3.1) implies concentration of the sum: even though the summands are not independent,
they can be controlled using concentration inequalities analogous to those for sums of independent variables
[Azu67; Fre75], which enables us to achieve the linear scaling of width on depth in Theorem 2. We make
use of similar arguments in several places in our proof of concentration of ®(x, x’), provided in full in
Appendix D.

Showing that terms of the form (a‘(x), a‘(x")) concentrate in the linear regime gives rise to additional
challenges. Here we exploit an essential difference between the concentration properties of the angles
between features v/ = /(af(x), a’(x’)) relative to those of the correlation process (a'(x), a'(x’)) studied
in prior works on concentration of ®: when v~! = 0, we have that v/ = 0 deterministically, whereas the
correlation process behaves like a subexponential random variable with small but nonzero deviations.
Together with smoothness, this clamping phenomenon exhibited by the angle evolution process enables us
to show concentration of the angle at layer ¢ around the function ¢'¥'(+?), which is no larger than a constant
multiple of £71. As a consequence, the angles between features contract as one moves up the network.
The contraction of angles has strong consequences for both concentration of the network and construction
of certificates (Section 3.3): the critical rate of contraction of the angles allows us to control the residual
R(x, x’) appearing in the backward features (3.1); it gives the invariant kernel © its sharpness at zero and
localization properties, both of which increase as the depth is increased; and it allows us to show that the
initial network function fg, approaches a constant function on M as the depth is increased, provided the
width is sufficiently large. We provide full details of our approach in Appendices D and E.

3.2 Handling Discontinuous Changes in the Features

Our argument requires the uniformization of the pointwise estimates of Section 3.1, and control of the
difference between ® and @,I(\’ . In both cases, we must contend with the fact that the backward features are
not continuous functions of the input and parameters, due to the matrices Pj,(y)—as the forward features
change, these projection matrices incur non-smooth changes from "neurons turning on or off". In order to
control these objects, we bound the number of possible pre-activation sign changes given a bounded norm
perturbation in the pre-activations (or in the input to the network in the case of uniformization). Since
the pre-activations are marginally Gaussian, the first calculation reduces to a problem in concentration
of Gaussian order statistics. By then bounding the norms of features with admissible modified support
patterns and subsequently the changes in the pre-activation norms during training, we obtain a constraint
on the maximal number of iterations that is consistent with our assumed bound on the norm changes.

In the process, we worst-case over the possible changes during training, resulting in an unrealistic scaling
requirement of the width with respect to the depth. Full details on uniformization and control of changes
during are provided in Appendix D and Appendix F respectively, and the final concentration result is given
by Theorem 2.

3.3 Approximate Certificates: General Formulation and a Simple Example

After solving the linear dynamics (2.6) and introducing approximations © and C for the neural tangent

kernel ® and initial error (, we can ensure that the norm of &y decreases without access to the eigenvalues
. . A 2 . . . . A .

and eigenfunctions of ®, the operator on L e corresponding to integration against ©®. Computing these

eigenfunctions is intractable in general, because the operator is not generally translationally invariant on
M. By a simple argument that relies on the positive semidefiniteness of ® (which obtains from general

4Technically, the features a!(x) depend on all the weights up to layer ¢ and hence so does the projection matrix Pj,(x), but our
analysis shows that this dependence has only a minor effect on the statistical fluctuations.

12



Figure 3: The coaxial circles geometry for which we construct an approximate certificate.

principles), we show that if we can find a function g satisfying S]] g1 = C with sufficiently small norm, then
for a suitably chosen learning rate T and number of iterations k,

\/El(;gL >1-e¢

PUHIEE e v0 < Co—17—

for some q > 0. If the network is sufficiently deep, the norm of the nominal error can thus be made
arbitrarily small in a number of iterations that scales only polynomially with the problem parameters.
Details are provided in Lemma B.5.

For the simple geometry in Fig. 3, we show in Appendix C.1.1 how to construct such a certificate using
Fourier analysis, where we require L > CA~! for some absolute constant C. The depth of the network is thus
determined by the geometry of the data, and specifically by the inter-manifold distance which intuitively
sets the “difficulty” of the fitting problem. Note that this bound holds even if the density is non-uniform
on the manifolds, which breaks rotational invariance. In Section 4 we discuss approaches to extending
certificate construction to general smooth curves.

3.4 Generalization: Controlling the Finite Sample Error

The previous section outlined our approach to controlling the norm of the nominal error C;°. It remains

to transfer this control to the finite sample error (Y, which we achieve with an appropriate choice of N.
As illustrated in Figure 2a, increasing the depth of the network effectively improves the ability of gradient
descent to reduce the fitting error at a point without affecting the error at nearby points due to the kernel 6
decaying more rapidly as a function of angle.> As a consequence, the Lipschitz constant of (the smooth part
of) the predictor grows with L as training progresses. Roughly speaking, our choice of L thus determines
a spatial scale through the decay properties of ©. If we want to control the error at every point on M, we
require that our samples cover M densely at this scale. As a result, we obtain a constraint on the sample
complexity in terms of L alone.® Due to the randomness of the samples, we guarantee this by invoking
concentration results for empirical measures in Wasserstein distance [WB19].

Elaborating slightly, since our goal is to classify the manifolds perfectly, we in fact require control of
HCkN || LMy which we can obtain by controlling both ||C§(\’ || 2. and the Lipschitz constant of (a smooth com-

ponent of) Clk\f (see Lemma B.13 for details). Note that ||C£’ H 2 s commonly referred to as the generalization
ue

error, since it is defined with respect to the population measure u®. Our stronger result in fact ensures
correct classification for any choice of the test distribution. In order to control these two quantities, we track

5This behavior is manifested in the results of Section 3.3

sIn truth, © scales linearly with n and so decays more sharply as 7 is increased as well, yet this effect is counteracted by our choice
of the training time (which scales like 1/1) and hence this dependence has no effect on the smoothness of the predictor.
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both ||Ci\’ - C;"” ;» and this Lipschitz constant during training, bounding them using of a system of coupled
ue

inequalities at every iteration. In controlling these quantities, we encounter residuals that scale like powers
of the above Lipschitz constant, while scaling inversely with N. Controlling this system thus requires us
to take a number of samples N that is polynomial in L, which is the manifestation of the phenomenon
described in the previous paragraph. Full details are provided in Lemma B.6.

4 Discussion

Certificates for curves. The most urgent task toward expanding the scope of Theorem 1 is the construction
of certificates for geometries beyond the coaxial circles of Proposition 1. The proof of Proposition 1 relies
heavily on translation invariance of the intra- and inter-manifold distances in the coaxial circles geometry
in order to avoid the need for certain technical estimates for the decay of the kernel @, which are sharper
than what we establish in Appendix C.2.2. Proving these estimates seems to us to be one of the key
bridges to the construction of certificates for general curves satisfying our regularity assumptions: with
sharper control of the decay of the kernel 0, it is possible to select the network depth in a way that grants
appropriate worst-case control of the magnitude of the cross-manifold integrals in the action of  (as in
Figure 2a), allowing us to reduce to what is essentially a one-manifold certificate construction problem that
can be solved with harmonic analysis. The price we pay for worst-casing the interaction between the two
manifolds via the network depth is a potentially unsavory dependence of the depth on the inverse separation
A1 and the global regularity constant C, (say, exponential); to achieve more realistic dependences, as in
the linear dependence of Proposition 1, it may be necessary to additionally incorporate sharp estimates
for the derivatives of ©. Beyond these considerations, it is important to extend Theorem 1 to manifolds of
dimension dy > 1, as curves are not a particularly useful modeling primitive. Here, we see fewer obstacles:
our concentration results, notably including Theorem 2, are already applicable to manifolds of arbitrary
dimension, and the changes that need to occur to extend the dynamics argument are localized to adaptations
of the interpolation inequality that allows us to pass from Li”" to L®(M) (Lemma B.13) and a certain local
regularity lemma for the data manifolds (Lemma C.6). We expect straightforward adaptations of these
results to yield a version of Theorem 1 for manifolds of dimension dy > 1 (i.e., conditional on the existence
of a certificate) with an additional exponential dependence of the network depth on the manifold dimension
do, which may be expected in general [Goe+20].

We mention another avenue toward construction of certificates for more general geometries, which
is somewhat more speculative. One degree of freedom that we have not exploited in our analysis is
the choice of the network activation function: changing the ReLU to another nonlinear function would
generate a different angle contraction process, and hence a different form for the kernel O that appears in
the certificate construction problem. Ignoring some delicate concentration issues that would have to be

resolved, it could therefore be possible to select an activation function that yields a kernel © with better
sharpness and decay properties than is obtained for a deep feedforward ReLU network, and leverage these
improvements in the construction of certificates for more general geometries. Some qualitative insights
into viable architectural changes could be gleaned from [LT20], in which the angle contraction process
we characterize nonasymptotically for fully-connected ReLU networks is characterized for other activation
functions in the limit of n, L — oo.

Convolutional networks and non-differentiable manifolds. Although we have motivated our data model
in the multiple manifolds problem using applications in computer vision, it is important to note that the
spatially-structured image articulation manifolds that arise as data in these contexts do not carry a differentiable
structure [Wak+05], so the assumption of bounded curvature may not be realistic here. On the other hand,
in these applications it is standard to employ a convolutional network architecture. We anticipate that
our martingale concentration framework can be extended to these architectures, and beyond establishing
analogues of Theorem 1 in this setting, we believe it should be possible to show that the natural invariance
properties of convolutional networks can be exploited to obtain similar guarantees for models of image
articulation manifolds. In this connection, we mention the scattering networks of Mallat [Mal12; BM13],
which feature provable local stability to continuous transformations of the input. It would be of interest
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to show that similar properties are enjoyed by randomly-initialized convolutional networks, so that image
articulation manifolds generated by small rotations and dilations can be ‘regularized” without having to
expend additional network resources computing convolutions over general LCA groups [CW16].

The importance of being low-dimensional. Ghorbani et al. [Gho+19] show that kernel ridge regression
with any rotationally invariant kernel on S¢ (including that of a deep network) is equivalent to polynomial
regression with a degree p polynomial if the number of samples is bounded by dP*!. The paper assumes that
the data is completely unstructured. However, if the data lies on a low dimensional manifold, one would
expect the sample complexity to depend in a mild way on the ambient dimension, and taking a number of
samples that is a large power of the manifold dimension may not be overly prohibitive. Indeed, in a subse-
quent work [Gho+20] the authors establish similar guarantees for a linear data model consisting of uniform
samples from a low-dimensional subsphere with additive corruptions in the orthogonal complement, with
the role of d in the previous bound replaced by an “effective dimension” that captures the dimensionality
of the subsphere and the relative scales of the data and the corruption. Although our present certificate
construction argument only implies dynamics for the restrictive coaxial circles geometry of Figure 3, for
which one can obtain guarantees for kernel regression with a shallow NTK by the results of Ghorbani et al.
[Gho+20], the general multiple manifold problem formulation allows one to model nonlinear structure in
the data. In this context, we see it as advantageous that our data model also captures the intrinsic difficulty
of separating the two data manifolds via the curvature, inter-manifold separation, and global regularity
parameters introduced in Section 2.1, which are all naturally related to the structure present in the data.
The guarantees in Ghorbani et al. [Gho+19; Gho+20] depend on the degree of approximability of the tar-
get function by low-degree polynomials, and although this achieves additional generality over our model,
which is specialized to binary classification, it seems more challenging to relate this to geometric or other
types of nonlinear low-dimensional structure.

The NTK regime and beyond. In recent years there has been much work devoted to the analysis of
networks trained in the regime where the changes in G),l(\] remain small and the dynamics in (2.5) are close
to linear [JGH18; Lee+19; Aro+19a; AL19] (referred to as the NTK/“overparametrized” /kernel regime).
Concurrently, there have also been results highlighting the limitations of this regime. In [CB18] the authors
coin the term “lazy training" in referring to dynamics where the relative change in the differential of the
network function is small compared to the change in the objective during gradient descent. While the
dynamics we study indeed fall into this category, the analysis makes it evident that not all lazy training

regimes are created equal. Our performance guarantees depend on the structure of the kernel ®, and on
controlling the fluctuations of @11(\’ around it. We are able to control these only if the width of the network
is sufficiently large compared to the depth. In contrast, lazy training can also be achieved in homogeneous
models by simply scaling the output of the model [CB18], in which case one cannot argue that the kernel
has the decay properties that enable it to fit data.

Training in the NTK regime allows us to simplify the training dynamics (2.5) to the much simpler time-
invariant nominal dynamics (2.6) and establish Theorem 1, but it also drives the egregious n > L%’ scaling
that appears there, and it is of significant interest to understand whether a result like Theorem 1 still holds
in the linearly-overparameterized regime of Theorem 2. As we discussed in Section 2.4, our analysis links
the training dynamics to the nominal dynamics by a worst-case reckoning of the changes incurred during
training through the terms Ai\] .7 Our probabilistic analysis here is likely suboptimal, and improvements
would translate immediately into an improved rate for the width in Theorem 1. The primary reason for this
suboptimality is that we treat all changes that occur during training as being adversarial to the algorithm’s
ability to generalize—in contrast, it is a widely held belief that the nonlinear process of feature learning from
data is the key to the success of deep networks. It is likely that if an improved understanding of this process
can be incorporated into an analysis of the dynamics, the resulting scaling requirements would be more
realistic. One potential approach in this vein is to consider higher-order analogues of the NTK dynamics
[BL19; Bai+20; DG19; HY19], which one could potentially control probabilistically as we do through AkN for
the first-order changes. Nevertheless, these approaches seem unlikely to yield an analysis that applies to the

"Prior NTK regime analyses in a similar setting, e.g. [Du+18; ALS18], proceed in a similar manner, modulo some technical
differences due to the uniform concentration setting we pursue here.
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scaling regimes encountered in practice. Guarantees for regimes in which feature learning occurs have been
obtained for certain settings where the target function is itself implemented by a neural network [AL20],
and the proof techniques developed may be of use in the context of data with low-dimensional structure as
well. At the same time, there is some empirical evidence that the typical regime in which neural networks
are trained may not be accessible by approaches to dynamics in the NTK regime [Lew+20; LM20; LWM19].
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Summary of Contents

We briefly summarize the contents of each of the subsequent appendices.

A. We discuss the contents of the problem formulation section from the main body, Section 2.2, in more

A

technical detail, in particular giving technical definitions for formal gradients, regularity conditions,
and so on. We also summarize notation and the key operator definitions that appear throughout the

paper.

. We give proofs for our main results. We provide supporting results on the NTK regime dynamics of

gradient descent and other relevant technical lemmas, as discussed in the proof sketch of Section 2.4.

We give technical definitions relevant to the cross-manifold perspective on certificate construction,
construct a certificate for the two circles geometry of Figure 3, and provide technical estimates on the
kernels 11 and ¢ that remain after applying our measure concentration arguments to the NTK ©.

We collect results on measure concentration relevant to proving our main uniform concentration result
for the NTK, Theorem 2. Some of these results are also relevant for controlling changes during training.

. We collect results relevant to proving a certain concentration result for the angles between features

as they propagate across one layer of the initial neural network. The main results of this section are
fundamental to the study of the concentration of angles in Appendix D, and we provide them in a
separate appendix due to their length.

. We establish results on uniform control of the changes during training of the NTK @,’(\’ from its “initial

value” of ®. These are a key ingredient in our dynamics arguments in Appendix B.

We provide statements of general technical lemmas that are of a classical nature, which we rely on
throughout the other appendices.

Extended Problem Formulation

A.1 Regarding the Algorithm

We analyze a gradient-like method for the minimization of the empirical loss .L~. After randomly ini-
tializing the parameters 66\] as W8 ~i4 N(0,2/n)if ¢ € [L] and W' ~5 4 N(O,1), independently of the
samples x1, ..., xxn, we consider the sequence of iterates

O),, = 0} — VLN (OY), (A1)

where 7 > 0 is a step size, and §£HN represents a ‘formal gradient” of the loss £L~, which we define as
follows: first, we define formal gradients of the network output by

Vivt fo(x) = By (x)arly (x)"

for { € [L] and x € M, where we have introduced the definitions

ﬁg(JC) = (WL+1P1L(X)WLPIL—1(X) cee WHZPIM(X))

for {=0,1,...,L -1, and where we additionally define

Ie(x) = supp (]lag(x>>o)/ Piw = ), e

Z'EI[(X)

for the orthogonal projection onto the set of coordinates where the ¢-th activation at input x is positive. We
call the vectors ﬁg(x) the backward features or backward activations—they correspond to the backward pass of
our neural network. We also define

Vit fo(x) = as(x)".
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We then define the formal gradient of the loss £~ by

VL,(0) = /M ¥ fo () Colx) dpe (x).

Let us emphasize again that the expressions above are definitions, not gradients in the analytical sense: we
introduce these definitions to cope with nonsmoothness of the ReLU [ - |,. On the other hand, our formal
gradient definitions coincide with the expressions one obtains by applying the chain rule to differentiate
L~ at points where the ReLU is differentiable, and we will make use of this fact to proceed with these
formal gradients in a manner almost identical to the differentiable setting.

We reiterate here our notational conventions for quantities evaluated at these iterates: we denote eval-
uation of quantities such as the features and prediction error at parameters along the gradient descent
trajectory using a subscript k, with an omitted subscript denoting evaluation at the initial k = 0 parameters,
and we add a superscript N to parameters such as the prediction error to emphasize that they are evaluated
at the parameters generated by (A.1). For example, in this notation we express C o as Clk\] . In addition, we

use Og to denote the initial parameters 66\’ . We emphasize the dependence of certain quantities on these

random initial parameters notationally, including the initial network function fg,.

A.2 Regarding the Data Manifolds

We now provide additional details regarding our assumptions on the data manifolds. For background on
curves and more broadly Riemannian manifolds, we refer the reader to [Leel8; AMS09]. We assume that
M = M, UM_, where M, and M_ are two disjoint complete connected® Riemannian submanifolds of the
unit sphere S™1 with ny > 3. In particular, M. are compact. We take as metric on these manifolds the
metric induced by that of the sphere, which we take in turn as that induced by the euclidean metric on R"0.
We write pu$° and p2 for the measures on M, and M_ (respectively) induced by the data measure u*, and
we assume that > admits a density p with respect to the Riemannian measure on M, writing p, and p_
for the densities on M, induced by the density p. When dy = 1, we add additional structural assumptions
to the above: we assume that M. are smooth, simple, regular curves.
Concretely, that M admits a density p with respect to the Riemannian measure means that

1=/A/(dy°°(x)=‘//\/l+ p+(x)dV+(x)+/M_ p—(x)dV_(x).

When dj = 1, because M. are smooth regular curves, they admit global unit-speed parameterizations with
respect to arc length y, : [. — S"~1 where I, are intervals of the form [0,len(M.)]. In this setting, the
curvature constraint is expressed as

sel,

max {suplly:<s>| z,sulpllr’_’@llz} <K
sel_

Exploiting the coordinate representation of the Riemannian measure and the fixed inherited metric from
R", we thus have

/M pi(X)dVi(X)=Apioyi(t)llyi(f)llzdt=/I+Pi°)/¢(t)dt-

We will exploit this formula in the sequel to compare between Lf,(M) and LP(M) norms of functions
defined on the manifold. More generally, we will frequently make use of similar reasoning that leverages
the existence of unit-speed parameterizations for the curves.

8Certain parts of our argument, such as the concentration result Theorem B.2, are naturally applicable to cases where M.. themselves
have a finite number of connected components with a mild dependence on this number, and we state them as such. We skip this extra
generality in our dynamics arguments to avoid an additional ‘juggling act’ that would obscure the main ideas.
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Regrading the global regularity condition defined in Section 2.1, we illustrate how the associated con-
stants can be obtained from the assumption that the manifolds are simple curves. For either x € {+, -},
consider a connected component M, € M, and for any 0 < s < len(M,), define

rx(8) = inf L(x,x").
*( ) x,x" €M XMy, ( ! )
distp(x,x”)>s

If r«(s) = 0, by compactness we can construct a sequence of pairs of points that converges to r(s), but this
would imply that M, is self-intersecting, contradicting our assumption that it is simple. It follows that

74(s) > 0 for any value of s. If we now define K = r4(s)/s, it follows that for any (x, x") € My x M,
L(x,x') < s = disty(x,x") < Kss.

Our regularity assumption implies that a single such constant holds for a range of scales below the curvature
scale, which is a mild assumption since K, approaches 1 as s approaches 0.

A.3 Notation
A.3.1 General Notation

If n € N, we write [n] = {1,...,n}. We generally use bold notation x, A for vectors, matrices, and operators
and non-bold notation for scalars and scalar-valued functions. For a vector x or a matrix A, we will write
entries as either x; or Ajj, or (x); or (A);;; we will occasionally index the rows or columns of A similarly as
(A); or (A);, with the particular meaning made clear from context. We write [x], = max{x, 0} for the ReLU
activation function; if x is a vector, we write [x]; to denote the vector given by the application of [ - ]+ to
each coordinate of x, and we will generally adopt this convention for applying scalar functions to vectors.
If x, x’ € R" are nonzero, we write Z(x,x") = cos ({x, x’)/||x||2||x’||2) for the angle between x and x’.

The vectors (e;) denote the canonical basis for R". We write (x,y) = 2, x;y; for the euclidean inner
product on R", and if 0 < p < +oco we write ||x||, = (3;1x:|P)VP for the €7 norms (when p>1)onR". We
also write ||x||o = [{i € [n] | x; # 0}] and ||x||cc = MaX;e[y] |x;|. The unit ball in R" is written B" = {x € R" |
lx]l2 < 1}, and we denote its (topological) boundary, the unit sphere, as S"~!. We reserve the notation
|| - || for the operator norm of a m X n matrix A, defined as ||A|| = SUP|y|,<1 ||Ax||2; more generally, we
write ||Al[gp e = SUP|4)|, <1 lAx||; for the corresponding induced matrix norm. For m X n matrices A and
B, we write (A, B) = tr(A"B) for the standard inner product, where A* denotes the transpose of A, and

||A|lr = V/(A, A) for the Frobenius norm of A.

The Banach space of (equivalence classes of) real-valued measurable functions on a measure space (X, )
satisfying ( le FIPdu)/P < +oo is written LZ(X) or simply L? if the space and/or measure is clear from
context; we write || - ||r» for the associated norm, and ( -, - );2 for the associated inner product when p = 2,
with the adjoint operation denoted by *. For an operator 7 : LZ — L], we write 7 f] to denote the image of

funder 7, 7 to denote the operator that applies 7~ i times, and ||‘T||LZ L1 = SuPjfy < 17 [f]1ll;2. We use
v L“LL - 14

Id to denote the identity operator, i.e. Id[g] = g forevery g € Lf,. We say that 7~ is positive if (f, 7 [f]);2 > 0
for all f € L?; for example, the identity operator is positive.

For an event & in a probability space, we write g to denote the indicator random variable that takes the
value 1 if w € & and 0 otherwise. If ¢ > 0, by g ~ N(0, 0°I) we mean that g € R" is distributed according
to the standard i.i.d. gaussian law with variance 02, i.e., it admits the density (2mo?) /2 exp(—||x||§ /(26%))
with respect to Lebesgue measure on R”; we will occasionally write this equivalently as g ~iiq. N(0, a?).

We use £ to denote the “identically-distributed” equivalence relation.

We use “numerical constant” and “absolute constant” interchangeably for numbers that are independent
of all problem parameters. Throughout the text, unless specified otherwise we use c,c’,¢”, C,C’,C”,
K,K’,K”, and so on to refer to numerical constants whose value may change from line to line within a
proof. Numerical constants with numbered subscripts C1, Cy, ... and so on will have values fixed at the
scope of the proof of a single result, unless otherwise specified. We generally use lower-case letters to refer
to numerical constants whose value should be small, and upper case for those that should be large; we
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will generally use K, K’ and so on to denote numerical constants involved in lower bounds on the size of
parameters required for results to be valid. If f and g are two functions, the notation f < ¢ means that
there exists a numerical constant C > 0 such that f < Cg; the notation f > g means that there exists a
numerical constant C > 0 such that f > Cg; and when both are true simultaneously we write f < g. If
f is a real-valued function with sufficient differentiability properties, we will write both f’ and f for the
derivative of f, and when higher derivatives are available we will occasionally denote them by £, with
this usage specifically made clear in context. For a metric space X and a Lipschitz function f : X — R, we
write || f||Lip to denote the minimal Lipschitz constant of f.

A.3.2 Summary of Operator and Error Definitions

We collect some of the important definitions that appear throughout the main text and the appendices in
this section. We begin with the NTK-type operators that appear in our analysis. Recall from Appendix A.1
our definition for the backward features: we have

BY(x) = (WHIPL WPy . WPy, )

for ¢ =0,1,...,L -1, and where we additionally define

1) =supp (Lano)  Pro= ., eic]

i€lp(x)

for the orthogonal projection onto the set of coordinates where the {-th activation at input x is positive.
“The” neural tangent kernel is defined as

O(x,x') = <Vf90(x) V fo, (x' )>
-1
= (a'(x), 2t ()) + D (2’ (x), &' () (' (), B (")),
=0
with corresponding operator on szf’" M)

®lg](x) = /M Ox, ¥)g(x') du=(x).

As shown in Lemma B.7, this is not exactly the kernel that governs the dynamics of gradient descent: the
relevant kernels in this context are defined as

1
@kN(x, x’) = ‘/O <Vf6kN (x’), erkN—tT§£HN(92])(x)> dt.

We define operators 62] on L2, (M) corresponding to integration against these kernel in a manner analogous
u
to the definition of ®:

@fj [g](x) = /M @kN(x, x")g(x") de(x’).
We then move to the deterministic approximations for ® that we develop: we define
p) = cosH((1 = v/m)cosv + (1/m)sinv),

which governs the angle evolution process in the initial random network, as studied in Appendix E, and
write (¥) to denote ¢-fold composition of ¢ with itself. We define

" L-1 , L-1 (P([)(v)
Y1) = 3 ) cos (9()) ﬂ (1 - )

=0
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which is the “output” of our main result on concentration, Theorem B.2, and

L-1L- 1( (P(g)(v))

=0 /=t

7

Y= 3

which is at the core of the certificate construction problem. We think of ¢ as an analytically-simpler version
of 11, with an approximation guarantee given in Lemma C.9. Throughout these appendices, we will make
use of basic properties of 11 and ¢ that follow from properties of ¢ without explicit reference; the source
material for these types of claims is Lemma E.5, which gives elementary properties of ¢ (for example, that
it takes values in [0, /2], which implies that i) and 1 are no larger than nL/2). For derived estimates, we
call the reader’s attention to the contents of Appendix C.2.2; we will make explicit reference to these results
when we need them, however. Our approximation for the initial kernel is

Ox,x) = Yo Ll(x,x'),

with corresponding operator on szl"“ M)

Blg](x) = /M O(x, ¥)g(x') du(x'), (A2)

and our approximation for the initial prediction error is

200 = ~ ) + /M foo ) du™(x), (A3)

where we recall fg, denotes the network function with the initial (random) weights. In particular, this
approximates the network function with a constant, and the error as a piecewise constant function on M.
This approximation is justified in Lemma D.11.

B Proofs of the Main Results
B.1 Main Results

Theorem B.1. Let M be a one-dimensional Riemannian manifold satisfying our regularity assumptions. For any
0 < 6 < 1/e, choose L so that

L > Kmax{Cy~1log’(1/6)1log* (Cy~nolog(1/6)) ,x*Cy},
set
= K'L” 1og’(1/6) log'®(Lny),

and fix T > 0 such that

£ <<
nl? ~ nL

If N > L', and if there exists a function g € Lfrx’ (M) such that

C/. é L*(M)
o 81=C Il vy s ——7— (B.1)
! min

then with probability at least 1 — 0 over the random initialization of the network and the i.i.d. sample from u>, the

parameters obtained at iteration | L3°/** /(n7)] of gradient descent on the finite sample loss L~ yield a classifier that
separates the two manifolds.

© and C approximate the operator and initial error in the nominal dynamics, and are defined in (A.2) and (A.3)

respectively. The constants ¢, C,C’, K, K’ > 0 are absolute, C, is defined as max{pmin, pr‘nlin}, Cye is defined as

CR2(1 + pmax)® (min {u=My), p‘x’(M_)})_n, and the constants x, C, are respectively the extrinsic curvature
constant and the global regularity constant defined in Section 2.1.
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Proof. The proofis an application of Lemma B.6, with suitable instantiations of the parameters of that result;
to avoid clashing with the probability parameter 6 in this theorem, we use ¢ for the parameter 6 appearing
in Lemma B.6. We will pick g = 39/44 and ¢ = 5/47, so that the relevant hypotheses of Lemma B.6 become
(after worst-casing in the bound on N somewhat for readability)

d > Klog(nnoCp)
" 1/3
n>K max{L99d9 log9 L, k2>, (c_) }
A
L > K" max{C,d, k2Cy}
Cg(l + Pmax)16/3
min {‘lloo(M+)10/9, [Joo(M_)low}

N Z Kl//

d*P1010g’ L,

and the conclusion we will appeal to becomes

g CCYo0+ pma)? ¥ 10g*°L
L>M) ~ min {p*(My), po(M-)}  LY1

C/Lefcd
nt

H o [L¥/4/(n)]

Under our choice of T and enforcing
(2C)11C77/6(1 + Pma )11/2d33/4 10g44/3 L
(min {u=(M,), p=(MO})"

(B.2)

we have the equivalent result

1

< >1-—L3%
M) ~ 2

N
g [”CLPW“/(M)J

>1—e "

7

where the last bound holds when d > Klog L, which is redundant with the hypotheses on 7 and d required
to use Lemma B.6. Thus, when in addition d > (1/c”)log(1/0), we obtain

|_L39/44/ (n1)] >1-06. (B.3)

L2(M) 2

Therefore to conclude, we need only argue that our choices of n, N, L, d, and 0 in the theorem statement
suffice to satisfy the hypotheses of Lemma B.6. We have already satisfied the conditions on ¢, 4, and
certificate existence. We notice that (B.2) implies that it suffices to enforce simply N > L%, and following
Lemma C.4, we can bound C s, as in (B.61) in the proof of Lemma B.6 by

len(M;)  len(M.-) < 21 + Pmax

Cm<1+ + <
M uS M) T ue(MO) Pmin

Because n > L% and L > Cy(1 + pmax), we can eliminate C from the lower bound on d while paying only
an extra factor of 2 in the constant. In addition, because x > 1 and C; > max{1,1/c,}, we can remove the

1/3
«%/5 and (CK—‘) lower bounds on 7, since they are enforced through L already via the bound L > K”x2C,,
worsening the absolute constant if needed. These simplifications lead us to the sufficient conditions

d > Kmax{log(1/6),log(nng)}
n>KLYd° loggL
77/6(1 + Pma )11/2d33/4 10g44/3L
KZCA}
11
(min {u=(M,), p=(M_)})

L>K" max{
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N > L',

We ignore the condition on N below, since it matches with the theorem statement. Whenn > eand 6 < 1/e,
we have max{log(1/0),log(nng)} < log(1/6)log(nng). For the sake of simplicity, we can also round up
the fractional constants in the lower bound on L. Eliminating d by substituting the lower bound into the
conditions on n and L, we obtain the sufficient conditions

n > KL log’(1/6)log’(nng) log’ L
Cég’(l + pmax)® log’(1/6) log’ (nng) log" L 2 }
A0-
(min {u=(M), u= (M)}

Using Lemma B.14 and choosing L larger than a sufficiently large absolute constant and larger than log(1/06),
we obtain that it suffices to enforce for n

n = KL 1og’(1/6) log'®(Lny).

L>K max{

In the hypotheses of the theorem, we have chosen the equality n = KL% log?(1/6)log'®(Ln) in the last
bound. This implies log(nng) < Clog(Lng), so it suffices to enforce the L lower bound

CR(1 + pmax)® log”(1/6) log*(Lno) 2 }
(min {u=M, o))

L>K max{

Defining, as in the theorem
Cg)s(l + Pmax)6
. 1’
(min {p° (M), u*(M-)})

and using Cy~ > 1, we can worsen the absolute constant K’ in order to apply Lemma B.14 once again,
obtaining the simplified condition

o =

L > CK max{Cy=~log’(1/6)1log™ (Cy~nolog(1/0)) , k*Ca}.
These conditions reflect what is stated in the lemma. O

Theorem B.2. Let M be a dy-dimensional Riemannian submanifold of S™~'. For any d > Kdolog(nnoC), if
n > K'd*L then one has on an event of probability at least 1 — e~

L-1 L-1 )
sup  [O(x,x") - % Z cos ((p“)(v)) l_[ (1 _? (V)) < Vd*nl3,
(x,x")eMxM =0 r=¢ T

where we write v = £(x,x’) in context with an abuse of notation, ¢, K, K’ > 0 are absolute constants, and Cpq > 0
depends only on the length of the manifold if dy = 1, and otherwise only on the number of connected components of M.

Proof. We have by the definition of ©

L-1
O(x,x') = (a"(x), a"(x")) + Z(a‘](x), &' (x))(B' (x), B (x)). (B.4)

=0
Under the stated hypotheses, Lemmas D.10 and D.13 give uniform control of each of the terms appearing in
this expression with suitable probability to tolerate 2L + 1 union bounds, which gives simultaneous uniform

control of the factors on an event & with probability at least 1 — e~°?. Starting from (B.4), we can write with
the triangle inequality

n L-1 L-1 (P([f)(v)
O(x,x') - 5 Z cos (qo([)(v)) 1_[ (1 - )
=0 =t

L-1 L-
)
=0

< [at(x), a"(x)))|

(B.5)

—_

(&' (x), @' () (B'(x), B (")) —

NS

Zcos ((P(z)(v)) ﬁ (1 ~ (p(l’;(v))

= '={

e~



By the triangle inequality, we have

= )
(a‘-’(x), ac[(x’»(ﬁl(x),ﬁf(xl» _ % cos ((p(é)(v)) l_[ (1 _ () (V))

s
U=t

A <p<">(v>
s3] (-

- 25)

=t

< [a'(x), a'(x)]

+

|(ae‘](x) al(x)) - cos( (")(v))|.

Under the conditions on n, L, and d, we have on the event & that for each ¢

sup [(a!(x), a'(x))| <2,
(x,x")eM

so we can conclude that on &

< 3Vd4nL

L-1 (P(l )(v)
(a!(x), &' (¥)) (B (x), B (x)) - cos( (%)) [ (1 B )

U={

The conditions on 7, d, and L imply that this residual is larger than that incurred by the level-L features,
which is no larger than 2. Returning to (B.5), we have shown that on &

L-1 L-1 )
O(x,x") - %Zcos (go(‘])(v)) l—[ (1 _? n(v)) < CVd*nlL3.
=0 =t

After adjusting the other absolute constants to absorb C into d, this gives the claim. O

Theorem B.3 (Pointwise Version of Theorem B.2). Let M be a do-dimensional Riemannian submanifold of S™~1.
Forany d > Klogn, if n > K’ max{1, d*L} then one has for any (x,x’) € M x M

L-

L-1 ’
oot 2~ Ficon o) [ 1~ 22 <

(=0

dnl3| >1-e

7

where we write v = £(x, x") in context with an abuse of notation, and ¢, K, K’ > 0 are absolute constants.

Proof. Follow the proof of Theorem B.2, but invoke the pointwise versions of the uniform concentration
results used there (i.e., Lemmas D.1 and D.4) after rescaling d to relocate the log n terms. O

Proposition B.4. Let M be an r-instance of the two circles geometry studied in Appendix C.1.1, with r > 1/2. If
L > max{K, (1/2)(1 — r?)"1/2}, then there exists a certificate g satisfying (B.1).

Proof. The claim is a restatement of Lemma C.1 and follows immediately from the proof of that result. O

B.2 Supporting Results on Dynamics

Lemma B.5 (Nominal). There exist absolute constantsc,c’,C,C’,C”,C"”" > 0and absolute constants K, I<’ K” >0
such that for any d > Kdglog(nngCpy) and any 1/2 < q < 1, if n > K'd*L5, if L > K”d max{pmin, p,}, and if
additionally there exists g € Li‘” (M) satisfying
¢
L*(M)

[g]=¢C ”gHLf‘w(M) s 12

min

p min
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and t© > 0 is chosen such that

then one has

ol ) (il <A} 21

0<k<L7/(n7)
and in addition
0 C”\/ElogL d
P ﬂ ”Ck ||Liw(M) = 12 >1—e%.
C'Vd(ntpl )<k<LA [ (n) nkt mm{pmm, 1}

Moreover, one has
k " 2
o 1/2C dlog L —cd
P < — > - .
ﬂ {ZHCS ”Liw(M) <G nt z1-e
0<k<L1/(nt) {s=0
The constant C, = max{pmin, Pr_nlin}-

Proof. We will combine Lemma B.11 with various probabilistic results to obtain a simple final form for the
bound from this result.
Invoking Lemma B.11, we can assert that for any step size 7 > 0 satisfying

1
T< , (B.6)
||®||Liw(M)_>Liw(M)
and for any k satisfying
llgllz2
3e 1SN (M)
kT > | = —~t—o, (B.7)
2 [[Cllzoomy
the population dynamics satisfy
3lIgllzz, omy gl
R . - 3 12, (M)
" <V3 le-o +V3|Jc - - g [y 2]
”Ck ||Lf:°°(M) \/_”g”Lf,m(M) Lim(M)HLim(M) \/_ C C L,ﬁ«xy M) kT og 2 “CHLD“(M)kT
(B.8)
We state the bounds we will apply to simplify this expression. An application of Lemma D.11 gives
P[”é _¢ V) (B.9)
L=(M) L
and
uw[ncnmw) < \/E] >1—¢cd (B.10)

aslong as n > Kd*L> and d > K’dglog(nnoC ), where we use these conditions to simplify the residual that
appears in the version of (B.9) quoted in Lemma D.11. In particular, combining (B.9) and (B.10) with the
triangle inequality and a union bound and then rescaling d, which worsens the constant ¢ and the absolute
constants in the preceding conditions, gives

Hi <Vd

Le(M)

P >1-2e, (B.11)

In addition, we can write using the triangle inequality

lICllLoat) = ||6HL00(M) - HC ~¢ L=(m)’
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and

fu(x) - /M foo') du™(x)

B =
H Le(M) xeﬁ

7

|

= max{ /Mfgo(x') dp®(x') -1 /Mfgo(x') du®(x")+1

>1

7

so that, by (B.9), we have if L > 2Vd

>1—e, (B.12)

1
P[||C||L°°(M) z 3

We can write
||® ~6

and then an application of Theorem B.2 and Lemma C.9 gives that on an event of probability at least 1 —e~

||®—(3)

if d > Kdglog(nnoCp) and n > K’'d*L°. Similarly, because u* is a probability measure, Jensen’s inequality,
the Schwarz inequality, and the triangle inequality give

< sup |®O(x,x') — 1o s(x,x)]
L2 (M= L2 (M) x,x/EpM v S

cd

Cn/L (B.13)

<
L2 (M)>L2 (M)
u u

1®ll:2, wsiz,m) < sup  [O(x,x)]

(x,x")eEMXM
< sup |®(x,x’) —oL(x, x')| + sup |1p o /(x,x")),
(x,x")eEMXM (x,x")EMXM

and an application of Theorem B.2 and Lemmas E.5 and C.9 then gives that on an event of probability at
least 1 — e~¢4
||®||Lim(M)HLim(M) <CnL (B.14)

provided d > Kdglog(nnoCy) and n > K’d*L. We will write & for the event consisting of the union of the
events invoked for the bounds (B.9) to (B.14), which has probability at least 1 — e~cd by a union bound and
a choice of d > K. We will conclude by simplifying (B.8) on &. First, we note that by (B.14), the step size
condition (B.6) is satisfied on & provided

€
T < —
nL’

which holds under our hypotheses. Next, on &, we write using decreasingness of x — —log x and (B.10)

3||g||Lzlm(M) 3 ||g||L21m(M) 3”g”L21m(M) 3 ”g”Lzm(M)
-———log - <- - log |4/5—

(B.15)

kt 2 Il (akt kt 2 krvd
_ _\/a\/gHgHLim(M) log (\/E”g”Liw(M)) ' 516
V2ktVd 2 ktVd
By the hypothesis on g and the bound (B.11), we have on &
CVd

||8||Lim<M) S — 5 (B.17)

min

\/§||8||Lim(/w)< C
2 krVd _nk’cpl/2

min

and so it follows that on &
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The function x — —x log x is a strictly increasing function on [0, e7!], so when k is chosen such that

Ci <k, (B.18)
/2
nTprnin
we have on & by (B.16)
3liglliz,.om) g2
oo 3 o (M) cvVed
- " 1o 2 H < log (C'nktot?) . B.19
kz 8 ( 2 |IC|IL°°(M)kT) ”kTlezn g( pmm) ( )

Additionally, in the context of the condition (B.7), notice that by (B.12) and (B.17), on & we have

3e ”g”Lftm(M) 3 CeVd
V 2 liClloomy ~ prpt2”

so that given d > 1, we have that the choice

k> Ce—\l/z (B.20)

nTpmin

implies both conditions (B.7) and (B.18). We can simplify (B.19) using the hypothesis kT < L7/n with
1/2 < g < 1: we get

1/2 1/2
nkTpmir\ L1 min < L1+q
C - Cc - !

where the last inequality requires L > p}r{lzn /C, which implies

3lIgllz, om gl m \  c'vdlog L
—“10g( 3 " )< Vdlog (B.21)

kt 2 [ICllz=mykt 1/2

min

nktp

The conditions we need to satisfy on k7 can be stated together as

CeVd
1/2
npmin

and it is possible to satisfy these conditions simultaneously as long as

1/q
L> (Ce\/ﬁ

<kt <Li/n,

1/2
min

C2%e2%d
Pmin
choose L larger than this upper bound instead. The other simplifications are easier: using (B.13) and (B.17),
we have on &

. Cvd

- =, 127
oM=L M)~ ol

min

We obtain an upper bound for the quantity on the RHS of this inequality from q > 1/2; it suffices to

“g“LZW(M)”@ -0
3

and using (B.9), we have on &
: Vd
le- .. <>
LM~ L
Worst-casing terms using our hypotheses on 4 and L to obtain a simplified bound, on &, we have thus shown
that when (B.20) is satisfied, we have

N Cvd (1 logL
b=l )
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We have ool Lol
1 8 = o8 > krt,

L~ nkt
which is implied by the hypothesis kT < L7/n as long as L > e. So we can simplify to

- C\/ElogL
“Ck ”Lim(M) < 1/2 :
nkT min {pmm,l}

We also need a bound that works for k that do not satisfy (B.20). From the update equation for the dynamics
in the proof of Lemma B.11 and the choice of 7, we also have

16Nz, v < 1202, 00 < VE,

where the last bound is valid on &. Finally, we can obtain the claimed sum bound by calculating using our
‘small-k” and ‘large-k’ bounds:

k LCVA/(npl)2)) ‘
Dl IRV DR [ PRIV DR [ IV
s=0 s=0 s=fC\/E/(mp;(fn)1
k
! C”"VdlogL
< Vd |1+ C'vd + vd o8 1
”Tpl/'z ntminip¥? 1 1
min Pmins 1 [ s=rcva( ”TPn(m
C'd C”VdlogL n’cpifn k ds
- 1/2 * 1/2 + 12 5
NTPmin  NT min{pmin, 1} CcVd CVi/(ntpl?)
Cd C”\/_IO 2L
< — +C’max{p1/2, }logL+ —g,
1/2 min ] 12
RTPmin nt mln{pmm,l}

1/2
mm) > 1

which follows from 7 < ¢’/(nL),d > 1and L > Kp 2 for a suitable absolute constant K; and the third

inequality integrates and simplifies, using kT < L/n and againd > 1and L > C pmm Worst-casing constants
and using nt < 1, we simplify this last bound to

k

N 12 1 | Cdlog? L
ZHCS “Lim(M) S max{pn{m’ 12 }
s=0

where the second inequality uses standard estimates for the harmonic numbers and C’Vd/(ntp

nt
min

To see that the conditions on L in the statement of the result suffice, note that we have to satisfy (say)

1/2
L> Kpmn and L > K’pmm ;
Pmin < 1, and so it suffices to require L > Kpmin and L > K’ p , instead. O

the first of these lower bounds is tlghter when pmin > 1, and the second when

Lemma B.6 (Nominal to Finite). Let dg = 1. There exist absolute constants c,c’,C,C’,C”,C"” > 0 and absolute
constants K, K’,K”, K" > 0 such that for any d > Kdglog(nnoCu), any 1/2 < g < landany 0 < 6 < 1, if
L > K’ max{Cpd, k*C,}, if

1/3
n> Kumax{ez52/oL60+44qd9 log L, KZ/S (E) },
(o)

and if
25/6(1 + Pma )5/23119/(35)

min {p®(M,)1/2, u=(M_)12}

Nl/(2+6) > K" d5/4L5/2+2£] log L,
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and if additionally there exists g € Liw (M) satisfying

A ] pe
Ogl=¢ ”gHLZw(M) ST 5
H n

min

and t© > 0 is chosen such that

T< <
~ nL’
then one has generalization in Li‘”(M):
’ loe L my ,—cd
P Hcf’w(m)] , < _ CdlogL ?i > ke
Lo 14 min{pmin, 1} nt
and in addition, one has generalization in L®(M):
> ||CN 3 C”Cz/é(l +pmax)1/2614/(3é) 43/4 log4/3L " e—cd
LD roM) © min {HOO(M+)’ ”oo(M_)} 1,(49-3)/6 nt

The constant Cp = max{pmin, Pon }-

Proof. The proof controls the L norm of the error evaluated along the finite sample dynamics using
an interpolation inequality for Lipschitz functions on an interval (Lemma B.13), which relates the L
norm to a certain combination of the predictor’s Lipschitz constant and its L2, norm. We can control
these two quantities at time zero using our measure concentration results; to control them for larger times
0 < k < L7/(nT), we set up a system of coupled ‘discrete integral equations’ for the generalization error of the
finite sample predictor and the Lipschitz constant of the finite sample predictor, and use the fact that k7 is not
large to argue by induction that not much blow-up can occur. Along the way, we control the generalization
error of the finite sample predictor by linking it to the generalization error of the nominal predictor as
controlled in Lemma B.5; the residual that arises is shown to be small by applying Corollary B.10 and
applying basic results from optimal transport theory adapted to our setting, encapsulated in Lemmas B.12
and B.15.

To begin, we will lay out the probabilistic bounds we will rely on for simplifications, so that the rest of
the proof can proceed without interruption. We will want to satisfy

‘< ! , (B22)

max{||@w||

7 @ ©
LiN(M)eLiN(M) u ”Liw(M)—mim(M)}

following the notation of Lemma B.9. Using Jensen’s inequality, the Schwarz inequality, and the triangle
inequality, we have for x € {N, oo}

10tz iz = sup | [ 0¥ duwte)|
* * 12 <1 10 12,
13

< ”gHLl*(M) sup  |O(x,x’)|
u

(x,x)EMXM
< sup |®(x, x') =1y o L(x, x’)| + sup |l/11 o /(x,x")), (B.23)
(x,x")eEMXM (x,x")eEMXM
where the notation i1 follows the definition in Appendix C.2.2. The first term in (B.23) can be controlled
using Theorem B.2: we obtain that on an event of probability at least 1 — e~/
1© = 1 0 2| pgupy < Vd*nL? (B.24)
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if d > Kdplog(nngCy) and n > K’d*L. The second term in (B.23) can be controlled using the triangle
inequality, Lemma E.5, and the definition of ¢1: we obtain that it is no larger than nL/2. Combining these
two bounds, we have on an event of probability at least 1 — e~

max{”@wu 0:. <M>%§ww>} <cnL (.25)

Li N (M)—>Li NM)

provided d > Kdglog(nnoCy) and n > K’d*L. Thus, with probability at least 1 — e, our choice of step
size 7 < c¢/(nL) satisfies (B.22). Under our hypotheses on the certificate in the statement of the result and
taking a union bound with the event in (B.25), we can invoke Lemma B.5 to obtain

C’VdlogL C”Le~cd
P M [ S : iz >1-——— (B.26)
C‘f/(n”[pilrflzn)<k<m/(n7) nkt mln{pmm’ 1}
and
Cl/ZC”dlog L C"ecd
P m {Z”C ||L2 M) - >1- Tl—’l' (B.27)
0<k<L1/(nt)

provided d > Kdolog(nnoCp), 1/2 < q <1, n = K'C§d°L*¥*321, and L > K”C,d. We have by Lemmas B.5
and B.9, a union bound with (B.25), and our condition on 7 that

o CL —cd
ol ) (1heno Vil ) {ldis g <af|21- 25 @y

0<k<L1/(n7) 0<k<L7/(nt)

aslong as d > Kdglog(nnyCy) and n > K’L*+2014% 1og” L, and where we used our conditions on 7 and ¢ to
obtain that L7/nt > 1 and simplify the probability bound; and, following the notation of Corollary B.10, we
have by this result (again under our condition on 7 and a union bound) that there is an event of probability
atleast 1 — CLe™“®/(n1) on which

1/12
AN, s < (n11L48+8‘7d9 log? L) (B.29)

under the previous conditions on 7 and d. In addition, applying Lemma D.12 and a union bound gives that
on an event of probability at least 1 — Ce~¢

Lip” -IlLip

max{”Cl A } <Vd (B.30)

provided d > Kdglog(nngCp) and n > K’ max{d*L, (/c)'/3,%*5}. Finally, we have by Lemma B.12 that
forany0 <6 <1

2| fllzeopny Ve
>1-87, (B3l)

p ‘ [ rwawe- [ jmaio) <

N
814/5 C’um,M\/Emax*EH'_}'
f€L1p

* [ILip

N1/@2+9)

aslongasd > 1and N > ZN/E/min{y""(MJr), U (M)}, We let E(g, 6) denote the event consisting of the
union of the events appearing in the bounds (B.24) to (B.31) hold; by a union bound and the previous
observation that L/nt > 1, we have

CILE_Cd
nt

P[E]>1-

In the sequel, we will use the events defining & to simplify our residuals without explicitly referencing that
our bounds hold only on & to save time.
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We start from the dynamics update equations given by Lemma B.7, which we use to write

G~ Cllc\] = (1d-1®) [}, - CkN—l] + TGkN—l [Cllc\]—l] - 10 [Cllc\]—l] ,

where O is defined as in Lemma B.11. Under the choice of 7 and positivity of ® (Lemma B.8), we apply the
triangle inequality and a telescoping series with the common initial conditions to obtain

k-1
”Clio - CkN“Lf[oo(M) =T ZHGSI [Cé\]] -0 [Cg\[]”Liw(M)' (B.32)
s=0
We can write
O [¢¥] )= [ O, ¥)i ) )
= / (@ﬁ\](x, x')—yqo A(x,x’)) Cﬁ\'(x’) dyN(x’) + / Y10 L(x, x’)Cﬁ\](x’) dyN(x’),
M M
and analogously
e[l ()= / (©(x,x") =1 0 £(x,x)) (Y (¥) du™(x') + / 1o £(x, x)C (') dp (x).
M M

Using Jensen’s inequality and the Schwarz inequality, we have

H/M (O (x,x") = 1 0 £(x,x)) (' (x") AN (x)

Liw(M)

< [0, = g0 20 V0 )
M H

<[l@ = 910 a1 et

< H@f -Y10 Z”Lw(/\/(x/\/()||C£\]||LiN(/vt),

since N is a probability measure. Repeating an analogous calculation with u® for the other term and
applying the triangle inequality, we have

| (€] =@ X2 a0y < 1€ =1 © Ll pin (||c:° = iz + 16 ez om0 + 1z, v
+ ||@£V - ®||LM(MXM)||C£V||LiN(M) (B.33)

+

(M)

/M P10 (-, )V ) (du() - duN ()

We detour briefly to simplify residuals appearing in (B.33) before using the result to update (B.32). Using
(B.24) and (B.29), we get

[© — 910 Z”Lw(MxM) (”Csm - Cg\]HLf‘m(M) + ”C?”Lim(/\/i) + ”Cé\]”LiN(M)) +|ed - ®||LN(MXM)||C£\]||LiN(M)
1/12
< Vd*nl? (||C§° - Cg\]“Lftm(M) FICT Mz v + ”Cé\]”LiN(M)) + (n“L48*8‘7d9 log’ L) ||c§’||LiN(M)

1/12
< (L 1o ) (||Cg° =l or 16z 0 20, (M)) . (B.34)
15

34



where the final bound holds when 1 > d°. Using (B.28), we can further simplify the RHS of the last bound
above to

1/12
1748484 791709 o _ 7N o N
(”1 L4 log L) (HCS -G ”Lim(M) sl S TEROV +2]|cS HLiN(M))
o \1/12 o \1/12
<2 (n11L48+8qd15 log L) + (n11L48+8qd9 log L) HC§° — C,QIHLZ M)
u
With this last bound and (B.33), we can use kt < L9/#n to simplify (B.32) to

L48+20d15 10g9 L
n

1/12
||C;° - CMLim(M) <C ( ) +7T (n11L48+8'1d9 10g9 L) ZHC CN”L2
(B.35)

+7

k-1
2, /M Y10 (-, x)CN ) (du () - duV (x)

i .
Liw(M)
To control the remaining term in (B.35), we split the error CY into a Lipschitz component whose evolution

is governed by the nominal kernel 11 o Z and a nonsmooth component which is small in L*. Formally, we
define ®"°™ : LiN M) — LiN (M) by

Enom [g] (x) = /M 10 L(x,x")g(x") dyN(x’),
and use the update equation from Lemma B.7 to write
s—1
Y =c-1) 0[]
i=0
s—1 5—

—cor e [+ Y (@ -0 ],

i=0 i

H

I}
o

N,Li N
s ® b5

sothat ¢ = CN Hip 6N, and CN He_ ¢ 6N 0. It is straightforward to control 6Y in L: we have (as usual)
by the triangle 1nequahty ]ensen s 1nequahty, and the Schwarz inequality
-1

||6§’||LW(M) <1 Z/ |10 2(-, %"y —ON(- x/)”Lw(M)KN(x/)\dfuN(x,)
i=0

s—1

st izo”‘/’l °/l- ®?I||L°°(M><M)”C?I”LiN(M)’

and then the triangle inequality together with (B.24), (B.28) and (B.29) yield
N .73 11748480 191,597 )/
||65 ||L°°(M) < ST\/E( a*nls3 + (n L**®1d” log L) )
1/12
< stVd (n11L48+8‘7 & log® L) , (B.36)
where the second line applies the same simplifications that led us to (B.34). The triangle inequality gives

<
PaM) we(Nooo)

7

H/M P10 £(+,x)o () (du®(x') — duN (x'))

/ P10 (-, x)5N () du ()
M

(M)
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and simplifying as usual using Jensen’s inequality and the Holder inequality, we obtain

where the last bound uses (B.36). Then using the triangle inequality and kt < L/ to simplify in (B.35), we
obtain

< nLl|6Y [l=omy

/M Pro (-, )N () (du=@) - dpN ()

2o (M)

o \1/12
<st (n23L60+8qd15 log L) )

1604320 4151009 7 \ /"2 1/12 &3
||CZO _ Ci\[HLZm(M) <C (%) +7 (n11L48+8’1d9 10g9 L) Z”C:O - Cé\[HLzm(M)
u s=0 g

k-1
Ty
5=0

To simplify the remaining term in (B.37), we aim to apply (B.31); to do this we will need to justify the notation

(B.37)

/ P10 2(-, )0 P ) (dp () - dpN () :
M L2 (M)

and establish that C?’Lip € Lip(M) regardless of the random sample from ;* and the random instance of

the weights. Because C?I’Llp is a sum of functions, we can bound its minimal Lipschitz constant by the sum
of bounds on the Lipschitz constants of each summand. We always have for either x € {+, -}

s—1
Ty
bp 5

We note that because the ReLU [ - ], is 1-Lipschitz as a map on R”, we have

N,Lip
S

(B.38)

o . / N ’ N/
MallLip : ||C|M* ‘/Mlpl £(+, )G () dp (x) e

L
et ]l < WL TIwel < +eo,
(=1

Lip

so we need only develop a Lipschitz property for the summands in the second term of (B.38). To do this,
we will start by showing that ¢ — 11 o cos!(y,(t), x’) is absolutely continuous for each x’. Continuity
is immediate. The only obstruction to differentiability comes from the inverse cosine, which fails to be
differentiable at +1, and because M c S™~! we have (y_(t),x’) = +1 only if y () = +x’; because y, are
simple curves, this shows that there are at most two points of nondifferentiability in [0, len(M,)]. At points
of differentiability, we calculate using the chain rule the derivative

V() ,
NERAOE >

and because y, is a sphere curve, it holds (I -y, (t)y’ (t))y,(t) = y.(t) for all t, whence by Cauchy-Schwarz

I- *\ ae/
_ << Oy, (t)>'

t > — (] o cos™(y, (t),x7)) <

VI=(y. (), x)?
M=y Oy ol
V1=, (b),x)?
where we also used that y, are unit-speed curves. In particular, the derivative is bounded, hence integrable

on [0,len(M,)], and so an application of [Coh13, Theorem 6.3.11] establishes that ¢ - 11 o cos™(y L), x")
is absolutely continuous, with the expansion

A ,
'<J1 S RGE >

(B.39)

7

Yi(t) > 4
/1 _ <'}/*(t"), x/>2

)
[1 0 cos™ (y, (), ') = 1 0 cos™ (y, (), %) = ‘ / (] 0 cos™ (y, (t"),x')) <
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which gives an avenue to establish Lipschitz estimates for t > 1 o cos™(y L(f),x"). Because x" Cf\’ (x")is
continuous and i < s < k < L9/(nt) < +00, an application of Fubini’s theorem enables us to also use this
result to obtain Lipschitz estimates for the summands examined in (B.38), to wit

|

f 1o £(, )N @) dpN )| < sup / [ 0 2(x, )| ()] dp™ ()
M Lip xeM, IM
, 1/2
< ||C?]||L2N(M) sup (/ (W) 0 £(x,x'))" dpN(x) (B.40)
# xeMy M

after using the bound (B.39) in the first inequality and the Schwarz inequality for the second. Before
proceeding with further simplifications, we note that the C2 property of ¢1, continuity of C?’ , boundedness

of i, and compactness of M let us assert using (B.40) and (B.38) that Ci\]’up € Lip(M) whether or not we are
working on the event &. Continuing, we develop a bound for the RHS of (B.40) that is valid on &. Using
the triangle inequality and the Minkowski inequality, we have for the second term on the RHS of the last
bound in (B.40)

) 1/2

) 1/2
sup ( /M (7 0 £(x,x)) duN(x’)) < sup (

xeMy xeMy

 Who 2, (@) - i)
M (B.41)

1/2
+ sup (-/M (V] o L(x, x’))2dy°°(x’)) :

xeMy

For the first term in (B.41), we use Lemmas C.5, C.20 and C.22 to obtain that x” — (1] o Z(x, x’))? is bounded
by Cn?L* and C’'n?L°-Lipschitz for every x, and then applying (B.31) gives

sup ( -//\/I () 0 20x,x))* (dpM (x') - dp (x'))

+
xeMy N N1/2+0)

1/2
)1/2 3 (Cn2L4\/H 614/‘5Cyeo,MC’n2L5\/3) /
(1 + Cyoo pr) /2712

5/2 11/4
< LA (B.42)

For the second term in (B.41), we apply Lemmas C.6 and C.20 together with the choice L > K«x2C, to get

1/2 du®(x’ 1/2
’ YA S Y2 2 tu (X)
xset/lg* (/M (Y7 0 £(x,x"))" du™(x )) < CnL xsel/l&:()i (/M a +(L/ﬂ)£(x,x’))2)
< CnL32pY2 (len(M,) + len(M_))/

< cp,ﬂ{fxc;ﬁi L. (B.43)

Combining (B.42) and (B.43) to control the RHS of (B.41), we obtain from (B.40)

(1 + Cpo p) 12675
< el o S

”/ Yro (-, x)C () dp (x')
M

nL?24'4 4+ pmaXCym,Manz)
Lip

12
< C”Cf‘\]”LZN(M) (1 + Cyw,M) e’ (1 + pmax)/2d 40 L3/, (B.44)
u
where in the second line we used N > L*2%. Plugging (B.44) into (B.38) and applying in addition (B.30), we

get
N,Lip
s

12 s—1
<Vd +Cre’l? (1 + CHW,M) (1% Pma) 2012 YN |2 e (B.45)
i=0 #

*

Lip
Let us briefly pause to reorient ourselves. We do not have control of the empirical losses appearing in
(B.45) by an outside result, so we need to make some further simplifications to this bound. We will control
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the sum of empirical losses term in (B.45) by linking it to the difference population error, which we last
saw in (B.37), and the population error usmg the triangle inequality and a change of measure inequality.

Meanwhile, with the Lipschitz property of & ¥ we have shown, we will be able to obtain a bound in terms
of simpler quantities for the last term on the RHS of (B.37) using (B.31). The two resulting bounds will give
us a system of two coupled ‘discrete integral equations’ for the difference population error and the Lipschitz
N Lip . . . .

constants of C; , which we will solve inductively.

First, we continue simplifying (B.45). The triangle inequality and the fact that u is a probability measure
give
N,Lip

¥z on0 < Y e (B.46)

and we have by the triangle inequality and Holder—— continuity of x > \/x

L2 (M)

N,Lip

e |
LiN(M) !

i

o = [0
L2 (M)

e

i

(M)

N, Li 2 -
12 (M) * \/‘/M (Ci p(x)) (du=(x) = dpN (x))|.

N L1p

(M)

N,Lip

< | (B47)

We have shown that C ; P € Lip(M) and ¢ € L*(M) above, and so (CN Llp) € Lip(M) as well, with

(@) | <2a il
z MullLip 1 o MllLip
Applying the previous equation with (B.31) to control (B.47), we get
N,Lip
”Ci L2, (M)
uN
N Li N Li
” NLlp P14/6C °°M||C ip g TAXee() C 1pM
< ” N Lip Cgl/ LM M) *lILip
A i Lim(M) N N1/@2+6)
12 |l N 12 NLi 1
|| N,Lip 7/6c/ H 1p MaXue(+,-) C 1p
< ” N Lip cdl/t LM L=M) MullLip
= ||=i Lf,oo(M) \/ﬁ N1/(4+26) ’

where the second line applies the Minkowski inequality. Using the triangle inequality and that u* is a
probability measure, we have

N,Lip

J<

VR o PR L P
<l ||Lim(/\/() +lc - ”Lim(M) + ”(S?IHL‘”(M)' (B.48)
Substituting (B.48) into (B.46) and using (B.36) to simplify gives

1/12
”C?]“LiN(M) = “Cf\] - C;')O”Liw(/\/l) + ||C?O||Lim(M) +2itVd (”11L48+8qd9 log’ L)

1/2 N Lip||'/? N Li 2
” N Lip 7/5C ” P L MaXe(s -} & P (B.49)
Cdlls L=(M) o M luip
\/N N1/(4+20)
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Following (B.45), we need to sum the previous bound over i. To simplify residuals, we use (B.27) to get
o \1/12 s—1
Cs2tVd (n11L48+8‘7d9 log L) + ZHCTO”LZ M)
i=0 a

)1/12 CyCrdlog’L
+ _—

< Cs*rVd ( 4848 191609
1/2
B ZCP/ C'dlog® L

—= 7

nt

nt

where the second bound uses the control st < k7t < L9/n and holds under the condition
n > (C/C")2L*8+324 43, Summing in (B.49) and using the previous bound, it follows

s—1 1/2 s—1
CcC, dlog L
N N
Z(;”Ci HLiN(M) — 7 Z”C -G “sz(M)
i=
1/2
” N, Lip 7/5C1/2 ||CN L1p Maxye(s,-) CN ,Lip (B.50)
1 L‘X’(M) LW(M) My Lip
cd'/* +
\/ﬁ N1/(4+26)
Plugging (B.50) into (B.45), we obtain
N Li &
A < C1d1/4L3/2(d log? L +nt » [lcN - ¢ ||L2
*IILip i=0
- 1/2 . 1/2 B.51
11! ||c”'“" 2 max o .
5— o Le(M)xe{+,—-} My
1/4 L2 (M) Lip
+ntd + N1/(@+25) ’
i=0
where for concision we have defined
C1(5, ™) = CCL2e14/? (1 +Cpe, M) (1 + )2 (B.52)

and simplified the Vd residual in (B.45) by worst-casing with the larger residual from the population error
term in (B.50), and made other simplifications by worst-casing some constants. We simplify (B.37) next: we

have shown that C?’Lip € Lip(M) and C?’Lip € L*(M) above, and so for every x € M, we have

P10 L(x, )P € Lip(M)

as well, with

Y10 L(x, )P < CnL max [P +C'nL2|| P (B.53)
* Lip *’€{+,—} M*/ Llp LDC(M)
using the definition of 11, Lemmas E.5, C.5 and C.20, and
N L1p N Llp
o L(x, ). < catc] . B.54

The bounds (B.53) and (B.54) retain no x dependence. Applying (B.31) and integrating over x, we obtain
from (B.53) and (B.54)

CnLVd

M) N

N,Lip
s

L*(M)

H/M Y10 2(-, %) P () (du® () - dpN (x))
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CnLe*/oC oo/\/(\/_max,(e{Jr 0 NLIP

N1/(2+5)

Cnl2e 14/@C N Lip

Le(M)
N1/(2+06) 4

and we can combine the first and third terms on the RHS of the previous bound by worst-casing, giving

H/ P10 2(-, 20 P () (du®(x') - duN (x)

2o (M)
14/6 .
_ CVAnLe™ (14 Cyo ) v v
= N1/(2+0) sl 7 Ml U0
Plugging the previous bound into (B.37), we obtain
1/12 k=1
1,60+329 415 10g9 L 1/12
co _ 7N 117 48+87 79 1102 o _ N
s -l < [0 vt 0g) " e - 2l
s=
(B.55)
14/6 - k=1
. CtVdnLe (1 + CH ,M) N Lip L N Lip
N1/@+0) et | LCRE PV S v
s=0 ! *ILip

To finish coupling (B.51) and (B.55), we need to remove the L*(M) terms. We accomplish this using
Lemma B.13, which gives

N,Lip 1/2]| N, Lip C ||.NLip|]*? N,Lip 13
s . <CC, s R —77 || ’ s max ’ o (B.56)
L=(M) Lz i3 L2 (M) xel,-) Mulliip
where we have defined
Co(u™) = Pmax . (B.57)

Pmin Min {HOO(M+)/ [JOO(M—)}

For coupling purposes, it will suffice to use a version of (B.56) obtained by simplifying with some coarse
estimates. Using (B.48), (B.36) and (B.28), we have

N,Lip

<

1/12
: 117 48+8g 19 9 N o
Lf,m(M) <Vd+itVd (n L**®1d” log L) + ||Ci -G ||Lioo(M)

<2Vd +||c} - C?O"Liw(M)’

using it < L9/n and n > L*¥*2974%10g’ L in the second line, and plugging this into (B.56) and using the
Minkowski inequality gives

N, Li 1/2 1/2 Cdl/’ N Li e
NLip < CCYPNa+ CCY||IN = C|,> ye + max |IC; P
L(M) 2 2 W LM 13 ey M|l
pmin ’ Lip (B 58)
2/3 N Li 13 ‘
N AL1p
1/3 ”C C ”LZDC(M) E{ax} s M, Lip
mm

To make some of the subsequent bounds more concise, we introduce additional notation

N, Lip
S

A = max

*e{+,~} M

Lip
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Plugging (B.58) into (B.51) and using the Minkowski inequality, we obtain

CY243/4y 57 l/2 d1/4
As < CC1AYAL32(dlog? L + —2 N ZHCN iz v
d7/12 s—1 C1/4an1/2 s—1 d5/12 s—1
1/3 2N N1/@23) A+ 1/ZT 1/<4+25>Z :
Prin YN 10 i=0 PminN =0 (B.59)
ntd 1/4 s-1 C1/4an1/4 .
< 2l - Cle o + —ZHCN Pl o
1/3 A, N 1/(4+26) Lzm(M) i
mln
1
P S e -
pl/6 N1/1+20) L L URY

To simplify (B.59), weusest < L9/n,Cy > 1,and q < 1,and so if additionally we choose N > C; max{\/g, L%}
we obtain

s—1 s—1
ntd/* 1/3 2/3
As £ COUMIR dlog? L+ nt ) [ - ¢ iz on * /6 N1 /(we20) I = &l
i=0 i=0
-1 1/4 1 -1

an7/12 SZ 13 C2 anl/Z s— A1/2+ an5/12 SZ 23 (B 60)
1/3 \/— i N1/(4+206) i 1/6 A11/(4+20) i ’
min VN 20 i=0 PrminlV i=0

an/ & N 2/3 1/3 1/4”Td14 N 1/2 1/2
1/3 Z”C C HLZW(M) i N1/(4+26) Z”C C ” ’

mm

Meanwhile, we recall
c _ len(M,) N len(M_-)
pe,M M) ucML)’

and an integration in coordinates gives

len(M.)
(M) = / 020y, ()dE > pun len(ML),
0

so that
C# M=

(B.61)

Pmin

Using (B.61) and plugging (B.58) into (B.55), we obtain

I~ e ono

1/12 1/2
L60+320415 10g” I, 117 48+8 e C'G VanL2e'8/0 E
L—a~log L q 9 9 N

C'tVdnLe'/5 & 12 13 —~1/3 ,1/3 1/3 N|12/3 AL
+WZ A+ LGV + L P A + Lo 16 = €l o As™) -
min

n

In (B.60) and (B.62), we now have a suitable system of coupled discrete integral equations for |[|C}° —
C_,kN 2 (m) and Ag. We will solve these equations by positing bounds for each parameter that are valid for
u

all indices 0 < k < |L9/(n7)] based on inspection of (B.60) and (B.62), then proving the bounds hold by
induction on k. Positing the bounds is not too hard, because each term in (B.60) and (B.62) with a factor of

41



N in its denominator can be forced to be small by requiring N to be large enough. Forall0 < k < [L7/(n7)],
we claim

257 = &l ey < Catemax CipC1Cy*C (B.63)

N1/@2+6)

F7AL5/240 og? I ( L60+329 15 10 L)l/ 12
’ n

Ax < CiipCrd™/* L3 10g? L, (B.64)

where Cg¢t and Cy;p are two absolute constants that we will specify in our arguments below. We prove (B.63)

and (B.64) by induction on k. The case of k = 0 is immediate, since = CN for (B.63); and by construction

C(I)\] e = (,and (B.30)and d > 1 then gives (B.64) if L > e. We therefore move to the induction step, assuming

that (B.63) and (B.64) hold for k — 1 and showing that this implies the bounds for k. We begin by verifying
(B.63). Applying the induction hypothesis for k — 1 via (B.64), we can write

1/2 dA 1/3 1/2 1i; ] 13
As+LCY \/_+L( ) < CiipC1d®A 1% 10g? L + LCY*Vd + (L) A2 10g?P L

Pmin Pmin

< CipC1CY2C) P32 10g? L,

where we worst-cased in the second line using Cj, > 1 and C; > 1, C; > 1, which follow from (B.52)
and (B.57). We use k1 < L1/n with the last bound to note that

C'tVdnLe /0 5 12 -1/3 35 A7/ 152+ Jog? L
/A73/2 ” 1/2 ~4/3 )
e § CiipC1C,/“C, d** 13 og? L < C”CypC1C,"*C, N

Pmin

where C” > 1. Using this bound and (B.64) once more, we can simplify (B.62) to

1/12
7/415/2+0 1002 L. 1,60+329 415 1509 [,
”CZO - Ci\]HLZ M S C”ChpC1C;/2CI§/3d 0g d®log
o0

N1/(2+6) n
12 C'Cy P VdnL2e/
117 48+89 49149 N
+T((1’l L***%14° log L) + DN Z”C -G HLft‘”(M) (B.65)
C’ C1/3C1/3 14/6 cd11/124,15/2 10g2/3 i3
+ 4/3 N1/(@2+95) Z”C -G ”L;{OO(M)’
pmm

Noticing that the RHS of the bound (B.63) does not depend on k, let us momentarily denote it by CgigM
(i.e., the part of the RHS of this bound that does not involve Cgig is denoted as M). Plugging into (B.65) and
using k7 < L1/n, we obtain

Hck CkN“Lz SM) < C"Chpclcl/z(fl/S

N1/(2+6)

d7/A 1512401082 L ( 1604320415 1667 . ) 1/12
n

[48+20q 79 10g9 L )1/12 C'C;/Z\/ELNLI o14/0
+
n

+ Caitf ( PminN1/@+0)

C’ CiféClllBCm 14/8 117121 5/24 log?3 L

4/3 N1/@+0)

pmln

2/3.

In particular, if Cgir = 6 max{C, C”} (for the constants in the first line of the previous bound), we can bound
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the RHS of the previous bound and obtain

. CaigM
e -l < S |

n PminN1/2+0)

L48+207 49 |56 L)1/12 C/CYAaL2 11400

— ] 4

2/3~1/3 ~1/3 14/5 (B.66)
C’CdiﬁcClip C,"et/® g 5/2+4 log?3 L

4/3 N1/(2+6)

p min

2/3.

We can conclude (B.63) from (B.66) provided we can show the second and third terms are no larger than
CaiftM /3. For the second term in (B.66), if we choose N such that

N1/@+0) > 6C’C;/zpr;linem/‘sdl/sz“’

and n such that
n Z 612L48+20qd9 10g9 L

then we have

n

1/12
. 1,48+20q 79 loggL . C’C;/zx/gLZH’eM/‘S . CaieM
diff PrminN1/2+) =" 3 -

For the third term in (B.66), we proceed in cases: first, when

CipC1Cy%Cy (B.67)

N1/(2+6)

2 d7/AL5/24 Jog? L (L60+32qd15 log’ L )1/12
—_ n s

we have by (B.63)

1/12
M= (L60+32qd15 10g9 L) /
n 7

and if we require additionally Cgig > 1, it follows that

diff i
4/3 N1/2+0)

p min

C’C2/3C1.{)3C}/3el4/6 411/12] 5/2+ 10g2/3 L d7/AL5/2+0 og? L

M2 < C’CcuffChpQC;/ZC;“;/?’EW(3 N1/(2+0) 2

< C’Cdjffel4/5M1+2/3/

using C1 > 1, C2 > 1, and Cjp > 1 and worst-casing exponents on d and log L in the first line, and (B.67) in
the second line. In particular, by the value of M in this regime, if

1 > (3Ce14/0)18 604329 415 10g9 L
then we obtain for the third term in (B.66)

C’Cczﬁ/ffcllifci/g’el‘*/é 411121 5/2+4 logz/sLMz/3 CaigM

4/3 N1/(2+9) - 3 7

P min

as desired. Next, we consider the remaining case

CipC1Cy*CY (B.68)

N1/(2+6)

A2+ 10g2 (L60+32q '510g” L )1/ 12
2 ,
n

which by (B.63) implies

d7AL5/2+110g? L
_ 1/2 ~4/3 &
M = CypC1C,7C, e
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With this setting of M, the third term in (B.66) can be bounded as

1213 ~1/3~1/3 14/5

C CdiffClip C,e d11/121 5/2+q 10%2/3 LM2/3 2B ol 14 A7/4+1/31 5/2+q] 5/3+2q/3 log2 L
p4/3 N1/2+0) - diff -lip~1%2 ~p N 1/(2+6)+2/(6+30)
min

5 d1/3L5/3+2a/3

1 819,14/
< C'CaitCy e N2/63) M,

and using the RHS of the final bound in the previous expression, we see that if we choose
N1/@+0) 5 (BC/)3/2C4/3€21/5d1/2L5/2+q
> p ,
then we have for the case (B.68)

C’Ci{éCﬁfC%/SeWé d11215/2+ 10023 |

CqaM
2/3 d
4/3 N1/2+9) M < 3

p min

Combining the bounds on the third term in (B.66) over both cases (B.67) and (B.68), we have shown
e - Ci\[“Liw(M) < CaitM,

which proves (B.63). Next, to verify (B.64), we proceed with a similar idea: the bound claimed in (B.64)
corresponds to a constant multiple of the first term in parentheses in (B.60), so to establish (B.64) it suffices to
show that each of the other terms in (B.60) is no larger than a certain constant. To work with the maximum
operation in (B.63), we will again split the analysis into two cases. First, we consider the case where (B.68)
holds, so that the maximum in (B.63) is achieved by the second argument. Plugging (B.63) and (B.64) into
(B.60) and using k7 < L7/n, we get

7/415/2+20 |002 [
1/473/2 2 1/2 ~4/34 )
Ax < CC1d"*13?|dlog? L + CaigeCiipC1C,°C, NI
A5/3111/6+44/3 1502 [ ALY+ 16023 1,
+ ey, clitBe, el & = BB 08 &
N6/(10+56) lip —1 p \/N
L2214 d°/8 L3/ log L 2/3~2/3~1/6 AL 10g4/3 L
lip 1 2 N1/(4+20) lip 1 ~p N 1/(4+20)

3 d11/6L13/6+5q/3 10g2 L 3 d7/4L2+3q/2 10g2 L

FCRG,aCC - GO

N (G+6)/(4+20) N1/(2+6)

Using Crip 21, C1 21, Cp 2 1, and C; > 1, we can worst-case constants in the previous expression to
simplify. We can then do some selective worst-casing of the exponents on d, N, and L in all except the first
term: we have evidently (to combine the first and last terms)

d7/4L2+3q/2 10g2 L d7/4L5/2+2q 10g2 L
N1/(2+6) < N1/(2+6)

and (to combine the first and second terms)

45/3111/6+4q/3 10g2 L d7/415/2+2q logz L
N6/(10450) = N1/@2+o) ’

and because 0 < 6 < 1, we have 1/(2+ 6) < 1/2 and (5 + 6)/(4 +26) > 1, and if N > d'/'? this implies (to
combine the first and second-to-last terms)

411/6713/6+54/3 10g2 L d7/A15/2+29 1Og2 L
N (5+6)/(4+20) = N1/(2+6)
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We can worst-case the remaining three terms, and we thus obtain
1/2 ~5/3 d1H3H15/2+20 102 T
dlog? L+ 4C4iCiipC1Cy/*C)/ Tﬁ)g

2/3 2/3 ~1/4 1/3d1+1/4L1+ﬂlog4/3
+3C,,, GG, C )

Ag < CCdV/A13/2

We can then pick Cy;p = 3C, and if
N 1/(4+20) > 3(3C)2/3C%/3C;/4C;/3d1/4L1+q,

and
Nl/(2+6) > 12CCg4iC1 C;/2C§/3d3/4L5/2+2q,

then it follows from the previous bound
Ak <3CC1d%A13%10g? L,

which establishes (B.64) in the first case, where (B.68) holds. Next, we consider the remaining case where
(B.67) holds, so that the maximum in (B.63) is saturated by the first argument. We start by grouping some
terms in (B.60) so that it will be slightly easier to simplify later: we can write

k-1 k-1
1/4
1/473/2 N ntd N _ roo|[1/3 1/6 | A2/3
Ay < CCd °L (‘7”08 L+ ”TZ”C - HLZM(M) 176 ny1/(@r20) b N1/442) (”Cs Cs ||Lflm(M) A
5=0 Pmi 5=0
ntd'/ H( 2/3 1/3
P 2N (1 - IR g+ )
1/3 S s |IL oQ(/\/( S
Prn VN SZ(; =
A q1/4 k=1
2 N _ roof[1/2 1/4) A1/2
+ N1/(4+20) (”C -G HLf,oo(M) +d )AS ’
s=0
(B.69)
By the case-defining condition (B.67) and (B.63), enforcing
n> CcliiZHLw*Sz”al9 log’ L
implies
I8 = Cllz py + 42 < 24172,
ue
and we can use this to simplify (B.69), obtaining
k=1 k=1
2ntd5/12
1/473/2 N
A< COMHLP | dlog? L nt 3 10 = €l + T weyen: Z
s=0 P N /( ) -
oned’/2 k-1 M4y pgl/2 k=1 (B.70)
RNEVE ZAi/S + 1\2]1/(4+25) ZAi/z)'
min\/ﬁ s=0 s=
Plugging (B.63) and (B.64) into (B.70) and using k7 < L7/n and (B.67), we get the bound
1/473/2 2 L0441 1087 I e 213 213 16 AL log™® L
A £ CC1d*L>*|dlog” L + Cgigf | ——————— +2Clip Ci7e, NG
sy (B.71)
1/3 ~1/3 ~1/3 dL1/2+ log / 1/2 ~1/2 ~1/4 118 3/4+a logL
+2C, C7C ————— +2C,C'7°C,
p VN ip N1/(4+20)
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From (B.71), we see that if we choose n such that
n> (zcdiff)12L60+44q d3

and we choose N such that 413 403 1/2 13
1/(2+6 1/27 242
NVE) > 16C) CyC,/°C, P d 2L

then (B.71) implies the bound
Ak <3CC1d%413 %1087 L,
which agrees with the previous choice Cj;, = 3C and thus proves (B.64) in the remaining case of (B.70). By
induction, then, we have proved that (B.63) and (B.64) hold for each index 0 < k < [L7/(n1)].
We can now wrap up the proof: we will obtain the desired conclusion by plugging the results we have

developed into (B.56) and simplifying. Plugging (B.36), (B.26) and (B.63) into (B.48) and bounding the
maximum by the sum, we get

N,Lip oo N oo N
”CLM/(HT)J Lim(M) < HCLL’J/(nT)J Lft""(M) + HCLL‘?/(M)J CLL”I/(m)J Lioo(M) + ”(SLM/(M)J L2(M)
1/12
CVdlogL e N A 12 aj3d7/AL2* log? L
< +C +C"C1C'°C W
nt|L7/(nT)] min{pi{izn,l} n N

1/12
CVdlogL L[ LOO+321415 10" I / 12 a3 d7ALY 201087 L
+C +C"C1G,)°C ——o
La min{pl/z,l} n N1/@+0)
CVdlogL

—52 ) (B.72)
Limin{p)? 1)

where in the third inequality we apply |L7/(nt)] > L7/(2nt), which follows from our choice of step
size, and in the fourth inequality we simplify residuals using n > (C’/C)2d°L9+*7 and N+ >

C”ClC;/ zCé/ 3dB/AL5/2+2 log L. Applying (B.72), the triangle inequality (with (B.36) and the fact that u*
is a probability measure) and our previous choice of large 1, we get

< CVdlogL
Li (M) UImin{ 172 1}'

”CLL”/(M)J (B.73)

pmm’
i.e. generalization in Lim (M). We can bootstrap generalization in L*(M) from (B.72) using the triangle
inequality and (B.56): we get
|| N,Lip 2/3
sz(M) 1/3 |_Lfl/ nt)]

1/2 CN ,Lip
LL7/(nT)]

1/3
1z o /oy ¥ + o

||CLU/(M)J LLT/(nT)]

L°°(M) L*(M)

cCy*VdlogL . ccl d3/4L(3‘4q)/610g4/3L
- L‘imin{ 1/2 1} o3 min{ 13 1}

pmm’ pmm’

where in the second line we apply (B.36) and our previous choice of large n to absorb the residual from

(SZL\]L,7 S and apply (B.64) to bound the Atﬁ J(nry) tETTL Worst-casing the errors in the previous bound, we
obtain
d3/4 1og*? L
1/2 ~1/2 1/3 ~2/3 8
“C LT /O] | oo ) =C (C C * C C ) [(49-3)/6

To conclude, we will tally dependencies and make some simplifications to show the conditions stated in the
result suffice. Recalling (B.52) and (B.57) and using (B.61), we have

C1 < CCY? (14 poman)? 112,
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so we can simplify to
1/2

C1/2C1/2+C1/3C2/3 <C Pmax +CC7/6(1er X)l/ze14/(36)
PP T min {pm (M), pe (ML)} e

ch/6(1 n pmax)1/2e14/(35)
" min {p®(M,), p(M)}

We can use this to obtain a simplified generalization in L*(M) bound from our previous expression: it
becomes 776 :
CCP/ (1 + prmax)/2614/30) g3/4 log4/3L

<
=M~ min {pe (M), (ML)} LE-9)/6

which can be made nonvacuous when g > 3/4. Tallying dependencies, we find after worst-casing (and
using g > 1/2 and some interdependences between parameters to simplify) that it suffices to choose N such
that

, (B.74)

N
HCLL‘?/(M)J

NV@+0) 5 cCf“ci/zc§/3e21/6d5/4L5/2+2‘7 log L,

the depth L such that
L > Cmax{Cpd, ¥*C,},

the width n such that

1/3
n>C max{€252/5L60+44qd9 10g9 L, x5, (Cﬁ) },
A

and d such that d > Cdglog(nngC ). Unpacking the constants in the condition on N, we see that it suffices
to choose N such that

N1/@+0) 5 Cc§5/6(1 + Pmax)?/2e119/G30)

5/475/2+2
z {y“(M+)1/2,y°°(M_)1/2}d L TlogL.

B.3 Auxiliary Results
Lemma B.7. Defining a kernel

1
Oy (x,x') = /o <§fafkV '), gfeg’—tﬁzw(e;’)(x» dt
and corresponding operator
ONlsl) = [ 0 )g(x) )
on Lim (M) and LiN (M), respectively, we have that ®i\’ is bounded, and

7

Cey = (1d—0p) [
&y = (1d-r@) ) [

|
|

Proof. By the definition of the gradient iteration, we have that
N N _ - -
Cop — G = fei\]—TVLHN(GQI) f"kN'

The total number of trainable parameters in the network is M = n(n(L —1) + 19 + 1), and the euclidean space
in which 0 lies is isomorphic to RM. For k € Ny, define paths ylk\l :[0,1] - RM by

yi\](t) = Gi\] - tT%LHN(BkN),
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so that

CkN+1 - ng = fykN(l) - ny(O)-
We will justify a first-order Taylor representation in integral form based on the previous expression by
arguing that for every x € M, t — fy{j(t)(x) is absolutely continuous on [0, 1], by checking the hypotheses
of [Coh13, Theorem 6.3.11]. Because yi\] is smooth and f(.)(x) is continuous, fyﬁ’(t) is also continuous.

Continuity of the features as a function of the parameters and of yi\] implies that for every ¢ > 0, the image
of [0, 1] under the map

¢
t - aykN(t)(x)

is compact. By repeated application of Lemma E.21, we conclude that ¢ +— fykN(t)(x) is differentiable at

all but countably many points of [0,1]. Following the proof of Lemma E.21, we see that the points of
nondifferentiability of ¢ — ny’(t)(x) are contained in the set of points of [0, 1] where there exists a layer
¢ at which at least one of the coordinates of aﬁ} v (')(x) vanishes. Applying the chain rule at points of
differentiability of the ReLU [ - |, and assigning 0 otherwise, it follows that the derivative of f - fykN(t)(x) at
t € [0,1] is equal to

—T<€LHN(65 ),V fyf(t)(x)>

at all but countably many points f € [0, 1]. We finally need to check integrability of this derivative on [0, 1].
We have by linearity

- T<€LHN(ekN),€fykN(t)(x)> — /M cﬂkN(x')Wfﬂg(x'), %fyg(t)(x»dw(x'), (B.75)

and by definition

L-1

<€fy§(\’(t)(x)/ V foy (x’)> = <a;5(t)(x), agg(x’)> + <a‘;5(t)(x), agy(x’)><ﬁig(t)(x),ﬁgf (x’)>-

=0
By construction of the network, the feature maps (¢, x) — a;}/ N (t)(x) are continuous. For the backward feature
k

maps, we can write for any 01 = Wi, ..., W%”) and any 0, = wil, ..., Wé”) using Cauchy-Schwarz

L
(85,01, B6,)| < [ ] Wi fllws =],
U=0+1
and the RHS of this bound is a continuous function of (8, x). Because our domain of interest [0, 1] X M is

compact, we have from the triangle inequality, the previous bound on the backward feature inner products
and the Weierstrass theorem

sup |<§fy£z(t)(x), gfell(\l(x,)>| < +00, (B.76)
te[0,1], xeM

so that in particular, we can bound our expression for the derivative of ¢ fViV (1(x) using the triangle
inequality as

‘—Tﬁzw(ey),%fyfkv(t)(x)ﬂ <Crt /M .cefkv(x') du™ ()

for some constant C > 0. The RHS of the previous bound does not depend on ¢, so by an application of
[Coh13, Theorem 6.3.11], it follows that ¢ +— ny’(t)(x) is absolutely continuous, and we have the representa-
tion

N (x)—cN(x)z—T/lWL N(eN)ﬁth(x)>dt.
k+1 k 0 u k yy (1)
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Using (B.75), we can express this as

1 —~ —~
G-l = [ ( I cgkwx')(VfgkN(x'),nykw(t)m}dyN<x'))dt.

To conclude, it will be convenient to switch the order of integration appearing in the previous expression.
Applying (B.76), we have

7

|Ceg(x’)<§feg(x'),gfyiv(t)(x)ﬂ < C|C95 (x')

and the RHS of this bound is integrable over [0, 1] X M because the network is a continuous function of the
input. By Fubini’s theorem, it follows

1~ —_—
)= = [ [ (T ) T 0) e Cop 3 ) (®77)
Defining
1~ —_—
O (x, ) = /O (¥ o ), ¥ ()

and using (B.76), we can define bounded operators G)kN : Li v M) — LiN (M) by

@i\[[g](x) = /M @,Ig](x,x/)g(x’) dyN(x'),
and with this definition, (B.77) becomes
CkN+1 - Ci\] = _TGkN [CkN] ’
as claimed. O

Lemma B.8. For any network parameters 0, define kernels
Oo(x,¥) = (Vfolx'), Vo)),

and for x € {N, oo}, define corresponding bounded operators on Li* (M) by

®o,+[51(x) = /M o (x, ¥)g(x') du*(x').

For any settings of the parameters 0, the operators ®g , are self-adjoint, positive, and compact. In particular, they
diagonalize in a countable orthonormal basis of Li* (M) functions with corresponding nonnegative eigenvalues.

Proof. When x = N, an identification reduces the operators @g ,+ to operators on finite-dimensional vector
spaces, and the claims follow immediately from general principles and the finite-dimensional spectral
theorem. We therefore only work out the details for the case * = . Boundedness follows from an
argument identical to the one developed in the proof of Lemma B.7, in particular to develop an estimate
analogous to (B.76). This estimate, together with separability and compactness of M, also establishes that
®¢, is compact, by standard results for Hilbert-Schmidt operators [Heill, §B]. In addition, this estimate
allows us to apply Fubini’s theorem to write for any g1, g2 € Li‘” (M)

<g1’®9'°°[g2]>Lflm(M)= //M » O (x, x')g1(x)g2(x") du™(x) du™(x’) = (g2, @p,0[&11)

since @g(x, x') = Op(x’, x). A similar calculation establishes positivity: we have for any g € Lim M)
(8,000l81i: ng = [ (Thola) T g lg o) ™) du™(v)
u MxM
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_ < [ g anw, [ g dy°°<x>> >0,
M M

where we applied Fubini’s theorem and linearity of the integral. These facts and the spectral theorem
for self-adjoint compact operators on a Hilbert space imply in particular that the operator ®g o, can be
diagonalized in a countable orthonormal basis of eigenfunctions (v;)ien C Lim (M) with corresponding

nonnegative eigenvalues (A;)ien C [0, +00). O

Lemma B.9. Write ® .~ for the operator defined in Lemma B.8, with the parameters 0 set to the initial random
network weights and the measure set to uN. There exist absolute constants ¢, K, K’ > 0 such that for any q > 0 and
any d = Kdglog(nngCp), if

1

<
H®uN ”LiN(M)—)L’iN (M)

and if in addition n > K’'L*¥*2994°1og” L, then one has
Pl () eVl <Al 21— (142 e
P ) = - nt '
0<k<L7/(nt) H

Proof. Consider the nominal error evolution Czk\]’nom, defined iteratively as

N,nom _ ~N,nom N,nom | ,
Ck+1 C - T®‘L1N [C ] 7

CNnom _ C

for a step size 7 > 0, which satisfies
1

“@ N||L2 (M —>L2 (M)

We will prove the claim by showing that this auxiliary iteration is monotone decreasing in the loss, and
close enough to the gradient-like iteration of interest that we can prove that the gradient-like iteration also
retains a controlled loss. These dynamics satisfy the “‘update equation’

gy = (1d —T®“N)k [l

Because M is compact and C is a continuous function of the input, we have ¢ € L*(M) for all values of
the random weights. Because uV is a probability measure, this means C has finite L (M) norm for every

p > 0. Meanwhile, the choice of 7 and positivity of the operator (by Lemma B.8) guarantees

HId _TG)HN"LiN(M)_’LiN(M) <1,
from which it follows from the update equation
CN ,nom < 1|2 < 1T , B.78
H s 102,30 = 1€l (B.78)

where the last inequality uses that u is a probability measure. In particular, this nominal error evolution
is nonincreasing in the relevant loss. Now, we recall the update equation for the finite-sample dynamics

Yy = 1 -@") [},

which follows from Lemma B.7. Subtracting and rearranging, this gives an update equation for the differ-
ence:

N, - ciNnom - (Id —TGHN) [C’kV oL “"m] —1 (@kN - ®HN) [cN]. (B.79)
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Under our hypothesis on 7, (B.79) and the triangle inequality imply the bound

N N,nom
ey - e

< ||C§(\] _ Ci\f,nom

L2y (M)

Using Jensen’s inequality and the Schwarz inequality, we have
[0 =0l ipgizy g = s [ [ONC X =00 3]s ) )
FL M= CUENTES Mk L M)
L

< sup ||@]I<\] _®||Lw(MxM)||g||LLN(M)

<1
181z

u

N
< (16" = Ol 1o (rixn
since uN is a probability measure. Defining

AY = ie{glgfk}H@fv =0l (atspmry

by a telescoping series and the identical initial conditions, we thus obtain

N N ,nom
||Ck+1 — G

k
0 < Ay ;“C?]”Li,va

and the triangle inequality and (B.78) then yield

k
Ieallz, v = el + 788 2 1Nz,

i=0 *‘

Using a discrete version of (the standard) Gronwall’s inequality, the previous bound implies

k-1 k-1
€81z, v < Nellno + HCllotng Al jexp| > AY,
! i=0 j=i+1

< ICllzoemy (1+ kTAllc\]—l exp (kTAkN—1)) .

Lf,N(M) + T”Ci\]HLiN(M)“@;c\] - ®le||LiN(M)—>LiN(M)'

(B.80)

To conclude, we will use Lemma F.5 and an inductive argument based on (B.80). Let us first observe that by

Lemma D.11 (with a rescaling of d, which worsens the absolute constants), we have

>1-e

Vd
P[”C”L“(M) S5

as long as n > Kd*L and d > K’dglog(nngCpy). Define events 8,127 by

&y = (It o > V),

(B.81)

where d > 0 is sufficiently large to satisfy the conditions on d given above. We are interested in controlling

the probability of U?:o 8{{\1 for k € Ny. We can write

k-1

N
e
i=0

k

e

i=0

P

&' n( )&M)

i

—_

P =P +P

7

I]
=]
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and unraveling, we obtain
k

&

i=0

P

A\fer)

In words, it is enough to control the sum of the measures of the parts of 8,1(\] that are common with the part
of the space where none of the past events occurs. First, note that (B.81) implies

1

k 1
=) P|ENN
i=0 =0

[P’[Sé\l] <e,

and so assume i > Obelow. Forany g > 0,ifkt < L9/n,n > KL3*814% and d > K’d, log(nnoCpq), Lemma F.5
gives that there are events B that respectively contain the sets {AN, > CL*21/333/4n11/1210g** L}, and
which satisfy in addition

Jay

i
C
Pl (e)) | <.
i

I
o

We thus have by this last bound, a partition, and intersection monotonicity

—_

P|EN N - (SJN)C < e‘C”’+P[8§" n (Bf\’)c],

]

Il
o

and by construction, one has AN, < CL421/333/4y11/12 16634 [ on (BN)°. Another partition and (B.81) give

Vd

P[S}V N (BZN)C] <e 1 plENN(BN) N {||c||Lm(M) < 7”

When the two events on the RHS of the last bound are active, we can obtain using (B.80)

Vd

”CQIHLZN(M) <5 (1 + ktCLA*293 3141112 10634 [ exp (kTCL4+2‘7/3d3/4n11/12 log®/* L)) .
u

Given that k7 < L7/n, we have

1/12
127 48+209 79 109
kTCL4+2‘7/3d3/4n11/12log3/4L < (C L*+2%1 47 Jog L) <1/e,

n

where the last bound holds provided n > KL**2914% log® L . Thus, on the event

c d
(BY) n {||C||L°°(M) < g},

we have

I, a0 < VA,

and thus
P

&' n(8Y)n {||C||L°°(M) < 7}] =0.

By our previous reductions, we conclude

C
pleNn () (&) ] <2,
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and in particular

k
P U EN| < 2k + 1)~
i=0
The claim is then established by taking k as large as L7/(n1). O

Corollary B.10. Write ® v for the operator defined in Lemma B.8, with the parameters 0 set to the initial random
network weights 0o and the measure set to uN, and define for k € Ny

AkN= max ||®

i€{0,1,...,k} iN_@”U’“(MXM)'

There exist absolute constants ¢, C, C’, K, K’ > 0 such that for any q > 0 and any d > Kdglog(nnoCuy), if
1

T< )
H®HN ”LiN(M)—miN M)

and if in addition n > K'L*+2994° log® L, then one has on an event of probability at least 1 — C’(1 + L1/(nt))e

AIL\]Lq/(m)J—1 <C 10g3/4(L)d3/4L4+2q/3n11/12_

Proof. Use Lemma B.9 to remove the hypothesis about boundedness of the errors from Lemma F.5, then
apply this result together with a union bound. m]

Lemma B.11. Write ® for the operator defined in Lemma B.8, with the parameters 0 set to the initial random network
weights and the measure set to u*. Consider the (population) nominal error evolution C;°, defined iteratively as
G =G -]
Gy =¢C

for a step size T > 0, which satisfies
1

T < .
”@”Liw(M)—miw(M)

Suppose g € Li(M) satisfies

O[g] =C.
Then for any k satisfying
81lz2., (am1)
PN ety
2 |[Cllzemy
we have
3ligllz am) gl
A 2 10 3 1°°(M)
= <3 lo-o + V3| - - S

”Ck HLiw(M) ”g”Lﬁw(M) L[im(M)_)Lim(M) C-¢ Lioc(M) kT 0g 2 ”CHL“(M)kT

Proof. The dynamics satisfy the ‘update equation’

¢ = (1d @) [(].

Because M is compact and C is a continuous function of the input, we have C € L*(M) for all values of
the random weights. Because u® is a probability measure, this means C has finite Lft"" (M) norm for every
p > 0. Using the eigendecomposition of ® as developed in Lemma B.8, we can therefore write

C= Z(;(Uz‘, C>Liw(M)v"
i=
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in the sense of Lim (M). Because ® and Id —7@® diagonalize simultaneously, we obtain

”C;ouiim(/w) = Z;(l -t o, Qiimw) s 21: e (o, C>ijm(M)’
1= i=

where the inequality follows from the elementary estimate 1 — x < e~ for x > 0 and our choice of 7, which
guarantees that 1 — tA; > 0 for all i € N so that the elementary estimate is valid after squaring. We can split
this last sum into two parts: for any A € R, we have

2 _ —2kTA; 4, 7\2 —2kTA; s A\2
”CI(EOHLZLM(M)_ Z e <v”C>L21m(M)+ Z e 01, O my
! itAi>A F itdi<A K

Because @ is positive, we have further that A; > 0 for all i/, so we can take A > 0. The first sum consists
of large eigenvalues: we use exp(—2ktA;) < exp(—2ktA) to preserve their effect, and then upper bound the
remainder of the sum by the squared Liw norm of (. The second sum consists of small eigenvalues: we
replace exp(—2ktA;) < 1, and then plugin C = (C— é) +0O[g]+ ((:) —0)[g] and use bilinearity, self-adjointness
of ®, and the triangle inequality to get

(o, C- c}Lim(M)

We then square both (nonnegative) sides of the inequality and use Cauchy-Schwarz to replace the squared
sum with the sum of squares times a constant, obtaining

+|(0:, @ - ©)81)

|<Ui, C>Lim(M)| <

+ ‘/\<vi’g>Lf’m(M) LZN(M)
u

2

+ BHC — (f
M)

A 2
115y < 2 IEIE e+ 3120l v+ 3lslE_uol0 - o
ue

2 2
o (M= 12
after re-adding indices i to the sum and applying the Schwarz inequality to isolate the operator norm of
the difference in operators. We will choose A > 0 to minimize the sum of the first and second terms.
Differentiating and setting to zero gives the critical point equation

2 k1)?
NPT .
3 e - (2tA)e” ™",
12 0

which can be inverted to give the unique critical point

2 2
R NS

T 2kt 3

7

2
I12: e

where W is the Lambert W function, defined as the principal branch of the inverse of z — ze*; we know that
this critical point is a minimizer because the function of A we differentiated diverges as A — oo. Plugging
this point into the sum of the first two terms gives

5 2 A2 12
~ <3 le-6 +3fjc -
”Ck ”L’LZI,X,(M) ”g”Lf‘w(M) Lim(M)_’Lim(M) C C Lioo(M)

2 2 k 2 2 k 2

3Hg”Lf,m(M) - 2“C“Li°°(M)( 7) 2||C”ij(M)( 7)

+— + = - -

2 2 3 2 2
200 A | I

For x > 0, the function x +— W(x) is strictly increasing, as the inverse of y > ye?; by definition W(e) = 1;
and we have the representation W(z) + log W(z) = log z [Cor+96], whence W(x) < log x if x > e. Because
u* is a probability measure, we have

“C“izm(M) S ”C|I2001
18
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and therefore if

30 181122 om0y
2 |ICllzem

we can simplify the previous bound to

2
2 9||g||LfLoo(M) ) ”g”LZ (M)

T
o AKDE P | 2T k2 |

o2 2 A
[ FRVEE LRI LRl W

using also properties of the logarithm. Taking square roots and using the Minkowski inequality then yields

3”g”Lim(M) 3 ”g“Lﬁm(M)
-—— 1o EaTET ™ K
L2 (M) kT 81V2 ICll Lo mykT

Vil|c- ¢

1650 = VBlllliz a0 € =] in o *

where we used the previous lower bound on k7 to determine the sign that the absolute value of the logarithm
takes. This gives the claim. O

Lemma B.12 (Kantorovich-Rubinstein Duality). Let Lip(M) denote the class of functions f : M — R such that
both f | m, @re Lipschitz with respect to the Riemannian distances on M. Forany d > 1, any 0 <6 <1andany

N > 2\/_/m1n{y°°(M+), 1 (M_)}, one has that on an event of probability at least 1 — 8e™, simultaneously for all
f € Lip(M)

) N \/_ 614/‘5CPW,M\/Hmax*€{+f‘}Hf|M* .
‘/ flx)dp®™(x) - / flo)dp® (x )’ Gk (M) N1/@2+0) -,

C _len(M,) N len (M)
M SO M)

where

Proof. The proof is an application of the Kantorovich-Rubinstein duality theorem for the 1-Wasserstein
distance [WB19, eq. (1)], which states that for any two Borel probability measures i, v on M., one has

Wia) = swp | [ fwdue - [ fed),
”f”LipSl M My
where M. denotes either of My or M_, and || - ||Lip is the minimal Lipschitz constant with respect to the

Riemannian distance on M. Therefore for any f : M, — R Lipschitz, we have

< fllipW (u,v), (B.82)

‘ [ s - [ fean
My M

where one checks separately the case where || f||Lip = 0 to see that this bound holds there as well. To go from
(B.82) to the desired conclusion, we need to pass from the measures u* and p, both supported on M, to
measures i} (with x € {N, co}), supported on the manifolds M. (which we will define in detail below); the
challenge here is that the number of ‘hits” of each manifold M. that show up in the finite sample measure

VN is a random variable, which requires a small detour to control. Let us define random variables N, N_

by
Ny =Ng¥(My); N_=NpN M),

so that N, have supportin {0,1,..., N}, and N; + N_ = N. Define in addition

p+ =u M), po=pT (ML),
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which represent the degree of imbalance between the positive and negative classes in the data. By definition
of the i.i.d. sample, we have that N, ~ Binom(N, p4). Using N, and N_, we can define ‘conditional’ finite
sample measures p and uN by

1 1

N N _

=— Ofx)s = Otx,

H+ = max{1,N.} . Z i) H= = max{1, N_ b, Z (i)
i€[N]:x;eMy €[N]:x;eM_

so that (No/N)ul + (N_/N)uN = uN,° and u and p are both probability measures except when N, €
{0, N}, in which case exactly one is a probability measure. By the triangle inequality, we have for any

continuous f : M — R
d (o)
po [ S0 [ faue

' / £(e) dp(x) - / F) ™ ()| <
M M

*e{+ }
dus
< 3 Wflee M>‘— |+ / fl=r= / Fo) dutl ).
xe{+,—}
(B.83)
By Lemma G.1, we have
P[&—p* <—|>1-2¢7%. (B.84)
Using that N = N, = N_and 1 - p4 = p_, the bound (B.84) implies if N > 2\/E/min{p+, p-}
Px _ Nu _1-px _ 5,2
[P’Z_NS > >1-2e. (B.85)

Now fix an arbitrary f € Lip(M). For either x € {+, -}, we can write
1 N

N _ ,
/ f(x)d}l*( x) = ax{l Nob Z f( xXi) = max(1, Z 1]1x’EM*}Z xieM*f(xz)/

irx;eMy

and since M, and M_ are separated by a positive distance A > 0, we have that x; + 1,5, are continuous
functions on M. Since f is continuous on M by the same reasoning and the fact that M is compact, it
follows that the functions (x1,...,xN) — / M. f(x) dy (x) are continuous on M X --- X M as well, and in
particular for any ¢ > 0 the sets

-t}

(x)
([ e [ fane
My
are open in M, and so is their union over all f € Lip(M). By conditioning, we can then apply (B.85) to write

>t}
[N(1-px)/2]
st S| || o [
My

k=INpx/2] | feLip(M)

d
Pl U {‘ e L) - [ feoane)

feLip(M)

(B.86)

>t} Ny = k|[P[N, = k].

Conditioned on {N, = k} with 0 < k < N, the measure ;) is distributed as an empirical measure of sample
size k from the probability measure p3 /p« supported on M. For [Np4/2] <k < [N(1 - p4)/2],any 6 >0

*Here we treat the empty sum as the appropriate ‘zero element’ of the space of finite signed Borel measures on M., namely the
trivial measure that assigns zero to every Borel subset of M...
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and any d > 1 we have for both possible values of x

Vde#/% len(M,) B Vde#/%len(M,)

kl/(2+5) - ( \‘Np* J )1/(2+5)
2

< V2de'4/? len(M,)
- (NP*)l/(2+5)

and so an application of Lemma B.15 thus gives forany 0 < 6 < 1 and any d > 2

d 14/6
p w( G *)> Vde 1;3;2(3\6/)(*) N, =k| <e™.
P (Np+)
Combining this last bound with (B.82) and (B.86) gives
G,
d,u""(x) MullLip len(My) _
P '/ flx)—= / Fx)dpl (x)| > NI £ o b < 3e7

f €L1p

where we used max{p., p-} < 1 to remove the exponent of 1/(2 + §) on these terms. Taking a max over the
Lipschitz constants and combining this bound with (B.83) and (B.84) and a union bound, we obtain

2| fllzeopny Vd
N
P "/ f(x) d/'loo(x) / f(x) d[JN(x) 314/‘3Cyoo,M\/Emax*g(+,,)‘ < Se_dl
f ELlp(M) — *lLip
where the constant is defined as in the statement of the lemma. O

Lemma B.13. Let dg = 1. There is an absolute constant C > 0 such that for any function f : M — R with f | M.
Lipschitz with respect to the Riemannian distances on My, one has )

1/3
” ” %rEXHfHBW(M) ”f”Lzm(M MaXye{+,-}) Hf|/v(* Lip
fll;» < Cmax
] palm (min {p= (M), g (MO} Prin

Proof. For any T > 0 and a nonconstant Lipschitz function f : [0, T] — R, we will establish the inequality

£,
\/_

where the constant C > 0 is absolute. We can use this result to establish the claim. We start by writing

2/3

I < cmad ULy ), )

171 = o, b

and for x € {+,—}, we have

IFlae |, =1 o vulle (B.58)

where y, : [0, len(My)] — M, are the smooth unit-speed curves parameterized with respect to arc length
parameterizing the manifolds. Similarly, the curves’ parameterization with respect to arc length implies

1 o ¥ullp < [[Flne (B.89)

Lip
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Applying (B.87) with (B.88) and (B.89), we obtain

{Hf °© V*”LZ ”f ”2/3
ylen(M

I#1nc ..

For the first term in the max, we have

1 len(M,) )
= len(M*)/o foy,(t) dt

len(M,) Px 0 Y, (t) — len(M
t)? t :
[) foy*()p*o)/*() p*oy*(t)

If o .72
len(M,)

<

dt| +

len(M,)
/ foy, () pxoy,(t)dt

using the triangle inequality. For the second term in the last bound, we note that

len(M.) len(M-)

fo )/Jr(i.‘)2pJr oy (t)dt|+ fo y_(t)2p_ oy _(t)dt

len(My
/0 foy. (t)Ppuoy,(t)dt] <

and for the first term, we have

PxOY. () PxoY, (1) 1
px © V() = v Px o V) = ISR | T =)~ e
max max
t€[0,len(My)] Px © )/*(t) te[0,len(M,)] px© Y*(t)

1- [JOO(M*) + Pmax
HOO(M*) ‘Lloo(M*)pmin
< meax )
,UOO(M*)pmin

where in the first inequality we used the triangle inequality, and for the second we used that p, oy,
integrates to 1 (M.) over [0, len(M.)], which implies that there exists at least one ¢ € [0, len(M,)] at which
px 0 Y, (t) = u=(My)/len(My), so that the maximum of the difference in the second term on the RHS of the
first inequality is bounded by the maximum of the density term. Thus, by Holder’s inequality and (B.90)
and (B.91), we have

len(My) Px © Y*(t) len(M )
[e] t 2 * © t . d
|‘/0 f Y*( ) p )/*( ) Px O y*(t)

(B.91)

3pmax
Pmin min {u®(M,), u

i mo

Similarly, for the second term in the max, we have

len(My)
IFoy,li = ( /0 foy.(b? dt)

len(My) len(M-) 1/3
< / foy,(t)dt+ / foy_(t)dt
0 0

1 len(My) ) len(M-) )
<5 /0 foy )y proy, (t)dt +/0 foy_(H2p_oy_(t)dt

min

1/3

1/3

/
171

<
- 1/3
Pmin
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Thus, we have

2/3
" S T I, v . |
< Cmax ’ !
Mullp p111<12n min {y°°(M+), [J°°(M—)})l/2 Pgr{fn

and taking a maximum over x € {4, —} establishes the claim.

To prove (B.87), consider first the trivial case where || f||z~ = 0: here the LHS and RHS of (B.87) are
identical, and the proof is immediate. When || f||L~ > 0, the Weierstrass theorem implies that there exists
t € [0, T] such that |f(t)| = || fl~; we consider the case sign(f(¢)) > 0. For any ¢’ € [0, T], we can write by
the Lipschitz property

fE) Z N1 fllee = 11 flluiplt = £,
and the RHS of the previous bound is nonnegative on the intersection of the interval [t — || f ||z~ || f ||Ei1p, t+

ILf Il f ||£ilp] with the domain [0, T] (with standard extended-valued arithmetic conventions when || f ||Lip =
0). This gives the bound

e 1) :
I£117, = / I (f e = N f luiplt = £71)"

_ oL
ma"{t Tp '0}

minf 1= 7-¢} .
= L 0 = el

Wl
max{ i’ t}

where the second line follows from the changes of variables ' +— t’ +t. The integrand on the RHS of the

second line in the previous bound is even-symmetric, and max{— HJ;HT , —t} = - min{ H{(Hiw , t}, SO we can
1p 1p

discard one side of the interval of integration to get

1l [ Ufllo
mm{ ”thip ,Tft} 2 mm{ ”f”lﬂp ,max{t,T— t}} o
(e = 1) > (If s = N fllupt’)?de’. (B.92)

Ifll 0
max{’ i’ t}
We proceed analyzing two distinct cases. First, if || f||.~ < max{t, T—t}|| f||Lip, then we musthave || f||Lip > 0;
integrating the RHS of (B.92), we obtain
/113

~ 3 fllp”

||f||L2
or equivalently a1
Il < 3PIFC A - (B.93)

Next, we consider the case ||f|[r~ > max{t, T — t}||f||Lip. We split on two sub-cases: when ||f||Lip = 0,
integrating (B.92) gives
TIfI%.

A1 = 1f1Fe max{t, T =t} > —=, (B.94)

where we used max{t, T —t} > T /2. When ||f||rip > 0, integrating (B.92) gives

IR, > (115 = Ul = 1f lsp maxte, T = £3)°)

3||f (1

max{i, -1} ann (Lflle> = 1flhsp maxe, T~ £))"
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T 1%
TG o9

where the second line uses a standard algebraic identity, and the third line uses max{t, T —t} > T /2 together
with the definition of the case to get that [|f||z~ — || f|lLip max{t,T -t} > 0 in order to discard all but the
k = 0 summand. Combining (B.95) and (B.94), we obtain for this case

Vellfll.2

IfllLe < N

(B.96)

and combining (B.93) and (B.96) gives unconditionally

V6l
Il < max{TfT,sl/3||f||ié3||f||i{§ :

which establishes (B.87). For the case sign(f(¢)) < 0, apply the preceding argument to —f to conclude. See
[Brell, Exercise 8.15] for a sketch of a proof that leads to more general versions of (B.87).
O

Lemma B.14. Forany p € N, if C > (4p)*, then one has
n>Clog'n if n>2"Clogl(2/C).

Proof. We first give a proof for p = 1, then build off this proof for the general case. Consider the function
f(x) = cx —logx. We have f’(x) = ¢ — 1/x, which is nonnegative for every x > 1/c, so in particular f is
increasing under this condition. By concavity of the logarithm, we have logx < log(2/c) + (¢/2)(x —2/c¢),
whence

f(x) =21+ cx/2-1og(2/c).
The RHS of this bound is equal to zero at x = (2/c)(log(2/c) — 1), and

2 (log(g) - 1) > ! = <22
c c c

In particular, we have f(x) > 0 for every x > (2/c)log(2/c). Rearranging this bound, we can assert the
desired conclusion that if C > 3, then n > Clogn for every n > 2Clog2C. Equivalently, we have for all
such n that Cn~'logn < 1. Next, we consider the case of p > 1. We will show

log?
COgl’l<1

n

under suitable conditions. Let us consider the choice n = KClog” KC, where K > 0 is a constant we will
specify below. Consider the function f(x) = Cx!log” x, which satisfies

log? ™ —log"™!
f,(x)zcog (X)(Px2 og (x))_

In particular, f is decreasing as soon as p < log” ' (x). Now, we can calculate

1 ploglog KC\”
P = — Lo ° -
f (KC log KC) X (1 + Tog KC ,

and by our result for the case p = 1, we have forall p > 2

ploglogKC _ it 0o KC > 4plosd
logkC B 08 R = 2pIogEp
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This condition is satisfied for KC > (4p)*, so if we set K = 27, we obtain the above conclusion when
C > (4p)*. Under these conditions, we then get

f(KClog! KC) < 1.

Similarly, we have log? ' (KClog KC) > log” ' ((4p)*) = (4p)*~'log? ' (4p), which is larger than p because
4p > e. It follows that f(x) < 1 for every x > KC log KC, which completes the proof. O

Lemma B.15 (Concentration of Empirical Measure in Wasserstein Distance [WB19]). Let dy = 1. For either
* € {+,—}, let u be a Borel probability measure on M, and write uN for the empirical measure corresponding to N
i.i.d. samples from u. Then for any d > 1 and any 0 < 6 <1, one has

Vde'/?len(M,) Y
N1/(2+6) = ’

PlW(y,uV) <

where the 1-Wasserstein distance is taken with respect to the Riemannian distance.

Proof. The proof is a direct application of the results of [WB19] on concentration of empirical measures in
Wasserstein distance. For the duration of the proof, we will work on the metric space
(M, len(M,)~ distyy, (), i-e., the same metric space scaled to have unit diameter; we will then obtain the
result in terms of the unscaled metric by the definition of the 1-Wasserstein distance.

Because dg = 1 and M, can be given as a unit-speed curve parameterized with respect to arc length, we
have for any Borel S C [0,1] and any € > 0

1
NS(S) S EI

where N, (S) denotes the e-covering number of S by closed balls in the rescaled metric. Following the
notation of [WB19, §4.1], we then obtain for any s > 2
loginf{N:(S) | u(S) > 1 — */=2)}

<1
—log e B

de(u, e/67?) =

Invoking [WB19, Proposition 5], we obtain after some simplifications of the constants that forany 0 < 6 <1
(putting s = 6 + 2 in the previous estimates)

[E[(W ([,l, MN)] < 311/6Nf1/(2+5) +36Nf1/2 < 614/5Nf1/(2+5)/

where the final inequality worst-cases constants for convenience. Using [WB19, Proposition 20], we have

P\ W, i)+ E[ W, p™)] 2 \/% <e ¥,
and hence
P[(W(u,uN) > %] <P|W(u,uV) > Nel%ﬁb) +\/g
<P| W, ™) + E[W(p, 1] = \/% <o
ifd>1. _

C Skeleton Analysis and Certificate Construction

In this section, we construct a certificate g for the certificate problem (B.1) in the context of a simple model
geometry. We also collect technical estimates relevant to the analysis of the skeleton 1. We point to
Appendix A.3.2 for a summary of the operator and function definitions relevant to the certificate problem
that we will use below.
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C.1 Certificate Construction

Constructing a certificate requires us to solve the integral equation

A

{ =0[g] (C.1)

for a function g € Lim (M) and obtain estimates on the norm of g. It is useful to consider separately the

contributions of integration over the class manifolds M. in the action of the operator ®: we can write for
any g

Blgl(x) = /M Ox, x)g(x) du(x') + /M O(x, )¢ (x') du(x"),

and it then makes sense to further subdivide based on whether the evaluation point x lies in M, or M_, and
to introduce the density p explicitly by a change of variables. With a slight abuse of notation, we will write

dx’ to denote the Riemannian measure on M, and M_, for concision. Because the kernel ©is symmetric,
if we define an operator O, : L2 (M) — L2(M,) by

0. [5.1x) = /M 6l )5 () d,
an operator ©_ : L2(M_) — L2(M_) by

0_[g_](x) = /M ] O(x, x")g_(x")dx/,
and an operator @, : L2(M,) — L*(M_) by

B.1g.](x) = /M O(x, ¥')g4(x') dx’,

then we can write the certificate system (C.1) equivalently as the 2 X 2 block operator equation

ol-le: &llre]

where we write p; and p_ for the restriction of the density p to M, and M_, respectively, and where the
adjoint operation is viewed as occurring with operators between L?(M,) and L?(M_) (both Hilbert spaces).
We will make use of this notation in the sequel.

C.1.1 Two Circles

The two circles geometry is a highly-symmetric geometry where M, and M_ are coaxial circles in the upper
and lower hemispheres of S, each of radius 0 < r < 1. Here we note that since the skeleton ¢ depends only
on the angle between points of $"~!, the particular embedding of this geometry into S$"~! is irrelevant,
and it is without loss of generality to consider the geometry in S? once we have restricted ourselves to this
configuration. We have unit-speed charts, for ¢t € [0, 2nr]

rcost/r rcost/r
y.(t) = |rsint/r|, y_(t) = | rsint/r
1-72 V1 -172

which implies specific forms of the spherical distances

L(y, (), y, () =cos™ (1,2 cos |— i

+(1- r2)) (C.2)
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and
’

L(y, (1), y_(t') = cos™ (r2 Y L (1- rz)) , (C.3)

with the analogous results for the remaining possible combinations of domains, by symmetry. Because C is
piecewise constant on each connected component of M, there are constants C.., C_ such that C. = C on M,
and C_ = C on M_. The block-structured system we are interested in solving is then

C, _ ®+ (E)l P+8+ (C.4)
C-] 716, 6_||p-8-|" '
where subscripts are used to denote the domain of each component of the certificate. The coordinate
representations (C.2) and (C.3) show that each of the operators appearing in the 2 X 2 matrix in (C.4) is
invariant on the circle; we can obtain some useful simplifications by identifying these operators with their
coordinate representations. Defining
fr(t) = cos™ (r*cost + (1 -7?)),
g(t) = cos™ (r*cost — (1-1?)),

and (self-adjoint) operators on 2m-periodic functions g by

2n
A1) = ; po fi(t —t)g(t)dr,

2n

X[gl(t) = ; po gt —t)g(t)dr,

by a change of coordinates, it is equivalent to solve the system

-1
r—Cy _ p+g +
where we have identified p, and p_ with their coordinate representations, and with an abuse of notation
used the same notation for the certificate as in (C.4). We can use symmetry properties to determine

&) =n—fi(t—m),

so for purposes of analysis we need only consider f,. Each of the invariant operators in (C.5) diagonalizes

in the Fourier basis, and because the target  is a piecewise constant function, we only need to use the
first Fourier coefficient. In other words, we can solve this system by first inverting the invariant operator,
which responds to only the constant component of the target, and then inverting the density multiplication
operators. This approach is made precise in the following lemma.

Lemma C.1. There is an absolute constant C > 0 and an absolute constant K > 0 such that if L > max{K, (1/2)(1 -
r2)"V2} and r > %, then the system (C.4) has a solution that satisfies

[

Proof. Following the discussion by (C.5), it is equivalent to solve the system in the Fourier basis, with only
the DC component. We thus start by solving the system

Gy

67 7

[7_1(34.} _ Zfozlp ofr(t)dt 2/07;771) Ogr(t)dt
rCo T2 [Ty ogdt 2 [T po fi(t)dt

z,oon lnfxeM P(x)
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where G, and G_ are constants that we will show exist. This is a 2 X 2 system, and the matrix is symmetric,
with minimum eigenvalue 2 fon(gb o f, — o g.)(t)dt. Using Lemma C.2, we have if L > max{7, (r/2)(1 -
r2)V2}and r > 1

" cn
2 [Cwof-yoginar>L,
0
so the 2 X2 matrix is invertible, and by an operator norm bound on its inverse we have the regularity estimate

C

(G2+62)" <= (c2+c2)".

It follows that the function

solves the system (C.4). We conclude

[£]

2

2 27 G+ 2 2n G_
2 - [ (s provinans [ () oo

¢
~ n?infyep p(x)

(C2+C?).

Taking square roots on both sides of the expression resulting from the last inequality will give the claim,
after we simplify the expression y/C2 + C2. Since

\JC2 +C2 < V2max{C,,C_} = ‘6”6

we can conclude after adjusting constants. m]

L=(M)”

Lemma C.2. There exists an absolute constant ¢ > 0 and an absolute constant K > 0 such that if

L > max{K, (n/2)(1 — r?)"Y2} and if r > 1, one has

cn
2[(;[ﬂ](¢ Ofr —l,b Ogr)(t)dt > 7

Proof. Write 0, = ¢ o f, — ¢ o g, for brevity, which is nonnegative, by Lemma C.3. We consider the tangent
line to the graph of ¢, at 0; by Lemma C.3, this line has the form ¢ +— ¢,(0) — tnrL(L + 1)/4m, and its graph
hits the horizontal axis at ¢ = 4o,(0)/nrL(L + 1). Using that ¢,(0) < 1(0) = nL/2, we see that this point of
intersection is no larger than 27t/r(L + 1), which can be made less than K by choosing L > K’, where K > 0is
the absolute constant appearing in the convexity bound of Lemma C.3, and K’ > 0 is an absolute constant.
Under this condition, we obtain using Lemma C.3

or(t) = 0,(0) — tnrL(L + 1)/4m,

and so

/ o (t)dt > / (6,(0) — ntrL(L +1)/4m) dt
[0,7] [0,47t0,(0)/nrL(L+1)]

_ 2m0,(0)?
nrL(L+1)

We have ¢,(0) = nL/2 — ¢(cos(2r? — 1)), and using the estimate of Lemma C.18, we get

nL1+Lv/2n

$) < 2 1+Lv/m’
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Together with the estimate cos™ (2r% — 1) > 2V1 — r2, we obtain

00 = L nL( V172 ) nL

— —(cos(2rP-1) 2 — | ——| > —,
2 2 \m+2LV1-12) 8

where the final inequality requires the choice L > 7/2V1 — r2. Thus, we have shown

/ ot dt > L,
[0,7] r

as claimed.

Lemma C.3. There is an absolute constant 0 < K < 1/2 such that if L > 3, one has for all r € (0,1):

(i) Yofr—¢pog 200nl0,7];
(i) Yo fr=1og)(0)=—nrL(L+1)/4m;
(iii) Y o f, —1p o g is convex on [0, K].

Proof. In this proof, we will make use of basic results on the skeleton 1), namely Lemmas E.5, C.15 and C.16
without making explicit reference to them. Property (i) follows from the fact that ¢ is decreasing, cos”
decreasing, and the definitions of f, and g,. We note that f, is smooth on (0, 7t); to prove property (ii), it will
suffice to show that f, admits a right derivative at 0 and = and apply the chain rule. We have if t € (0, )

r2sin ¢t 1 rsint

\/1 —(r2cost + (1 - rz))Z ) V2 +r2(cost —1) V1 —cost

fr/(t) =

after some rearranging, and by periodicity and symmetry properties of f,, we have
lim g;(t) = lim f/(¢) = 0.
tl{%gr( ) tg{;fr( )

We Taylor expand sint(1 — cost)™/2

in a neighborhood of zero to evaluate the derivatives there. We

have sint = t —t3/6 + O(t%) and 1 — cost = t2/2(1 — t?2/2 + O(t*)); by the binomial series, we have
(1—cost)™/2 = V2/t(1 + t2/4 + O(+*)), whence sin t(1 — cos £)"1/2 = V2 + V2t2/12 + O(t*), and

lim f/(t) = 7.
tl{rolfr() r

Thus Hbel
(Yo fr—¢og)(0)=19'(0)f(0) = _%'

For property (iii), now consider ¢ € [0, /2] when necessary. The chain rule gives

Wofi—vog) =1 of)ff =W og)g/ 1+ 1W" o f)(f) = @ o8],

and we have if t € (0, )
r4(1 - cost) [cost — (r2cost + (1 — 72))]

r//(t) =
(1 —(r2cost + (1 - 1’2))2)3/2

after some rearranging of the numerator. We have 1 —cost > 0, and so the estimate 72 cos t + (1 — %) > cos t
(with equality only at t = 0) yields f;’(t) < 0 (with a strict inequality if 0 < t < 7). By symmetry, this implies

that g/ > 0, and using that i) < 0, we obtain
(Wofr=vog)” =W o f)(f)) =W og)g)
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By symmetry, we have g,(t) = f,(m—t) on [0, ], and because f; is strictly concave we know as well that f; is
strictly decreasing; it follows that f; — g; is also strictly decreasing, and its unique zero satisfies the equation

1-cost 2-r*(1+cost)
1+cost 2-r2(1-cost)’

Noting that t = 71/2 satisfies this equation, we conclude that f; > g/ on [0, /2], so that on this interval we
have

Wofr=pog) 2 (g (W ofi) =W og).
By Lemma C.17, if L > 3 there is an absolute constant K > 0 such that i) < 0 on [0, K]. The previous bound
then yields

(Yofr—1og) 20,

as claimed. O

C.2 Auxiliary Results
C.2.1 Geometric Results

Lemma C.4. Let M be a complete Riemannian submanifold of the unit sphere S™=! (with respect to the spherical
metric induced by the euclidean metric on R™) with finitely many connected components K. If dy = 1, assume
moreover that each connected component of M is a smooth regular curve. Then for every 0 < ¢ < 1, there is a e-net
for M in the euclidean metric || - ||2 having cardinality no larger than (Cpq/ €)%, where

_ 1+ Z{il lel’l(M,') do =1
M T 4nkt/do do > 2.

Moreover, these nets have the property that if x € M is given, there is a point in the net X within euclidean distance ¢
of x such that x lies in the same connected component of M as x.

Proof. Consider a fixed connected component M; with i € [K]. We write the Riemannian distance of M; as
disty,; because M; is a Riemannian submanifold of R", we have distyy, (x, y) > [[x — y||2 for every x, y in
M. Because disty, (x,y) > ||x — y||, it suffices to estimate the covering number in terms of the Riemannian
distance. We will consider distinctly the cases dy = 1 and dy > 2, starting with dy = 1. In this case, we
have assumed that M; are regular curves, so it is without loss of generality to assume they are moreover
unit-speed curves parameterized by arc length, with lengths len(M;). It follows that we can obtain an &-net
for M; in terms of disty, having cardinality at most len(M;)/e when 0 < ¢ < 1, and by the submanifold
property these sets also constitute ¢-nets for M; in terms of the ¢> distance. Covering each connected
component M; in this way gives a e-net for M by taking the union of each connected component’s net.
When dj > 2, we can make use of sectional curvatures and deep local-to-global theorems from geometry
that constrain the topology of M in terms of its curvature. Because M is a Riemannian submanifold of
Sm-1 the space of constant sectional curvature 1, the sectional curvatures of M; are also bounded below
by 1; it follows that the Ricci curvature tensors Ric; of M; (respectively) satisfy the bound Ric; > dg — 1. By
Myers’ Theorem [Zhu97, Theorem 3.4(1)], we conclude that diam(M;) < n. Using the diameter bound from
Myers’ Theorem and Gromov’s Packing Lemma (Lemma G.12), we then obtain a ¢-net for M; in terms of
the euclidean distance with cardinality at most vol(S%)/1(e/4). To estimate 1(0), we note that the cap is in
particular a spherical geodesic metric ball; by a rigid motion we may assume the cap is centered at the north
pole e4,+1, and so we need to integrate the volume element of S% over all x € S with (x, edqo+1) < cos 0.
Using a spherical polar coordinate chart tailored to this setting (e.g. [Mui82, Theorem 2.1.3]), we have

0
¥(6) = vol (ST / sin®~1 ¢ dp
0
2 do—1
zm(gdo-l)(g) 0% /d,
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where the second line holds if 0 < 7/2. Using vol(S%) /vol(S%~1) < /r and 2dy < 2%, we obtain the
estimate

vol(S) - (4_7t)d°
P(e/d) —\ ¢

Thus, for any i € [K], any dp > 1 and any 0 < ¢ < 1, we can conclude that there is a e-net for M; in the
euclidean metric having cardinality no larger than (C(/¢)%, where

Cup = 1+len(M;) do=1
M=V an do > 2.

Taking the union of these nets, we conclude that for any dp > 1 and any 0 < ¢ < 1, there is a ¢-net for M in
the euclidean metric having cardinality no larger than (C/¢)%, where

_ 1+ Zszl lel’l(M[) dy=1
M7 ark do > 2.

The additional property claimed is satisfied by our construction of the nets. ]
Lemma C.5. Forany x,x’,%,% in S™~1, one has

|2(x, %) = £(%, %) < V2llx = %[l - 1% = ¥'||2].

Proof. Writing /(x,x") = cos™!(x, x’) = cos1(1-(1/2)||x—x’ ||%), consider the function f(x) = cos™(1-(1/2)x?)
for x € [-V2, V2], which is differentiable except possibly at 0. We calculate

sign x

x —
Ji--tep (1=t

and taking limits at 0 shows that f admits left and right derivatives on all of [-V2, V2]. f” is even-symmetric,

so by checking values at 0 and V2 we conclude that |f’| < V2, which shows that f is V2-Lipschitz. The
claim follows. O

fi(x) =

Lemma C.6. Let dy = 1. Choose L so that L > K«x2C,, where x and C, are respectively the curvature and global
regularity constants defined in Section 2.1, and K, K’ > 0 are absolute constants. Then

d‘uoo(x,) < Cpmax(len(M+) + len(M—))
/M (A +(L/m)£(x,x)> ~ L '

sup
xeM.

where C is an absolute constant and M. denotes either M, or M_.

Proof. Recall that y,,y_ denote unit-speed curves parameterized with respect to arc length whose images
are M, M_. For convenience, define g(v) = 1/(1 + Lv/n). We have

’ 2 Y W; ’ 2 [ YW; ’ 2 o
sup / (g(2(x,x")))" du®(x") < sup / (g(£(x, %))  duf (') + sup / (g(z(x, %)) du(x").  (C.6)
xeM. xeM. xeM.
M + M
First, we note that |g| is strictly decreasing. We claim that for any x € M_, there is a x, € M, such that
L(xy,x') < £(x,x’) for all ¥ € M,; it is easy to see this is the case by choosing x4 to achieve the minimum
in minyep, £(x,x’) and arguing by contradiction. By monotonicity of the integral, this implies

sup [ (512030 duz) < sup [ (g(2tx, 60 dusw), €7
xeMy xeM,

+ +
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and similarly for the term involving integration over M_. Therefore

sup/(g(é(x,x')))2dy°°(x’)§ sup/(g(z(x,x/)))zdyi"(x’)Jr sup/(g(z(x,x’)))zdy‘f’(x'), (C.8)
xeMy M xEM+M xEMfM

+ -

and it suffices to analyze these two terms. We bound the first term, since the second can be bounded by an
identical argument. By compactness, the supremum in this term is attained at some x € M.. Taking ¢ such
that y4(f) = x, we can write

S+
sup / g(£(x,x")? duf(x) < pmax/O g(£(y(t), y(s)))* ds. (C9)
3(6/\/(4r +

We split the interval [0, S,] into two disjoint sub-intervals [0, S.] N [t — K/ VL,t + K;/VL] and [0, S,] \
[t — K¢ /VL,t + K;/VL], corresponding to “large scale” and “small scale” behavior, where K is the global
regularity constant defined in (2.1). If we now assume % < <4, then from (2.1) we obtain
1 _ K,
L(x,x') < — = disty(x,x') < —=
VL /2

and hence X 1
distp(x, x") > 2L s s x) > —

VL VL

From the definition of g it follows that
1 1 e
P R .
VL' 1+vVL/m VL

Since |g| is a monotonically decreasing function we can bound the second integral in (C.9), obtaining

((2(y(s), y(t')))* ds < len(M,)C’/L. (C.10)

Ky Ky
sel0S I\t = 32 1+ 4]

We next consider the remaining interval of integration in (C.9). Defining

. | Ky _ . | Ky
S+=mm{—, S —t*}, S =m1n{—,t*},
* N * VL

and vi(s) = £(y,(t" £ 5), y,(t)), the integral of interest can be written as

oM

Prmax / ($(£(y(s), (M) ds = prna / (g(v+(s)))* ds

SE[O,S+]ﬂ[t*—%,t*+%] +=0 (C.11)
Sy

+Prmax / (3(v—(s)))* ds.

5=0

It will be sufficient to consider the first integral here since the second one can be bounded in an identical
fashion. We aim to show that the integral above is not too large. This will be the case if v.(s) stays very
small for a large range of values of s. To show that this is does not occur, we will use our bounds on the
curvature of M to bound v, (s) uniformly from below, which will in turn provide an upper bound on the
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integral. We will require an application of Lemma C.7, which will be applicable if ST < Z. If L > we

have

7-[2

St<—<—
TTANL
It follows immediately that Lemma C.7 applies to any restriction of y, of length no larger than 7. Next
define by ¥ : [0, ST] — S™~! an unit-speed arc of curvature x, and #(s) = £(7(0), y(s)).
We claim that

Vs €[0,SF]:  wvi(s) = ¥(s). (C.12)
The proof is by contradiction. Assume there is some r such that
vi(r) < (r). (C.13)

Now define by y, : [0,7] — S™-1 a restriction of y, such that y,(0) = y_(t*),y,(s) = y,(t" +5), by y, an
arc with curvature x and the same endpoints as y,, and by ¥, a restriction of y with

len(y,) =len(y,) =r.
Note that £(¥,(0), ¥,(s)) = ¥(r). However, an application of Lemma C.7 gives

len(y,) < len(y,) <len(y,)

where the second inequality is because y, and y, have identical curvature at every point, and by assumption
(C.13) the endpoints of y, are a greater geodesic (and hence euclidean) distance from each other than the
endpoints of y, (which are a distance v, (r) apart). This inequality contradicts the equality above it, and we
conclude that no such r exists, and (C.12) holds.

We have that |g| is a monotonically decreasing function, hence we can write for the first integral in (C.11)

53 St
[ (st as < [ (gt as
5=0 5=0

We now bound this integral. Since ¥ is an arc with curvature x, from the proof of Lemma C.3 we have that
¥ is concave, and since 7(0) = 0 we can write

. v(5%)
¥(s) > S; s,
and since |g| is monotonically decreasing
st st . 7(s%)
2 (539 _
[ (st as / [+ s)) -5 / (3(5)°
s=0 s=0
SR G

RGN Gk <“Lv(51)

where we used the definition of g. It remains to show that ST and ¥(S}) are close. Since y is an arc with

. o 0)-7(5%)
curvature x and length S7, if we additionally assume L > K«x2C, for some K chosen so that M <

KS+ xCy 1 :
— < BN < 5, we obtain

[70) - 7D, <Si
2 _1(’<Hf’(0)—)7(51)||2)
ZE sim

2
2
<[[7© =7, + 7 170 - 7D
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- - K% - . 3 K2 x2 K2
7@ = 7D, = $t| < 7 [P = psD; < 5 (51 < 5%
where in the first line we used sin~!(x) < x + x3 for x. Since

[70) = (51|, < 2(5(0), 7(51) = #(S*) < S*

we obtain
~ K2 Kﬁ +
[7(ST) - Sil < ZTS+
and hence
St St 3 1
— < > = .
PO s ogdsr 1o

We now choose L > K«x?K? for some K, so that the above term is smaller than 2. We therefore have
Si

/ (3(¥(s)))*ds < C/L

s=0

for some C. We can bound the second integral in (C.11) in an identical fashion. Combining this result with
(C.10) and recalling (C.9), we obtain

sup [ (3026, %)) du™(x") < C'pruan(len(M,) + len(M_))/L
xeM,

+

for some constant, which completes the proof.
O

Lemma C.7. Given a smooth, simple open curve in R" of length S with unit-speed parametrization y : [0,S] — R”
such that for some x > 0

L [yll, < =
2.5<z

define by y an arc of any circle of radius % such that y(0) = y(0), )7(§) =y(5), S< %10, We then have
$<S§

Proof. This result is a generalization of a well known comparison theorem of Schur’s to higher dimensions
following the proof in [Sul08], where we additionally specialize to the case where one of the curves is an
arc.

Given a curve y satisfying the conditions of the lemma, we first consider an arc y of a circle of radius
1 and length S, with a unit-speed parametrization. At the midpoint of this arc, the tangent vector 7'(3) is
parallel to y(S) — (0), hence

S
I76)- 701, = (75), 766 - 70) - <V<§>, / ?’(t)dt> -
0

Similarly, for the curve y we have

S
)=yl > {576 - y0) - <y'<§>, / y’(t)dt>.
0

0For any circle and choice of endpoints there will be two such arcs, and the last condition implies that we choose the shorter of the
two.
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Denoting the angle between tangent vectors (y’(a), y’(b)) = cos 0(a, b), we use the fact that for any smooth
%(t, S)s=t| = |0’(t)|. This gives for any ¢ € [0, S/2]

curve with unit-speed parametrization Hy”(t)”2 =

S S S
S+t S+t S+t

<y’(§),y’(;+t)>=cos /6’(t’)dt’ > cos /l@’(t’)ldt’ = cos /”y”(t)”zdt/

2
S+t St
4 24 ’ ~/S ~/S
> cos| [t | =cos| [ lolar | = (757 1)
S
2

2

where we have used monotonicity of cos over the relevant range which is ensured by assumption 2, and a
similar argument follows for t € (0, —S/2]. Combining these inequalities gives

[y(S) =y, = [|7(S) - PO, -

We have shown that, unsurprisingly, if the curvature of y is bounded and it is not too long, then the distance
between its endpoints is greater than that of a curve of equal length but larger curvature - namely the arc y.

We now consider the arc y defined in the lemma statement. If S > S, due to assumption 2 this would imply

17(5) = 7O, > [[75) = 7O, = [ly(S) - y O,

contradicting the inequality proved above. It follows that S < S. O

C.2.2 Analysis of the Skeleton
Notation. Define ¢(® = Id, and for ¢ € N define ¢'¥) as the ¢-fold composition of ¢ with itself, where

1

@(v) = cos™ ((1- n_lv) cosv + 1 sinv)

is the heuristic angle evolution function. We will make use of basic properties of this function such as
smoothness (established in Lemma E.5) below. In this section, we will study the skeleton

L-1 L-1
i) =5 Y eosg W[ [a-n"9w),  velon,
(=0 U=t

where we have not included the additive factor cos ¢M)(v), as it is easily removed along the lines of
Theorem B.2. We define

L-1
£O@w) = ]_[(1 —n o), €=0,...,L-1,
U=t
so that
e
P1(v) = > ; cos (p([)(v)é(‘})(v). (C.14)

We will also establish a convenient approximation to the skeleton. Define

I~
iy

Pv) = £0w).

n
2

g

Lemma C.8 implies that ¢ is convex; it is less trivial to obtain the same for ¢;. We will prove several estimates
below for the terms &) and their derivatives that can be used to immediately obtain useful estimates for
and its derivatives.
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Lemma C.8. Foreach { = 0,1,...,L, the functions ¢\ are nonnegative, strictly increasing, and concave (positive
and strictly concave on (0,7)); if 0 < € < L, the functions &Y, are nonnegative, strictly decreasing, and convex
(positive and strictly convex on (0, )).

Proof. These claims are a consequence of some general facts for smooth functions that we articulate here so
that we can rely on them often in the sequel. First, we have for any smooth function f : (0, 1) —» R

(fof)y=("Nf,

(f of)// — (f/ Of)f// + (f/)Z(f// Of)-
These equations show that if f > 0, f* > 0, and f” < 0, then f o f also satisfies these three properties.
Lemma E.5 shows that ¢ satisfies these three properties on (0, 7t); we conclude from the mean value theorem

and a simple induction the same for ¢, as claimed. Meanwhile, if f, ¢ are smooth real-valued functions
on (0, ), we have

(f8)=fg+8'f,

(fg)/l :f//g+g//f+2f/g/'
Thus, if f and g are both positive, strictly decreasing, strictly convex functions on (0, 7t), then fg also
satisfies these three properties. Lemma E.5 implies that 0 < 1 — " 'p®) < 1 on (0,7), and the first and

second derivatives are scaled and negated versions of those of ¢(¥); we conclude by another induction that
the same three properties apply to the functions &(*). m|

Lemma C.9. There is an absolute constant C > 0 such that if L > 12 and n > L, then one has

Cn
e
Proof. We have from the triangle inequality
!
o1 - vl < sup (z D feos ) - 1lé“’“”))
velu, =0
" -1
<= sup <|cos PO (v) - 1|5(‘})(V)) /

2 =0 V€[0,T[]

where we use Lemma C.8 to take 5“) outside the absolute value. Notice that (cos (p(“ - 1)5(") <0, soto
control the L* norm of this term it suffices to bound it from below. We will show the monotonicity property

(cos ¥ —=1)E® — (cos V) — 1)V > 0, (C.15)

from which it follows

7

L
91 = ¢l < 5 sup Jeosp™v) -1

vel0,m]

using also £V (v) < 1. Since cos x > 1 - (1/2)x2, and since Lemma C.10 gives that "=V < C/(L — 1) (and
also estimates the constant), we have as soonas L > 1+ C/V2

C2nL

o =vloe < g1

which gives the claim provided L > 2 and n > L. So to conclude, we need only establish (C.15). To this end,
write the LHS of (C.15) as

O]
0 _ )0 _ (6+1) _ 1) £(6+1) = 0 _ cos oty - P 0 _ 1| g
(cos @ )& (cos @ )& (cos cos ) - (cos @ )| &
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to notice that it suffices to prove nonnegativity of the bracketed quantity. In addition, since { > 0 and
¢(v) < v by Lemma E.5, we can instead prove the inequality

(cosx — cos p(x)) — %(cosx -1)=0

for all x € [0, ]. Using the closed-form expression for cos ¢(x) in Lemma E.2, we can plug into the previous
inequality and cancel to get the equivalent inequality

x —sinx > 0.
But this is immediate from the concavity estimate sin x < x, and (C.15) is proved. m|

Lemma C.10. If ¢ € Ny, one has the “fluid” estimate for the angle evolution function

v
1+ctv’

W) <

where ¢ > 0 is an absolute constant. In particular, if £ € N one has ¢ < 1/ct.

Proof. The second claim follows from the first claim and 1 + cfv > cfv, so we will focus on establishing the
first estimate. The proof is by induction on ¢ € N, since the case of { = 0 is immediate. By Lemma E.5, there
is a constant ¢; > 0 such that ¢(v) < v(1 — ¢1v), and using the numerical inequality x(1 — x) < x(1 +x)7},
valid for x > 0, we get

p) <

1
T 14cv’ (C.16)

which establishes the claim in the case £ = 1. Assuming the claim holds for ¢ — 1, we calculate

V

PV(w) . _ Tra@y
1+ C1(P(‘}_1)(V) 1+ C1m

pV(v) <

7

where the first inequality uses (C.16), and the second inequality uses the induction hypothesis and the
relation x(1 + x)™! = 1 — (1 + x)! to see that x > x(1 + c;x)~! is increasing. Clearing denominators in the
numerator and denominator of the RHS of this last bound, we see that it is equal to v/(1 + ¢v/m), and the
claim follows by induction.

O

Lemma C.11. If { € Ny, the iterated angle evolution function satisfies the estimate

(0) _v
prv) =z 1+46v/m’

Proof. The proof is by induction on ¢ € N, since the case { = 0 is immediate. The case ¢ = 1 follows from
Lemma C.12. Assuming the claim holds for ¢ — 1, we calculate

7

v
PO > <P“€ 11)(V) , TN
1+(p(_)(1/)/7_[ 1+Hm
where the first inequality applies Lemma C.12, and the second uses the fact that the RHS of the bound in
Lemma C.12 is strictly increasing and the induction hypothesis. Clearing denominators in the numerator
and denominator of the RHS of this last bound, we see that it is equal to v/(1 + {v/7), and the claim follows
by induction. ]

Lemma C.12. It holds
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Proof. After some rearranging using Lemma E.2, it suffices to prove

(1— K)cosv+ sy < cos( i ) (C.17)
T T T+ Vv

Using Lemma E.5, we see that both the LHS and RHS of this bound are nonincreasing. We will prove

the estimate in three stages, using “small angle”, “large angle”, and “intermediate angle” estimates of the
quantities on both sides of (C.17). Since nv/(m + v) € [0, /2], we can use standard estimates for cos to get

RHS estimates 1 )
cos( V)m——(’”) (C.18)
T+ v 2\mt+v
and Y e
cos( ) > . (C.19)
T+ v T+ v

As for the LHS, we can obtain an estimate near v = i in a straightforward way. Transforming the domain by
v > 7 —v, it suffices to get estimates on sin v —v cos v near v = 0, then divide by 7. Using cosv > 1—(1/2)v?
and sinv < v, it follows that sinv — v cos v < (1/2)v3. We conclude

7 < in(n —wp. (C.20)

(1— Z)cos1/+
T

We will develop a second-order approximation to the LHS near 0 for the small-angle estimates. The first,
second, and third derivatives of the LHS are (1—v/mt)sinv, (1/7)sinv—(1-v/m) cosv,and (2/n) cos v+ (1 -
v/m)sin v, respectively. To bound the third derivative, we will use the estimate cosv < 1 —v2?/3 on [0, 7/2].
To prove this, note that Taylor’s formula implies the bound cosv < 1 —v?/3 on [0, cos(2/3)]; because cos is
concave on [0, 7t/2], we also have the tangent line bound cos(v) < —vV5/3+(2/3+V5 cos(2/3)/3) on [0, 7 /2].
We can then solve for the zeros of the quadratic polynomial 1 — v2/3 + (V5/3)v — (2/3 + V5 cos1(2/3)/3);
a numerical evaluation shows that both roots are real and outside the interval [cos™(2/3), 1/2]. Since the
tangent line touches the graph of cos at v = cos™(2/3), this proves that cosv < 1 —v?/3 on [0, 7t/2]. We can
therefore write
2cosv + (m—v)sinv < 2(1 = v?/3) + v(n —v), v e [0,7m/2].

The RHS of this inequality is a concave quadratic; we calculate its maximum analytically as 2 + 372/20.
Meanwhile, if v € [1t/2, 1], we have 2 cosv < 0, and (7t — v) sinv < 7t/2. We conclude that (2/7) cosv + (1 —
v/m)sinv < 2+ 37%/20 on [0, 7t]. Writing ¢ = 1/(37) + 7t/40, this implies an estimate

2

Y- VE + ol (C21)

(1— K) cosvV +
T

Finally, we will need some estimates for interpolating the small and large angle regimes. We note that the
second derivative (1/7) sinv — (1 —v/m) cos v of the LHS of (C.17) is nonnegative if v > 71/2, because cos > 0
here; meanwhile, the third derivative (2/m)cosv + (1 — v/m)sinv of the LHS of (C.17) is nonnegative if
0 < v < m/2,since cos > 0 here, and it follows that the second derivative is increasing on [0, 7/2]. Checking
numerically that the value of the second derivative at 1.42 is positive, we conclude that the LHS of (C.17) is
convex on [1.42, 7t]. In addition, we use calculus to evaluate the first and second derivative of the RHS of
(C.18) as —v7® /(1 + v)® and —1®(rt — 2v) /(7 + v)*, respectively; this shows that the RHS of (C.18) is convex
for v > m/2, and concave for v < 7/2. Taking a tangent line to the graph of the RHS of (C.18) at 7t/2, it
follows that the function

(C.22)

(x) = 1= (?/2v?/(r + v)? x <mf2
SYWZN _an/27w + (1 +72/54) x> 7/2

is a concave lower bound for the RHS of (C.18) on [0, 7t].
We proceed to using the estimates developed in the previous paragraph to prove (C.17). We first argue
that for v in a neighborhood of 0, we have

1-v2/2+cv® <1 - (202 (m +v)?,
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which will in turn prove (C.17) in the same neighborhood. Cancelling and rearranging, it is equivalent to
show
2/t = 2¢) = (4c/m = 1/7?)v — 2c/m*)v? > 0.

The LHS is a concave quadratic, with value 2/m —2¢ > 0 at 0; we calculate its two distinct roots numerically
as lying in the intervals [-5.1, —5] and [1.42, 1.43], respectively. It follows that (C.17) holds for v € [0, 1.42].
Next, we argue that for v in a neighborhood of 7, we have

T—v
w+v’

1

_v)¥3 <
27T(n V)’ <

which will in turn prove (C.17) in the same neighborhood. Transforming with v + 7 — v and rearranging,
it is equivalent to show 1v2(2m —v) < 47 in a neighborhood of 0. The LHS of this last inequality is 0 at 0, and
nonnegative on [0, 7t]; its first and second derivatives are v(4n — 3v) and 47 — 6v, respectively, which shows
that it is a strictly increasing function of v on [0, ]. Verifying numerically the three distinct real roots of
13— 2m?+1=0and transferring the result back via another transformation v — m — v, we conclude that
(C.17) holds on [t — 1.1, t]. To obtain that (C.17) holds on [1.42, = — 1.1], we use that the function g defined
in (C.22) is a concave lower bound for the RHS of (C.18), so that it suffices to show that the LHS of (C.17)
is upper bounded by g on [1.42, 1 — 1.1]. The LHS of (C.17) is convex on [1.42, 7t], so it follows that it is
sufficient to show that the values of the LHS of (C.17) at 1.42 and at = — 1.1 are upper bounded by those of
g at the same points. Confirming this numerically, we can conclude the proof.

O

Lemma C.13. If ¢ € Ny, one has
1

. (0 -
[9PW] < 7 /20’

where ¢ > 0 is the absolute constant also appearing in Lemma E.5 (property 4), and in particular c /2 is equal to the
absolute constant appearing in Lemma C.10. In particular, if { € N and v € [0, 1] we have the estimate

2
- (0) < —
|1/(p (v)| <7
Proof. The case of £ = 0 follows directly (as an equality) from @(®(v) = v. Now we assume ¢ € N. Smoothness

of ¢'¥) follows from Lemma E.5. Applying the chain rule and an induction, we have

-1

# = (9o @) gV = [Toog, )
=0

and applying the chain rule also gives

9 =3 (o) ) ).

By Lemma E.5, we have ¢ > 0 on [0, 7t]), and the formula (C.23) then implies that ¢*) > 0 on [0, 7t]) as well.
Considering only angles in this half-open interval and distributing, it follows

(p(l) B $o (P(é’—l) . 1 (p(f—l)
M2 (. _1\2 . =1) { +(p_1\2
(@) (poptD)” ¢ (pth)
_P o en, 1 ¢
(PZ (P o (P(f—l) ((p((;_l))z

Applying an induction using the previous formula and distributing in the result, we obtain

GO ez‘ll 1 AT
_ _ : _| £ 0 p®. (C.25)
((P({’))Z =0 nﬁ"ié’#—l §0 0 qo(l’ ) (PZ

75



By Lemma E.5, we have 0 < ¢ < 1on [0,7) and $ < 0. Thus

- (0)
¢

(p0)? = Z(pO(p“)
(P

When ¢’ > 0, we have ¢'*) < 71/2, and by Lemma E.5, we have ¢ < —c < 0 on [0, 1/2]; thus, - o p*) > c if
£’ > 0. When ¢’ = 0, we can use the fact that ¢ < 0 on [0, 7] to get a bound ¢ < —c1g r/2]. We conclude

¢(f)
(©)

1\ (p(f)
(W) T (g0
and using (C.23) and Lemma E.5, we have that ¢'”(0) = 1. For any v € [0, 1), we integrate both sides of
(C.26) from 0 to v to obtain using the fundamental theorem of calculus

7 = cf-1)+ clio,n/2)- (C.26)

Next, we notice using the chain rule that

1 v
———-1>2c({-1v+ 1 £)dt
T c(f -1y C/o [0,7/21(t)

=c(l - 1)v + cmin{v, /2}
clv

= —,

-2

where in the final inequality we use the inequality min{v, 7/2} > v/2, valid for v € [0, n]. Rearranging, we
conclude forany 0 <v <7
1

®
W) < e

and noting that the LHS of this bound is equal to 0 at v = 7w and the RHS is positive, we conclude the claimed
bound for every v € [0, t]. The second estimate claimed follows by multiplying this bound by v on both
sides, and using 1 + (¢/2)¢v = (c/2)év. O

Lemma C.14. If { € N, one has

.. (0) C 1 B
0| < T/ (1+(C/8)v log (1 + (c/8)(¢ 1)1/)),

where C > 0 is an absolute constant, and ¢ > 0 is the absolute constant also appearing in Lemma E.5 (property 4),
and in particular c /2 is equal to the absolute constant appearing in Lemma C.10. If v € [0, 1], the RHS of this upper
bound is a decreasing function of v, and moreover we have the estimates

- (£) 2 . (f) Crnv 8 log ! 8nC 64C log {

Pl =cL |V(P (V)|Sl+(c/8)€v( * T )S c!l * 2t

Proof. Smoothness follows from Lemma E.5; we make use of some results from the proof of Lemma C.13, in
particular (C.23) and (C.25). We treat the case of ¢ = 1 first. By Lemma E.5, we have |§| < C for an absolute
constant C > 0, and since 1/(1 + (¢/2)v) > 1/(3/2) = 2/3 by the numerical estimate of the absolute constant
¢ > 0in Lemma E.5, it follows

Wl < L2
Pl < T2
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which establishes the claim when ¢ = 1 (after worst-casing constants if necessary). Next, we assume ¢ > 1.
Multiplying both sides of (C.25) by (¢¥)? and cancelling using (C.23), we obtain

S (@ o) §oe®
— . ” . "2
=0 H["i€’+l @opl) (§0 ol ))

-1 (-1 L\ [ -1
= (1_[ (40 ) <PW)) ) ( [] ¢° (P([H)) g o (C.27)

('p(l’)

=0 \¢7=0 =+1
-1 . 4
= Z P© ¢op?
= o)’

where the last equality holds at least on [0, ), by Lemmas E.5 and C.13, and where empty products are
defined to be 1. If # > 0, we have ¢(*) < 71/2, and by Lemma E.5 we have that || < C and ¢ > ¢’ > 0 on
[0, /2] for absolute constants C, C’ > 0. Separating the ¢’ = 0 summand, this gives a bound

-1 -1
’ C ’
550 | | ) _-(Z)E 5(€)
|(p | <C (w_l(p 0@ ) + 4 W_l(p . (C.28)

By Lemma C.13, we have ¢(v) < 1/(1 + (c/2)v), and by Lemma E.5, we have @(v) < v, hence ¢'*)(v) < v.
Using concavity of ¢, nonincreasingness of ¢ and nondecreasingness of ¢*") (which follow from Lemma E.5)
and a simple re-indexing, we can write

-1 -2 -2
[[ooem)=]]goe P =]]¢oe" o)
=1 =0

=0

-2

<[ [ et w/2)
=0

= "/2)

PR S

T 1+ (c/HU -1

1

< -
1+ (c/8)tv

where the third-to-last line follows from (C.23), the second-to-last line follows from Lemma C.13, and the
last line follows from the inequality ¢ —1 > ¢/2 if £ > 2. Following on from (C.28), we conclude by an
application of Lemma C.13

-1

= (0) < </e 1
[0 < 1+ (c/8)v Ty (c/2)tv [Zﬂ 1+(c/2)trv

C 1 = 1
sz (1 T+ (c/8)v ; 1+ (c/8)£”v)'

=0

where the last line simply worst-cases the constants. For any ¢’ € Ny, the function x — 1/(1 + (¢/8){'x) is
nonincreasing, so we can estimate the sum in the previous statement using an integral, obtaining

s (0) C/C/ -1 1
|(p‘](v)’ = 1+ (c/8)v (1+/0 1+cvx dx)

C/c 1
< T /8 (1 + /8 log (1 + (c/8)(f — 1)1/))
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after evaluating the integral—we define the quantity inside the parentheses on the RHS of the final inequality
to be { — 1 when v = 0, which agrees with the integral representation in the previous line and with the
unique continuous extension of the function on (0, 7] to [0, 7]—which establishes the first claim.

We now move on to the study of the bound we have derived. For decreasingness, we note that the
functions
- L v 1+ L

1+ (c/8)tv’ (c/8)v
whose product is equal to our upper bound, are evidently both smooth nonnegative functions of v at least
on (0, 7t], so that by the product rule for differentiable functions it suffices to prove that these two functions
are themselves decreasing functions of v. The first function is evidently decreasing as an increasing affine
reparameterization of v — 1/v; for the second function, after multiplying by the constant £ — 1 and rescaling
by a positive number (when ¢ = 1, the function is identically zero on (0, 7], and the function’s continuous
extension as defined above equals 0 at 0 as well), we observe that it suffices to prove that x — x~!log(1+x) is
a decreasing function of v on (0, o). The derivative of this function is x > (x — (1 + x)log(1 + x))/(x2(1 + x)),
so it suffices to show that x — (1 + x)log(1 + x) < 0. Noting that the function x +— xlogx is convex (its
second derivative is 1/x), it follows that x — (1 + x)log(1 + x) is concave as a sum of concave functions, and
is therefore has its graph majorized by its supporting hyperplanes; its derivative is equal to —log(1l + x),
which equals 0 at 0, and we therefore conclude from our previous reduction that the second function in
(C.29) is decreasing, and that our composite upper bound is as well. For the remaining estimates, we use
the concavity estimate log(1 + x) < x to obtain from our previous result

Cct
—— <
1+(c/8)0v ~

% log(1+(c/8)(¢ -1)v), (C.29)

19O < Ct,

since the function x — C/(1 + cx) is nonincreasing for any choice of the constants. Next, we use the
expression we have derived in the first claim to obtain

. Cv 1
’vZ(p(t’)(v)’ < T+ /8 (v + /9 log (1 + (c/8)(¢ - 1)1/)) .

For any K > 0, the function x — x/(1 + Kx) is nondecreasing, and using the numerical estimate 77(c/8) < 1
that follows from Lemma E.5, we obtain in addition 1 + 7t(c/8)({ — 1) < £ for £ € N. Thus

Crn® log ¢
2 - (0) <
|V ¢ (V)| T 1+ (c/8)tm ( * cn/8)
8nC 64Clog/
<—4_—— 9
e c2l

as claimed. m|

Lemma C.15. One has for every £ € {0,1,...,L}

P00 =0 O=1  §O0) =2

and for every ¢ € [L]
() = () =0.
Finally, we have ¢©(n) = 1 and $©(r) = 0.

Proof. The claims are consequences of Lemma E.5 when ¢ = 1, and of ¢© = 1d for smaller ¢; assume ¢ > 1
below. The claim for ¢(¥)(0) follows from the fact that ¢(0) = 0 and induction. For the claim about ¢“)(0),
we calculate using the chain rule

P9(0) = p(e“"(0))¢ "1 (0)
= p(0)¢""(0)
= ¢ 0(0).
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By induction and Lemma E.5, we obtain ¢'¥)(0) = 1. The claim about ¢¥'(17) follows from the same argument.
For the remaining claims about ¢(*), we calculate using the chain rule

. ([)

o -1,

= (@) G oV + (pE V) pog

whence
$(0) = $(0) + 1 (0).
Using Lemma E.5 to get ¢(0) = —2/(3m), this yields

2/
(l’)
0)=-3"
Similarly, since we have shown ¢~D(r) = 0, we obtain $)(rr) = 0. O

Lemma C.16. For first and second derivatives of &), one has

EO = g1 Z (P(l’) 1_[ (l’”)

={ 0"={
e
and
L-1 L-1
8O = g1 P© I_[ ) = 1) Z P 1_[ (1-nr"lp®)], (C.30)
é]/=€ [//_e /I_[ gll/:e
el/ig/ l]"if’ f”’if/,f”/¢f”

where empty sums are interpreted as zero, and empty products as 1. In particular, one calculates

(L-OL-t-1) LL-1-l-1)

20y —
& (0) 2 372 ’

0=1 9%0=-

L-{
e 7

and ,
EO(n) = 0; émoo=—;5”mmkm EOmyy =0

Proof. The two derivative formulas are direct applications of the Leibniz rule to £). The claims about values
at 0 follow from plugging the results of Lemma C.15 into our derivative formulas and the definition of &(©).
For values at 7t, we first note that (p(o)(n) = 11, from which it follows £©) (1) = 0. Next, we use Lemma C.15
to get that ¢¥'(n) = 0 forall £ € {0,1,...,L} and (1) = 14— to get £O(rt) = — 1 ED ()1 =g. For EO(n),
we have

am—n4§]¢“m)§]¢“m> [[ (- m)

el/#el el’/#[//,el!/#el
a3 6O [] (-,
=1 0+ 00

If L = 1, the sum in the last expression is empty, and this quantity is 0. If L > 1, the sum is nonempty, and
every summand is equal to zero by Lemma C.15. We conclude &)(t) = 0. m|

Lemma C.17. If L > 3, there exists an absolute constant 0 < C < 1/2 such that on the interval [0, C], one has for
every £ =0,1,...,L-1
&0 <o.
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Proof. We consider functions only on [0, 7t/2] in this proof. Following the calculations in the proof of
Lemma C.13, we have the expression

(go o q0(@—1))”’ _ (<P o (P((’—l)) FD 13 (<P o @(5—1)) DD | ((P o (P(e-n) (gb([_l))?" (C31)

Using as well Lemma E.5, we have first and second derivative estimates
0<¢¥<1

and

-Gyl < (b“) < —cof.
By Lemma E.5, § extends to a continuous function on [0, 71/2], so in addition there exists a 6 > 0 such that
on [0, 6] we have

1
P> —-—— C.32
P25 (€32)

We lower bound (C.31) on [0, 6] using these estimates. For { = 1, we can do no better than (C.32). For ¢ > 1,
we can write

<(P o (p(H))”’ > (qb o (p(l’—l)) HED 4 3D (((P o (P(l—l)) PUD 61? (('P(H))Z)

. 1) - . (- 1
> ((p ol 1)) PV 43¢V (cg(f -1)- @) .

We have the numerical estimate c; = 0.14 from Lemma E.5, and we check numerically that (0.14)> > 1/672.
This implies that on [0, 5] and for every ¢ > 2, #) is lower bounded by a positive number plus a scaled
version of $"1). We check precisely using the original formula (C.31) and Lemma E.5 for ¢ = 2

§A0) =25(0) + 3¢(0)* = 7 >0,

so that in particular

1
(2 v (1 _

By continuity, it follows that there is a neighborhood [0, §’] on which we have #® + ") > 0. Thus, on
[0, min{6, 6’}], we guarantee that simultaneously

PO >0if £22;, P +D >o0.

Now we consider the third derivative of the skeleton summands &©. Following the calculations of
Lemmas C.8 and C.16, in particular applying the Leibniz rule, we observe that every term in the sum
defining £ that does not involve a third derivative of one of the factors (1 — (1/7)¢'")) will be nonpositive,
because (1 - (1/ n)(p(‘”)) >0, qb(m > 0, and (ﬁ“') < 0. Meanwhile, by our calculations above, on the interval
[0, min{6, 6’}], the only terms that can be positive are those with ¢ = 0 or £ = 1 where we differentiate the
¢’ =1 factor three times, i.e., the £’ = 1 term in the sum

1 L-1 L-1 (P([N)
2 : - (0) I I
nt =t "={ T
[4E24

with ¢ = 0 or { = 1. We will compare the ¢’ = 1 summand with the ¢’ = 2 summand: we have that the sum
of these two terms equals

Tt TC

L1 @) @
—% [ (1—(P—) ((p (1—(p—)+(‘ﬁ(2) (1—3)). (C33)
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At 0, the quantity inside the right parentheses is equal to § + $® > 0, by our calculations above. Thus, by
continuity, there is a possibly smaller 6” > 0 such that on [0, 6”], the sum of terms (C.33) is negative. We
conclude that on [0, min{§, §’, 6”'}], we have for every ¢ > 0

5(( ) S 0,
and since we have chosen the neighborhood sizes 6, ¢’, 6” independently of the depth L, we can conclude. O

Lemma C.18. Forall ¢ € {0,...,L — 1}, one has

1+4v/n

() Iali A
£00) = 1+Lv/m’

Proof. We have

o -1 o) (v) 1 -1 “ L-¢
5 (V):l—[(l_T)S 1_7T(L—€)[/Z;(P (V)

=¢
1 L-1
< _2 ()
—eXP( - ;;qo (v)),

where the first inequality applies the AM-GM inequality, and the second uses the standard exponential
convexity estimate. Using Lemma C.11, we have

L-1 L-1 Y L ”
_ @) () < — - < —dv
Z;}(P () < §1+€’v/n - ‘/g 1+0v/m 7

where the last inequality uses the fact that ¢ — v/(1 + ¢’v/n) is nonincreasing for every v € [0, 7t] together
with a standard estimate from the integral test. We calculate

L
v 1+Lv/n
_ Yy =nloe |22
/{ Trovm nog(1+€v/n)'

which gives the claim after substituting into (C.34). m|

(C.34)

Lemma C.19. Forall ¢ € {0,...,L — 1}, one has

. L-¢
O <3t
U 31 +Lv/nt
Proof. Using Lemma C.16, we have
L-1 . (0
) _ _5(1)]l ~ & P
é - - =0 1 _ ([,)/T(
’=max{¢f,1} 4

where we directly treat the case { = 0 to avoid dividing by zero at v = 7. The triangle inequality and
Lemmas E.5 and C.18 then give

L-1

Lo +E0W) Y 9P|

. 2
O] =
0w < =
’=max{¢(,1}

_
1+Lv/n

Using Lemma C.13, we have
L-1 L-1 L-1
, 1 1 1
) < < + / ——d
[Z:‘;(P (V)_Z;1+c€’v_1+c€v ¢ l+ctv
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where the last inequality uses the fact that £ — 1/(1 + cf’v) is nonincreasing for every v € [0, 7] together
with a standard estimate from the integral test. Evaluating the integral, we obtain

Z(P(l)(v) < n llog(w),

_1+c€v cv 1+clv

where the second term on the RHS is defined at v = 0 by continuity. Using the standard concavity estimate
log(1 + x) < x, we have

%10 (1+C(L—1)v):llog(1+(L—€—1)cv)< L-0-1

1+ ctv cv 1+clv T 14ctv’
whence .
— ’ L - e
- () <
[/E:[ o (v) < e oty (C.35)

Combined with the result of Lemma C.18, we conclude

%)Zqo“’ OE———

cn 1 +Lv/m’

The numerical estimate ¢ = 0.07 in Lemma E.5 then allows us to conclude

. L-7¢
O] <3—
00 <3 o
as claimed. O
Lemma C.20. One has )
5nL
’ <0
|1,b1(v)| T 1+ Lv/n’
and
(3/2)nL?

Vol S

Proof. We calculate using the chain rule

L-1
n . .
¥i=5 > 0 cos p® — £V Osin !,
(=0

and the triangle inequality gives
L-
n .
|¢1 > E é(f)| + é(f)(p(l’)'
=0

Applying Lemmas C.13, C.18 and C.19 and Lemma E.5 to estimate the constant ¢ in Lemma C.13, we then
obtain

, n = 1+0v/m
i) < 21+ Lv/m) ;3@ B vy,

n = tv/(5m)
< m23@—6)+1+4m
n 312
= 2(1+ Lv/m) ( * SL)
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5nl?
ST+ Lo

The proof of the second claim is nearly identical, since in this case we need only use the bounds on |£()|. o
Lemma C.21. There are absolute constants c, C > 0 such that forall £ € {0,...,L — 1}, one has

L(L-6)(1+tv/m) (L—-1¢)?
(1+cLv)? 1+ cLv) +ctv)

£0) <

Proof. By Lemmas E.5 and C.16, we can write

L-1 ' ) L-1 L-1 . (0 o (0"
po - &0 3 ¢ i .50 V)
oo L ) @)
r=maxity 1= = r=11- #=max{1,¢} £”=max{1,¢} (1 Bl _) (1 B T)
£l

Focusing first on the second term, we have using Lemma E.5, (C.35) and Lemma C.18

261, Li f'P(‘"()[/) O N S iff/)q'?”") -
rm11-2— =max(1,0) ¢ -max(11 ( - (pT) (1 - ‘PT)
L-1 L-1 L-1
<4&EM1,, Z gb(f') +4&W0 Z Z qb(f')(p(f")'
=1 omax{L ) ¢ =max{1,0)

We can then write using nonnegativity

L-1 L-1 L-1 L— L-1 2
e

and using (C.35) and Lemma C.18, we obtain thus

L-1 -1 -1 3 (L0
O, = (¢) (&) S ) « 2 —
¢ h_O;(P e Z Z L 1+ Lv/m)(1+clv)

’=max{1,} {”=max{1,(}
Ul

Regarding the first term, we have using Lemma C.14

L-1 L-1
o (0 v L(L-1)
(f) < C < C
[}Z_zl(’) = ;i 1+(c/4)v = "1+ (c/49)Lv’

because the function ¢’ +— {’/(1 + c{’v) is nondecreasing. Applying also Lemma C.18, we obtain using the
triangle inequality and worst-casing constants

50 < ¢ LL-00+tv/m) (L-0?

(1+cLv)? 21+ cLv)(1 + clv)’
O
Lemma C.22. One has s
CnL
|¢ (v )| T 14clv’
and s
CnL
14 <
ol < T

where ¢, C > 0 are absolute constants.
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Proof. We calculate using the chain rule

L-1
Y = g Z £ cos ) — 2800 sin O — OO gin O — g ((pm)z cos p©
(=0
and the triangle inequality gives
<33
ENVED 4 9)E0]p0 4 £W|p0] 4 £O ( m)
2 (=0

Using Lemmas C.13, C.14, C.18, C.19 and C.21 and worst-casing constants for convenience, we obtain from
the last estimate

i)
E(LL- 01+ tv/n) (L—0)? L-¢ 1+ v/ 1
n;( (1 + cLv)? * 1+ cLv)A + ctv) * 1+ Lv/m)(1 + ctv) * 1+Lv/n ((1+c€v)2 +€))
CnlL3
1+cLv

where in the second line we made some estimates along the lines of the proof of Lemma C.20 and worsened
the constant C. The proof for ¢ follows from the same argument, since in this case we have the same sum
of £ terms but none of the extra residuals. m]

D Concentration at Initialization

D.1 Notation and Framework

We recall the expression for the neural tangent kernel, as summarized in Appendix A.3.2:
O, %) = (Vfon @), Vo, (x")
L-1
= (@ (@), a"(x)) + > (a'(x), &' (x)){B' (x), B (x)),
(=0

The objective of this section is to establish supporting results for the proof of Theorem B.2, which gives uni-
form concentration of @(x, x’) over M X M around the deterministic skeleton kernel. We take a pointwise-
uniformize approach to proving this result: Appendix D.2 establishes concentration results for the con-
stituents of ©(x, x’) when x, x’ are fixed, and Appendix D.3 develops results that control the number of local
support changes near points in a discretization of M X M in order to provide a suitable stand-in for the
continuity properties necessary to uniformize these pointwise results. We collect relevant technical results
and their proofs in Appendix D.4.

D.2 Pointwise Concentration

We fix (x,x’) in this section, and generally suppress notation involving the specific points for concision.
We separate our analysis into two distinct sub-problems: “forward concentration”, which consists of the
study of the correlations (a‘(x), a‘(x")), and “backward concentration”, which consists of the study of the
backward feature correlations (ﬁ{(x), ,B[(x’)>. Forward concentration is a prerequisite of our approach to
backward concentration, so we begin there.
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D.2.1 Forward Concentration

Notation. For ¢ = 0,1,...,L, define random variables z = |la(x)|]» and Z = [la’(x")|l2. With the
convention 0 - +o0 = 0, we defme for¢{ =0,...,L, random Varlables v by
f (’ ’
¢ (x) (x) > )
vi=cos 1,1 -1, t—m |-
( >0, >°< lal@ll," lal ()]l [ E=00t=0r

These definitions guarantee that v/ = 7 whenever either feature norm zf vanishes. These random variables
are significant toward controlling ®(x, x") because, for each ¢
¢ Eonryy — o0 ¢
(' (x), a"(x)) = zyz; cosv".

Let us define pairs of gaussian vectors gﬁ, gg ~iid. N(0,(2/n)I) that are independent of everything else in
the problem. For ¢ > 1, we have by rotational invariance of the Gaussian distribution and the probability

chain rule ]
zi = [[[Wia" @] |, = I[g1] [lL,=1

Since a’(x) = x and ||x||2 = 1, we have by an induction with analogous definitions

l
d ’
2 = [ [l 1L
=1
Similarly, we have

l_[H [

As for the angles, we have by rotational invariance
iz = [[[Wha @] LW a1,
(-1

£ gt LIl [t cos v~ + ghsinv! ] 2424,

so that an inductive argument gives

e £ 10 [ o o £ sins” 1.1

We will write

¢ !
A= Tt Ll 2= Tl coss ™+ g sinvt ).
=1 r=1

27

and similarly

5~ cos! (1 [gﬂJr [g{ cosv"—1+g§ sinv"—l]+ ;
T R st cos v + ghsinviT [/~ G0 @)

so that we obtain for the angles by a similar inductive argument
v Lt (D.1)

For technical reasons, it will be convenient to consider an auxiliary angle process, defined for ¢ > 1 as

cos V' + grsin vt
g1 gﬁ -1 gg -1 .
(851,11, [I[8 cos 91 + g5 sin D] |,

7! = cos™! (Ils(gl, 2)<H (D.2)
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where we define with notation from Appendix E.1

&= ﬂ {(81/82)|\7’v elo,2n], 3 < HI[n]\{z‘}[g1 cosv +gzsinv]+H2 < 2},

i€[n]

and 7° =% = (x, x”). We then observe

¢ ¢
1= (o? Y <TT1
E\81-82) = zz>0
=1 =1

since the inductive structure of Zf implies that all feature norms are nonvanishing if and only if the top-level

I are nonvanishing, and since the statement [T},_, 15 ( gf, gY) = 1implies by definition that

zl > 27l and z} > 27F. By Lemma E.16, as long as n > 21 the event & has overwhelming probability, and
in particular a union bound implies

feature norms z

14 {
PI[Jtzzm0=1 2 P|[ |1 (s) 8¢) = 1| 2 1-CLe™, (D.3)
=1 =1
so that
P[ve=1,2,...,L, " =7] >1-CLe™". (D.4)

We can therefore pass from 7 to 7 with negligible error.

From the expression for 7¢, we see that the angles #* — ?#! — .- — 9L form a Markov chain, and we
will control them using martingale techniques. For ¢ = 0,1,...,L, we write ¥ to denote the c-algebra
generated by the gaussian vectors (g%, g;, g%, g%, e, g‘{, gé), so that (F©,...,FL) is a filtration, and the
sequences of random variables ..., P4 and (#1,...,PL) are adapted to (F1,..., FL). Moreover, with
these definitions we have

1

E [0(7 | 7_-6’—1] — (p(f)[_l),
where @ is the angle evolution function defined in Appendix E.1, which is well-approximated by the function

v

@(v) = cos™ ((1 - ;) +

sinv)
T

(see Lemmas E.1 and E.2). In the sequel, we will employ the notation ¢(*) to denote the ¢-fold composition
of ¢ with itself. By Lemma E.5, the function ¢ is smooth, and the chain rule implies the same for ¢'¥; we
will employ the notation ¢*) and @) for the first and second derivatives of ¢*), respectively.

Main results.

Lemma D.1. There are absolute constants ¢, C, C’ > 0 and absolute constants K, K’ > 0 such that for any d > K, if
n > K max{1,d*log" n,d°Llog® n} then one has forany { = 1,...,L

d3Llog® n

P \(al(x),o/(x’)) — cos (p“)(z(x,x’))| >C <C'n,

Proof. We have
<a‘}(x), aee(x’)> 4 zfzg cos 1!,
and the triangle inequality (applied twice) then yields
|<o/(x), o/(x’)> — cos (p“)(vo)| < |cos v{Hzfzg - 1| + |cos vl — cos (p(l)(vo)i

<lzallzi =1+ |2 =1+ = 000,
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e 4

where we also use |cos| < 1 and that cos is 1-Lipschitz. Since z; = Zf fori = 1,2, we obtain using Lemma D.2

and the choice n > KdL
2l - 1] > o
n

and as long as n > C2dL, we obtain on one of the same events

P < C'te?,

Pz} <2] >1-Cte™.
By a union bound, we obtain

Jellzt 1] +]e5 1] < 30y %

P >1-2C"0e™,

so that if we put d’ = dlogn and therefore choose n > C2dL1logn, we have

el — 1 25— 1] < 30y TEB2 | 2 1 acren = 1 - 20,

with the second bound holding if 4 > 1 and n > L. For the remaining term, we have by the triangle
inequality

P

|Vf _ (p(l’)(vo)| < \VF _ §€| + |§€ _ (p(e)(v0)|,

By (D.4), the first term on the RHS of the previous expression is equal to zero with probability at least
1-CLe™“" aslong as n > 21. The second term can be controlled with Lemma D.3 provided we selectn, L, d
to satisfy the hypotheses of that lemma. We thus obtain via an additional union bound

[de1 /dSl 3 ,
P |<o/(x), o/(x’)) - cos (p“)(vo)’ > 3C ;)gn +C’ Z? n < C"n = 4 O e,

Ifn > (2/c")]logLand n > (2c/c’)d log n, we have C"n=c 4+ C"fe=" < (C” +C"”)n°. The previous bound
then becomes

[de] /d31 3
P |(o/(x), a"](x’)> — cos (p(‘})(vo)| > 3C ;Jgn +C’ %ﬂ <(C" +C"n~,

and if we worst-case the dependence on ¢ and d in the residual in the previous bound and take ¢ as large as

L, we obtain
13 1w @),,0 ’ d3L10g3 n ” 1, —cd
P |<oz (x),a(x))—cosq) (v )|>(3C+C) — <(C"+C")n",

as claimed. m|

Lemma D.2. There are absolute constants ¢, C,C’ > 0 and an absolute constant K > 0 such that for i = 1,2, every
(=1,...,Landany d > 0, if n = max{Kd{,4}, then one has

|zf—1|>C,/ﬁ
n

P < C'ecd,
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¢

d _p . .
Proof. Because z; = zf, it suffices to show

Tt ey

The proof will proceed by showing concentration of the squared quantity Hﬁ’:l” | gf] +||§ around 1, so that
we can appeal to results like Lemma D.26, and then conclude by applying an inequality for the square root
to pass to the actual quantity of interest. To enter the setting of Lemma D.26, it makes sense to normalize

the factors in the product by their degree, but we must avoid dividing by zero. We have H?:l H [ gﬁ'] . Ho =0

n1/2
) . (Do)

using 0-homogeneity of the £° “norm”. This leads to an extra product-of-degrees term; we will make use of
Lemma D.27 to show that the product of degrees itself concentrates. We will also show that the event where
a degree is zero is extremely unlikely and proceed with the degree-normalized main term by conditioning.
By symmetry, the random variables || [ gﬁ llo are i.i.d. sums of n Bernoulli random variables with rate %
By Lemma G.1, we then have

< C'te™e, (D.5)

if and only if Hﬁ,:ln [gf] +||2 = 0, and whenever Hg/:1|| [g“ Hz # 0, we can write

s = ([ s ] (120 m)(rhw—

U= =1

5],

ollgt,l, <n/2—t] < e,

and so
< ”3’[||[gﬂ+||o <nf2-t| < e,
where the first inequality applies a union bound. Putting t = n /4, we conclude

< ee—n/S

.....

so that whenever n > 16log ¢, we have || [g 1/] Lo > n/4 for every ¢’ < { with probability at least 1 —

e™"/16_ This gives us enough to begin working on showing concentration of the squared version of (D.5):
partitioning, we can use the previous simplified bound to write

¢ ¢
12 de¢ _ 2
.4+TNkHJb>CJ;I<e””+P e st
=1 =1

Using (D.6) and the triangle inequality, we can write whenever no terms in the product vanish
: o 172 : 1 n ’

o st L =TT 205 T p 3 1911
e'[! b H” I ﬂllx/?[g‘ih 270,

(112011 NEPD 7—1+

=1
< 40

min (710 = n/4,

,,,,,

IA

[IT201.1) -

{
(hﬁwi I,

>4,/ﬂ
n

2
(D.8)

Moreover, we have by Lemma D.27
Lo
-1+ ﬂ ~lg1 1.1,
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as long as n > 128d¢. Choosing in addition n > 4d{ and using nonnegativity, this implies

4

2 ,
Pl [ 1201s!1.],

=1

> 2| < 4™,

occurring on the same event. Combining the previous two bounds with (D.8) and (D.7) via another partition,

we get
> C\/ﬂ} < 16 4 gpecd

+P| min [|[g7]

1+l—[|| LIE

2
o =n/4, -1+ : \/; 1. >(C/z+z)\/@, (D.9)
l e | g

where we use here that on the event {ming-1,__ /|| [g{] o > n/4}, the quantity Hﬁ,:1|| [gfL”z is nonzero
almost surely, which allowed us to invoke the identities (D.6). For (ki,...,k;) € [n]‘, we define events

k k
gh,. .., 8k by
kl, = { V2 [31, = kl”}

Conditioning and then relaxing the bounds, we can write
518t

Pl min [|[s7], ], = n/4, 1+HH\/_

< -1+
(kl,...,kz;;e[ 1¢ 1_[ H\/g
ker=n/4]

d[ k1 k¢ k1 k¢
w/7 ey, e |pler,..ef.

Conditioned on Sf o, 85" with kg > 0, the random variable I—[ﬁ,:1 ||\/g [ gf] . ||% / ||\/§ [ g‘lﬂ] _llois distributed
as a product of independent degree-normalized standard x? random variables with minimum degree
min{ky, ..., k;}. An application of Lemma D.26 then yields immediately

2
f[ “1. >c',/ﬁ &N, 8| < Cle
n
2
2
>C’w/¥ < C"e™e,

5],

o e

as long as n > K”d¢, whence

P Zmln ||[g1] ” >n/4, 1+l_[ [ v

~~~~~ i

Combining this previous bound with (D.9) yields

¢ o2 ar
_1+1_[||[31]+”2 C n
r=1

where we worst-cased constants in the probability bound. If we choose n > 4C%d¢, we have C+/d{/n < 1/2,
and we obtain on the event in the previous bound

‘

7 2

-1+ [ [lls? 1.1,
=1

P <e 164 Clge,

P
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In particular, on the complement of the event in the previous bound, the product lies in [1/2,3/2]. To
conclude, we can linearize the square root near 1 to obtain an analogous bound for the product of the
norms. Taylor expansion of the smooth function x + x1/? about the point 1 gives

Vxi-1= %(x—l)—%k‘3/2(x—1)2,

where k lies between x and 1. In particular, if x > %, we have

l(x—l)—i(x—l)zs«/_—ls1(x—1),
2 h 2

\/_

so that

(ﬁ—l)—%(x—l)s%(x—nz.

Thus, when x > 1 we have by the triangle inequality

1 1
|\/E—1|5E(x—1)2+§|x—1|.

from which we conclude based on a partition and our previous choices of large n

¢
-1+ ] 87 1.0L| > 2cw/% <2716 4 2C" e,
=1
which yields the claimed probability bound when n > 164. o

Lemma D.3. There are absolute constants c, C, Co > 0 and absolute constants K, K’ > 0 such that for any Lmax € N
and any d > K, if n > K’ max{1, d*log* n, d®Liax log® n}, then one has

d3log®
P|3L € [Linax] @ [PF = P00 > cm{%" <Cn~, (D.10)

Proof. The proof uses a recursive construction involving L € [Lmax]. Before beginning the main argument,
we will define the key quantities that appear and enforce bounds on the parameters to obtain certain
estimates. For each L € [Lyax], we define the event

d3log’ n
_ sl _ o D)(,,0
&L= [t - 9V > Co| 2L,

where Cy > 0 is an absolute constant whose value we will specify below, so that &, € FL, and our task is to
produce an appropriate measure bound on (J; [z, 1 E1- For notational convenience, we also define &y = @.
For each L € [Liax] and each ¢ € [L], we define

A{ — (p(L—é’)({)é’) _ (p(L—£’+1)(1f/~€—1)’

so that for every L, AL A% is adapted to the sequence 1. .., FL, and we have the decomposition

L
- 10 =" AL
(=1

d3log®
>C0,/ﬂ ,
nL
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The sequences (Ai)ee L are not quite martingale difference sequences, but we will show they are very nearly
so: writing
Ap = (A —E[AL [ F7]) +E[AL |77,

Al
AL

we have that (Ai)[eL is a martingale difference sequence, which can be controlled using truncation and mar-
tingale techniques, and the extra conditional expectation term can be controlled analytically. In particular,

we have the following estimates: by Lemma D.24, we have if n > max{K; log4 1, KoLmax} that for every
L € [Lmax] and every ¢ € [L]

logn pe-t

14 -1
Elai 7= o e o

(1+logL) + CZ%; (D.11)

by the first result in Lemma D.25 we have for every d > max{K3,6/c1} thatif n > Kqd* log4 n, then for every
L € [Lmax] and every ¢ € [L] (and after worsening constants)

dlogn pe-1 2C,
Al > 2Cs4/ + == |F!
Al N T+ (co/64)(L - )1 T 2 d

and by the second result in Lemma D.25, we have by our previous choices of 11, d, and Lyax that for every
L € [Lmax] and every ¢ € [L] (after worsening constants)

dlogn ( pt-1 )2 Cs

P < Csn™e14; (D.12)

[E[(A{)Z ) ‘FH] <4c? (D.13)

n \1+(co/64)(L—0)p1] " nt

The main line of the argument will consist of showing that a measure bound of the form (D.10) on (Jgejz-1) E¢
implies one of the same form on (Jye() &¢. For any L € [Liax], on the event &7 we have

3 3
o < p($9) + Coy| 1B

nL
2 [d31og’ n (D.14)
coL +Co nL
3

7

<
C()L

where the second inequality follows from Lemma C.10, and the third follows from the choice n >
(Coco)zci?’lllog3 n. In particular, if we make the choice n > (Coc0)?d®Linax log3 n, we have (D.14) on &
for every L € [Lmax]. Accordingly, for every L € [Lmax] and every ¢ € [L] we define truncation events g{ by

dlogn Pt 2C
L= J|Al < 2C34/ +=24neEe . D.15
G {' i =26 = +(co/64)(L — )01 7 n2 -1 (D15)

We have g{ € ¢, and a union bound and (D.12) imply

C
Pl (6! |7 < Csln | | ) & |FH!
ee[L] e[L-1]
= C5Ln7C1d + 1y,

-1 Se 7

where the second line uses the fact that &y € ¥ In particular, taking expectations recovers

C
P ﬂ G| | < st +p U &rl. (D.16)
te[L] te[L-1]
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In addition, by (D.14) we have on &;_;

pt-1 .3 1
1+ (co/64) (L — O)0F1 ~ co (€ —1) + (3/64)(L — )
3 1
= o (B/64)L + (61/64)¢ —1
64
< -7
- Co(L — 1)
128
< —y
- C()L

where the final inequality requires L > 2. Thus, when L > 2, we have on Q{ that

256C; [dlogn 2C
U L £P%8 2767 | 22
|AL| = ¢l n n2
< 512C; /dlogn (D.17)
- Co an !

N——
2K,

where the final inequality holds when d > 1 and n > (Caco/128C3)*/3L?/3. Similarly, when L > 2, on &,
we have by (D.13)

21%C3 dlogn  C,

o]

2 nl? nt

B (D.18)
- 27C5dlogn __ ,dlogn
T ¢ nl? Y

where the second inequality holds when d > 1 and n > (Csc?/217C2)1/3L?/3; and in the same setting we
have by (D.11)

|[E[A€ |(f‘}_1]| - 128C; (1 +1logL)logn N C
L - 0 nL n?2
(D.19)
< 256C, (1+1logL)logn
T oo nL !

where the second inequality holds when n > (Cac9/128C1)L. In particular, if we enforce these conditions
with Lmax in place of L, we have that (D.17) to (D.19) hold for all 2 < L < Lpax (with (D.18) and (D.19)
holding on &;_,).

We begin the recursive construction. We will enforce Cy = max{4nCs, 6Ko} for the absolute constant in
the definition of &;. The main tool is the elementary identity

P Uag =P U El+Plen ﬂ &, (D.20)
te[L] te[L-1] te[L-1]

which allows us to leverage an inductive argument provided we can control P[EL N (Nyer-1Ef], the
probability that the L-th angle deviates above its nominal value subject to all prior angles being controlled.
The case L = 1 can be addressed directly: (D.12) gives

dlogn 2
|Al] > 2mC34 ng +%
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and as long as d > 1 and 1 > (C2/nC3)*/3, this implies

P||Al| > 4nCsy/ dk;g”

This gives a suitable measure bound on &, after choosing d > 1 and 1 > e so that d°log®> n > dlogn. We
now assume L > 2. By the triangle inequality, we have

< Csn™9, (D.21)

L L L
DA< DAL+ D JE[A]L (D.22)
=1 =1 =1
and we therefore have for any t > 0
L (1L L
p {Z } M e <v {Zﬁ - Selaf |7 1]|>t} N &
=1 te[L-1] =1 =1 te[L-1] (D.23)
L L
=P|1 ﬁze[L 116 Z ]lmk[L_]].g; Z|[E[A£ |.7_~£—1]| > t}‘
=1
By (D.19), we have
L
_ 256C1 (1 +logL)logn
QT 8§Z|[E[Ai \Tﬂ 1” = % - ” . (D.24)
=1
For the remaining term, we have by the triangle inequality
L L
SR|< DAl - A1+ Z g —E[alig |71||+ fg |71 - E[al | 71|, ©25)
(=1 =1

By (D.15), an integration of (D.12), and a union bound, we have

Y AL — Al <P Al >2C \/dlogn L 2
; L-aitg >0l <P | flall> 26— T+ (/DL -0 w2 [| (D26)

Le[L]

P >0

]lﬂzs[uu &;

—c1d
< CsLn—94,

and we have

7—‘"‘1] -E[A] |74

7:(’—1]
dlogn pl-1 L 26
2C3+/ L2lyg,
{ il >2c T+ (co/64) (L — )01 nZ} &t-1

< nCsLn™4 +7IZ]13[,

L

14
D [E[ALllgf
/=

E[Jaf 1

-

<

-~
I

M- T

IA
A

Pl

P

IN
|

T@—l}

o~
1l
—_
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where the first line uses linearity of the conditional expectation and the triangle inequality for sums and
for the integral; the second line uses the worst-case bound of 7 on the magnitude of the increments A!; the
third line uses (D.15); and the fourth line uses a union bound, &_1 € ¥, and (D.12). Multiplying both
sides of the final bound by 11, &c, we conclude

L
! -1 ¢ -1 —c1d —c1d
Uovner| D B[ g | 7Y - E[AL | 77| < 1p, , gmCaln ™ < mCsLn—er. (D27)
(=1
For the remaining term in (D.25), we first observe
2
¢ ¢ -1 -1 )2 -1
[E[(ALIlgz _[E[ALﬂgf F ]) ‘7: < [E[(AL) 155 F ]

< E[(af)*| 7],

where the first line uses the centering property of the L? norm, and the second line uses (A{)2 > 0 to drop
the indicator for Qﬁ For notational simplicity, we define

vE= ZL] [E[(A{]@ ~E[al1g T“])z ‘ ‘F“],

=1
so that our previous bound and (D.18) imply

dlogn
C L 2
f 8€c{v < 2K5— }
le[L-1]

This implies that for any ¢ > 0

L
. ¢ -1
P ]lmfe[L—l] &; ZAL]le - [E[AL]lgf a ] >t
L
=p ﬂ & m{ —[E[A{ﬂg{ (FH] >t}
| (elL-1] (=1

7-@—1]

» dlogn
L 2 2 : t1 . _ElAl
<P {V < 2Kj } {‘ A ]].gl [AL]lg{

The previous term can be controlled using Lemma G.5 and (D.17):

t}]

dl t2/2
PVt <2kz80 ZAéﬂg;—[E[Aillge 7[> | < 2exp] - /
L 2 dlogn dlogn
2K2E981 | (0K, /3)t
Setting t = 3Ko+/d3 log® 1n/nL, we obtain
L 3 2 1602
d3log’n 9 d*log"n
¢ ¢ -1

Pl | ) Mg — E[af 15 | 77| > 3Ky | 22 | < 2exp| -5 ot s
=1 1+T ( . )

< 2n0/9d
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where the last line uses the bounds L > 1 and dlogn/(1+dlogn) > % ifd > 1and n > e. Combining (D.26)
to (D.28) in (D.25) via a union bound, we obtain

L
25
(=1

Applying this result and (D.24) to (D.23) via a union bound, we obtain

| 1og® 1+logL)l
> 3K, %n+nC5Ln‘“d+ 25§C1( ogn Jogn | _ ﬂ &l < CsLn—a1 4 2n=0/94.
0

te[L-1]

d3log® n

T+ nCsLn=| < CsLn=1% + 25=O/8)d,

Pi1 mie[bu 5? > 3K0

L

2,

(=1

P

If d > 2/ci and 11 > Lay, we have CsLn~% < Csn~19/2; under these condition on d and 1, we have

nCsLn~1" < mesn~!, and so nCsn~14/2 4 (256C1 /co)(1 +log L)(log n)/n < C(1+logL)(logn)/n;and if d > 1

and n > Lnax, we have
3K, /d3 log® n 5 C (1+1logL)logn
nL n

provided n > C’(C/ 3K0)?Lmax log Lmax. Under these conditions, our previous bound simplifies to

L 3
d3log’ n min
—min{c1/2,9/8}d
;_lA >6K0\/—nL n ﬂ El <2+ Cs)n i .

te[L-1]

P

s

In particular, applying this bound to (D.20), we have shown that for any L > 2

Pl & =P| | &l+@+Conmntarsmi,
_(’e[L] le[L-1]

Unraveling the recursion with (D.21) (and worst-casing the constants there), we conclude

P U El <2+ C5)Ln‘min{f1/2,9/8}d’
ee[L]

which proves the claim, after possibly choosing # to be larger than another absolute constant multiple of
Lmax to remove the leading L factor. m]

D.2.2 Backward Feature Control

Having established concentration of the feature norms and the angles between them, it remains to control
the inner products of backward features that appear in ®. The core of the technical approach will once again
be martingale concentration. We establish the following control on the backward feature inner products:

Lemma D.4. Fix x,x’ € S"™! and denote v = /(x,x’). If n > max {KL logn,K’th,K”}, dy 2 K" logL for
suitably chosen K, K’, K", K" then

L—

Pl @I, < cn}| 21—t

1
=0

If additionally n, L, d satisfy the requirements of lemmas D.3 and E.16, we have

95



P

A ¢ ”L (P(i)(V)
HCEEED —51;1(1—7)

where ") denotes i applications of the angle evolution function defined in lemma E.2, and ¢ > 0, C are absolute
constants.

< 1og2(n)\/d4LnH >1—e

Proof. For ¢ € [L], write ¥ for the o-algebra generated by all the weights up to layer ¢ in the network,
ie, W ... W! with #° given by the trivial g-algebra. Consider some <ﬁ‘"(x),ﬁ‘” (x’)) forO< ¢ <L-1.
Defining

I%(x) = ProyW'Py, (- - ProyW",

Biﬁ: — r€:€’+2(x)P1£,+l(x)PIWH(x,)r€;€’+2*(x/),

forl € {¢’+1,...,L}, and setting ré++2(x) = I,Bﬁ;‘f, = %I, we define the event

SL+1:0" _ Lt 2 Lt Lt/
F xx’ < xx' ] = :
Ex = |IBLI; < c2ie) o (Bl <cr) o {[BLY] < Cn)

Since (ﬁf'(x), ﬁe'(x/)> = WLHBJL‘;f,,WL“* is a Gaussian chaos in terms of the W.*! variables (and recalling
wi+l ~ N(0,I)) and Slé is ¥ L-measurable, the Hanson-Wright inequality (lemma G.4) gives
11

P [1é§+1:[’ |<,3"’(X)/ﬁf’(x/)> —tr [Bi,f,/” > CthL] < 2exp (—c min {t, tfn}) < De~ct,
Using lemma D.28 to bound P [(Sé”:‘”)c] from above gives
P |1(6" (), B () ~ tr[BLL || > Vi

P []lggﬂzl" |<ﬁ€,(X)r ﬁ‘"(x’)) —tr [BQLCJf/,” > C\/tTl—L] +P [1(51%“:‘”)6

"(x), B () - tr [BLY]| = cm]

7 7 N ~ N ¢ ’rn "
<P |1g0 [(B° @), B () — tr [BEC]| 2 CVinL | + P [(E51¢) | <2e7 4 cnet < cet (D29)

for appropriately chosen constant, if t < nlogn/L. Choosing t = n/L in the bound above and using the
bound on tr [Bg;,f/] from lemma D.28 we obtain

P [I8° @l 2 2¢n| < [ @[} - tr [BL] > Cn | + P [tr [BL] > Cn]

n

—c'n _omrn —
< Ce ™I +C'nl% 't <C"nl?e*

” n

for appropriate constants. Taking a union bound over the possible values of ' proves the first part of the
lemma.

(=t
control of the angles established in previous sections). We write

L-1 ()
We next control ‘tr [BLE] - 211 (1 - (pT(V))’ using martingale concentration (in a similar manner to the

Lo N "W\ T ") e+ ) e N
[Bxx’]_i (1 ) Zl_[ (1_ )( [Bxx/ ] (1_T)tr [Bx‘x’])E Z Ag
i=t {=li=l+1 =0'+1
(D.30)
(note the change in the indexing). Consider the filtration #° c --- ¢ ¥ and adapted sequence
A=A —E[AFTY, (D.31)
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so that

L L
> A= Z A+ Y E[AdF]. (D.32)
=0'+1 =0'+1 =0'+1

We begin by considering the first term in the sum since it takes a distinct form. Denoting by We +1 the

i-th column of W¥*1, rotational invariance of the Gaussian distribution gives

tr [B[ S ] =tr [Plz'+1(x)P1l'+1(x')]

xx’
=tr [PW‘”“a"(x)>0PW"”a”(x’)>0]

—tI' [P PW’ 1 eos vt + W sin vf'>0]

€’+1
W >0 ) 2

and hence
E [tr I:Bf'Jrlf ]|?'l'] _

xx’

tr [B“”] =n E 14501

1% Sy
WW“ 91,92 g1cosvt +¢1sinvt >0

where (g1, $2) ~ N(0, I). Moving to spherical coordinates, we obtain

o T/2

el
O+1:0 n —r2/2 _ni_v
W[eEmtr [Bxx/ ] Zn/ / e rdrd® 7 (1 - )

_Ta
0 —Z4v

We now note that conditioned on ¥, tr [ng 1)>°PW0 05 vAW?O sinv>0] is a sum of n independent variables

6D (2
taking values in {0, 1}. An application of Bernstein's inequality for bounded random variables (lemma G.3)

then gives
L-1 (i)
| | _ 9 410 _
(1 e )‘ [Bxx’ ] 2 1

i=0'+1

P HK(’H

>\/ﬁ] =P

=) v
(D.33)

<2exp (—c ) <2e71

nd
n+Vnd

for some ¢’, where we used the fact that the angle evolution function ¢ is bounded by 7t/2. Note also from

Lemma D.3 that
/d31 3
S og’(n)n
L

= O A ())
E [ApalFY] —51_[(1— )

Tt
i=l

|7 T (12 2 W)\ 9w [ 10g’nn .
B 51_[ o n n o > L

i=0'+1
Se_“’

for some constant ¢, where we assumed d > Klogn for some K.
Having controlled the first term in (D.32), we now proceed to bound the remaining terms. We define
events

<cane} 0 B < co)

(a1, 1], >0 0 HptDw) - vi1] < oy Lo

N {w B <cn) on {BGH

xx’

o _
&g =

I

(which from lemma D.28 hold with high probability). Note that as a consequence of the first event in 8{;‘”
the angle v is well-defined. Note that 81’;” is 7 ~1-measurable.
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We will first control (D.32) by considering each summand truncated on the respective event 81‘;@/. Our
task is therefore to control

L L
E Tgee Ap + E Tgee EA, |7"€_1.
B B
{=0'+2 {=0'+2
Since

E []18{;”&] - F [[E [nggu&|f"—1” —F []18#[E [K(}‘ ?‘7—1” -0,

the first sum is over a zero-mean adapted sequence and hence a martingale, and can thus be controlled
using the Azuma-Hoeffding inequality. We will first show that the remaining term is small. We begin by
computing

]lsgl’ Etr [B[ £

xx’

-1 0=1:0" a7 0 {
] |7: = I/[\E’tr []ISS['Bxx’ w owM—l(x/)>0PW"M‘1(x)>0W ]

where we used the fact that Sgw € F'! and is thus independent of W*.
There exists a matrix R such that

Ra'l(x) = ||ng_1(9c)||2 21, Ra"(x) = ||0/_1(x’)||2 (e1cosvi! + &y sinviTl) .

Rotational invariance of the Gaussian distribution gives

Wal(x) 2 Wf:,l) [ Wl l(x) = ||a[ HEY )||2 ( )COSV T W( )sinve_l) ,

where we denote by W the i-th column of W', Defining Bxx, = RBf;;,l:‘"R* we have

24 -1 _ O {
Etr [Bxx’] |F [E tr [18”'Bxx/ w PWfil)>0PWfi " cosv[*1+Wf: 2 sian>0W ]

_ pl=1:0":0' l
- ﬂ&gf,Bxx’ji E Z Wﬁ >0 W[ cos vt 1+W[ sinvf- 1>0VVI<]' (D35)
z]k

n n
- Re-1:0:0 [ RO-1:0:0 ~-1
- ﬂé’»f;‘” Z Bxx i [E l’lW ]lW’ >0]1W{1 cosvi-L+wi, sinv‘*l>0wlj - Z ]18”(Bxx 'ji Q :
i,j=1 ij=
If i ¢ {1,2} we get (with the square brackets denoting indicators)

-1
-1 - ¢ ! -1 { . — 1
Qi]’ = V[EIZ(Sij [Wll > 0] [W11 cosv' " + Wi, sinv 0] = bjj (1 _ T) )

If i € {1,2} then the ij‘l # 0 only if j € {1,2}. In these cases we have

{Il =v[‘|§[n (Wfl)2 [W > 0] [Wi1 cosvi 4+ W12 sinvi! > O]

=2vﬂ5(gf [g1 > 0] [g1 cos v + g sinviT! > O]

where (g1, §2) ~ N(0, I). Moving to spherical coordinates, we obtain

AF -1 -1 -1
_ 1 2 T—Vv' "t +sinv T cosvtT
fll = — e " 123 cos? 0drdo = ,
i e
—Tgyt-l
and similarly
e, ™2 -1 -1 -1
1 2 . T—V'Tt —sinvtT cos vt
521 — e " 1213 gin? 0drdo =
e T
-Z+v

98



-1 _ ~b-1 _ ¢ ¢ ¢ -
=Qy = v[\l;[an [W11 > O] [W11 cosvi™ + W12 sinv~1 > O] W

12
oo /2 /2 9y 11
1 1 i -
= g/ / e~ 123 sin 6 cos Odrd6 = 7 / sin O cos 6dO = %
0 —Z4vi-1 —Tgyl-l

.. . 1.0 ~ (-1 .
Combining terms and using tr [Bix,” ] =tr [Bxx, ] we obtain

e _vl 1
Tt
-1

i -1
B e 17 _ | sinvicosv 10 -1
Lgg E [t [Be] 177 = Lege e (Bxx’ll ~Bum ||

xx’

[BZ 1(’]

2.,0-1

sin” v 0-1:0 0-1:¢

+ 27 (Bxx’l2 + Bxx'21)
hence [ .
o (V) 1.0

toge E | (B8] - (1= 22 [t J]

(Pt’—l(v) _ Vé’—l 2 0-1
= ]l(c;[:[’ -
B TT T

1 -1
0—1:0 simnv Cosv ~0—1:0 =0—1:0" 511’1 % ~p— S0-1:0"
tr [BL ] + B = By | + —— (Biis '+ By
c
7

On &LY, the bound on |p~!(v) - v/~!| and lemma C.10 give v/~! <

< ||Bg_”/|| < C/l as.. It follows that

xx’

a.s.. Additionally, on this event

-
max |B ,l] |

ijeln]

-1 2 3
o P (v) - (,, a3 nlog n 2C d nlog n
P V[Ef [tr [BLL] - (1 -— )tr B CZ\/ —+ ﬁ <C\—F— (D36

almost surely, and hence restoring a constant factor with magnitude bounded by 1, we have

3 3
< fd nlog n
a.s. f

(D.37)

[, P
]lg.g‘” |[EA(|7:€_1| = l_[ (1 - p )

i={

awf [tr [B" el] - ( - —(p‘]‘;(v)) tr [Bi;fl:[,]}

Using lemma D.28 to bound P [(Sf;e,)c] from above then gives

3 3
P ||EAF] > C'\/dnl# <p|(8y) | < (D.38)

An application of the triangle inequality and union bound then give

L L
> EAF!| > 'y dLnlog’ n} D, [EAdF ! > ¢y dLnlog’ "]
=042 t=t+2
< ZL: P |[EAdF > C/\/d%logan
< ¢ —7
Py L (D.39)
L
<2, Plle)]
{=0'+2
<CLn~



for some constants ¢, C.

L _
We proceed to control the remaining terms in (D.32), namely > A,. Aiming to apply martingale
{=0'+2
concentration, we require an almost sure bound on the summands, which we achieve by truncation. Towards

this end, we define an event
d3nlog®
Gr =11 < C\/d€+C’\/$

Combining (D.38) and the result of lemma D.29 (after taking an expectation) we have

3 3
PG 2 1-P|[EAdFT] > C',/d"l# _p|[R]> cva]

>1-C"n~ - C"e 4 > 1 - C"ec (D.40)

for appropriate constants. We now decompose the sum that we would like to bound:

L L L L
DA | D A=Adg|+| D] Mg —E [Adg F|+| D) E[Adg I F ] - E [AdF)
=t+2 =t+2 =t+2 (=t+2
X Yo ]
(D.41)
Since each summand in ¥; are equal to zero on the respective truncation event, a union bound and (D.40)
give
L L L

P> Ac-Adg >0l <P| | ] gi|< > Plgf] <LCe™ (D.42)

=t+2 (=042 (=t+2

for some constants. The term L, is a sum of almost surely bounded martingale differences. We can apply
the Azuma-Hoeffding inequality (lemma G.8) directly to conclude

L el o 3 d*nLlog’ nlogL el
P Z Aelg, — EALg,|F | > d°y/nLlog’ nlogL| < exp|— 3 s(<e
(=0'+2 2y (CW-FC' /d3nlog3n)
(={'+2 !
(D.43)
Considering a single summand in X3, Jensen’s inequality and the Cauchy-Schwarz inequality give
E a1 - ad 7] = | artgy| 7|
-1 1]\ M2 ol 112 1/2
< E|Iad g | 7] < (E|ng| 7)€ [a2] 7). (D.44)
a.s. a.s.

This is an ¥ ‘" !-measurable function, and we can show that it is small on the event 8{;5/ e F1. To control

the first factor, we note that
d3nlog® ,
?f—l] =P [{|Ad > C\/d€+C’\/—n ;’g gt

d3nlog’ , ,
<P |{figend > vt + | =B R La gt | F1 wp [ {1 e ead > 0f ngte| F1
& ¢ B (&) B
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d 1
<P |]18§;£’Ag‘ > C\/d_€+C’ " Og "

EAF| > [ T8 nlog Hge

H]ISMA[| > C\/_] < Clecd (D.45)

[|Il8u'A¢/| > C‘/_| (| F- 1] +P Ilaw'

where to obtain the second to last line we used the definition of Ay, then used Lemma D.29 and (D.37) to
bound the first and second term almost surely.
We proceed to control the second factor in (D.44), by bounding

L-1 () 2 1) 5
Lo E[Af 7] =1 Nf]_[(l—(’) (V)) E (tr[Bf;:ﬁi]—(l——(Pi 1(V))t B “’]”

Tt
i={ T

(tr [BM:] - (1 - —(p(‘]‘l)(v)) tr [Be_/”’])

Tt

J o e g ot - e ]

Using (D.36) and (D.141) to bound the integrand above, we have

2

< 1. E
a.s. 8W

a.s.

< 4E l( g [tr [BLL] - E [tr [BEC] ]

[FD S Cle—Cd

d°nlog’
1 E [ 22|71 > C (d(’ " %)

for appropriate constants. Combining (D.45) and the above bound gives

3 3
P |1 [E [1g,00 - A 7] > Cyfde + d”l#e—“f < Cled

for some c, ¢/, C,C’, and using lemma D.28

3 3
H:D |[E []lg()A[ - A[|7-'[—1]| > C@e—afl < C/e—c’d + l]:D [(al‘;:[/)c]

< C/e—c’d + C//n—c”d < C///e—c’”d

for appropriate constants. An application of the triangle inequality and a union bound (and introducing
some slack to simplify the expression) then gives

L
Pl > E[1gA—AlF | > CLydPnlog’ ne™ | < C'Le™"
{=0'+2

for some constants. Combining this bound with (D.42) and (D.43) gives

> d?y/nLlog’® nlog L + CLy/d3n log® ne=*

L
Z Ag <CLe e 4 C"Le™" < C"Le"
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L
2N
(=0'+2

> Cd*|Lnlog® nlog L

where in the last inequality we assumed Klog L < d. Combining this with (D.39), we obtain

P < C'Le,

L
P Y, A >Ca?\Lnlog*nlogL| < C"Ln" + C"Le™"% < C'Le™*
=0'+2

for appropriate constants. This bound all the terms in the sum (D.30) aside from the first one. The first term
is bounded in (D.33), (D.34), and the fluctuations due to the last layer are bounded in (D.29). Combining all
L-1 (i)
4 U n % (V)
- 11—
(8,8 w) - 5] ] 1-

of these gives
> Cd*yJLnlog® nlog L}
i=t
P [Kﬁel(x),ﬁel(x’)) —tr [BLEY]| > $d2[Lnlog® nlog L] +P [|A¢u+1| < $d?\/Lnlog’ nlog L]

P

<
= L _ L
[P’[ > A < %dzw/LnlogSnlogL +P|| X EAFEY < %dzwanlogE‘nlogL]
=0'+2 0=0'+2
S CILe—Cd

after worsening constants. A final union bound over ¢’ and assuming d > Klog L gives

L-1 L-1 (i)
v o n M) 2 3 ’—cd
P Q{(ﬁ (x), B (x)}—Eg(l—T) > Cd%\Lnlog’nlogL}| >1—Cle™*
for appropriately chosen ¢, C’, K. If we additionally assume n > L we obtain the desired result. m]

D.3 Uniformization Estimates
D.3.1 Nets and Covering Numbers

We appeal to Lemma C.4 to obtain estimates for the covering number of M, which we will use throughout
this section. In the remainder of this section, we will use the notation N, to denote the e-nets for M
constructed in Lemma C .4, and for any ¥ € N, we will also use the notation N;:(x¥) = B(X, €) N Mg, where
O € {+, -} is the component of ¥, to denote the relevant connected neighborhood of the specific point in
the net we are considering. Here we are implicitly assuming that M. are themselves connected, but this
construction evidently generalizes to cases where M. themselves have a positive number of connected
components, as treated in Lemma C.4. Focusing on this simpler case in the sequel will allow us to keep our
notation concise.

D.3.2 Controlling Support Changes Uniformly

The quantities we have studied in Appendix D.2 are challenging to uniformize due to discontinuities in the
support projections Py,(.). We will get around this difficulty by carefully tracking (with high probability)
how much the supports can change by when we move away from the points in our net N,. It seems
intuitively obvious that when ¢ is exponentially small in all problem parameters, there should be almost
no support changes when moving away from our net; the challenge is to show that this property also holds
when ¢ is not so relatively small.

Introduce the following notation for the network preactivations at level ¢, where ¢ € [L]:

pl(x)=W'a(x),

so that a‘(x) = [p!(x)]+. We also let ¢ denote the o-algebra generated by all weight matrices up to level £
in the network, and let #° denote the trivial o-algebra.
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Definition D.1. Let ¢, A > 0, and let ¥ € N,. For ¢ € [L], a feature (a‘(X)); is called A-risky if |(p!(¥))i| < A;
otherwise, it is called A-stable. If for all x € N.(x) we have

Ve et], p'x) - p' @), <A,

we say that stable sign consistency holds up to layer {. We abbreviate this condition as SSC(¢, ¢, A) at ¥, with
the dependence on ¥, ¢, and A suppressed when it is clear from context.

If SSC(¢) holds at % and if (a’ (¥)); is stable, we can write for any x € N,(x)
sign ((p" ()i ) = sign (0" )i + (0" ()i = (7 (1) ) = sign (0" @),

so that no stable feature supports change on N;(¥), and we only need to consider changes due to the risky
features. Moreover, observe that

Pl(p'®))i € {zA}] = E[P[lla" (x)ll2(ei, g) € (A} | F']] =0, (D.46)

where g ~ N(0, (2/n)I) is independent of everything else in the problem, since A > 0. It follows that when
considering the network features over any countable collection of points ¥ € M, we have almost surely that
the risky features are witnessed in the interior of [-A, +A].

Below, we will show that with appropriate choices of € and A, with very high probability: (i) each point
in the net X has very few risky features; and (ii) SSC(L) holds uniformly over the net under reasonable
conditions involving n, L, d. We write R¢(¥, A) C [n] for the random variable consisting of the set of indices
of A-risky features at level ¢ with input ¥ € N,.

Lemma D.5. There is an absolute constant K > 0 such that for any X € Mand any d > 0, if n > max{KdL, 4} and
A < dlogn/(6n°/?L), then one has

L
Z|Rz(5c, A)| > dlog n] <on~d 4 [2ecn/L
=1

P

Proof. For any ¥ € N, Lemma D.2 (with a suitable choice of d in that context) gives

'@, - 1| > 2| < cee~t,

P
2

so that if additionally n > (2/c)¢1og(C), one has

P[ma"(a‘c)”z -1 > % < et (D.47)

Let Gy = {1/2 < |la*(¥)|l» < 2}, so that Gy is F ‘-measurable, and G = Nye[1-1]Gr; then by (D.47) and a union
bound, we have P[G] > 1 — L2e~“"/L. We also let Gy = @°. For i € [n] and ¢ € [L], consider the random
variables X;; = |(p’(%));|, and moreover define

S Xip
Xip = ————1g,,.
T et @), T

We have }; ; 1x,,<a = 2¢|R¢(¥)], which is the total number of A-risky features at X, and the corresponding
sum with the random variables X;/ is thus an upper bound on the number of risky features at ¥. Notice

that X;; and X;; are ¥ {-measurable, and additionally notice that on G, we have X;;/2 < Xy < 2X;. For any
Ke{0,1,...,nL —1,nL}, we have by disjointness of the events in the union and a partition

nL
< L2/l 4 Z P

P ZﬂXj[SA > K g N {Z ]lX,'(SA = k}}
il k=K+1 il
nL
<1% by N PlGn {Z 13,00 = kH
k=K+1 il
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so it is essentially equivalent to consider the X;¢. By another partitioning we can write

L n
Ggn {Z ]IXMSZA = k} = Z E l—[ (]lgf—l l_[ ]1]15(”<2A=5wﬂ
il

Se{0,1y<L:||s|2=k L¢=1 i=1
where {0, 1}"*% is the set of n X L matrices with entries in {0, 1}. Using the tower rule and #“~!-measurability
of all factors with ¢ < L, we can then write

L n

1t [T
=1 i=1

L-1 n

(l—[ (]lge-l 1—[ ]lﬂgi[<2A=5uz)) 1g, ,E

(=1 i=1

P

n

L
[ J16e] [reg cmse
=1

i=1

E =E

=E

We study the inner conditional expectation as follows: because p’(¥) = W™ a!~!(¥), we can apply rotational
invariance in the conditional expectation to obtain

n
1_[ Illf(iL <2a=SiL

i=1

n
ﬂﬂ)’(,-LSZA:SiL
i=1

n
1_[ Ill\(wL)HSZA:SiL

i=1

Ig, , E ?-L_l

TL_l} = ﬂgL—llE

= ILQL—llE[ TL_l},

n
IL]l\(wL)iugH <A=SiL
i=1

where w; ~ N(0, (2/n)I) is the first column of W', and the last equality takes advantage of the presence of
the indicator for 1, , multiplying the conditional expectation. We then write using independence

L n
ﬂf[l—[ ]lﬂ|(wL),~\S2A=SiL ﬂ{]ll(wL)i|S2A = SiL}

i=1 i=1

n

¢L_1l B l_[ P[ILKWL):‘\SM =5iL | 71_1]1

i=1

Fril=pP

and putting pr, = P[|(wr)1| < 2A], we have by identically-distributedness

n

n
P[]ll(wL)ilﬁzA =SiL \TL_l] = l_l Pg“(l _ PL)l_SiL.
i=1 i

After removing the indicator for G; -1 by nonnegativity of all factors in the expectation, this leaves us with

L-1 n
(l_[ 1g,, l_[ ]lﬂ)'(l.[<2A:Si[)‘| .
=1

i=1

n

L n
S; -5
[E[l_[ ]lgzq l_[ ]111;}“,<2A=5il} < (l_[ PLL(l - PL)1 SL) E
=1 i=1

i=1

This process can evidently be iterated L — 1 additional times with analogous definitions—we observe that
the fact that all weight matrices W¢ have the same column distribution implies that p; = --- = pr, so we
write p = p1 henceforth—and by this we obtain

n

L
[ T1e] [1eg s
=1

i=1

E <

1_[ psiL 1- p)l_SiL,

1 i=1

L n
=

and in particular

L n
P < Z l_[ l—[ pSiL(l _ p)l—sm.

Se{0,1yL: ||S||p=k £=1 i=1

Ggn {Z Lg,<n = k}
)

For i € [n] and ¢ € [L], let Yj; denote nL i.i.d. Bern(p) random variables; we recognize this last sum as the
probability that }; ; Yi¢ = k. In particular, using our previous work we can assert for any ¢t > 0

ZﬂstA>t ZYié‘>t

il il

P <P + [2en/L,
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so to conclude it suffices to articulate some binomial tail probabilities and estimate p. We have

2A 2
/ n nt
2n

(D.48)
S A —,
T
and we can write with the triangle inequality and a union bound
P Zmpt <P ZY,-,;—[E[m] St +P Z[E[m>t .
il 1,0 I
By (D.48), we have ¥, , E[Y;¢] < n¥2LA. We calculate using independence
2
E (Z Yie - [E[m]) < D ElYil <n’La,
il il
so an application of Lemma G.3 yields
P(|> . Yie - ElYul| > | < 2ex PR
LT R Ty
For any d > 0, if we choose t = dlog n and enforce A < dlogn/(6n>?L), we obtain
P ZYM >dlogn| < 2,
0
from which we conclude as sought
P Z Tx,<a > dlog 4 <2n~d 4 [2emen/L,
1,0
o

The next task is to study the stable sign condition at a point ¥ as a function of ¢ and A, assuming A at
least satisfies the hypotheses of Lemma D.5. In particular, we will be interested in conditions under which
we can guarantee that SSC(¢ — 1) holding implies that SSC({) holds. Let S¢(¥, A) = [n] \ R¢(¥, A) denote the
A-stable features at level ¢ with input X, and define for 0 < ¢’ < ¢{ <L

T¢" = Ps,o)ProW'Ps, @ PriwW' ™ .. Ps, ,@Pr W™ @ =Wt (D.49)

so that @ x carries an input x € N,(x) applied at the features at level ¢’ (in particular, £ = 0 corresponds
to a’(x) = x, the network input) to the preactivations at level ¢ in a network restricted to only the stable
features at x. We can write

plx) = WP, yW . PryWly,  al(x) = PL,oyW'P_ W ... PpnWl,

which gives us a useful representation if we disregard all levels with no risky features: let r = Zﬁzl LiR,(z,0))50
be the number of levels in the network with risky features, and let {; < f, < --- < {, denote the levels at
which risky features occur. If no risky features occur at a level ¢, we of course have Pg,z) = I. Assume to
begin that ¢ > ¢,, and start by writing

pé’(x) = (Dir[r (PSa @ T Per(i)) Plh(x)cpiy'e’_l (Psiy—l(?_f) + Per—l(i)) Pliy—l(x) e
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... (D?’[l (Ps[1 %) + PRél (5;)) PI,] (x)q)al;l’o'

Now we distribute from left to right, and recombine everything to right on the term corresponding to the
projection onto the risky features at ¢,; this gives

p'(x) = DL Pr, ma” (x) + DY (Pse,_lm + PRI,_l@)) Pi, - D" (Psf1 @ * Pry, <5c>) Py, @1,

We can write
0,0 oy bl
D" PR, m@ " (x) = @y

&
R (J'c)“ (x)|R"(’_‘)'

&

where the restriction notation emphasizes that we are considering a column submatrix of the transfer
operator induced by the risky features. Iterating the previous argument, we obtain

r
¢ 00 (77 14
P (X) B (Dx *r 1:21 CDx |R@ (i)‘x (X)|R’i(’_c)‘

i

It is clear that an analogous argument can be used in the case where ¢ < ¢, by adapting which risky features
can be visited: we can thus assert

Pl =0f’x+ > @
i€[r]: i<t

14
Rli()_{)a (x)|R€l_ @ (D.50)

Furthermore, we note that under SSC(¢ — 1), no stable feature supports change on N;(¥), and so one has for
every x € Ng(X)
q)g,e _ q)i,e )

so under SSC({ — 1) we have by (D.50)

Pe(x) _pé(i) = q)f;,O (x—X)+ Z q)gfi
ie[r]:6;<t

i (=
Ry, (%) (0‘ (x)in,.(Fc) @ (x)|R4.(i))‘

The ReLU [ - |+ is 1-Lipschitz with respect to || - ||co, and by monotonicity of the max under restriction and
SSC(¢ — 1) we have

| @l s) = @ @l o], = [ @l =P Do = '@ = p L <

Thus, by the triangle inequality, we have under SSC(¢ — 1) a bound

+A Z
02—

ie[r]: i<t

(D.51)

0,
@ |

¢ e {,0
lp* () - p* @), < f“‘bfc R )]sy e

This suggests an inductive approach to establishing SSC(¢) provided we have established it at previous
layers—we just need to control the transfer coefficients in (D.51).

Lemma D.6. There are absolute constants c¢,c’,C,C’,C”,C"" > 0 and absolute constants K, K’ > 0 such that for
any1 <V <l <Lanyd > Klogn and any ¥ € S™', if A < cn™>? and n > K’ max{d*L, 1}, then one has

/no
< —
2500 C(l * n )

< C/|5|\/ﬂ >1-C"e 4,
{2 — > n
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P[Hcpf;o >1-Ce,

and for any fixed S C [n], one has

0,0
ol

S




Proof. We will use Lemmas D.14 and D.23 to bound the transfer coefficients, so let us first verify the
hypotheses of these lemmas. In our setting, the transfer matrices differ only from the ‘nominal” transfer
matrices by restriction to the stable features at ¥; we have S¢(¥) N I;(¥) = [n] \ R¢(¥), which is an admissible
support random variable for Lemmas D.14 and D.23, and in particular

[(Ps,@Pr@ — Pr) p @, = [|Pr@a’ ®)]], < VA

by Lemma G.10 and the definition of Ry(¥). Additionally, using Lemma D.5, we have if d > 1, n > KdL,
and A < cd/n%/2, there is an event & with measure at least 1 — 2¢~% — L2¢~“"/L on which there are no more
than d risky features at X. Worsening constants in the scalings of n if necessary and requiring moreover
d > K’'logn and n > K”d*, it follows that we can invoke Lemmas D.14 and D.23 to bound the probability of
events involving transfer coefficients multiplied by 1g. Let us also check the residuals we will obtain when
applying Lemma D.23: in the notation there, the vector d has as its {-th entry R,(¥), and so we have bounds
ld]l12 < ||d||§ and ||d|l1 = X}y R¢(¥), which means on the event &, the residual is dominated by the CVd*nL
term in the scalings we have assumed.

The 2 — operator norm of a matrix is the maximum 2 norm of a row of the matrix, and the {® — ¢
operator norm is the maximum ¢! norm of a row. Thus

||(Dz,o

where (We)’; is the i-th row of W', which is ny-dimensional when ¢ = 1 and n-dimensional otherwise. In
particular, we have

1,0
|

2o i=1,..n 2’

and so taking a square root and applying Lemma G.2 and independence of the rows of W', we have

<201+, /@)] > 1—2ne~",
> n

for ¢ > 0 an absolute constant. When ¢ > 1, we can write

1,0
P[”(D’" @

,,,,,,,,,,

.....

where the second line applies Cauchy-Schwarz. Using, say, rotational invariance, Gauss-Lipschitz concen-
tration, and Lemma E.48 (or [Ver18, Theorem 4.4.5]), we have

P[leH s ca+ \/?>

for absolute constants ¢, C > 0. On the other hand, note that |[(W )*T‘i Up 1(®ll2 has the same distribution
as the square root of one of the index-0 diagonal terms studied in TLemma D.23 in a network truncated at
level ¢ — 1 instead of L and scaled by 2/n; and so applying this result together with a union bound and the
choice n > max{K, K’d*L} for absolute constants K, K’ > 0 gives

< 2e7"

/
>C < C’ne "

.....

where C’, ¢/, C” > 0 are absolute constants. We conclude by another union bound

P[H@QO . SC0s \/g)

>1—2¢ " _ C/ne—c’d _ C//LZe—c”n/L.
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We can reduce the study of the partial risky propagation coefficients to a similar calculation. We have

0
|«

w17

7

Sllgeo— g j=1,..n

1

where by construction we have that ¢ > ¢’. In the case ¢ = ¢’ + 1, the form is slightly different; we have

(W€,+1|s).
j

where the inequality uses Lemma G.10. The classical estimate for the gaussian tail gives

Pl{W*) | > \/g} <2e74, (D.52)

for each k € [n], so a union bound gives

||q)€ +1,0 |
X

<1S| max.
1

Sllgee— g0 j=1,...n j=1,...,

[ee]

’ 2
P| max (Wf +1’S) > \/—d < 2ne™?,
j=1,...n iloo n
and we conclude
P (qn‘f”f’ < |5|,/§] >1-2e792,
x Sllgoo— g n

where the final bound holds if d > 2log n. Next, we assume ¢ > ¢’ + 1. In this case, Lemma G.10 gives

0
|«

Sllgoo— g j=1,...,

.....

For the second term on the RHS of the inequality, we write

max ”(Wg T[ ”‘ ” = max max|(Wg)*.T{_1’€ ek‘
Slleo  j=1,..,n keS ]ox

.....

then apply rotational invariance of the distribution of (W*) j and F ‘I-measurability of Tfi;”’ )s to obtain

max maX‘(W”)}Tf;‘l'f'ek| = max max |(W‘]);T2_1"”ek)
j=1,..n keS j=1,...n kESIHTf.(_l'WekH -0
£ max max |g; TS el
j=1,n keS x 2

where g ~ N(0, (2/n)I) is independent of everything else in the problem. We have by Lemma D.14 based
on our previous choices of n and 4

plig|tit e <c|z1-ceent,

and (D.52) applied to g controls the remaining term. Taking a union bound over [n] in these two estimates
and partitioning with &, we conclude

max ||(Wl)*. (T€_1'€,| )“ > C\/E
j=1,e AN 5/ Mleo n
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and thus

P < C/e—d/Z + C”lee_cn/L,

|
Sllgee— g n

where the last bound holds if d > 2logn. Choosing n > KLlogn for a suitable absolute constant K > 0
allows us to simplify the residual terms in the probability bounds to the forms we have claimed. m|

0
|«

Lemma D.7. Thereisan absolute constant ¢ > 0and absolute constants k, k', K, K’ > 0such that forany d > Klogn,

4
ifn > K'max{d*L,1}, A < kn™>2, and e < k’'A (1 + ,/%) , then one has for any X € N,

P >1—e¢

L
{SSC(L) holds at ¥} N {Z|Rg(3'c,A)| < d}

(=1

Proof. We start by constructing a high-probability event on which we have control of every possible propa-
gation coefficient. Forany d > Klogn, choosing A < cn~>2and n > K’d*L and applying the first conclusion

in Lemma D.6 and a union bound, we have
1o
> C1(1+ 4 / —
e 1( n )

and under the same hypotheses, forany 1 < ¢’ < ¢ < Land any S C [n], the second conclusion in Lemma D.6

gives
d
” > Co|S|4f —
Sllgeo—po n

Using Lemma D.5, we have if n > max{KdL,4} and A < K’/n>/?

uw[ay e [L], < Ced (D.53)

@0
X

P < el

L
|«

L

D IRe(®, A)] > d

(=1

P <2e74 4 2oL, (D.54)

Denote the complement of the event in the previous bound as &. On &, there are no more than d levels in

the network with risky features. There are at most Z/@o (7) ways to choose a subset S C [1] with cardinality
at most [d]; using n > e and d > 1, we have

[d]
Z (Z) <1+ [d]n! < 4dn®*.

k=0

In addition, there are at most L? ways to pick two indices 1 < ¢ < ¢ < L. Using n > L, this yields at most

4dn?+21 < 18 jtems to union bound over, i.e.,
d -8d
H > CalSIh S 4| < ce (D.55)
Sllgeo— oo n

0

f| U o

Scn] 1<0<’<L
IS|<[d]

if d > Klogn and n > max{K’d*L, ng}. Denote the complement of the union of the events in the bounds

(D.53) to (D.55) and & as G; taking additional union bounds and worst-casing absolute constants, we have

shown

P[G] = 1—- Ce™.

If we enumerate the levels of the network that have risky featuresas 1 < #; < --- < ¢, < L, it follows from
our previous counting argument that on G, we have transfer coefficient bounds (for any ¢ € [L] and any

<)
no 0,0 _ d
< 1+.,/— D < Co|Ry. —.
e S C10+4 /20, H ¥ o C2lRy, (D)4
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Now we begin the induction. Let x € N,(x). For SSC(1), we have from the definitions

no
<C 1+,/—
02—p> 1( n )Sl

where the last inequality holds on G. So we have SSC(1) on G if ¢ < A(C1(1 + @))_1. Continuing, we

suppose that we have established SSC(¢ — 1) on G. We can therefore apply (D.51) together with our transfer
coefficient bounds to get

lpf(x) - p'(®)||, < C1(1 + \/g)g + CzA\/g Z IRy, (%)

iE[V] i<t

3
< Ci1+ |16 1 CongE
n n

Notice that the last bound does not depend on {. Thus, if we choose ¢ < A(2C1(1 + %))‘1 and n > 4C§d3,

o) = @), < el

we obtain ||p€ (x) — p‘](y'c)”oo < A; by induction, we can conclude that SSC(L) holds on G, which implies the
claim; we obtain the final simplified probability bound by worsening the constant in the exponent. o

D.3.3 Uniformizing Forward Features Under SSC

Under the SSC(L) condition, we can uniformize forward and backward features. A prerequisite of our
approach, which we also used to establish SSC(L) in the previous section, is control of certain residuals that
appear when a small number of supports can change off the nominal forward and backward correlations.
These estimates are studied in the next section, Appendix D.3.4.

In previous sections, most of our results (e.g. Lemma D.1) feature a lower bound of the type n > K
in their hypotheses. After uniformizing, we will discard this hypothesis using our extra assumption that
no = 3, which gives us a lower bound on the logarithmic terms of the form log(Cnng) that appear as lower
bounds on 4 after uniformizing, and the fact that our lower bounds on n always involve a polynomial in d.
Thus, by adjusting absolute constants, we can achieve the same effect as previously.

Lemma D.8. There are absolute constants ¢, C > 0 and an absolute constant K, K’ > 0 such that for any d >
Kdolog(nngCy), if n > K'd*L then one has

L
P ﬂ {SSC(L,n*Snal/Z, Cn~3) holds at 3?} N {Zle(i,CﬂS)l < d} >1-e¢%,
=1

XeN _
n_3n0 1/2

Proof. Following the discussion in Appendix D.3.1,if0 < ¢ < 1 then |N,| < e%198(Cx1/€); to apply Lemma D.7

-1
we at least need A < kn™>/?and ¢ < k'A (1 + 4 /%) , so it suffices to put A = Cn~3 when n is chosen larger

-1
than an absolute constant, and require ¢ < min {1, k'Cn=5/2 (1 + 4 /7,'1—‘]) } Fixing ¢ = n~%n, 2 which again

is admissible when # is sufficiently large compared to an absolute constant, for any d > Kdglog(nnoC),
we choose n > Kmax{1,d*L} and take a union bound to obtain the claim (using here that C( > 1). O

Lemma D.9. There is an absolute constant ¢ > 0 and absolute constants K, K’, K” > 0 such that for any d >
Kdolog(nngCy), if n > Kd*L, then one has

ﬂ {ve e [L],

xeM

P

e @)l - 1] < %}] >1-e,
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Proof. Letx € N, _; -1/. Lemma D.2 and a union bound give
0

[P’[EM e[L]: ||e'®|,-1|> E

< C/Lze—cn/L < e—c’d
2l = <

if n > KdL and d > K’logn. If additionally d > K’dplog(nnoCuy), we obtain by the discussion in Ap-
pendix D.3.1 and another union bound

p| | {EI!.’G[L]:|||a€(i)||2—1|>31} <ol

XeN _, _
n_3r!01/2

Let & denote the event studied in Lemma D.8; choose d > Kdylog(nnoCpy) and n sufficiently large to make
the measure bound applicable. A union bound gives

plecu | {HZE[L]:|||a‘}(3‘c)“2—1|>}l} <o,
XeN

n_3nal/2

Let G denote the complement of the event in the previous bound. For any x € M, we can find a point
X € Nn-Sn’”Z N Nn_3n71/z(x). On G, SSC(L, n‘3n61/2, Cn~3) holds at every point in the net Nn-3n’”2’ which
0 0 0

implies thaton G

vee ], o' - p @), < =, (D56)

and by the 1-Lipschitz property of [ - |+ and Lemma G.10, this also implies that on G

Ve € [L],

_ C
a'(x) - &' (®)|, < 7

Choosing 1 > (4C)?/°, the RHS of this bound is no larger than 1/4. We write using the triangle inequality

e’ @2 = 1] < [lla’ @)z = e’ @2 +[lla’ @)z - 1].

Using the triangle inequality again, the first term on the RHS is no larger than 1/4 for any ¢ on G. The
second term is also no larger than 1/4 on G by control over the net. We conclude that on G

Ve e [L], %

0], -1 <

This implies that the event G is contained in the set

ﬂ {ve e [L],

xeM

ol -1] < 3,

which is closed, by continuity of || - ||2 and of the features as a function of the parameters, and is therefore
also an event. The claim follows. O

Lemma D.10. There are absolute constants c,C > 0 and absolute constants K, K’ > 0 such that for any d >
Kdylog(nngCy), if n > K'd*L, then one has

P ﬂ {Vf € [L], <0/(x),0/(x’)> — cos (p“)(z(x, x’))| < C\/d:;—L} >1-—e,

(x,x")EMXM
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Proof. Letx,x¥" € N _; 1. Lemma D.1 and a union bound give
0

< C/Le—cd < e—c’d

P|3ee[L] : |('(®), a'®)) - cos pO(L(%, )| > C /d:’l_L

if d > Klogn and n > max{K’dL,K”d* K"}. If additionally d > Kdglog(nnoCy,), we obtain by the
discussion in Appendix D.3.1 and another union bound

P U {3( e[L]: |<o/(5¢),a[(i’)> - cos (p“})(z(y'c,a'c’))l >C d3L} <e™¢,

n
= =/
X, X' )eN _1/2XN _
(x,%) n,3n01/z ”,3%1/2

Let &1 denote the event studied in Lemma D.8, and let &, denote the event studied in Lemma D.9; choose
n sufficiently large to make the measure bounds applicable. A union bound gives

P|ESUESU At e[L] : {a'®), a'(®)) — cos ¥ (£L(%, 7)) > C L <e
1 2 n

= =/
x,X')eN _12XN _
(x,%) w3 /25N, 3,172

after adjusting constants. Let G denote the complement of the event in the previous bound. For any
(x,x") € MX M, wecan findapointx € N , 1p NN _; p(x)and apoint ¥ € N, ap NN 5 1p(x').
0 0 0 0

On G, SSC(L, n‘3n_1/2, Cn~3) holds at every point in the net N, _i2, which implies that on G
0 yPp w3 p

and V¢elL], |

P -pl @ < =

veelLl, =

’ =/ C
P -p' @), <
and by the 1-Lipschitz property of [ - ], and Lemma G.10, this also implies that on G

Vvl e [L],

. C ' = C
al(x) - a‘](x)”2 < S and V¢ e[L], |a‘(x) - al(x )||2 < = (D.57)

For any ¢ € [L], we write using the triangle inequality

[{a'(x), a’(x")) — cos O (2(x,x))| < [{&’(x), ' (x)) = (&' (®), 2’ (x))| + |(@!(R), &' (")) - (@' (%), &' (*"))]
+[(a’(®), &' (®)) — cos O (2(x, %))

+ |cos (p“)(z(y'c, X')) — cos (p“)(z(x, x'))|.
(D.58)

Using Cauchy-Schwarz, we have on G

(a3, a6} = (a5, ()] = [l ) = o )l ), < 2o,

with the same bound holding for the second term in (D.58) by an analogous argument. For the third term,
we have on G

(a®), a' (7)) - cos O (£(%, 7))| < C4/ d%_

For the last term, we use 1-Lipschitzness of cos and 1-Lipschitzness of the p'*), which follows from Lemma E.5
and the chain rule, to obtain

|cos O (2(x, %)) — cos p(2(x, x)| < | £(%, %) = £(x,x')|.
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Using Lemma C.5 and several applications of the triangle inequality, we get
2%, %) = £(x, %)) < V2llx = /|| = ||% = #ll2] < V2I(x - ') = (& = ¥,
2V2
< Va2l + VBl - 7, < 22,

n3

and so returning to (D.58), we have shown

|<a[(x), ae(x’)> cos (p(‘] (4(x, x ))| < C\/ &L 5/2 <(C+C )\[

for every ¢ € [L]. This implies that the event G is contained in the set

m e(x)/ a[(x/)> — COSs (P“)(Z(x’ x/))| < C\/[jij}’

(x,x")eMXM {
which is closed, by continuity of the inner product and of the features as a function of the parameters, and
is therefore also an event. The claim follows. ]

Lemma D.11. Assume n, L, d satisfy the requirements of lemma D.10 and additionally d > 1,n > KVL for some K.
Then
P {[lfooll, < V| 2 1=,

p [||c||Lw < «/Z] >1— e,
Define
6w =)+ [ foo 6™
M

N d L
— < _ 52 [2] > 1 _ p—cd
olle-dl e o1

Proof. At some x € M, we note that

Then under the same assumptions

for some numerical constant c.

foox) = W-lal(x) £ g ||a(x)], (D.59)

where g is a standard normal independent of the other variables in the problem. Similarly

fgo(x)—./fg[,(x’)dy""(x’)=WL+l (aL(x)—/ Lix )dp® (x )) g |lat(x) - /ozL(x’)dy""(x’) , (D.60)
M

M M 2

where g’ is also standard normal. With respect to the randomness of W.*! , these two objects are Gaussian
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2
processes with variances ||aeL(x)||§ and ||at(x) - [at(x")du™(x’)| respectively. We next note that
M 2
2 2
!’ [e4] ’ /7 [e+] /7 7’ 2 (o] ’
al(x) - /acL(x )dp® ()| = /acL(x) —al(x)dp= ()| < /”aL(x) - al(x)|[, dp™(x")
M 2 M 2 M

= [lla @} + ot @[} -2 (at), at) duw)
M

< su/a ‘HaL(x)”i + ||aL(x’)||§ -2 <aL(x), ctL(x’)>|
‘ -Gl + (el ~ 2 (@ (), ax) ‘

< sup —(2-2cos B (v(x,x)))

xeM +]2 = 2cos B (v(x, x"))|

where the first inequality comes from an application of Jensen’s inequality. Assuming #n,d satisfy the
requirements of lemma D.10 and denote the event defined in it by G. On G, angles between features
concentrate uniformly around a simple function of the angle evolution function ¢, in the sense that, for all
x € M simultaneously,

|||aL(x)||§ +lat @)} - 2 (a(x), a-(x')) - (2 - 2cos 9P ((x, x')))|

<[llat @l - 1] + lat )y - 1]+ 2 (et (), at(x')) — cos p© v, x)) (D61)

3
<cyJZE
n

for some constant C’. From lemma C.10, there exists a constant ¢y > 0 such that for all v € [0, 7],

1

< oD < .
O<¢ (v)_COL

Using cos x > 1 — x2/2 and the above bound gives

(@YwR 1

1>cospP(v)=1- 21-—
2 2c5L2

and thus

2 -2cos P (v(x,x))| < —.
| e w(x,x)| a0

Combining the above bound with D.61 and recalling the probability of G holding, we have

P 2
0

3
sup [l @) + [l )] 2 (e e), ()| > g + O 2 ﬂ < (D.62)
xeM csL n

On the same event we have

<e™,

P [sup ||aL(x)||§ > 2
xeM

1

_+
272
coL

Thus on G the variances of the Gaussian processes (D.59), (D.60) are uniformily bounded by 2 and
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C'y/ d;—L respectively. Taking a union bound over all points on the net N n-3n:12 gives

—_ d _ d d3
Pl (] {|feo<x)|s§}m foo(®) - / feo<x'>du°°<x')s§ Sy itile
M

XeN ., _
n’3n0 1/2

(D.63)

e—cd >1—¢€ d’

>1- ’Nnﬂnal/z

for some constants, since d was chosen to satisfy the conditions of lemma D.10.
In addition, we see from (D.57) that on the same event, for every x € M there exists x € N __; 12 such
0

that
foo@) — fos®| = |foulx) - / Foo)AE (') — fo(F) - / foo () AU ()
M M

— |WL+1 (afL(X) _ DtL(E))i
C [w,

W, ot ) - o, <

Bernstein’s inequality also gives P H|WL+1||2 > Cy/n] < ™" for some constants. Denoting the complement
of this event by & we have that on & N G, for every x € M there exists x € Nn-3n‘”2 such that
0

Vd
2

’ 3
0~ [t~ o) - [foswranee| < G < YL 2L
M M

2

1o (x) = fo, @], < % <

where we assumed d > 1,1 > KVL for some K. Combining the above bound with (D.63) and taking a union
bound over the complements of &, G gives

’ [oe] ’ d L
P ﬂ {|f90(x)| < \/E} N1 |fe,(x) — /fgo(x YduT (x| < I + d5/2 -
xeM ‘M
>1-e ™ -P[G°]-P[&°]
21 _ e_C/d _ e_C//n 2 1 _ e_CWd.
From the first result, we also obtain that with the the same probability ||C||;« < 1+ V. By worsening the
constant in the tail we can simplify this to ||C||;~ < V.

Defining
2 = o) + / foo (N (),
M

since C(x) — C(x) = fo,(x) — ffgo(x’)dy‘x’(x’), it follows that
M
2 d L g
— - 5/2 [ Z _pmd
P ”C C||Lm$\sz+d "n >1-e¢ .
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Lemma D.12. Let dy = 1. Assume n,L,d satisfy the requirements of lemmas D.8 and D.14, and additionally

1/3
n > Kmax {dzL, (ﬁ) 12/ 5} where K is some absolute constant. x and c, are the extrinsic curvature and

cd

injectivity coefficient defined in Section 2.1. Then on an event of probability at least 1 — e™°%, one has

) <Vd

fGo |Mi Lip
for a numerical constant ¢, and where the Lipschitz seminorm is taken with respect to the Riemannian distance on M.

Proof. We recall
foo(x) = WHal(x).

Let M, denote a connected component of M. Let x1,x2 € M,, and fix a smooth unit-speed geodesic
y : [0, distpq, (x1, x2)] = M, such that y(0) = x; and y(distp, (x1,x2)) = x2. The absolute continuity of
foo | wm, © V follows from an argument almost identical to the one employed in the proof of Lemma B.7, and
we obtain in particular the bound

distyy, (x1,%2) .
|foo (x1) = fo, (x2)| = '/0 ('@, (W) B(y(t)) dt|.

Because y is a unit-speed geodesic, we have for all ¢
Pr,,my' () = (/)Y (#))y'(#) =y'(t),

and so in particular, by the triangle inequality and Cauchy-Schwarz

|fo,(x1) = fo,(x2)| < dist, (x1, x2) sup |[Prpm, (W) B°()||,-

xeM,
This implies
[lal, < sup IPrscw sl
Lip xeM,
Writing
W!=Wlxx* + W (I —xx") = G + H!
we have

WEBO(x) = (G + HY) BO(x) = xx WY B0(x) + HYBO(x) = xfo, (x) + H"BO(x).
Since My, c R™, Ty M, can be identified with a linear subspace of R™ of dimension 1. Since it is also a
subspace of T,S™!, P1_,,x = 0 and hence

% * d *\ TA 1+ ~ 1%
P WYB(x) = Py HYBO(x) = Prop, I - xx )W BO(x) = Pr o, W BY(x)

where W' is a copy of W* that is independent of all the other variables in the problem. Writing the
projection operator as
Py p, = 0105 (D.64)

for some unit norm v, and using rotational invariance of the gaussian distribution several times gives

[l

2||ﬁ°(x)||§g§

~ 1x 2
00, W) -

~ 1x 2
[prwwpel,

2

2 4 2 .
== ||WL+11—~L‘1(x)Pll(x)”§ Pe: SE ||WL+11~L.1(x)”2 g2 2

g% HrL:1(x)WL+1”2 Pe: (D.65)

2

d2 . 2
22 | egen w1 2 2
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where g, is a standard normal variable. The subscript is a reminder that gy depends on our choice of
x. Since we would like to control this norm uniformly, it will shortly be necessary to consider a similar
expression where the backward feature and the projection operator are evaluated at different points.

< e3log(CM*nn0).

Define the net N _; i as in Appendix D.3.1. According to Lemma C.4, |N _, _ip
n=3n, ny

Assume 1, L, d satisfy the requirements of Lemma D.8 and denote this event defined in that lemma by &.
We also define sets of support patterns

J®) = {5 ={li,....JL}

L
Do @) < d}, (D.66)
=1

TN, )= | T@.

xeN _
n_3nol/2

OnE, U {H(x)} c 7(Nn73n_1/2), and additionally for any x € M,, then there exists some X € N _, 12
0 0

xeMy

suchthatx e N _; 12 (x) and 7 (x) € J (¥). The gradient vector at x takes the form
0

Pr W %) = PLaW BO) + (Prm — Prop) W), (D.67)

Note that the dependence on x in the first term is only through the support patterns 7 (x) = {I1(x), ..., Ir(x)}.
We now control the squared norm first term in the above equation uniformly, truncated on &. A calculation
identical to (D.65) gives

~ 1x 242 .
Lo [PradV "), £ et e [wh ] 52 (D.68)

We now show that on &, the supports 7 (x) satisfy the requirements of Lemma D.14 with 6; = d,K; =
Cn™/ 2 with the anchor point in the statement of that lemma chosen to be x. The value of 0; is satisfied
by the supports at every point on the manifold on & from the definition of this event. From the definition
of the stable sign consistency property (SSC) in Appendices D.3.1 and D.3.2, the only features whose sign
can differ between x to x are the risky features, and from the bound on their norm in the definition of

SSC(L, n‘3nal/z, Cn~3) we obtain for all ¢

_ C _ C
Py = Prew) P @), < =5 = (P = Prw) ', < —75

where in the last inequality we used Lemma G.10. It follows that if n > KLd for some K, the requirements
of Lemma D.14 are satisfied if we make the choice & = Esk. -
We would next like to apply Lemma D.14 for every possible support pattern in J(N, __; -12) , which
0

requires that we first bound the cardinality of this set. Note that J(¥) is the . Thus

ol 51 <ta(22)” s

for some C. Using the bound on the cardinality of the net from Lemma C.4, the size of this set can be
bounded, giving
[41

Z( 7: ) < eSlog(CM*nno)d0+Clog(Ln)d. (D69)
i=0

|7(N nong2)

< _
< ’Nn,%ol/z

We can now apply Lemma D.14 with & = &sk to bound the first factor in (D.68), taking a union bound
over all possible supports. Bernstein’s inequality bounds the second factor. We apply Bernstein’s inequality
again to bound the third factor in (D.68) at every point on the net. Using (D.69) to bound the number of
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supports we need to uniformize over (sinceon &, |J {7 (x)} C F(Nn_:;n—l/z)) and the bound on the size of
xeM, 0
the net in Lemma C.4 and Appendix D.3.1, we obtain

o Vx € Nn-3n61/2’ 2 1 2| o2 p
_ = : 2 <
Vx € Nn*3n61/2(x) " Le ||F (X>61||2 ” “2 & =
_ Clog(n)d ,—c% _ —c'd _ ,—c"n
>1 |Nn_3nal/2 (Clog(nd =ct |Nn_3nal/2 el e (D.70)

”

>1 — eSlog(CM*nno)d0+Clog(n)d—c% _ e310g(CM*nno)do—c’d —e¢'n

>1—e "

where we assume d > Klog(Cxy, nng), n > K’Ld? for some K, K’. Since according to Lemma D.8 the event
& holds with probability greater than 1 — e? for some ¢, we can remove the indicator in the bound above by
assuming d > K for some absolute constant K and worsening the constant in the bound. This gives control
of the first term in (D.67) uniformly on M.

We now turn to controlling the second term in (D.67). For some x, choose x € Nn-3n51/2 such that

x € N ; -12(X). Define a unit-speed curve y : [0, 5] — M such that y(0) = ¥, y(s) = x. Since the curvature
0

of M is bounded by «, we have
Vs’ €[0,s]: ||)/”(s’)||2 < k.

Denote by r the geodesic distance between x and x’. Since the euclidean distance between them is

1/2 -1/2
0

bounded by n~3n;"'", assuming n > K for some K implies that r < C’'n™>n for some C’. If we now

3 7K . . . C’ c .
demand n° > C’ which implies i < 35, (2.1) gives

C

= 3.1/27
nin,

for some C > 0. For v*, v* defined as in (D.64) we have y’(0) = v¥, y’(s) = v*. Combining the previous two
results, it follows that

7 C
0% =%, = Iy@ - ol = | [y <ses =
720 n’n,
s'= 2

A straightforward calculation then gives

Cx
3. 1/2°
ndn,

P X, X*
v f—

050" = 3 o* ~ o[, o + 0¥, < o ~ o7, <

[Pz m = P = [|o

If we now use Lemma D.13 to control the norms of the backward features uniformly, a standard bound on

~ 1
the norm of a Gaussian matrix to give P [HW ” >C (1 + 4 /%)] < ™", and assume 1 > x?/> we obtain that

P|Vx e Nn,3n71/2, x € Nn*3rfl/2(§) : |(PTXM - PT;M) Wl*ﬁo(x)‘ < C] S1—ec _p='n 51 _ p=c'd
0 0

Combining the above with (D.70) and using (D.67) and taking a union bound over the failure probability of
& which results in a worsening of constants completes the proof. We can additionally rescale d to obtain a

final bound on the Lipschitz constant of Vd instead of C \/E, which also results in a worsening of constants.
(]

Lemma D.13. There are absolute constants c,C > 0 and absolute constants Ky,...,Kq > 0 such that for any
d > Kdplog(nnoCpy), if n > K’d*L, then there exists an event & such that
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1. On &, we have

I 1( M) < VL

’={

vee L], [(B'),B' ) - 5

~

simultaneously for every (x,x’) € M x M;
2. P[E] > 1-e“

Proof. Let & denote the event studied in Lemma D.8, with Cy denoting the absolute constant appearing in
the SSC(L) condition there; choose d > Kdglog(nnoC ) and n sufficiently large to make the measure bound
applicable. We will need to apply Lemma D.23 together with a derandomization argument to prove the
claim; we appeal to the same residual checks at the beginning of the proof of Lemma D.6 to see that on &;,
the dominating residual in Lemma D.23 under the scalings of d and n we enforce here is of size CVd*nL.
For any subset S C [L] x [n], we write S¢ = {i € [n] | (¢,i) € S}, and we define S(S) = {-1, +1}I51 x
-+ x {=1, +1}I5t for the set of “lists” of sign patterns with sizes adapted to these projections of S, with the
convention {-1,+1}° = {0}. If £ = {01, ..., 0L} € S(S) is such a list of sign vectors and A > 0, we define

Ti(x,S,%,A) = supp (]lpf(x)>zies¢,<(w>z-A)ei) '

which is a sort of two-sided robust analogue of the support of a‘(x): notice that when S = @ we have
Ip(x,S,%,A) = I;(x). We also define

! _ (wt L-1 +1 !
Psralx) = (W P s e )W Ph sz - w P ixsx A)) ’

for a generalized backward feature induced by these robust support patterns. We then define the event!!

il - Al y -1 Oz
|<ﬁS,Z,C0n*3(x)’ﬁS’,Z',COn*‘%(x )> - % Ht”:é’ (1 - %H
&= ) | U j3eemw:
4 4
%eN, 3 Sc[L]x[n] £eS(S) > Ci4jd*nLlog™ n
EN _3 S'C[L]x[n] X'eS(S")
[S|<d,|S"|<d
where C; > 0 is an absolute constant we will specify below to make the event hold with high probability.
There are no more than Z k=0 (”L) <n* ways to choose the subset S in this union, and for a fixed S there areno
more than 2¢ ways to choose the sign pattern . Thus, there no more than exp(10d log 7 +12dg log(1119C 1))
elements in the union, and under the condition on d this number is no larger than n''%. For any instantiation
of these parameters, Lemma D.23 and a union bound give

n (& E) r
3 e L]+ (B s o Bo s @) - 5 | ] (1 - T) > CVdtnL

=t
c ) ~l _oo~0 —, n — (P(m(l(ir -7_(/)) 4 —cd
< PIET+B| 3 € 1]+ (e (B g0 B @) - 5 | ] [1 - F—2222 | > oV <
r=¢

for any d > Klogn and n > K’d*L. Thus, if we set C; = C and enforce d > Kdylog(nnoCy)/logn and
n > max K’d*Llog* n, we have by a union bound

P& U&E] <n.
Let G = & N &;5. For any (x,x") € M X M, we can find a point X € Nn-3ng”2 N Nn_3n51/z(x) and a point
x' e Nn-3n5”2 N Nn-3n51/2 (x"). On G, SSC(L, n‘3n61/2, Cn~3)holds at every point in the net Nn_3na]/2, and there

. - ~{ . . . . .
1To see that this set is indeed an event, use that fis 5. ;(x) is a continuous function of the network weights except with respect to the
support projections; but x - 1, is increasing, hence Borel-measurable, and so the set consists of a finite union of Borel-measurable
sets.
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are no more than d Cn~3-risky features at any point in the net N, _;,-12, and in addition, following (D.46),

we have almost surely on G that all risky features are realized for magnitudes in (-=A, +A). This implies
that on G, the support sets | |jer) [e(x) at any point x € N _; -1,2(x) differ by the support sets | Jyepr) [e(¥)
0

at the base point in the net by no more than d entries, consisting only of a subset of the risky features at ¥;
the analogous statement is of course true for x” and X’. At the same time, notice that on the event &5 we
have constructed, we have control of every possible backward feature inner product obtained by modifying
the supports at the base points ¥, ¥’ at no more than d risky features (each), since, for example, if (p‘(¥)); is
risky, then 1,¢(z)),> corresponds to “turning off” the feature, and 1,¢(3)),» 4 corresponds to “turning on”

the feature. Formally, we have established that on G
< CiJd4nLlog* n.

We can use differentiability properties for the remaining link: following the proof of Lemma D.10, we have

2V2

nd’

L-1 ) ,
Ve e [L], [(B'(x), B'(x)) - 21—[(1_(P (z<xx>))

|2, %) — £(x,x")] < V2|lx = %[, + V2||lx' - %'|, <

so we just need a Lipschitz property for the function q(v) = (n/2) H (1 n1p®)(v)). For this we appeal
to Lemma E.5, which shows that the function ¢ is smooth, increasing and concave; therefore by the chain
rule, the functions ¢¥) are increasing and concave, and by the Leibniz rule, g is decreasing and convex. It
therefore suffices to calculate 4’(0); this is done in Lemma C.16, which gives q’(0) = —n(L — ¢)/(2n), and in

particular |¢’(0)| < cnL. It follows

an (p“>(z<x )\ n qo“)(z(x Y| _ ek
i [P CA ) I G0 | ey
2 2 2

=y =t

so that by the triangle inequality

n (o)
(B'(x), B () - 511( f)

< 2Ci4/d*nLlog!n,

where the residual simplification is valid when n > KL. We conclude that the set

L—- ’
ﬂ {qu] (B'(x), B'(x)) _gl—[( P (L(x, x))) <20, /d4nL10g4n}
=t

(x,x)EMXM
contains the event G, which satisfies the claimed properties and completes the proof (after rescaling d by
1/log n, which updates the lower bound on d). O

Vi e [L],

D.3.4 Small Support Change Residuals

In this section, we prove generalized versions of our pointwise concentration lemmas for backward feature
correlations and the matrices defining the propagation coefficients used in our study of SSC(L).

LemmaD.14. Assumen > max {KLlogn,K'Ld,K"},d > K" log L for suitably chosen K, K’, K", K" and integer
L, and choose 1 < ¢’ < { < L. Define an anchor point x € M and denote I;(x) = supp (a}(x) > 0) for ¢’ < i < ¢.

Choose some 05,Ks > 0 and let J = {Jp,...,]Js} denote a collection of support sets such that each |; C [n]
depends on the network parameters only through the pre-activation pj(x). We define events implying that the supports
at J are close to those at x:

&= [ el <o}, &= (] {I(Py-Piw)p'@), <K}, Eox =8 Néx.

r<i<t <i<t
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Define
e ¢ v
i =p,w'py,...P, WY,

and fix a unit norm vector v, If K; < 1L73/2, 65 < %, then

p []1801( rtt vf||2 < C] >1-e¢ct,
and
P e, 1] < V| 2 1t

For a vector g, gi ~iia N(0,1), defining H' = W' (I - a'~(x)a’"\(x)") for i € [L] and
rillt’/' = PIIH[P]H .- 'Ph'H‘H

we have
P []lsz)K

for some numerical constants c, C.

re:e'_re:e') ” C dL] < pcd
(v -1t ) o] > V] <.

Proof. In the following, we will denote by v € S"~! a fixed unit norm vector and by v, € S"~! a random
vector uniformly distributed on $”~!. When there is no need to distinguish between the two we will denote
either by v,,.

rf(]" || will be first to bound 1g;,

ity, and then apply an e-net argument to uniformize the result (lemma D.20) and get control of the operator
norm. In achieving the first goal, we will rely heavily on a decomposition of the weight matrices into terms
that are conditionally independent given the pre-activations. We will also utilize martingale concentration
to control the terms that result from this decomposition.

Denoting S’ = span {ai(x)} for i € [L], we decompose the weight matrices into

Our strategy in bounding 1g,, l"g‘"v f”z with sufficiently high probabil-

Wi = Wipsi—l + Wipsi—lL = Gi + Hi.

Note that {H L., H L} are conditionally independent given O(Gl, ..., Gt ) (by which we denote the sigma
algebra generated by G, ..., G"). Since the pre-activations obey

pi(x) — Wiai_l(x) — Giai_l(x)

and the features are deterministic functions of the pre-activations, both {al(x), ceey aL(x)} and

{p'(x),..., p*(x)} are measurable with respect to o(G*, ..., G").
We define events

{
&= Ul'@l,<C}, &wxp=6Exné, (D.71)

i={

and aim to control 1g;,,

I“f'T‘/ (x)”. Since the supports J depends on the weights only through the pre-

activations and are thus also G(Gl, e, GL)—measurable, this truncation does not affect the conditional
independence of { HY, ... H! } It will often be convenient to utilize the rotational invariance of the Gaussian

distribution to replace all occurrences of H' in a given expression by W'Pgi1. where W' is a fresh copy
of W' independent of all the other variables in the problem, which will not change the distribution of the
original expression.

For ! <i<{,{’' <j<i+1itwillalsobe useful to denote

T, =PHP,, . .PH, T =P,GP .. PG

121



where we use the convention T lc’}l = FE}l = I. Decomposing the weight matrices at every layer gives

Hrf’;”vl,”2 - ||PI, (G" + Hf) ...P), (G"’ + H"’) vp“2

< > [P M ... P, M 0|, (D.72)
(M!,...M")e(c! H")®, ..., o(GY H")
We next define }
Q'(x) = Pj, = Pix). (D.73)

In accounting for all the terms in the decomposition (D.72), there will be two simplifications that we use
repeatedly. One is

_a()al (v
lla(x)l13

where we used P i(x)-0p' () = [p'(x)], = a/(x), from which it follows that

-W”mm%0=wH%1 )wwmw+Q%wnﬂw=H”%ﬂwﬂu) (D.74)

_al()al(x)
e (2)113

=Hi+1Qi(x)Gi.

p'(x)a’ (x)

Hi+1PL. Gi =Wi+1 I - >
a1 ()l (D.75)

) (Poc"(x)>0 + Ql(x))

We also have
Gi+1P]i Gi :Gi+l (Pli(x) + Ql(x)) Gi

(Pr) + Q'(x)) W'

i (x)]l3 lai=1(x)ll3
||ai(x)||2 ai(x)* ) i Wi+lcki(x)c\fi_l(x)*
_ 17 1 YW : ‘
[PERIE T TR A i) N PRI Y PR TP

. Wi*lai(x)ai‘l(x)*

el @)l e (x)ll,”

and thus

yo_TT Pf,.wfaf-%x)af-l(x)*_ﬁ P e () (D.76)

7 = P e @l @, L e @l fe @,

We refer to such a product as a G-chain. We proceed to expand (D.72) into terms with different combinations
of matrices I“IGJJ and F;_I] 7 There will be 2/~ terms in total, and we denote the set of terms with r G-chains
by G, (with the subscript p € {u, f} denoting the choice of vector v,).

We can clearly label each term by the start and end index of each G-chain, which may not be distinct.

We denote each such term by g(ri’j in o) where
sbZyeeertlr
U/ <i1<ip<izg—2<iy4—2<i5—-4< - <ip1—-2m+2<ipy, —2m+2< ...

<ipp1—2r+2<ip —2r+2<1{0-2r+2. (D.77)

The constraints above ensure that every two G-chains are separated by at least one H' matrix. To lighten
notation, we denote a set of indices obeying the constraints by (i1, ..., i2;) € C;({, ). The maximal number
of G-chains possible is bounded by r < |-(€ -0/ 2].

i in,..ip,) AT€ NON-Negative, we have

[-0)12]
rg‘{yv,ﬂ”ﬁ > S (D.78)

r=1 (il ----- in)ECr([re’)

84
l“j vp” < ey,

1g <
6Kp 2
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Considering first the form of the terms in G, j, using (D.76) and (D.74) and recalling that rg*jl:m =1, we
have
rp [er+l iopiinp—1 ypior—1—1:i2,— 2+1 ig:izyiz—1iip+1gnin:iq yip—1:0"
Siria, i) Hl" Teg Thy Toglug ™ TegTug UPHZ
1g b+l P]l.erlzy (%)
o T (a0l |
iﬁin
r=1 =1 giame (x)*rzmjl—hiz"r“pﬂm pizm (x)
e 1 S s, fem il
_ m=1 k=ioms1+1 2 2
(D.79)
h Dm+2/2m+1/2m
in—1
n skoz”(x)*l"” -1: €
]1 k=i1+1
* 8 -
o lla™ ()|l
iEizril

r=1
_= | | ~ ~P
_a12r b12m+2/12m+1/12m Ciz,il .

The magnitudes the factors in this expression are bounded in the following lemma:

Lemma D.15. For i, by, &, defined in (D79), R, = 4, Ry = land ¢ < k <, 0 +2<j+25i<q<L,
UV <s<t<?

dp < Cas,

Pl > K] < Cle°L,

P (|bgi| > K—] < Clefi,
P[|e?,| > CR,] < 2e7¢d+ecm,

Cle 1 + 27

IA

P ) > |

for some constants ¢,c’,C,C" and d > 0.

Proof: Deferred to D.3.4.
We will use these results in order to bound 1g,

rg{,/vaZ using (D.78). While the sum over most of

these terms can be controlled using the triangle inequality and the lemma above, there is a subset which will
require special treatment since they are typically larger. These are the terms where the leftmost or rightmost
chain is a G-chain (meaning i>» = { or iy = {’ respectively) and they will be controlled using martingale
concentration. The or above is exclusive, since we can bound terms with i, = ¢ and iy = ¢ using a triangle

— o «—
inequality. We denote these three sets of terms by G, ,, G, G ,, respectively, and elements in them by

?””,?"'7”, ?W’ for clarity when needed. Arranging the remaining terms into sets denoted Er,p, the sum
in (D.78) decomposes into

[-0)12] [e-e/2]
Z Z g(rilriz,---,in) - Z Z Z gt (D.80)
=l )G EE) 0y efCp G T8

P
We consider first terms in G, (and hence with iy, = £). We denote such terms by

2

—rp — i &
g(i1,i2/~--ri27—1/€) €90,izr—1,i2r—2 2m+2112m+1112m ini1"

m=1
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We show
Lemma D.16. Forp € {f,u} and R, = \/g,Rf =1
i.

[(e-e)/2] —
&, “w —cd r,—c'
P Z Z p>‘/n <Ce 4 Cle?t (D.81)

= —

g’PeG,p
i .
[(e-0)12]
P Z S| > CR,| < Ce? 4 Cle 't (D.82)

r=2 ?WEBW

for absolute constants ¢, C, C’, and where d > Klog L for some constant K.

Proof: Deferred to D.3.4. -
Turning next to bounding the terms in G ; ,, we first define an event

— - ~ K
& ={ld] <Cyn N {\bisizil| < $}m N {| 1€/| < CRP}
U +1<i1<ip—2<i3-2<(-2 U<ir <t
and from lemma D.15 and a union bound obtain

P [?C] <I3Cet 41 (2e—cd + e—C’”) < Vet 400

assuming n > KLlogL,d > K’log L for some K, K’. It follows that

[(e-0)/2] 2
«— ~ > -
]1? Z 8 rp| = ]1‘3 Z Z aeb[,in—l,in—Z l_[bi2m+2,i2m+1,i2mCiz,l”
(?YPE(E)rp r=1 - (ip,...,i2r-1)€Cr-1(¢’,{) m=1
[(e-0)12]

)

r=1 " (io,...,iz-1)€Cr-1 (¢’ ,0)

-2
]l?afbl’,ibfl,izkz l—[ bi2m+2/i2m+l/i2m Cip 0/
m=1

=02 =0)]2
< ' zi/ ]Lzr_z (Ks )r 1 Ry = ' Z)/ | (K Lf‘/Z)r_1 R, <= (KsLs/z)mR <2R
= N p= s P T sz e =R
r=1 \/z r=1 1- K132
where we used L3/2K; < 3. We also bound the number of summands in 2 by L¥~2 which is

(i2,...,i27-1)€C1(¢,£)
tight for small r. It follows that

Pl D, Dol >2R| <P|llg D) D> 2R +P||(1-15) D, Frp[>0
?V/PE?W’ ?npe?np ?r,peﬁhp
-p [?C] < Co~t 4204 (D.83)

for appropriate constants. It remains to bound the terms in EM, by a similar argument. Defining

g= () tal<kin ) {|Ei3i2il|s%}n N { %}

U<ip<? U+2<i1+2<ip<iz<? U'<ip<ip<{

~P
cizil =
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truncating on this event gives

1z Y %,[<1z D)

gr,p 6671}’ gr,p EEYJ’

gr,p

< <L3/2K5)r \/‘iz < 2\/‘7;Z

and bounding the probability of this even from below using lemma D.15 and a union bound gives

Pl D 5> <P s Y T, 52y e [E] < cot vt

Sip €Gyp Sy €Gyp

Combining the bound above with (D.83) and the results of lemma D.16 and worsening constants, the sum
of all terms containing matrices G' is bounded by

QU

Z P Z g*I>C 7L
Qr, € Ey, ,(C_;,,, gr'peQr,p
Pl D 8 >c(,/‘i_L+Rp) L pe{Crr.Grs) _ -

i Z P Z g'""| > CR,
Qry E{Eﬁﬂf?'w} 1877 €Qrp

SC/e—c% + C”E_C/d-

Bounding the first term in (D.78) using lemma D.18, setting p = f above and choosing d = } gives

p []lgpr rf(:}’vf”z > c] <Clect,

We then apply lemma D.20 to obtain

P []l.g(w rgf” > C\/Z] <Cle .

Recalling (D.71), to obtain our final bound on the operator norm it remains to control the probability of
&Ep. We consider some ¢’ < i < { and assume a’~1(x) # 0 (otherwise le(x)”2 < C with probability 1).
Defining an orthogonal matrix R such that Ra'~!(x) = \’ai‘l(x)||2 21, rotational invariance of the Gaussian
distribution gives

o'} = & rwwia i £ ol [wi,

:,1)‘

i 2 _ i-1 2
vuéi ”P (x)||2 = 2““ (x)||2.

T
Since HWE 1)” is a sum of independent sub-exponential random variables with sub-exponential norm
“Hll2

bounded by %, Bernstein’s inequality (lemma G.2) and D.2 give

le @l < 5|+

Pl @l > c| <P |l @I - o @Ik > 5

; C
ot} > 5|

rn

<2e7M 4+ CleL < Ce 0L
for appropriate constants. Taking a union bound over i gives

”n

P[&] >1-C"Le™t >1-C"e™'L
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for a suitable chosen constant ¢”, where we used n > KLlog L for some K.
We then have

P (165 o, > €] < P [tewes, |15 o], > €] + 2 1o [t o], > o

”n

l"f,}‘”vf”z > C] +P [8;] <Ce L +Cle 't <CVe "t

< P []la(sKﬂ(c)p

for appropriate constants, and similarly

P []l(‘iax

rf;?’” > C\/Z] < Vet

This concludes the proof of the first two statements. For the final result, we consider a vector g with

cn

gi ~iid N(0,1). Bernstein’s inequality gives P [” g”i > Zn] < e”“" and since

d
g =vullgll,

where v, is uniformly distributed on $"~!, we can use D.84 setting p = u to obtain

. . . . C [dL
P [[(r4 @ - @) g, > ovar] < |||t w - Thg ) o, > 555+ B [l > 247]
< e 4 C/e—c’d + C//e—c”% < Cwe—c”'d_
for appropriate constants, where we assumed n > KLd for some K. O

Corollary D.17. Defining
r“(x)=pP,W'p;,_,...P;, WY,

under the same assumptions on n, L in D.14 we have
P [HI’E"N(X)ZJ”2 < C] >1—e L
P [ ) < CVE| 21— et

for some numerical constants c, C.

Lemma D.18. Fix a collection of supports J = {Ju ... Je} for 1 < ¥ < { < L that satisfy the assumptions of lemma
D.14 and denote by v, a unit norm vector. Define an event

o
SH = {]lgb

4 o " 2
rffg—vaz < C} n {]lsb l"fjJH < C\/Z} n {]lao rfj&”F < Cn}.

If n > KLlog n for some constant K then
Plef]>1-Cet

where ¢, C, C’ are absolute constants.

Proof. In the following, we denote by W' an independent copy of W', and by W; 0 the j-th column of this
matrix. Note that due to rotational invariance of the Gaussian distribution we can replace every occurrence

of H' in an expression by WIPSI'—IL without altering the distribution of the expression, which we will do
presently. We can repeatedly use this rotational invariance to give

x bl sl eyl 00+ 15l +1 4
vl lyqvp =v,H P, Ty Ty P, H v
2 P W P, TE T D WD,
—'Up gl-11 Jer HY HY Jer gt —u'Up
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and rotational invariance of the Gaussian distribution gives

T d 2 2 U 00+ 1l +1
0 T T gop = [|Psenop |y Wi Py T T thW( 1)

UpiHT BT
d ~ ' ~ U'+1x /4 ~ 1
= ||P5uvp||§ W( 1 P]NPSWHJ_W " 1"” +2 1"” +2P]‘,, W PS[’+IJ_P][,W( )
d U+l GO 2 el 42 e+l
= ||PS[’va||2 HPS['JFUPIWW( 1)” W( 1) P]é"HFHij F + Ph, W( 1)
and continuing in a similar fashion we obtain
¢ o
GO bl v
oy T o, £ ||Psuv,,||2]_[”135,mpj Wy, 1)” th H < ]_[HP],.W(:J)”2 as.
i=l

where in the last inequality we used the fact that multiplication by Pgi. cannot increase the norm of a vector.
Denoting by {x;} a collection of independent standard chi-squared distributed random variables where y;
has |J;| degrees of freedom, we have

Tl F 2712

[ [[prwin, = [ 15

i=t i=l
Define

4
= {mm |I;(x)] > Z} N {HM < 2}.

i={

Denoting 6 = |J; © Ii(x)| , on & we have

n o on_n
aVl=gmEy (D59
l—[2|]1 ﬁ |I|+6 ﬁ (1| + 2 _ﬁzm L
IR L|L]
i=t i=t i=t
2|6 4\ _ oapq2Ihl _ 5 s
<| |/—= = ul i1}
_l_[ . (1+L)3el_[ o<,
i={ i={
where we used the assumption 6’ < # and assumed n > 8L. It follows that
2 2l
P “xi—| |—|>1&né& Lo -1 > ENE
Dn)(z D " > b I ll_([,Uz ll_e[,zm b I
f 1
<p — =1 > Esnépl.
Ll ILI 24|
An application of lemma D.26 and (D.85) then gives
: 1
pl[TA -1> —|&sn&| < CLe=t < ce't (D.86)
i |]z| 2¢4

for appropriate constants, assuming n > KLlog L for some K. Using D.30 to bound P [8;] we thus have

ﬁ%xi>1+ﬁ%8

i=0 i={

¢

{
5H%Xi>1+n¥

P[]lg o TLOTE 3 s 1+2e4] <P|ig
i=0 i={

o"pPTHJ HTJ
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n

EsNE|+P[E] <CeT +Cle™l <C”e™'T

l—[_ . HZILI

i={ i={

for some constants. Having shown

P [16,0, T4 T4 0, > C| < Cet

for some fixed v, = vy we can now apply lemma D.20 to obtain

e, [ > CVE] < crLet < cret,

where we used n > KLlog L for some K. Choosing v, = e¢; for i € [1] and taking a union bound, one obtains

2
00
FHJ“F >Cn

= |]:D [155tr [l"”*l"”/ ] > Cn] =

R4S A4
|p|:]155 6 v Zﬂaé eTLTE 2> Cn

< ZIP [1155 et e > C] <nC”e"t < Clect

for some constants, where we used n > KLlogn for an appropriate constant K. A final union bound over
the last three events gives the desired result. m]

Proof of lemma D.15. We first consider the terms dx. For k = ¢, the definition of Esk,, in (D.71) gives

0:0+1
1 HFH} P”pe(x)“z 1Py.pt ()],
¢ = 1g = 1g T VN
% a1 (x)l, a1 (%)l

<Ca.s. (D.87)

In order to handle the case ¢’ < k < { , we use (D.74) and obtain that forany2 < j <i <L,

iij () i1j+1 Pj_l(x) irj+1 - P
ril Py, e Hip =Ty, P HIQ™
A a2 P a2, PR o,
. - - Ps QT () ()
d ]+1P]/W PSJ uQJ 1(x)p] 1(.7C) HJPLW{:J) H Si-1 Haj_z(x)f|)| ||2
2

where W is an independent copy of W/, and we denote by Wéz 1) the first column of W/, and we used the
rotational invariance of the Gaussian distribution. Truncating on the event 8;}] !, which does not affect the

distribution of W{:,l)' we have

iij+1 i:j+1*1_i:j+1

||]1 1]+1r HT HY

WP 22
P]] (:,1)“2 _;]18;’/“ tr [PI/T

2 it lep i+ 1
SE]IS;_’,/HH [I“Hj FHJ ]

2
l_,z.]+1 ) < C,

2
ZE]I HI ||

ij+1
&y

almost surely for some constant C’, and the Hanson-Wright inequality (lemma G.4) gives

. 2 ]
1 ,+1"1]+1P W H >1+C
[” Ao We 2 ]
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< 2exp|—cmin "’ z <2exp ( . )
- . . 27 e 17
4”]1 i/j+1rl:]+1*rl:]+l ) ||]lsi,]_+1rg}l rz}.;}l (i-j+1)
/" HT THT ||,
for some constant ¢’ , where we used H]].Si/j+l l"lH]}l*l";{]}l H]l i+l l"l ]H ”1"1 41 < Cn(i —j+1),and the
H

fact that multiplying a matrix by P, cannot increase its norm It follows that

ij+1 ’
l]+l []l i,j+1 FHJP 1)‘ > C ]
r P]/ 1) >C"| < P 1}+1 ij+1 ~f
+ r 1) -1 z]+1 rHj P]]W(,l) ) > 0

ol <)ool 1) onl

for appropriate constants, where we used D.18. Since on Esk, we have

o P ) P/ (x)
PsiQ/(x)——| < |Q/(x)———| <2K,
T e 2@ |, ‘ a2, |,
we obtain
iij p] l(x) ” ’ n
P | Ley, I’HJJP]] H ]72(3{)”2 2 >2C"Ks| < C'exp (_CZ) (D.88)
hence ) n
P [ > K] < Cexp (—c Z) (D.89)

for appropriate constants.
We now turn to controlling the b;;. Note that

9
ll a7 (x)ll2 a(x)" k k k-1 —i 2K L
1g lggy, m—— 1+ ———=Q"(x)W*a""'(x)]|| <3(1+2Kq)T" <3e*™" <9a.s.
5Kp lk_[ 5Kp ||ac1 1(x)||2 lk—z[ H“k(x)ni g
(D.90)
where in the last inequality we used 2K 7L < 1. Additionally, we have
a'(x)" v plx) 4 a'(x)' Py, i 2]+1 p’(x)
gy, ———— B 4y, S T gTip 9 [
el 19 M ael, o el Gl s M@,
a'(x)'P,, - ol
O a8

where W' is an copy of Wi™! that is independent of all the other variables, we defined

i— 2]+1P. Pj(x)
"l

and g is a standard normal variable. In the above expression,

u—PSIZJ_r

20 2 ull3
o2 = Loy, |’ (x)*Py,_, /| llull3 < Leg, Z
Note also that T’ ?T] ! is well-defined since i > j-L
We therefore have '
plie al(x) i, p(x) CK
eyl B e, T VE

129



K
> 5

[2

2K
g n S '\/Z
< Cle™t 4207t < et (D.91)

where we used (D.88) and the Gaussian tail probability to bound the first and second terms in the second
line respectively. Combining the above with (D.90) we obtain

<P []1551@ ”u“2 > Ks] +P

~ K n
P [|b,m-’ > \/_SZ <CeL. (D.92)
We now turn to controlling Ef ;- Ifi > ¢’ we have
-1 j-1 '
H spa’ ™ (x) [1 ska™(x)'P,
p k=i+2 v d k=i+2 i
Fhonn = o oy, T S Yo amgy, W Pl o fog 099)
where g is a standard normal and
; 2
j-1
2 . 2 2
= te, 2 1) oo < v 2 iy o
k=i+2

2 o
for some constant C where we used (D.90). We also have Hl"l SLe vaZ < Con 8;;” . Lemma D.18 and a

Gaussian tail bound then give

j-1 z+1(x)r
Pli, o | > 4
P |lc* > é < [85’@”8111'[ kHQSk lla™ @Ml !
ji+1 nl = 71 gty r’H"J
+P [(Lew, - ]ISoKPﬂS;;l’W) sk | > 0
~ d 1,7\ —cd —c't
<P|y=Cg>+[= +IP[(8’ ')]sz “ 4 Cett D.54
" g ” H e e ( )

for appropriate constants.
Additionally, if i = £’ — 1 we have from (D.90) for some fixed v, = vy

j-1 j-1 v j-1

,_,f _ a (x) - 1 v 43 ( )

|Cj/g/‘ - ]1861(;) n || [/( )” r vf (SKp l_[ ”a[/( )” ]laéKp l_[ Sk S 9 a.s.. (D95)
k= k=+1 2 k=t/+1

If however v, = v, is drawn from Unif(S"™!), if we denote by g a vector with independent standard
Gaussian entries we have

1g —alﬂ(x)* v, L0, L 81
7 u =0y =
et ()]l

”3”2.

From Bernstein’s inequality it follows that P [” g“i < %] < e™“". Combining this with a Gaussian tail bound
g 1

d ’
llgll, ‘[ Pl < 3]+ |g1|>\/1 < oM 42~
2

for some constants ¢, ¢’. From (D.90) it follows that
> w/ﬂ < e 4 e
n

_1 ’
d ! al(x)
“ V| =P e | L artor
k=t'+1 2

for appropriate constants. O

gives

P

~u

P Ci =P
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Proof of lemma D.16. Part (i). We denote the set of all such terms with r G-chains by Er,p. Considering first

<_
the contribution from the terms with a single G-chain, denoted G 1p, We have

% a3,

(g_lff’EGm =0'+1

where

H Sk af(x)*l"g;pvp

¢ - k=j+1
2= 3 te

j=t+1 j=t'+1

Denoting by o(Aj, ..., Ax) the sigma-algebra generated by a the random variables Ay, ..., A, we define
a filtration

F =0 (vy,p'(x),...,p"x), Fi=0 (vp,pl(x), ...,.ptx),HY, ... ,Hf) ,ji=t,. 0 (D.96)

1+i
The sequence {X;} = { 2 Eg,]-} is adapted to the filtration, and since the summands are linear in the zero
j=t'+1

mean {H k} the sequence is a martingale (E X 1| F "= X;). The martingale difference sequence is

-1
i+1 A
kzllzska (x) I"vap

Ai=X;—X;q = Ce i1 = Leuwg lai+1(x)]l,

giving
‘ -1 -1
=P _ — ) , = .4 g
DU = Xea= Y A+ Xe= Y A+,
j=t'+1 j=t'+1 j=t'+1
We cannot control this sum directly because we do not have almost sure control of the martingale

differences. To remedy this, we recall the event 8;;1’“1 defined in lemma D.18, and decompose the sum of
interest into

-1 -1 -1
Z Aj| < Z A — 8’ L A + Z ]].8i71,5’+1Ai . (D.97)
j=0'+1 j=t'+1 j=t'+1 "

Notice that the second sum is also a sum of zero-mean martingale differences. Using (D.93), we have

81 WAV ]l(SZ 104108

2

where ¢ ~ N(0,1) and ]laf Les102 = ]18, Lol = ( I1 Sk) Hrz 1L H < % almost surely for some constant C.
k=i+1

It follows that

E [exp (A]].Si—l,l’+1Ai)| TH] < exp (cnA?) VA, as.
H

and we can apply Freedman’s inequality for martingales with sub-Gaussian increments (lemma G.7) to
conclude that for some d > 0

-1
d
Z]lsi—l,z'+1Ai > \/E <2exp (—C—n) .
H L

=
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As for the first term in (D.97), using lemma D.18 we have

-1 =4
i ’ ¢ n s n
P YA = Tgeani| >0 < 3P [(8) | s crect < cret
H
=t i=1

for appropriate constants, where we assumed n > KLlog L for some K. Combining the above with (D.87),

and using (D.94) to give P Hﬁﬁ? i1l > ¢ ] < C’e™°1 for some constants and applying the triangle inequality,
we have
-1 ,
P Z T >cVd| <P |ﬁe5’,7 | + 1l Z Al >CVd| < Cle=t +C"e T (D.98)
‘gl,pe‘alp j=t'+1

for appropriate constants.
— —
Having controlled the sum of terms in G1,, we next consider a sum over the terms in G, forr > 2.

(_
The argument will be very similar to the G, case, with some additional technical details.

Note that since different G-chains must be separated by an H' matrix for some i and we consider only
terms with i; > ¢’ + 1, the minimal starting index of the r-th chain (indexed by j below for clarity) is
¢’ +1+2(r —1). The sum of all possible terms is thus

r=2
Srr -5 by b. . . g
Z g 4 =day Z b‘]/]rZerZ r[b12m+2112m+1r12m Ciz,i1
TreG,, U+2r-1<j<d, m=1

(il, - ,izr_z) S Cr_1(€’ + 1,j — 2)

4
- ~r
= Z Pej
j=t'+2r-1
The constraints on the indices iy, . . ., ip,—2 are similar to those in (D.77), with the starting index reflecting
— .
the constraint i1 > ¢’ in the definition of G,,. We once again define the filtration ¥/ as in (D.96) for
k-1
1 *r[*l:[/

q:];Iqua (x) Hy Yp

ok &' @]

- k-1 al(x)*rl—l:nwlpl pm(x)
¢ -1 <j< ¢ Noting that d,,b =1 s BT
=1= ing that e, beim = e 1 soarof e,

and EZ = 1g are all

F'-1-measurable, the index constraints imply that

i+1

r ~Tr
Xj= ), By
j=t72r-1

is ¥ '-measurable and thus the sequence {X:} is adapted to the filtration. be,i11,iy_, is a linear function of

the zero-mean variables H' for any choice of i5,—», and we can replace H " with WIPSf_u where W' is an
independent copy of W' without altering the distribution of X!. Since by, for k < ipy—3 is independent of

the W' for any choice of [, m, it follows that j; , ., is also a linear function of the variables in W' which have

zero mean. Consequently
i

EX|F™ = ) Bi=X

j=+2r-1

hence {X;} is a martingale sequence. Defining martingale differences
r _ r r — 5T
Aj=Xi = Xi 1= Prin
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we have

¢ -1
Z pr = Z Al (D.99)
j=t+2r-1 i=0/+2r-2
We define an event &} € ¥ by
~ r Ks ~P d
=0 0 [Pl =l 0, ] <)
&\ = eSSl e B (D.100)
it ) p'l (x
ﬂiQi {]lg,pr FHJPF]—l —”"‘irz(x)”z ) < CKS}
for iy > £’ + 1 and decompose the sum in (D.99) into
-1 -1 -1
DUoNl=| DL A -tgaAll+| D 1gaAl. (D.101)
i=0/+2r-2 i=0/+2r-2 i=0/+2r-2

In order to control the second term, we note that

. r_ 14
]lSIA—lAi - ﬂglA_lpf,H—l

=lgi-1dy
A
(1'1/-~1i2r—2)€cr—1 (f’+1,i

=114
gi-tite

(i1,++-/i2r-2)€Cr-1 (£ +1,i-1)

itigp—n+1

_ ivri—1:ip,_o+1
et = PRHIT

and using T
gives

where ¢ ~ N(0,1) and

-1)

r—2

be,i+1,iz l_lbiz

m=1

-1

a[+'1 (x)"l"

) .l
m+2,12m+1,12m = iy iy

itin,_p+1 ) in,_
Hy PP 2(x)

q i+2sq
1g =

6Kp

d
]lalAflA:' = Ug

r-2 .
«[]0b
m=1

a1 (@)ll; [|a2-27 ()],

12m+2,82m+1,i2m Ciz,il

4 P]<i)W1P5i—lir;;i2y_2+l where W' is an independent copy of W'

i—1tin, _5+1 ;
. Pgiau Ty 22 Piy, L, p2r-2(x)
in,_n—1
N N o,
n Sbkpﬂsg q| %L r=2 . -
q:H—Z (il"";izr_?) * H bi2m+2ri2m+1/i2mCiz,il
GCF]([ +1,l—1) m= 2
i—Tiiny_p+1 ;
2 -1 HrHJ ' PJ"erZPZZ”Z(x)Hz
/ ; =R
= . 2
S n ILaprmszAfl l_[ Sq ng =2 _ )
q=i+2 ecgl'l,&;:%rl—lg)l) * k. 1bi2m+2,i2m+1,i2mciz,i1
r—1 = =
-1 Hri—lzilp ) 71‘01‘1—1(;\,)”
29 | TT = 12r-2 _ITHT " n P
£ i-1 Sg|deL max 1 i-1 —
< \/: SakpﬁSA g=i+2 q i<iol SaKPOSA ”an 2(")”2
- - r=2 .
*+  max 1 i1 |Disisi ) max 1. i1 |C, .
1'1+2Si2§i3$1’—1( EoxpE b ih<ir<ic1 OokeNEL [Tiaiy
-1
VdL K\ VdL r=1
<C—L¥2[=2] =C— (LS/ZKS)
a.s. n \/Z n

In the last inequality we used the definition of &} and the assumption L3?K,

E [exp ()\118271Ai)| Ti_l] < exp
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and we can apply Freedman’s inequality for martingales with sub-Gaussian increments (lemma G.7) to

conclude
r=1
> (L3/2Ks) JiL
n

It remains to bound the first term in (D.101). Using lemma D.15, (D.88) and taking a union bound over
i1, i2, i3 in (D.100) we have

-1
]lagl Ai
i='+2r-2

P < 2exp (—c%) . (D.102)

”n

PlEL] 21— CLlect - CL2 (et ) 21— Cre "t - C7e

where we assume n > KLlog L and d > K’"log L for some K, K’. An additional union bound over i gives

-1 -
Pl > - 107> 0‘ < 2pfEr) | sie (et e sor(e o)
i=0+2r-2 i=1

for appropriate constants. Combining the above with (D.102) and recalling (D.99) gives

4
~ =1 [dL x ,
P Z ol > (L3/2Ks) - Ce™L + Cle™
j=t+2r-1

for some constants. L*?K; < 1 implies

[(e-0)12] [(e-0)/2]-2 32 || €-0)2]-1
32 \ 7 3 ( 3/2 )r s |1 (LK)
; (L KS) - 132K, ; 132K, = 131K, T <2.

A final union bound over r and a rescaling of d gives

[(e-e)/2] - [e-er2] -
P T >A[=]| =P Pyl >—
VZ:Z: ‘g‘;a " rz=2: j=l’;rl Y " (D.103)

n Y _amn _
SCLE_CL +C'Le CdSC”E L CM"eC d

for appropriate constants, again assuming assume 1 > KLlog L and d > K’ log L for some K, K’. Combining
the above with equation (D.98) and worsening constants gives

[(e-e)/2] —
< we —ct r,—c’d
P Z Zg >w/n <Ce L +Ce™"

r=1 <g—,€<5r

for appropriate constants.

-
Part (ii). We consider terms in the sets G, (with iy = ¢’ and i, < £ —1). In contrast to the previous
section, the bounds on these terms will differ based on the value of the p subscript (denoting whether we

_)
use a fixed vector vy or a random vector v, ). We first consider G1,, noting

-1
<lp _ ~ ~p
2, 8=
(g_1'pE(C_;lp =t

Lemma D.15 and a union bound give

-1 -1 -1
~ ~ d ) —cl A o
p ﬂajSKmﬂHe, <cn() <cy 2 z1-LCe CL—L(2e cdo _ C")
= =t =t

134

~U
Cj,f/



C// _C///n _2e_cmld0

for appropriate constants, where we assume n > KLlog L and dy > K’log L for some constants K, K’. With
the same probability we have

Z T < Z |§""| < CLK,R) < CR) (D.104)

4
§eGy, Fpeclp

do
R) = ,/7, R} =1
and used LKy < 1.

We next consider sums of terms in E’)W for r > 1. In controlling the sum of these terms, the proof
will proceed along similar lines to the previous section. The main tool we will be utilizing is martingale
concentration. Recall that since i, < £ —1 and every two G-chains are separated by a matrix H', the starting
index of the final G-chain is no larger than ¢ — 2r + 1. We thus have

where we defined

r=1 {=2r+1
=2r,p _ ~ ~I P
Z 8 P = Z Aiy, l_[ i2m+2,12m+1,12m 141137] C] [7’ - Z
TEC,, U<j<t-2r+1, m=2 =t

(i3/ ce /izr) € Cr—l(j +2/€ - 1)
Define a filtration
Fl=¢ (vp,pl(x), L pt™), Fl=0 (vp,pl(x),...,pL(x),He, L HETY et +1]

(note the reversed indexing convention compared to the filtration defined in (D.96)). Since ﬁ;’p is Fl-
measurable (as can be seen from (D.79)), we can define
¢

=25

j=t—i

and it follows that Xl.r’p is ¥ '-measurable. Recalling from (D.79) that

_ h @b )Ty Pl ()
bi4,i3,]' = Ly :
pk=i3+1 ||“l3(x)||2||"‘]_1(x)||2
and hence ﬁ;’p is linear in the zero-mean variables H'*!, we have

! {
PG Sr i _ ~ >
B =E 3 AIF = D0 E Bl =X
j

=t-i-1 jet=i e j=t=i

and thus the sequence {X op } is a martingale with respect to this filtration. Defining martingale differences

A:’p = Xl.r’p - X! ; p =7, e P the sum of interest can be expressed as

{-2r+1 =4
Z - Z NG (D.105)
i={ i=2r-1
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We now define an event which we will shortly show holds with high probability:
{|ﬁi2y | < KS}

r=1
~ Ks
ﬂﬂ {|bi2m+2/i2m+l/i2m| <
m=2

VL

- d
' ﬁ{c;‘ﬁ,’sc 1}
g1 = n : (D.106)
(i3,..,i2r)€Cr—1 (£=i+2,6~1) ig=1 . eein10it2
kzl;[+1ska’3(x) g Pl 2 VL
N4qlg - <CVL
o la® (%)l

Al Hpsl—il Q][—ipé_i(X)”z <K
Eskp i = s
et (@)l

Truncating the martingale difference on such an event gives

e _ STp
182‘1Ai = ]182‘1;7(_1‘ = 182‘1

r—1
B ~ ~ -
Aip, | | b12m+2112m+1r12m bl4,13,l’—l Coip

(13,0027 )ECr-1 (£=i42,0~1)  m=2
=1 ig—1 ald (x)*rzfgl}l:l’—wlPﬂ_ipé’—i(x) ) P
= ]18271 ain l_[bi211x+2/i21r1+1/i2m ]186Kp 1_[ Sk || ai3 (x)” || a[_l‘_l(x)H C[—i/f’ = O-pg
(3000127 )ECr 1 (£—=i42,0-1)  m=2 k=iz+1 2 2
for a standard normal g, where we used

e G N - p' )

l—-13—1:€—z+lp o P : — r13—1:€—1+2P] . H[—1+1P o :

HT a1, 1T o T a1 @)l
0—i =i

_ pis—Llil—i+2 0—i+1 P 4 ireivn 7 =i+l , p(x)

= FHJ P]l H Qﬂqm = HJ P]HHW Psé’—u_ Q]f*i

lla=1(x)ll;

—i+1

with W' an independent copy of W *! and we have defined

29,
\/; Lgi-ings,
P— .

ig—1 . .
; —1:0—i+2
i3 113
k:i3[+15ka ()T 7 Py, i

r=1
. b ) . gP

Aiy, H b12m+2/12m+1/12m C[_i,[/
(i3,...,i2r )ECr—1 (£—i+2,{-1) m=2

o

X ”Psl—u Q,zfz'pf*i(x)ﬂz
[lat==1 @),

lla=@ll,
Note that from (D.106), if we define

the standard deviation o? can be bounded as

oF CK% & r g CRy (L3/2K )r—l
& e\ P
n

where in the first inequality we used a triangle inequality, bounded the number of summands by L?"~2. In
the second inequality we used L*2K; < 1.
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Writing the sum in D.105 as

=4 =4 =i

r,p ) r,p ) r,p
oA 3 (1-1gm) A <] D 1ganl?],
i=2r-1 i=2r-1 i=2r—1

and recognizing that the second sum is over a zero-mean adapted sequence that obeys

cnA?

———— | VA,a.s.
Rf, (L3/2Ks)2r—2 )

E [exp <A18£_1A1)| Ti_l] < exp (

an application of Freedman’s inequality for martingales with sub-Gaussian increments (lemma G.7) gives

- - _p
P[> 150407 > R (L3/2I<) < Dex < 2ecn,
=271 o ’ i P 2Laj | as.

Turning now to controlling the probability of 82‘1 holding, we use lemmas D.15, D.18, the definition of K g
and a union bound to conclude

P[(E5)| < 1PCeet 4L (207 4 o) 4 120 E < Cren e

for appropriate constants, where we assumed n > KLlogL,d; > KlogL for some K, K’. Combining the
previous two results gives

[|e-2r+1 —1 = r—1
~T, r,
P > B> R (122K) =R || 3 A5 R, (172K
L i=e i=2r—1
[ e=¢ 1 =
r.p 3/2 r.p
<P D) 1g0a]”| > Ry (1K) [+P | Y (1-1g0)A7%] >0
[i=2r—1 i=2r-1
<27+ LP [(82_1)61 < Ce™t 47
[(e-0)/2] .
for some constants. Noting as before that ), (Ls/ 2Ks) < 2, using (D.104) to bound the terms with
r=2
r =1, and setting dy = d; we obtain
[-0)12]
P Z Z g > CRy| < LC (e_c% + e‘cldl) <C (e_c"% + e‘cmdl)
r=2 ?V,pear'p
for appropriate constants, where we used again n > KLlogL, d; > KlogL for some K, K'. m|

Lemma D.19. [HH]94] Given a semidefinite matrix A, for any partitioning

A;n Ap ... Ayp
Ay Ap

A= .
Ap App

b
we have ||A]] £ X ||Ai]l
i=1
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Lemma D.20. Given a semidefinite matrix A and unit norm v, if

Plv*Av < C'] > 1-Ct’ exp (—01%)

2log(9)¢
C1 4

and n > then

PlIA] < C"€] > 1-C"e" exp (—c'%)
for some constants ¢, c’,C,C"”,C".

Proof. We partition A into blocks of size <* for an appropriately chosen c,. There are é such blocks, and
we similarly partition the coordinates {1,...,n} into CL sets Ki = {1+ (i —1)%* : iZ*} fori € [é]

We proceed to bound the operator norm of the diagonal blocks using a standard e-net argument [Ver18].
The set of unit norm vectors supported on some K; forms a sphere S . We can thus construct a %-net N;
on this sphere with at most ¢!°6)27 points. A standard argument gives

|Aiill < Csup [[x"Ajix]| .
xeN;

We control the RHS by a taking a union bound over the net, finding

P |sup |[|[x*A;x|]| < C'| =P

xeN;

sup [[x"Ax|| < C’
xeN;

>1-|N;| ClPexp (—cl%) >1-Cllexp ((10g(9)cz -c1) %) .

We now choose ¢ to satisfy log(9)c, = %, and the blocks will still have non-zero size because we assume
21%1(9)‘]. Taking a union bound over the é blocks and using Lemma D.19 gives

A
2
Al < > llAul < Ct

i=1

w.p. P >1—-CtP* exp (—c%) for some constants ¢, C, C’. O

Lemma D.21. Assume n > max {KL logn, K’'Ldy, K”}, dp 2 K" log L for suitably chosen K, K’, K", K"'. Define
g as in Lemma D.14. For x € S™~1 gnd

Bl = (w“lpth " w“QP]M) ,

denote _
di = |I7(x) e]1| s d = (dll e rdL)r
and dmin = mind;. We then have
1

P Tg,

—12
gy, v s [« £

< e—cmax{dmin,l}s + e—c’% + e—c”db

i (—I1/2
al, a]
111y

for absolute constants c,c¢’,c”,C,C’,C"”,C", where the event Esk is defined in lemma D.14. Other useful forms of

this result are
_11/2 _
d” +CL <s, d>
1/2

P | 1esx

gl - ﬁ"(x)”2 > CVAL+ CJLns (Lzs + @ bl

L
< e 4 e—c’% + e—C"db + Ze—csimax{di,l}
i={
where s; > 1.
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Proof. Denoting by {H'} the weight matrices projected onto the subspace orthogonal to the features as in
lemma D.14, we define

~{
ﬁH(x) — H“—l*ﬁi](x) — (WL+1PIL(X)HL . .H€+2P H€+l)

Ips1(x)

Jes1

ﬁHJ H€+1*ﬁHj (WL+1P HL H€+2P Hl’+1)

for¢ =0,...,L—1. Note the additional matrix compared to the standard definition of the backward features.
Control of the norm of the difference between them can then be used to control the backward features and
Lipschitz constant of the network. Note also that H! may not be a square matrix (and indeed in the case of
the Lipschitz constant it will be rectangular). We denote the number of columns of H*! by n,_;.

Writing

~t =t ~t N =t =t -
Lese By = B' )|, < e By - ﬁH<x>1|2 + Loy [Bly ~ Brg ), + Leue (D107)
we begin by bounding the first term. For I’ &l (x), H J defined as in D.14 and
Q'(x) = Pj, = Py, (D.108)
we have 5 )
—~ ~f . .
o s oo B R
L 2 Lo
=1g,, wik+l Z rﬁiHQi(x)Hirz}fzhl Z b;
i=(+1 2 i=0+1 |l

We first bound ||b; ||%. Repeated use of the rotational invariance of the Gaussian distribution in a similar
manner to the proof of lemma D.18 gives

; ; . 2
Ibill; =T, [WTH T Q () HT) L+ i
k ¢
“”Hﬂ yLew P “Hu >]185KQ’(x)|| HH(fl)]laéKP]k ||H+1
. z' N
=& () =g,

~ k
where we defined H:'1 = \/% WLt Denoting by W an independent copy of W¥, rotational invariance

(1)

gives
2
d
Py, ) =

~ k+1 2
B S ||W(1,:)]1851< ;Xk

where x} is a standard chi-squared distributed random variable with |suppdiag1t,gé,< P ]k| degrees of freedom
that is independent of all the other variables in the problem, and similarly for &y, (y).
A product of such terms was bounded in lemma D.18, from which we obtain

L i1
n _ch
5 [ 1énw [ ] & >cn|<et. (D.109)
k=i+1 k=0+1
We similarly have
k+1*
[ 1@, < e QWS

Recalling (D.108) and since '
= |suppdiang(x)|
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we recognize that

2

~ k+1+||2
]18(31< ;Xl

||]18m< Q)W

where y; is a standard chi-squared distributed random Variable with d; degrees of freedom. If d; = 0 this
variable is identically 0. Otherwise, d; > 1 and Bernstein’s inequality gives

Plx; —d; > Csd;] <2e% = P[x; > C’'sd;] < 2% < 2ecsmax{dil} (D.110)

Herl

for some constants and s > 1. Clearly this result also holds if 4; = 0. Similarly, @)l

is bounded almost

1
a, ) >C;t

e~ for t > Kny_q for some K. Combining these results with (D.109) and taking a union bound, we obtain

L 1 L
2, il > C—t > sid;

i=0+1 i=0+1

surely by % Xe+1 where xy41 has ny_1 degrees of freedom. Bernstein’s inequality gives P “|H b+l

L
<2 Z e—CSimaX{di:1}+2L(e—C’t ’ —cng) <2 Z —csymax{di 1} | p=c"t | p—c""}
= i=0+1

(D.111)
for appropriate constants, assuming t > KlogL,n > K'Llog L for some K, K’, which can be simplified to

e

< —cs max{d;,1} =" ngt
2,%6 +e +e” (D.112)

o
T

[z||b||2>c ts z .

<2Le % 4+ e‘C”l"” +e7 "L <ems p et 4 o

assuming s > K” log L for some K”.

We next bound <b,, b; >| for ¢ < j <i < L. Once again using rotational invariance starting from the last
layer weights, we obtain

(bi,by) =1g, WHITE* (0)Q (0 H Ty Ty, HI Q ()T ()W !

an -1 j=1:0+1% s 1 *
=5 Les l_[éfk oH{ QBT F T 7 H QI Ty ™ () '
k=i+2 [ ——
~@i-1i-1

(where we interpret an empty product as unity). As before, we find using lemma D.18 that

L
P Loy [ | énw>Cn| < et (D.113)
k=i+2

We proceed to bound the remaining factors in <bi, b ]->, by first writing

<bi,bj> 118‘”(2 l_[ élk )HZHQ (x)H! i pi-1i- 1H]*Q](X)I'Z]+1*( )HIH*

k=i+2
1:7-1 ]* ]+1>(— 1:7+1
ey 1_[ 51k(X>ZZH<1k>S’<H A TTTHG s i [
k=i+2 i=1k;=1

where »/*1/+1 = Py, s ”Z*Hé*ll* and s, € {1, 1} are the signs of the elements in Q" (x) form € {i, j}. Inthe

above expression, k, index the entries on which diagQ™ is supported, and we denote d,, = |suppdiang|
and use the permutation symmetry of the Gaussian distribution to set these to be [d,,].
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~jrl —jl —j ; ~1:0+1
Ifi > j+1, defining H]Jr =W’ Pgj. where W isan independent copy of W/*!, with I“IH T ’ denoting

the matrix F’ 1“1 with H/; a, ) in place of H a, ) we have
S— i-1:j+2 £+ Tt gt ||, i
(1) ? Lews l:[+<51k x)kZ ZHEMHZk JTiag Py (H) =BGy ) @ B G ]
bi, bj) = B B ]
1 ~i—1:0+1 =T+ 1% o i j+1x L+l
+]165K2 H 5lk<x k;_ ]Z_Hﬁrk)ka Jug T H o He u I
(D.114)

n ij ij
5 (A1 + AL ) )

where we used the invariance of the Gaussian distribution to reflections around the mean, {H"}
variables and the sign variables {s km} to absorb the

W" Pgu-1. |, and the independence between the \W

latter into the former. We first consider the term

dj
J+1 gyjij -1 g /* j+1x
gy ) H{ @ HE L H
d S =B}/
ijd 1 i—1:j+2 =B, i+1:+1
AL L ey ) I Y T P : Loy 171
ki=1 1gp/* jH+1x S————
]ISOKZHU )@ i H( k) H(k 1) =B
=B
iB;f
Lemma D.22 gives
[[B47] > €| = [ne,y Ju15+1], > €] < c7e"E. (D.115)

<7

We next consider B;’j . Writing
j+1 1yyj* +1x
: ]lgbKZH @H], Po W)

z/ j+1 j—1gyi* j+1x
= ﬂabKZH(l )q) H( k)H(k 1) (1)

2 j+1e . = 1
First, since the variables {W(k 1)} are independent of {]lg(sKH(l,;)CD” H (k) (Ph)(k k)} a Gaussian tail

bound gives
—ed (D.116)

2d 1 2
Z]l&sx (H(l @/ H( ki) (Pff)(kj,kj)) e

-1 j* ]+1*
ZH(l D H] H| >
]—1

for some constants and d > K for some K
Two applications lemma D.22 give

d.:
1 ’ 141 g1 2
<Z|p [HSDK (H(lri)q)j] H(:,kj) (Ph)(kj,kj)) > Cnt

d;
2
-1 gy
Z]lgbK (f{ @ H] o i) > Cdjt| <
k=1 k=1
<d; (e_c% + e_c,t) <e 't e

assuming ¢ > Klogn, n > K'Llogn for some K
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Combining this bound with (D.116) we obtain

P wlddt rn 4
P )Bé']| >Cr | s el ret 4o (D.117)

for appropriate constants.
We now turn to bounding B;’] . Define by 6] a matrix such that 6{11; = |Qfz b(x)|. Then

i,j d i j+1%
B & mefl yPs @ H Q Py Wi

In order to bound this term using the Hanson-Wright inequality, we first note that since

HPS]-Lqﬂ:f*le*@’PSﬂ ||rf £

< 1| <

Hr] 1:0+1#

),

||PS,Lq>H 1HJ*Q PSJL d

”(D]/ 1y

o o

we can use lemma D.14, a standard e-net argument to control the operator norm of a Gaussian matrix and
a union bound to obtain

{||]15M<PSjL(Dj:i_lﬂj*a]stl < CL}
P e 2 ) >1-et+e " >1-e°L.
N {H]IS(SI(sti(I)]'] H*Q Py ; <CL d]}
We also have
d;
j+1 7i-1Eri* ) j+ls 2 i-1pivey! 2 ¢ —~ JAlHL =Tl T
-l];r W(l )PS]L@ H Q PS]LW( 1) = ;tr PS]'L(I) H Q PS]'L = g ek]_PSerHJ FHJ H Ek].
w k=1
and using lemmas D.14 and D.22 gives
: E+1 j-1:0+1 dj
—~t jil+1 * *»\ _cn _on
P2 %k PsTiy Ty He| < C| 2 1-dje™t > 1-¢E,
ki=1

assuming n > KLlogn for some K. Denoting the union of these two events by G, an application of the
Hanson-Wright inequality (lemma (G.4)) gives

” 2Cd, n?s?
P []lg |B;’]‘ > sy + T]] < Cexp (—c min{LZd2 nz‘z }) (D.118)

for appropriate constants and s, > 0, and an additional union bound gives

y 2Cd, n’s3 ]
P “B;]' > sy + T] < Cexp (—c min{ 2 nsz}) +e L. (D.119)

L%d;" L
We next turn to bounding ‘B 11] | Rotational invariance of the Gaussian distribution gives

di
i i-1:j42
By = Moo ) ik i oy~ Pt = ﬂﬁakzﬂamwk b1t
k=1

1 1 j+2
Py 1)“

l]+2

since Pj,_, F Py, and W(k 1) are independent.
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Since H'} Wél,k,-) are both sub-Gaussian with sub-Gaussian norm bounded by %, the product of two

1 k )
such variables is a sub-exponential variable with sub exponential norm satisfying ”H Hlk,)WEki 1)||¢ < % for
R ’ 1

some constants. Thus the first sum above is a sum of independent, zero-mean sub-exponential random
variables, and Bernstein’s inequality gives

1282
p > 51| < 27Nt 1) (D.120)

i 1 e
ZHE;ki)W(ki,l)
k

for s; > 1 and some constant c.
i- 1 j+2 i—1:j+2~
Py ‘2 < ”]lsb r

Hy €l ” we can apply lemma D.14 to obtain

Since H]lgbKPL r,

i— 1]+2

P ”]IS(SKP], r P]]+1( 1)” > C] <Clect

for appropriate constants. Combining the last two results gives
n2s2
p HB;’( > Csl] < pemin{Th e} | pmc't (D.121)

for some constants.
Combining the above with (D.115), (D.117) and (D.119), we have

2.2
¥ Zd i dd it — i ﬁ ’ ” =" mm{urﬁ} "
p |A¥|2C(s2+—’+V 1)y | < eemmhmst | p=cp 4 - i) et (DA22)
n

L+e“%+e
n
~i=1:0+1 .y

In the above proof we assumed i > j + 1. If instead i = j + 1 we simply set l"lH T = F’I_;}]'“l in the

expression for Ai’j in (D.114) and we have (b]+1, b; > A]+1 J
Le+1 xp i
We now turn to controlling the term A’ " Sincei > j,H = W(k yPsi-1eand Pgi- ur;J v l"] . Hé )
]

is independent of W(ki,:), rotational invariance of the Gau551an distribution gives

~i—1:0+1 * * i+1x% N ]
PyiTyy T HE (L BG [l], (D.123)

(kj,1)

z/ d 1 ~1
ZHH—’C) kl]lsbK

=

iCi iC;’,j
We bound |C!| using (D.120).

Jj j+1x ‘ ~ j+1 ~ j+1 )
It remains to control |C | Since H k1) = (PS]L)(k/_,k]_) W(1,k]) and W(l,k,) are independent of
~i—1:4+1 j—1:0+1x

(PS/J.)(k]_/k]_) HPS,- ulyg Ty 7 Hé* il , the second factor in (D.123) is also zero-mean, and it follows that

z 1:4+1 1:041% % j+1
Ty Z (Psu)(k k)”PSl ulpg F] H] W(1,kj)
P < Cle
2d =i- 1 t+1 J=1:l41x % 2
J Z ]18(3K (PS]L)(k k ) ||P51 1J.r r J H( k])

Lo+l eri ~i—Ll+1 s |2 :
for some constants and d > 0. Since ‘P5, ul"ij " 1"] i H] H ! Hl"] i H] applymg
lemmas D.22 and D.14 total of d; times and taking a union bound gives

L6+ eis |2 diLt n ' i ,
ZHSOK (PS]L)(k k)||P57 ul"l ’ F] Lt Hé k)’ C]— < d] (e_cZ +e ¢ t) <e 1L +e_Ct
]

k=1
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where we assumed n > KLlogn,t > K’logn for some constants. Combining the above three results with
(D.115) and taking a union bound, we obtain

i,7 Vd'dnf—lLt ’ ” " 7 ﬁ
P |A12’]' > Csl—] T
n

for appropriate constants.
Taking a union bound over this result as well as (D.122) and (D.113) allows us to bound the inner product
by

. {7125% }
—cminy —— 1S ' —
<e e P cd

P e ‘L +e +e

d; \/djdng_lLt)

|<bj,b]‘>| > Cnsy (Sz+;+ "

(D.124)
for some constants, again assuming n > KLd . At this point we obtain a bound on the sum of these inner
products that will be useful in an application where the {d;} are expected to be small. Subsequently, we
will derive a different expression that will be useful when they are large.

diS _ d]'LS

We now choose s1 = 5,80 = =, t = w"—_l for some s > 1, which gives

P < (Cle ¢ min{d;,d;}s + C//e—c’% + C///e—c"d

n

diLs d; Ldd;
|(bi,b;)| > Cdis (JT v L f)

for appropriately chosen constants. Note that if d; = 0 or d; = 0 then ’(bi, b ]>| is identically zero, hence
we can replace the term min{d;, d;} in the tail above by max{1, min{d;, d;}} and the result will still hold if
di=0ord i = 0. Lower bounding the second expression by dmin = mind; gives

1

. _n .
< Cre—cmax{dmm,l}s +C"e T £ C"e¢ d.

P

n n

2d;L Ldd;
|<bi, b]>| > Cd,»s( /o8 + ])

Recalling the definition of d in the lemma statement, an additional union bound over the values of i, j
in the expression above combined with (D.112) gives

—_12
By - Bt > s uaulf”d,‘#@ [, ..

Pl
Esk 12
P N - 2d;Ls  [Ldd; L
< Pllex|Pug —ﬁH(x)H2 >Cs ) di|——+\—F|+Cs ) di (D.125)
] i,j=+1,i%] i=0+1
< 12 (C'e_c max{dmin 1}s 4 C7p=C'f 4 C”’e_cﬂd)
< C/e—C”,maX{dmm,l}S + C/,e_cllll% + C///e_C/////d

Cfefc'”s + Cuefc””% + C///efc”’”d
for appropriate constants, where we assumed d > KlogL, s > max{1,K"logL}, n > K”LlogL for some

K, K’,K”. Taking a square root gives a bound on the first term in (D.107).
We next consider a different bound for this term that will be useful when the {d;} are large. Our starting
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point will be D.124. If we set s; = s,s2 = Ls and use (D.111) we obtain

P [Ley

[, , e e
]k 3
1

B, B, ( )”2 > CLns | L%s +
- x ns|L%s +
Bug — Pu ) 12

L
E;j —E(;I(x)nj > Cns Z

di +JLdd;t e
< P llgy, LS+—/+—] +C—Zsid1
i j=0+1,i#] " " " i={+1
WS (D.126)
L
< L?|C’exp cmln{ ns} +C"e T 4 e |+ Z pCsimax{di 1} 4 =&t
i

< p—cns +e—c’% +e—c + Z —c”’s,-max{d,-,l}+e—c’”’t
i=0+1

for appropriate constants under similar assumptions on n, L, d.

To bound the remaining terms in (D.107), since

L 0 L:t
1, Wi+l (rfrf “1_p +1)

I L 1

(FL £+1 I-L:f’}-l) Wi+
H

~! ~!
ﬁj _ﬁHJ”2 < lggg By ”HHl”

and we can apply lemma D.14 and an e-net argument to bound the first and second factors respectively, to
conclude

~ =~ ,
P []1861< ﬁj’ _ﬁHJ”Z > C‘/dL] < C/e—cd +Ce" < e—cd

for some d such that d > Klog L and assuming n > K’d. An identical result holds for the last term in (D.107)
where we simply choose J; = I;(x) for all i. In conclusion, using (D.125) we have

P Lgs

B, B, > VA + s (Hﬁﬁl JAe

< Cle= + C//e—c'% + Cme—c"d

y 1/2
1 ‘ ”1/2 (D.127)

for appropriate constants, while if we use (D.126) instead we obtain

P Tg,

ﬁg _ﬁe(x)“2 > CVdL + cJ Lns (LZS + @ + @ ||E||1Z) +CLyt <S'E> (D.128)

L
< gCs +e—c'% +€—c”d+ Z efc”’sl-max{dl-,l} +€—c”"t
i=0+1

~t ~t
It remains to transfer control from ”‘BHJ - ﬁH(x)H2 to ||,Bf{J - ,Bfi(x)”2 Note that

0+1x

||ﬁHj ﬁH(x)” ”H“l* (ﬁHJ ﬁH( ))“ HPS“W( 1) ||ﬁf—1j_ﬁil(x)H§

2

~ (+1 -
where if £ = 0 we define Pgo. = I;jxn,. Since [IIE ol = 2tr[Pgu] = 2(nn Y Bernstein’s inequality
gives (assuming n > K for some K)
~ 1|21
P |:||P5{J_W(+1) < E < e_cn,
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and hence with the same probability

[ <x)H _
8t~ i) < ”Z‘;W;f; C|Bas - Bt

The bounds (D.127), (D.128) also apply to ”ﬁf{ Vo ﬁf{ (x)H2 up to a constant factor, with the same probability

up to a e~ term which we can absorb into the existing tail by demanding n > KL for some K. o

Lemma D.22. Forany{+1 <m < j+1,k € [n], ifn > KL for some K then

i+1 _ch
P[n&m Hé r/ j“ >C] <e L
andifm=1{0+1
j+1 i+ /1 —en et
P [1gs, H(k/:)l“Hj s >C Zt} <e ‘L+e
assuming t > K'ny_q for some K’.
Proof. If j+1>m,
]+1 Jim _ j+1 j: m+1
Lewe [T ~tey Wi\ Ps Tl Py |
i]IS(SK Wé: )PSILr]'";'lP],nWmPSM-M 5 Sﬂg&K Wil )Psul"]:m"'lP]meHZ
d j+1 jrm+1 ~m +1,7,j+1x ~ m
=ley |[Wi o PsiThy Pl ||W(1,:)||2 <lgy Psur]m Wy, )W( ,;)”2
]m+1A jH+1x ~_m
g e R N
If on the other hand j + 1 = m, we have 1g;, H{H FHJH =1g;, Hgl HW%1 )H Bernstein’s inequality

. ~ J+1x l
gives P [”Wf;l) N

‘ > C] <Ce™and P [HW >C zt} < 2e7 for t > 1, while lemma D.14 gives

p [Hng,Krfm”elu > c] < Clect,

Taking union bounds gives the desired results. m]

Lemma D.23 (Generalized backward features inner product concentration). Fix x,x’ € S™~!, v = /(x,x").
Define a collection of support sets J, generalized backward features ﬁg, a constant 65 and event Esk as in lemma
D.14. Assuming n > max {KL logn, K’}, d > K” logn for suitably chosen K, K’, K”, we have

L-1 ([’)( )
v (Bl Bl) -4 11 (1- 25

> C (d2 Tn+ \/dé Ln + d3/25, (1 + W) L5/2)

P(3rell]: < Cled

for absolute constants ¢, C,C’. If additionally we have P [Esx] > 1 — ™% then the same result holds without the
truncation on 1gg,, with worse constants.
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Proof. Note that

Les, <ﬁf7rﬁf7f> > l_[ ( “(V))

<[tes (B = B0, B )|+ [Lewe (') B - B'@))| +

o gt - AT (12 20
Ley (B'(x), B'(x)) - El_[ (1 o on )

By o), Bl B, + teuc I8 8 - ')
et =51 122

Lk

(D.129)
In order to bound the first two terms, we use rotational invariance of the Gaussian distribution twice to
obtain

2
L+1yL:4+1
WEIT S 0P|,

2
¢
ﬁj/” il

wL+1 rL +1

Tesk

i

12
e1|| .
2

rs L:t+1 1”2 can be bounded using D.14

< w1

= L&k

Bernstein’s inequality gives P [”W“lni > Cn] < 2e7" ,while 1g,,
to give

” n

H:D []lséK ﬁj’” > Cn] < C e—Ci’l +C// —c’ L < C/// —C

for appropriate constants. Using lemma D.21 to bound 1g,, [39 - ﬁ"(x)”2 we obtain

P

Lgs,

B

—ch — A
<C"e™t + e < e

ﬁe(x)H > CVdLn +C’ \/dé Ln + d3/25, (1 2 & )L5/2]
Vi

for some constants, assuming n > KLd for some K. Bounding the second term in (D.129) in an identical
fashion and the last term in (D.129) using Lemma D.4 we obtain

1 2"w
n v 0
1, <ﬁg,ﬁf’7,> -211 (1 _? - ) > C (d2 Ln+ \/désLn + 3126, (1 + 7%) L5/2”
=t

L-1 )
Ly <ﬁ§,,ﬁg,> —g (1 P (V)) > c’( dLn + \/dé Ln + d3/25, ( s )L5/2) e dzx/ﬂl

Tt
={

P

<P

N R R Hﬁf p),
< > C’ (x/ﬁ + \/dé Ln + d3/25, ( L5/z

‘]]'Sbk

+P Hﬂm <ﬁf7/3f7> - 7[_[ (1 - )' > dz‘/m

< C//e—cd + C///e—c'd < C””E_C”d-

for appropriate constants assuming 4 > 1. Taking a union bound over all possible choices of ¢ € [L] and
using d > Klog L for some K gives the desired result. If we additionally have P [Esx] > 1 — e~"? for some
¢’”, we can write

+](1 - 16,) (8% 8|

)
)

)5 e} 1
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and since the last term is zero w.p. > 1 —e~¢"? we obtain the same result as in the truncated case, with

possibly worse constants. ]

D.4 Auxiliary Results

Lemma D.24. There are absolute constants c1, C, C’ > 0 and absolute constants K, K" > 0 such that for any L € N,
if n > max{Klog* n, K’L}, then for every { € L] one has

logn Pt c’
1+logl)+ —.
n 1+ (co/64)(L — )01 (1+logl) + -3

The constant cy is the absolute constant appearing in Lemma E.1.

|[E[(p(L—12)(1;£) _ (p(L—£’+l)(1f)l’—1) | 7-@-1” <C

Proof. The case of ¢ = L follows immediately from Lemma E.1 with an appropriate choice of d > K" for
K” > 0 some absolute constant. Henceforth we assume ¢ € [L — 1]. We Taylor expand (with Lagrange
remainder) the smooth function '~ about the point ¢ (#/~1), obtaining for any ¢ € [0, 7]

5(L-0)
(P(L—f)(t) — (P(L—€+1)(9€—1) + (P(L—f)((P({)E—l)) (t _ qo({;t’—l)) + % LZ (é) (t _ q0({;(’—1))21

where & is some point of [0, 7] lying in between t and ¢(?‘~!). In particular, putting ¢ = $¢, we obtain

P0()
2

AN _ Af— . (L— Af— N Af— A Al—11)2
(P(L l)(vf) _ (P(L €+1)(V€ 1) - (P(L [)((p(VZ 1)) (Vf _ (p(V[ 1)) + (V[ _ (P(Vf 1)) ,

where £ is some point of [0, 7] lying in between 7/ and ¢(#/~!). By (C.23) and (C.26), we have that $'=9) < 0,
whence
(P(L—é)({)é) _ (P(L—€+1)(9€—1) < (-P(L—(,’)((P({}Z—l)) ({)é’ _ (P({;(’—l)) . (D.130)

Using Lemma E.5 and an induction, we have that ¢/~ is decreasing, and moreover by the concavity
property we have p(#~1) > $¢-1/2. An application of Lemmas E.1 and C.13 then yields

1
1+ (co/4)(L - £)Dt1

[E[(P(L—t’)({){’) _ (p(L—l]+1)(1f)é’—1) | 7:@-1] < (Coe_l loin . Czn—cld)

logn pe-t

+CI 76111,
n 1+ (co/BL—pp1 "

aslongasd > Kandn > K'd* log4 n. In particular, we can choose d = max{K, 2/c; } to obtained the claimed
error for the upper bound. Next, for the lower bound, we make use of the estimate

C

..( — ) _ 1
P 2 T o (1 o

log (1+ (co/8)(L — € - 1)v>),

f)

which follows from Lemma C.14 and ¢$'=9 < 0; by that lemma, we have that f is increasing. By Lemma E.3,
as long as n > K’log* 1, there is an event & on which [#¢ — ($¢~1)| < CH!'\flogn/n + C’n~3 and which
satisfies P[& | F71] > 1 - C”n3. In particular, on the event & we have 7! > 7~1/4 — C’/n® provided
n > 16C%logn, and so on the event & we have & > min{p(P!"1), #/~1/4 - C’'/n®} > $~1/4 — C’/n®. We can
thus write

(P(L—?)(ﬁé’) _ g0(L—€+1)(§€—1) > (p(L—f)((P(f)l’—l)) (ﬁﬂ _ (P(ﬁf—l)) + ]? (ﬁf _ (P(ﬁé—l))Z

= D) (71~ ) + (1 + 1 2 (37— p(9)?

pt-1 _ g
> (P(L—f)(@(ﬁé’—l)) (ﬁl _ @(ﬁ[_l)) + 18f( 4 n3) ({)é _ (p(ﬁ[_l))z _ (ZCW?TzL)]lgc

for -
+ e

(- () = C"mPL)1ge

> gL 0@t (9 - (')
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where the inequality in the third line follows from boundedness of the angles and the magnitude estimate on
f in Lemma C.14, together with our estimate on £ on &, and the inequality in the final line is a consequence
of f < 0, which allows us to drop the indicator for & and obtain a lower bound. Taking conditional
expectations using the previous lower bound and applying ¥ ‘~!-measurability of #/~! and boundedness of
the angles together with our conditional measure bound on &, we obtain

logn Pt C’ GCsL
EloT-0(50) — oL+ (51 -1 s _c _ = _ =5k
N e e e A T+ (co/HL -1 w2 w3
51 C
fC—3)
4
T2

[(ﬁe _ ¢(9€—1))2 | 7_-@—1]’

where we also apply the complementary bound obtained by our previous work following (D.130). Since
the CL estimate in Lemma C.14 applies also to f, and since f < 0, an application of Lemma E.4 with an
appropriate choice of d and the choice n > K’ log* 1 then yields (with a larger absolute constant C’)

logn Pt _C" GeL
n 1+ (co/4)(L -1 n2  nd

Cylogn ., .2 (9?1 C

[E[(p(L_‘])(ﬁ[) _ (P(L—é’+1)(ﬁ€—l) | 7:[’—1] >_C

4 u3

If we choose n > (C¢/C’)L, we can simplify this last estimate to

[E[go(L‘“(O") _ @(L—[+1)(9€—1) | 7_—@—1] > _Clogn pe-t 2C’ Cylogn (04—1)2]; (ﬁ _ C4) '

__+ _—
n 1+ (co/4)(L - 0Pt n? n 4 n3

To conclude, we divide our analysis into two cases: when 1 > 8Cy/n3, we have 9171 /4 — Cyn=3 > $4-1/8,
and so

8Cnpl-1 (1 . 8log(L — Z))

>
T 1+ (co/64)(L - O)Dt-1 com

where the last inequality follows from Lemma C.14. On the other hand, when Pi-1 < 8Cy/n3, the CL
estimate in Lemma C.14 implies

pe-1 64CC3L  64CC2L ’

(1,)[_1)2f v _g > 4 > 4 Z—ZC )
4 ns3 nb n3 n?

where the last estimate holds when n > (32C Ci/ C’)L. Adding these two estimates together, we obtain one

that is valid regardless of the value of #~1, and choosing 1 > C7logn to combine the residuals, we obtain
(after worst-case adjusting the constants)

4C" Cglogn pe-1

L-0)(a8y _ (L—t+]) =1y | =17 < _
E[p® 000 - o0 |77 2 - 25 n 1+ (co/6A)L— 0o

(1+1log(L—-10)).

Combining with our previous work, we obtain

logn Pt (
n 1+ (co/64)(L — 0)Pt1

E[pt0() - 6001 | #71| < C 1+loglL) + C’%

after worst-casing constants. m]
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Lemma D.25. There are absolute constants c1,C,C’,C"”,C"” > 0 and absolute constants K, K’ > 0 such that for
any d > K, if n > K'd*1log* n, then for every L € N and every { € [L] one has

dlogn AR
P (L=O)nly _ (L—t+1)nt-1 <2C +2C’ —c1d/2 -1 >1=C" —Cld,
[ 000 = O] < 20y — P (co/8)(L — £)ptT " ANE "
and 5
Al-1
[E[((P(L—é’)(ﬁt’) _ (P(L—e+1)(1;1—1))2 Ft1| < 4C2dlogn ( v ) 4 Cpmcdr2,

1+ (co/8)(L — £)pi-1

The constant c is the absolute constant appearing in Lemma E.1.

Proof. We will fix the meaning of the absolute constants C,C’,C” > 0 throughout the proof below. By
Lemma E.3, we have if d > K and n > K’d* log4 n that for every ¢ € [L]

[d1
|1;e _ (p(9l71)| < Cptl (;g” 4 C'pod

By Lemma C.13, we have the estimate

P

T“] >1-C"n"4, (D.131)

1
- (6) H< —————
[900] < 73 (co/2)tt’
valid for any ¢ € Ny. Writing Zf = #! — p(#71) so that 7! = p(9~1) + E¢, we have that (E¢) is adapted to
(FY), and by the fundamental theorem of calculus

?*1)

\/‘P(‘? dt
P(Pt-1)+E! 1+ (co/2)(L - O)t|

|(P(L—€)(ﬁ€) _ (P(L—€+1)(f)l’—1)| —

The integrand is nonnegative, so by Jensen’s inequality we have

(P(ﬁe71) dt
@1z (14 (co/2)(L - )

2
(@(L_[)({)i)_(P(L—Hl)({)(,’—l)) < |E"|/
®

and an integration then yields

2 =42
(W(L—é)(ﬁt’) _ (P(L—z+1)(1;e—1)) < — ( ) T (D.132)
1+ (co/2(L = )p(PD||1+ (co/2(L - £)(p (D) + B
Choosing d > 1/c1, we can guarantee that whenever v > % ~a1d/2 one has

dl a1l
Cv\/%n + O < 2C14 (;g", (D.133)

and choosing n > 64C2d log n, we can guarantee that

v dlogn _ v
Z_ > —. .
5 2Cv4/ 27 (D.134)

In particular, the last condition guarantees 2C+/d logn/n < 1/4. By concavity of ¢ via Lemma E.5, we have
e > $71/2, and using (D.131) to obtain

j&| < coty 218" k;g Lo
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we have by (D.133) and (D.134) as well as the concavity lower bound on ¢
Ple@™)+E 201 /4|F 21 -C"n

as long as /! > (C’/C)n=1%/2, In particular, plugging these bounds into (D.132) and taking square roots,
we obtain by a union bound

PN _ r dlogn
P |(P(L é)(v()—(p(L e+1)(ve 1)| <2C / ng

whenever 7/~ > (C’/C)n~1%/2. Meanwhile, when 7¢~1 < (C’/C)n=%1%/2, if we choose n > dlog n we have

Cﬁf—l 'dlogn + C/n—cld < 2c/n—cld/2,
n

and we can use the 1-Lipschitz property of ¢:~9, which follows from Lemma E.5, to obtain using (D.131)

1')(’—1
1+ (co/8)(L — £)Dt-1

Fi = 1-2C"n

P”qo(L—(’)({/\é’) _ q0(L—€+1)(1f)€—1)| < zcln—cld/Z ’ 77(—1]

> P|[p-0(!) - pL-ED(E1)| < Cpt! /dk;ﬂ 4+ Oy 7__5_1}
N ar-1 -1 |dlogn v ed | i
2 P|[p" - (0| < COT — ==+ T~ | F

>1-C"n4,

Because | L0 (!) — p-+1D($¢-1)] > 0, we can then obtain using a union bound

. _ e [dlogn
|(P(L—é’)(vt’)_ (P(L e+1)(ve 1)| <2C ng

which holds regardless of the value of #/~1. We can then obtain the second bound using this one, via a
partition of the expectation: let

. _ e dlogn
& = {|(P(L—l)(ve)_(P(L m)(vz 1)| <2C / ng

so that & € F¢,and P[& | F71] > 1 - 3C"n~? by our work above. Then we have

1*)(‘—1

1+ (co/8)(L - £)pF1

P

+2C n~ad/2

/c(—lw >1-— 3C”Tl_cld,

1*)!—1
1+ (co/8)(L — £)pt-1

+ 2C’n‘c1d/2},

2 2
[E[(Q(L—[)({)é’)_qo(L—Hl)(ﬁé’—l)) ‘Tt’—l <E ((P(L—é’)(ﬁf)_(P(L—€+1)(1f;é’—l)) 1g |F1

o r (ZC /dlogn
n

+ C///nfcld
< (ZC |dlogn
n

where the first inequality uses the triangle inequality to obtain (L0 ($¢) — pE-t+D(H¢-1 ))2 < ni%; the second
inequality applies the definition of &, uses nonnegativity to drop the indicator in the first term, and applies
the conditional measure bound on &E; and the final inequality integrates. Using the fact that our previous

+ 7'(2[E I:]lgc

7:(—1]

9(’—1
1+ (co/8)(L — £)pt-1

2
+2C/n—cld/2) 7:@—1

1')(.’—1
1+ (co/8)(L — £)Dt-1

2
+ Zc/n—cld/Z) + C///n—c1d
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choices of large n imply 2C+/dlogn/n < 1/4, and that |W| < 7, we can distribute the square in
this final bound and worst-case constants to obtain

<4C?

—c1d/2
+ C" o / ,

El (@05 (L—0+1) nl-1 2 Ft-1 dlogn it ?
((P )-¢ (7 )) 1+ (co/8)(L — £)pi-1

as claimed. O

Lemma D.26. Let X1, ..., Xy be independent chi-squared random variables, having respectively d1, . .., d1, degrees
of freedom. Write dmm = min;er d; and let &; = le- Then there are absolute constants ¢, C > 0 and an absolute

constant 0 < K < % such that for any 0 < t < K, one has

L
—1+1_I5i

i=1

P > t| < CLe~cdmint*/L

In particular, there are absolute constants C’,C"” > 0 and an absolute constant K’ > 0 such that for any d > 0, if

Amin = K’dL then one has
-1+ I_I &il > C’,/

Proof. For any t > 0, we have by the AM-GM inequality
1/L

L L L
P]:[a>1+t —p (E[gi) >1+H) <P %Zg»awﬂ“l.

By convexity of the exponential, we have (1 + #)// > 1+ { log(1 + ), and by concavity of the logarithm we
have log(1 + t) > tlog2 if t < 1. This implies

P ﬁ§i>1+t

i=1

< C”Le_d

<P

7

—L+i£i > Kt,

i=1

where K = log(2). Decomposing each X; into a sum of d; i.i.d. squared gaussians and applying Lemma G.2,

we obtain
L
t2 t
Pll-L+ ) &i|> t} < 2exp (—cmin{ })
; Z,L 1 d " C max; T
< 2exp (=¢'dmin min{t?/CL, t}) (D.135)
” dmlnt
<2 Zmn”
exp( - ) ,

where the last inequality holds provided t < CL, where C > 0 is an absolute constant. Thus, as long
as t < CL/K, we have suitable control of the upper tail of the product []; ;. For the lower tail, writing
log(0) = —co, we have forany 0 < t < 1

Pﬁ§i<1—t ilog£i<—t],
i=1 i=1

where the inequality uses concavity of ¢ +— log(l — t). By Lemma G.2, we have for each i € [L] and every
0 <t < C (where C > 0is an absolute constant)

<P

L
=P Zlogéi <log(1-1t)
i=1

P& — 1] < £] < 2e7¢4,
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so that by a union bound and for t < CVL, we have with probability at least 1 — 2Lecdmint*/L that 1 — ¢ /VL <

& < 1+t/VL for every i € [L]. Meanwhile, Taylor expansion of the smooth function x + logx in a

neighborhood of 1 gives
1

2k2
where k is a number lying between 1 and x. In particular, if x > % we have log x > (x —1) —2(x — 1), whence
for t < min{CVL, %}

logx =(x-1) - (x — 1),

P

L
-L+

L
]_[ &<1- t} < 2Le~¢dmnt®/L | p
i=1

i< —t+ Ztﬂ
i=1

L
t
-L+ § éi < _E“r
i=1

where the final inequality requires in addition ¢ < . An application of (D.135) then yields the claimed
lower tail provided ¢t < CL, which establishes the first claim. For the second claim, we consider the choice

t = \/dL/cdmin, for which we have t < K whenever dmin > dL/cK?, and cdmint?/L = d. O

< 2Le~¢dmnt*/L 1 p

Lemma D.27. Let Xy, ..., X|, be independent Binom(n, %) random variables, and write &; = %Xi. Then for any

0<t<?l onehas
[ L
-1+] &

<4
P
i=1

> t} < 4Le™RL,
In particular, for any d > 0, if n > 128dL then one has

L

dL y

—1+]_[5,- >4y | <dLe™.
i=1

Proof. The proof is very similar to that of Lemma D.26. For any t > 0, we have by the AM-GM inequality

L
n£i>1+t
i=1

By convexity of the exponential, we have (1 + #)// > 1+ $log(1 + ), and by concavity of the logarithm we
have log(1 + t) > tlog2if t < 1. This implies

L
1_[.51->1+t
i=1

where K = log(2). Decomposing each X; into a sum of » ii.d. Bern(%) random variables and applying
Lemma G.1 twice, we obtain
L
—L+ Y&

i=1

P

P

L 1/L
=P (1_151) >(1+t)l/L <P
i=1

L

1

ZZJ& > (1+HE
i=

P <P

7

L
L+ Z & > Kt,
i=1

P

> t] < e 2L (D.136)

This gives suitable control of the upper tail of the product []; &;. For the lower tail, writing log(0) = —oo, we
have forany 0 <t <1

P =P <P

ﬁéi<1—t
i=1

L
Z logé&; < —t},
i=1

L
Z log & < log(1l—t)
i=1
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where the inequality uses concavity of ¢ — log(1 — f). By Lemma G.1, we have for each i € [L]
PlE —1] <f] <267,

so that by a union bound, we have that 1 — t/VL < & < 1+ t/VL for every i € [L] with probability at least
1-2Le /2L, Meanwhile, Taylor expansion of the smooth function x + log x in a neighborhood of 1 gives

1
logx =(x-1) - @(x -1)?,

where k is a number lying between 1 and x. In particular, if x > % we have log x > (x —1)—2(x — 1), whence
fort <1/2

L
—L+Z<§i<—t+2t2

i=1

L t
-L+ Z Ei < —E

i=1

where the final inequality requires in addition t < 1/4. An application of (D.136) then yields the claimed

lower tail, which establishes the first claim. For the second claim, we consider the choice t = 4/8dL/n, for
which we have t < }1 whenever n > 128dL, and nt?/8L = d. O

L
]_[ E<1—t|<2Le 2L 4 p

i=1

P

<2Le 2L L p

7

Lemma D.28. For 1 < {' < { < L — 1 define events

B = I <cne-0) o (B <cu-0) o (sG] <cn)

XX XX

3 3
£ = {la ol oWl > 0} 0 {0 -v ] £ oy T

If n, L satisfy the assumptions of corollary D.17 then

and

ol
n &L

P[ESY] 21— C'n(t — &) e Fr.
If n, L additionally satisfy the conditions of lemmas D.3, E.16 and n > C”Llog(n) (log(L) + d), then
Pl&es"] =1-C'n~.
where c,C,C’, C” are absolute constants.

Proof. Since

n

tr [Bé’—l:f/] - Ze;l—-l—l:l"+2(x)PlWH(x)PIWH(x/)rf—lzl’+2*(x/)ei/

i=1
applying corollary D.17 2n times gives
P m {||r{—1:[’+2(z)ei||2 S ’\/E} 2 1 — Cln(f _ [,)ze_cé}_nT
ze{x,x'},i€[n]
=P [tr I:Bi;/l(/] < Cn] > 1— Cln(e _ f/)ze_cﬁ.
With the same probability we also have

(=1:0'+2 2 _ 0—1:0"+2+ 0—1:0'+2
max [ ) = max o [T < Cn
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and
P [ II{IaX} ||rf—1:e«+2(z)H <CU—D)| 21-C"(t-t)eir
ze{x,x’
from which it follows that

P [IBLE | < Ce- )] 2 1-C(e— e 77

xx’

and

PIBE); < Cue- )| 2P

XX

pl-Le+2 2 ré-Le+2 2 <Cn(t -1t
max | @) max | @l < (e =)
21 C(€ = )P R7 = Cn(E = £)Pe™F7 2 1= C"n(l - {277,

It follows that Sg:[' holds with the same probability.
From lemma E.16,

P [||cv‘}’1(x)||2 ||cte’l(x’)||2 >0nvi-l= '17[’1] >1-C'te™ "

for some constants ¢, C’. Here ¢! is the auxiliary angle process defined in (D.2). Using D.3, we obtain

3 3 3 3
P |(P(€_1)(V)—V[_1| < C\f—d 12‘;; & >P |(p([‘1)(v)—vl‘1‘ <C —d 12;; "

>1 — C" =" — C//n—cd >1— C/n—cd

for an appropriate choice of ¢, C’.

We conclude that ) ) L
P [ngl’ ] >1—Cle" = C”Tlf2€_c w7 —C"nC d
>1-Cn™™
for appropriately chosen constants, where we used n > C””¢log(n) (log(¢) + d). |

Lemma D.29. For Ay defined in (D.31) and 8{;:‘” defined in lemma D.28 we have
P H]law/gg' > C\/ﬁ| 7.-(’—1] < Cleed,
B a.s.

for some constants ¢, C, C'.

Proof.
L P EAFY)

-1 ﬁ 1_(P(i)(V) ¢ [BM’] — Ew|[BYY
- Sf;‘” I xx’ we I‘[ xx’ s

Tt
i={

and denoting Pix, = Py,(x)Py,(») we have
oy [0 . -1t lxpl { U+ pl {
tr [Bxx’] - V[\E‘/tr [Bxx’] =tr [Bxx’ (W Pxx'w - I/[l\;’ [W Pxx'w ])]

Defining S = span{a‘(x), a‘(x")} we decompose W' into a sum of two independent terms as
W= W!Pg1 + WP = G+ HE.

Note that each H' is independent of every other random variable in the problem conditioned on the features.

lgeetr [Bif:ﬁ] thus decomposes into a sum of four terms, which we proceed to consider individually and
B

show that they concentrate.
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The all G! term is

dim §¢-1

(=10 ~l+pl 0 _ (=1 l-1:0" =1 {=1xyp70+ ! -1

Loetr [BFGUPL G = 1gr D7 ul B ul T w7 WhPL Wil
i,j=1

where {uf_l} is an orthonormal basis of S, If a’~1(x) # a’~'(x’) we choose

aef‘l(x) Paffl(x)i at’—l(xl)

@™ ul™ = ( ,
1 2 ||0c[‘1(x)||2 |Po/‘1(x)J_a€_l(x,)”2

),

which are well-defined on E£Y).Using rotational invariance of the Gaussian distribution, we have
B g

sAT b1 pl—1+1qA70-1,, A 0—Tsppeqprf—1+ -1, 0-1
uiW P %% u]' =Uu. R'W PWFlRa[‘l(x’)>0PW[71R0/‘1(x)>0W Ru]

xx’ i

d
= <Pg1 cosv[‘1+gzsinv[‘1>0gi/Pgl>0gj>

where g; ~ia N(0, 2I). If a’"!(x) = a’~!(x’) then dim S*~! = 1 and we simply choose u! and

“1_ o'
ol

a1,
end up with an identical expression, with v/~! = 0. Since P §,>08 and Py cosyt-144, sinvt-1>08; are vectors of
independent sub-Gaussian random variables with sub-Gaussian norm bounded by ./ %, their inner product

is a sum of independent sub-exponential variables with sub-exponential norm bounded by % for some
constant C. Bernstein’s inequality then gives

/d - —cd
P ‘<Pg1 COSV[-1+gZSinvr-1>0gi,Pg1>0g]-> - glﬂ?gz <Pg1 cos vi-l+g, sinvi-1>08 7 Pg1>og]»> > ;‘7—'(’ 1} a.gs. 2e~¢
(D.137)
for some constant c¢. Since on 81’;‘", Bf(;,l:{'” < C{, we obtain
dim §-1
(=10 ~l=pl l (=157l 0, (-1
150t B GUPLG | <o ) ul WP Wl
i,j=1
almost surely and thus
=10 Al AL P | —cd
P | [Lggetr [BLGHPLL G| > Ce SF < 2e
a.s.
for some C’, and hence
Lgertr [BUGPL G|
& xx’ xx’ n
P 4 (1 ot 0] | <20V FEL| < 20700 D.138
—v[\[;[]lggwtr [Bxx, G'P..G ] a.s. ( )

tr [Bif; also contains the terms
tr [BL M G"PL H'| + r [BL Y H P!, G'].
Considering the first of these (since the second can be treated in an identical fashion), we recall that H tis

independent of all the other random variables in the problem conditioned on the features, and we thus have

xx’ xx’ xx’

P N ~ e
Lggote [BFGUPLH] L1 gt [BUH GHPL W Pg |
B B

dim §¢-1 .
_ IZ3YY {
= Z ]lsé;wvi W w;
i=1
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where W' is an mdependent copy of W¢, v =P u! ir w = Pge1. Bix,l:l'uf. Hence conditioned on all the

2o [ ot |15
i il i 2]1

other variables, v i*W w! ; is a zero-mean Gaussian with variance gev - Again from the bound
B

on ||B‘} e || implied by 5%, we have
AP eI
2loblofls,  cr

dim 561

almost surely. Noting that E tr (B, L Gglp! H'| = EEtr Z vf*W w; l = 0, a Gaussian tail bound
w G'w

xx’
d

The final term in tr [Biﬁ:] is

gives

Lgeetr [Biy GUPL H'| - Elggetr (B GHPL H

> \/_‘7-'" 1] < 2e7Ct. (D.139)

xx’ xx’ xx’ xx’

tr [BLCHP! H| £ tr [B” M Py WP W[PSHL].

. ~ 0 . . L . .
Due to the independence of W' from the remaining random variables, this is simply a Gaussian chaos in n?

variables. The Hanson-Wright inequality (lemma G.4) gives
gl

<2exp|—cnt min
a.s.

gortr [By " HU P,

xx’ xx’ 2t

xx’

H'| - Elgetr [BLYH"P  H'| 7—‘“]

t 1
H]lSN'Psf uB Psl 1L

||]18u/P5f uB Psé’ in

n t
<2 —c—tmin{—,1
= exp( Cg mm{n, })

where in the last inequality we used the definition of 8{;"”. It follows that

Lgeetr [BL " HYPL H'| - Elgetr [BLEHYPL H'|

|

0=1:0 gyl pl ¢ 0=1:0 gl pl l -1
P | |Lgeete [BH HOPL H'| - Elgtr [BLFYHEPL HY| > Vde|F

> 2Vde| Fi1

<
a.s

o ilt’ txpl { (=10 gyt pl l
+P»£I15l]18£wtr[Bx H"P, H]—[E]lguftr[B H"P! H'|

xx’

> \/d_l" 7"“]

(D.140)

P | |Lgerte [BLF H Py H"] - Elgets [BLFHEPL HY| > Vde| 71

<

5. 2tr PiuB P -11

TP g [Ps 2 ] ‘tr [PLo] - Bt [PL]| > Vil ?“]
< Ce ™

a.s

where in the last inequality we used (D.137) and the properties of 82:2'. Collecting terms and using (D.138),
(D.139), (D.140) we obtain

P [11 gt < Cle™® (D.141)

tr[BLY] - Eur (B

> Cvag 7
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and hence

_ L-1 (i) , ,
P Hnagwm| > CW' ?H] =P g | | (1 - (P—(V)) ‘tr [B4C] - Etr [BEC]| > cVde| 7'

Tt
i={

(D.142)
<Clecd,

a.s.

Lemma D.30. For x € S"™~! and ¢ € [L], denote I;(x) = supp(a’(x) > 0). Ifn > K then

p [m{inm(xﬂ > % >1-2LCe™"

and forany 0 <t <1
- 2|Ig(x)|
p _ 1>
I_[ n 2t

<2exp (—cztz)
L
(=1

where ¢, ¢’, C, K are absolute constants.

Proof. Consider the activations at layer {. From lemma E.16, if n > K we have

P [|la™ )], > 0] > 1-Ce™".

Rotational invariance of the Gaussian distribution gives a‘(x) = [W‘}a‘]‘l(x)] N 4 ||ae"}‘1(x)||2 [Wf 1)] It
|,
follows that

E | [Ie(x)]

||cte_l(x)||2 > 0] =E

n
Z]laf(x)>0
i=1

From the symmetry of the Gaussian distribution

ool 0] = | Sy of ot o).
i=1

_n

”"‘é}_l(x)”z >0 >

E [Ilz(x)l

Since this variable is a sum of 7 independent variables taking values in {0, 1}, an application of Bernstein’s
inequality for bounded random variables (lemma G.3) gives

P (@i -] > ] <P ||l - 5| > 4{llet @), > of + P [l @), = 0]
<2exp (_6,%/111/64) +Ce™" < e
for appropriate constants. A union bound gives
L nl_n ) —e'n
p Dl “|u(x)| - E’ > Z” <2LC’e

from which

P [m{inIIg(x)| > % >1—2LC’e™"™"

follows.
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To prove the second inequality, we use the AM-GM inequality which gives
3 o)
YL 2% |L(x
ﬁzm(xn =
n - nL

=1

and hence

L
2|I(x)| 1/L
P ZT >L(1+1)

(=1

L 1L
-p (l—[_ZIIZ(x)I) >(1+p) <P

(=1

L
HZIIe(X)I o 14t
— =z

=1

Convexity of the exponential gives (1 + #)//% > 1+ 11og(1 + ) and for ¢ < 1 we have log(1 + ) > tlog?2,

giving
L L
l_[—z () >1+t Z—z el L>tlog2
=1 " .

P <P

We note that ,
2|I(x)| a ¢
T = Zﬂg[bi

i=1

ni’

where bf = 20! Gg ~iid Bern(3) and & = {maxbf‘l # 0} is the event that the features at layer ¢ — 1 are not
1

=

identically 0. Since Z]lgzzb" Z a.s. we have
i=1

L n

2.2

=1 i=1

P <P

L
ZM —L > tlog?2
=1

-L> tlog%.

Since this is a sum of independent bounded random variables, an application of Bernstein’s inequality for
bounded random variables (lemma G.3) gives

ZZb‘ L>t

(=1 i=1

<2exp|-c=——F——— £2 =2exp (—C'Etz)
S E®B? + 2t L

for some absolute constant ¢/, where we used L > 1 > t. Hence

ﬁZlIg—(xN -1> t} < 2exp (—c’%tZ) .

n
(=1

P

E Sharp Bounds on the One-Step Angle Process

In this section, we characterize the process by which angles between features for different pairs of points
evolve as they are propagated across one layer of the zero-time network. This section is self-contained, and
as such it will occasionally overload notation used elsewhere in the document for different local purposes.
In particular, we will use the notation o(x) = [x]+ for the ReLU in this section (and only in this section), and
d(g) = 14> for its weak derivative.
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E.1 Definitions and Preliminaries

Letn € N, withn > 2. Let g, and g, be i.i.d. N(0, (2/n)I) random vectors; we use i to denote the joint law
of these random variables. We write G € R™*? for the matrix with first column g, and second column g,
and g1, ..., 8" for the n rows of G. If S C [n] is nonempty and A € R™™, we write Ag € RISKM 5 denote
the submatrix of A consisting of the rows indexed by S in increasing index order. In such situations 5S¢ will
always denote the complement relative to [n].

For 0 < v < 27, define random variables

v.(g1,8,) =0 (g, cosv + g,sinv),
and
0,(81,8,) =6 (g, cosv + g,sinv) O (g, cosv — g, sinv).

Because ¥, separates over coordinates of its arguments and has each of its coordinates the product of a
nondecreasing function and a continuous function, it is Borel measurable. A key property that we will use
throughout this section is that the joint distribution of (g, §,) is rotationally invariant; in particular, it is
invariant to rotations of the type

cosVv  sinv
GH— G| . ,
sinv —cosv

where v € [0, 27t]. Since we can write

erelzl) ofefmefel)
smnv smnv Ccosv

where all of the R? vectors appearing above are elements of S?, it follows by applying rotational invariance
and the specific rotation given above that

(v, 92) £ (09, —b0).

This equivalence is useful for evaluating expectations and differentiating with respect to v.
If0 < c <0.5and m € Ny with m < n, define an event

Eem = ﬂ ﬂ {(g1.82)|c < ||Iscvv(g1,gz)||2 <ch

Sc[n] vel0,2n]
|S|l=m

For each ¢, m, the set & ;, is closed, since ||Av, || is a continuous function of (g, §,) € &y, for any linear map
A. We further define
Som = U E1/@k),m

keN
so that

Eom = ﬂ ﬂ {(glrgz) | 0< ||Iscvv(81/gz)||z}/

Sc[n] vel0,2m]
|S|=m

and &y, is Borel measurable. If c is omitted, we take the constant ¢ in the definition to be 0.5. On &, we
guarantee that ||v,||[p > m uniformly on [0, 7r]. Define a function X, by

(%) Uy
S
' \loolly” llovlla

On &, we guarantee that v, # 0 for every v, so X, is well defined; because &; is Borel measurable, we have
that X, is Borel measurable, and moreover | X, | < 1,s0 X, € Lf, for every p > 1. Finally, definefor0 <v <m

pv)= E [cos’1 XV], @(v) = cosT E [(vo,v,)].
81/82 81/82
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E.2 Main Results

Lemma E.1. There exist absolute constants c,C,C’ > 0 and absolute constants K, K’ > 0 such that if d > K and

n > K'd*log* n, then one has

1
ogn + C/n—Cd

5(r) - o] < Cv =1

Proof. Using the triangle inequality, we can write
|p(v) = ()] < |P(v) = cos™ E[X, ]| + |cos™ E[X,] - @(v)|-

Choose n sufficiently large to satisfy the hypotheses of Lemmas E.6 and E.7; applying these lemmas to
bound the first and second terms, we conclude the claimed result (after choosing n larger than an absolute
constant multiple of dlog n so that the n~°? error dominates the e =" error). O

Lemma E.2. One has

a1 v sinv
@(v) = cos ((l n)cosv+ - )
Proof. See [CS09]. O

Lemma E.3. There exist absolute constants ¢, C,C’,C” > 0 and absolute constants K, K’ > 0 such that if d > K
and n > K'd*log® n, then one has with probability at least 1 — C"n=c?

dlogn

|cos'l Xy - (p(v)| <Cv +C'ne,

The constant c is the same as the constant appearing in Lemma E.1.

Proof. Under our hypothess, the second result in Lemma E.6 together with Lemma E.1 and the triangle
inequality imply the claimed result (after worst-casing multiplicative constants). ]

Lemma E.4. There exist absolute constants c, C,C’ > 0 and absolute constants K, K’ > 0 such that if d > K and
n > K'd*log* n, then one has

dl
[E[(cos'1 X, — (p(v))z] < Cvz%n +C'n,

The constant c is the same as the constant appearing in Lemma E.1.

Proof. Under our hypotheses, Lemma E.3 is applicable; we let & denote the event corresponding to the
bound in this lemma. By boundedness of cos™!, nonnegativity of X,, and ¢ < 7/2 from Lemma E.2, we
have ||cos™ X, — ¢(v)||L~ < 7. Thus

[E[(Cos'1 Xy - (p(v))Z] <E []lg (cos™ X, — (p(v))z] + "

2
dl
< (Cv c;gn + C'n_Cd) + C'mPned
< szzdlogn + C,”}’I_Cd,
n
as claimed. m|

Lemma E.5. One has
1. ¢ € C®(0,m), and ¢ and § extend to continuous functions on [0, 1t];
2. @(0) =0and p(n) = 1/2; ¢(0) =1, $(0) = —2/(3n), and H(0) = —=1/(3r%); and ¢(n) = $(n) = 0;

3. @ is concave and strictly increasing on [0, 7] (strictly concave in the interior);
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4. ¢ < —c < 0 for an absolute constant ¢ > 0 on [0, 7t/2];
5. 0< ¢ <1land0> ¢ > —C on (0, 7t) for some absolute constant C > 0;
6. v(1 - C1v) < p(v) < v(1 - c1v) on [0, ] for some absolute constants C1, ¢1 > 0.

Proof. Deferred to Appendix E.4. ]

E.3 Supporting Results
E.3.1 Core Supporting Results

Lemma E.6. There exist constants c,C,C’,C”,C"”,C"” > 0 and an absolute constant K > 0 such that for any
d > 1, if n and d satisfy the hypotheses of Lemmas E.9 and E.10 and moreover n > Kd log n, then one has

logn

<Cv +C'nc,

E [cos’1 XV] —cost E [Xy]
8182 81/82

and with probability at least 1 — C"n=°, one has

|cos'1 X, — [E[cos'1 XV]| < C"v4f leTgﬂ +C""nc,

Proof. Fix v € [0,7]. The function cos™ is smooth on (-§,1) if 0 < 6 < 1, and Taylor expansion with

Lagrange remainder on this domain about the point E[X, ] (by Lemma E.23, we have 0 < E[X,] < 1ifv > 0;
we will handle v = 0 separately below) gives
-1 _ -1 1 (S 2
cos” (x) = cos” E[Xy] - —= (x - E[X)]) - ———; (* —E[X,])",
1-E[X, 1 2(1- &2

where & lies between x and E[X, ]. Using the fact that X, # 1 almost surely if v > 0, which is established in
Lemma E.23, we plug in x = X, to get

&(Xy)

1
cos E[X,] - cos™ (X)) = ——== (x ~ E[Xu]) + ———— (X, ~E[X,])’,  (E])
VI-EX, P 2(1- £
where we now express ¢ as a function of X,,. From Jensen’s inequality it is clear
E[cos! X,] < cos E[X,], (E.2)

so all that remains is to obtain a matching upper bound for the righthand side of (E.1). We will make use of
the following facts, proved in subsequent sections: there are absolute constants C; > 0, i € [6], and ¢; > 0,
i € [5], such that

1. E[X,] <£1-c5v? + Cie 9", (Lemma E.8)
2. For each v, Var[X,] < Csvtlogn/n + Coe™®". (Lemma E.9)
3. With probability at least 1 — C3n7, one has |X, — E[X,]| < Cev2y/dlogn/n + Cqe~*". (Lemma E.10)

Let & denote the event on which property 3 holds. Combining properties 1 and 3, we obtain with probability
atleast 1 — Can
X, <1—(c5/2)v* + Cre™ " + Cye~4",

provided # is chosen larger than an absolute constant multiple of dlog . Thus, defining

4 _ _
o= — (Cre™ " + Cge™™"),
5
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we obtain for v > vy

H&hﬂ—%#, xél—%#, (E3)

with the second bound holding with probability at least 1 — C3n~*?. Considering first 0 < v < vy, we obtain
using the triangle inequality, Lemma E.20 and property 3

|c:os'1 E[X,] - IE[Cos'l(XV)” < [E[15|cos'1 E[X,] - cos'l(XV)” + [E[Ilgc

cos E[X,] - Cos'l(Xv)”
< [E[]lg X, - [E[XV]|] + E[1gen/2]
< Ce ™ +C'n 1, (E.4)

with the final inequality following from the triangle inequality for the {2 norm and the fact that v < vy.
Meanwhile, if v > v, we have by (E.3)

0 < &(X,) < max{X,, E[X,]} < 1- %VZ

with probability at least 1 — C3n =%, Using 1 - x? = (1 + x)(1 — x) and E[X,] > 0, &(X,) > 0, we have under

this condition on v 1 1 2
3 L2 (E5)
VI-E[X, 2 1-E[X,] ¢

and similarly
§X) 4

2(1- P2 T v
Applying (E.6) and taking expectations in (E.1), we obtain by property 2

s
3]13 + Eﬂgc. (E.6)

logn
cosTE[X,] - E[cos™ X,] < Cv% 4 e 4 e, (E.7)

Together, (E.2), (E.4) and (E.7) establish the first claim provided # is chosen larger than an absolute constant
multiple of dlogn.
For the second claim, we begin by using the triangle inequality to write

7

|cos'1 X, —-E [cos’1 XV]| < |cos'1 X, — cos™! [E[XV]| + |cos'1 E[X,]-E [cos'1 XV]

and then observe that our proof of the first claim implies suitable control of the second term. For the first
term, if v < vo we use Lemma E.20 to immediately obtain with probability at least 1 — C3n = that this term
is at most Ce™". For v > vy, we apply property 3 and the bounds (E.5) and (E.6) in the expression (E.1) to
obtain with probability at least 1 — C3n =4

dlogn dlogn

+Clv ,
n n

|cos'1 X, — cos! [E[XV]| <Cv
which is of the claimed order when 7 is chosen larger than an absolute constant multiple of d log 7. O
Lemma E.7. There exist absolute constants ¢, C,C’,C"” > 0 such that if n > Clogn, one has

qo(v)—cos'l E [Xy]

< Cle—(:l’l + C//K
81/82 n

Proof. Write f(v) = cos ¢(v), and
h(v) = E[X,] - f(v),

so that / is the residual between the two terms whose images we are trying to tie together. We will make
use of the following results:
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1. The function cos™ is %-Hélder continuous on [0, 1], so that |cos™? x — cos? y| < /|x —y| if x,y > 0.
(Lemma E.20)

2. Forv € [0, ], we have 1 — %vz < f(v) £1-cyv? (Lemma E.14)
3. Forall0 < v <7, |h(v)| < C1e=" + Cv?/n. (Lemma E.15)

We choose 1 large enough that the hypotheses of Lemma E.15 are satisfied. Define vy = 24/C1/c2e™1"/2. We
split the analysis into two sub-intervals: I := [0, vp], and I; := [vo, ]. Choosing n larger than an absolute
constant multiple of log 1, we guarantee that I; and I, both have positive measure.

On I;, we proceed as follows:

|cos'1f —cos(f + h)\ < \/m
< +/Cie=a" + Cv2/n

< \/Cle—cln + 4C1C2C2_16_C1”
_1
< Ce 297,

The first inequality uses Holder continuity of cos™, the second uses our bound on the residual, the third
uses the definition of I;, and the fourth worst-cases the constants.

On I, we calculate
2

If + h| < |f] + |h] < Cre—m +c2% +1-cn?,

using the triangle inequality and our bounds on |h| and f. Using the conditions v > v and choosing
n > 4Cy/co, we can rearrange to get

which implies |f + 1| < 1 - czv?/2. By the control f(v) < 1 — cpv?, valid on I, we get that both f and f + h
are bounded above by 1 — c,v2/2 on I; moreover, because f > 0and f + h > 0, we can apply local Lipschitz
properties of cos™ on I,. This yields

|k
1~ (sup;, max{f, f + h})?
- Cie™ " + Cov?/n
V- (= (/227
Cie—cm N Cov?/n
\/%QVZ(Z - 1c1?) \/%czvz(z —1eo1?)

<Cvle " 4+ C'v/n

|cos’1f —cosi(f + h)| <

1
< Ce 2"+ C'v/n.

Above, the first inequality is the instantiation of the local Lipschitz property; the second applies our upper
and lower bounds on f and f + h derived above, and our bound on the residual ||; the fourth applies the
bound 0 < f(v) <1- %cy/z to conclude 2 — %CQVZ > 1 on I, and cancels a factor of v in the second term;
and in the last line, we apply v € I to get v > 2+/C1/ce~1"/2, which allows us to cancel the v~! factor in the
first term of the previous line.

To wrap up, we can choose the largest of the constants appearing in the bounds derived for I; and I,
above and then conclude, since I1 U I, = [0, t] under our condition on 7. O
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E.3.2 Proving Lemma E.6

Lemma E.8. There exist absolute constants c¢,c’,C,C’,C"” > 0 such that if n > C and if n is sufficiently large to
satisfy the hypotheses of Lemma E.15, one has

1-C"*=Cle < E [X,]<1—cv?+Cle ",
81/82

Proof. By the triangle inequality, we have
|cos p(v)| — |[E[XV] — cos cp(v)| < E[X,] < |cos p(v)| + |[E[XV] — cos (p(v)|.
Applying Lemmas E.14 and E.15 with m = 0, we get
1-C"2? = Ce™ " = C"V*/n <E[X,] <1—cv?+Ce™" +CV?/n,
which proves the claim if we choose n > 2C’/c. O

Lemma E.9. There exist absolute constants ¢, C,C’ > 0 such that if n satisfies the hypotheses of Lemmas E.11
and E.12, then one has for each v € [0, 7]

Cv*logn
Var[X,] < Tg +Cleen,
Proof. We use the following elementary fact for a random variable with finite first and second moments,

easily proved using Var[X,] = E[X?] — E[X,]? and Fubini’s theorem: in this setting one has
Var[X,] = E [Var[X,(g,, -)]] + Var[z[gE [Xo (-, g1
1 2
By Lemma E.11, there is an event & of probability at least 1 — Ce " on which Var[X,(g,, -)] < C'v*/n +
C’e—c'n, Invoking as well Lemma E.12, we obtain

C"v*logn

Var[X,] < E[(Lg + Lg)Var[X,(g,, )] + L e
81

Cvtl
< v nogn +Cle " 4 P[SC]I/Z E [Var[Xv(gl, . )]2] 1/2
81
- Cvtlogn 4 Clemen,
n

as claimed, where in the second line we applied nonnegativity of the variance and the Schwarz inequality,
and in the third line we used the fact that || X|[;> < || X||.~ for any random variable X in L*. O

Lemma E.10. There exist absolute constants c,c’,C,C’,C"” > 0 and absolute constants K, K’ > 0 such that for
any d = 1 such that n and d satisfy the hypotheses of Lemmas E.11 and E.13 and n > max{Klogn, K'd}, for any

v € [0, 7t], one has
< C//VZ leg?’l + Ce—cn
N =

P Xv - E [Xv] > 1- C’Tl_cld.
&81/82
Proof. By Lemma E.11, we have
”,2 d —cn 1 ,—c’d
Pl1Xy - E[X,]| £ C"v ;+Ce >1-Cle "
&2

Let ¢ = 1925 denote the cutoff function defined in Lemma E.31, and write

v0(81, 8>) v,(81,8,) >

Y, (g4, = ’
(81, 82) <¢(|Ivo(g1/gz)||2) I,U(”T’v(gygz)HZ)
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By Lemma E.13, we have

P >1-C'nc"

< C”vzﬂ —d logn + Cne™"
n

We have X, =Y, on the event &1, by Lemma E.16, and we thus calculate using the triangle inequality

[E[Yv]_ E [Yv]
&2 81/82

E [Yv]_ E [Xv]

< E[X -Y.| = E [nacyv] < Cne="
81:82 81/82 !

81/82 81,82

where the last inequality uses Holder’s inequality and the measure bound in Lemma E.16. Again using the
triangle inequality, we have

< [E“Xv - le]/
&2

[E[Xv] - [E[Yv]
&2 82

and so using our previous calculation and Markov’s inequality, we can assert

|

The claim then follows from the triangle inequality, a union bound, and a choice of n larger than an absolute
constant multiple of log #n and an absolute constant multiple of d. ]

< Cne—cn/Z >1-— e—cn/Z_

IE [Yv] - IE [XV]
&> &>

Lemma E.11. There exist absolute constantsc,c’,c”,c’"”,C,C’,C”,C",Cy4,Cs > 0, and absolute constants K, K’ >
0 such that for any d > 1, if n > max{Kd, K'logn}, then for every v € [0, 1] one has with probability at least

1—-Ce™n
4

Var[X,(g;, -)] < 0471/ +Cle™n,

and with (g, g,) probability at least 1 — C”e~¢"? one has

d "
< C5v2\/— +C"e 1,
n

Proof. Fix v € [0, ]. Let & = Eps,1 denote the event in Lemma E.16 which is in the definition of X,. We
start by treating the case of v = 0 or v = . We have X;; = 0 deterministically, so the variance is zero and it
equals its partial expectation over g, with probability one. For the other case, one has Xy = 1g,; we have

Xv - E [XV]
&2

Var[XO(g]/ )] = [E[]181] - E[ﬂal]z < (1 - E[ﬂal]) ’
& 82 82

and since E[1g,] =1 — Cne™*" by Lemma E.16, we obtain by Markov’s inequality
P[Var[Xo(g,, -)] > Cne™"/?| < ¢™"/2.
This gives a suitable bound on the variance with suitable probability. For deviations, we note that
[E[Xo - [E[Xo]} =0,
82

and following our previous variance inequality but taking expectations over both g, and g, gives Var[Xp] <
Cne~®", which implies by Chebyshev’s inequality

IP’[ > VCne—cn/2

which is a suitable deviations bound that we can union bound with the event constructed below, which
controls deviations uniformly for the remaining values of v. We therefore assume below that0 < v < 7.

Xo — E[Xo] <emn2

82
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Let ¢(x) = max{x, %}, which is continuous and differentiable except at x = %, with derivative ¢’(x) =
1,51/8. We note in addition that x < ¢(x), and since ¢ > % we have for x > 0 the bound x/¢(x) < 1. Define

(Uo(gl,gz),vv(gl,g2)>
V(llvo(gy, )12 (llvv(g1, 85)12)

We first show that it is enough to prove the claims for Y;,, which will be preferable for technical reasons. On
&1, we have Y, = X,. We have |Y,| < 1, and we calculate

Y. (81,82 =

1/2

4

) ) 1/2 A 1/2
E[% - XP] = E|1ei% - X P| < E[ter| " E[0r - %) < CE 1]
82 82 &2 82 82
where the first inequality uses the Schwarz inequality, and the last inequality uses that |X,| < 1 and the
triangle inequality, and where C > 0 is an absolute constant. We have by Tonelli’s theorem and Lemma E.16

1/2
[E[[E[]lgc] ] < Cne™",
81182 !

so Markov’s inequality implies
1/2
IP’[[E []l,gC] > Cne 2| < e7n/2,
82 !
—cn/2

Thus, with probability at least 1 — ¢ , we have

E [(Yv - XV)Z] < C'ne"/?,
&2

so that an application of Lemma E.32 yields that with probability at least 1 — e~"/2

Var[X, (g, -)] < Var[Y, (g, )] + C’ne ",

where we have worst-cased constants and the exponent on n. For deviations, we write using the triangle
inequality

S |XV _YV| + YV - [E[YV]

&2

+

7

Xv - [E[XV]
&2

E [Yv] -k [Xv]
82 82

and then note that the first term is identically zero on the event &;, which has probability at least 1 — Ce™",
whereas for the third term, we have

E [Yv] -E [Xv]
82 82

<E [(YV - XV)Z]l/2 < C'ne~"/?,
&2

where the first inequality uses the triangle inequality and the Lyapunov inequality, and the second inequality
holds with probability at least 1 — e*"/2, and leverages the argument we used to control the difference in
variances. Ultimately taking union bounds, we can conclude that it sufficient to prove the claimed properties
forY,.

With 0 < v < 7 fixed, we introduce the notation

ug, =v0(81); Vg,.g, =0v(81,82)

so that
Ug, Vg8,

¥ (llug, l12)" ¢ (llvg, g,1l2) [

For fixed g,, we will write Y,(g,) = Y,(g;, §,) with an abuse of notation. For g € R" arbitrary and g, fixed,
we consider the function f(t) = Y, (g, + tg) for t € [0,1]. Writing f’ for the derivative of f where it exists,
at any point of differentiability, we calculate by the chain rule

f1(#) =(Vg,Yi(82 +£8), 8),

v =
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where
llbl(”vgpgz ”2)7’&,827’}1,32

w(val,gz ||2)||vg1,g2 ll2

sin v

ll}(”ugl ||2)’7b(||vg1,g2 II2)

ngYv(gz) =

) (———)

Using the fact that
]11’31,gz>0 Qug = P{vgl,g2>0}”g1'
where Py, -0y is the orthogonal projection onto the coordinates where vg ¢, is positive, together with
the fact that
U818,98,,8, P (06,.5,>00 = Plog, 5,201021.8,0 5,8,/
we can also write

ngyv(gz) =

P I (E.8)
V(g D0 (l0g, g ll2) " s V(llog, 5 1)0g, ¢, ll2

We next argue that f does not fail to be differentiable at too many points of [0,1]. Because i > 0, it will
suffice to show that (i) t > vy, ¢ 1z and (ii) t = ¢(||vg, ¢,+tzll2) are differentiable at all but a set of isolated
points in [0,1]. For the latter function, we note that at any point where [|vg, ¢ +tzll2 < %, by continuity
we have that t — (||vg, ¢,+tzll2) is locally constant, and therefore differentiable at such points. At other
points, by Lemma E.21 it suffices to characterize t > ||vg, ¢ +tzl2 as differentiable at all but isolated points,
and because ||vg, g,+13ll2 > % by assumption, the norm is differentiable and by the chain rule it suffices to
characterize differentiability of each coordinate of t - v¢ 823G which settles the question of all-but-isolated
differentiability of (i) as well. We have vg o 11z = 0(g; cosv + g,sinv +tg sinv), so again by Lemma E.21,
we conclude from differentiability of t — g, cosv + g,sinv +tgsinv that t > vg o 1z is differentiable at
all but isolated points, and consequently so is f. In particular, f is differentiable at all but countably many
points of [0, 1]. Next, we show that f’ has suitable integrability properties. Indeed, we calculate using (E.8)

sinv ( 1,0'(||Ug1,g2||2)vg1,gzv;1,g2)
- 81

||Vg2Yv(gz)||2 <8v

‘P(”vgl,gz||2)||7Jg1,g2”2 ‘P(”ug]”Z)

= 8u[1 = ¥(llog, g, 2)Yul82)2, (E.9)

(I 3 le(”vgl,gz||2)Z7g1,g277§1,g2) Ug,

2

where we used Cauchy-Schwarz and ¢ > § in the first inequality and distributed and applied (y')* = ¢’
and the estimate x/¢(x) < 1 in the second inequality. In particular, this implies that | f’(t)| < C||g||2, which
is a t-integrable upper bound for every g. Because Y, (g, -) is continuous by continuity of ¢, 1, and the fact
that ¢ becomes constant whenever ||vg, ¢ |2 < %, we can apply [Coh13, Theorem 6.3.11] to get

1
Y(gy +8) = Yolgy) + /O (Ve Yolgs +13),3) dt,

and since g was arbitrary, for any g7 € R" we can put g = g7, — g, to get

1
Yo(g)) = Yolg,) + /0 (Ve Yoltgy +(1—D)g,), g4 — ga) d.

Performing the expansion with g, and g/, reversed and applying the triangle inequality and Cauchy-Schwarz
then implies the estimate

1
Y, (g5) — Yo(g,)| < llgh — £, 1l fo Ve, Yo(tgs + (1= 1)g,)|l, dt. (E.10)

This relation is enough to conclude the result for angles satisfying v > co, where 0 < ¢o < 71/4 is an absolute
constant. Indeed, (E.9) and (E.10) imply that Y, is C-Lipschitz, where C > 0 is an absolute constant; so the
Gaussian Poincaré inequality implies

’
E [(Yv - [E[Yv]) < 7/

82 82
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and Gauss-Lipschitz concentration implies for any d > 0

ch/\/g
n

Because v > ¢g, we can adjust these bounds to involve v* and v? (respectively) while only paying increases
in the constant factors. We proceed assuming 0 < v < co.
Let 0 < 7, < 1 denote a median of Y,(gy, -), i.e., a number satisfying Py, [v, > Tgll > % and Pg, [y, <

P||Y, - E[Y,] <2e7

&2

Tg, ] 2 %, and for each 0 < s < 7¢ define
ws(g,) = max{Y,(g,), 1g, — s}

For any 0 < s < 14, notice that ws > Y, which implies that Plws > Tg1] > PlY, > T81] > %,because Tg, isa
median of Y,; and similarly Plws < 7¢. | 2 P[Y, < 74,] 2 %, so that 74, is also a median of w;s. The fact that
ws > Y, implies for any ¢ > 0 that P[Y, — 7, > t] < P[w; — 7¢, > t], and additionally if ¥, < 7 —s we have
ws = Tg, — 8, s0 that P[Y, — 14, < —s] < Plws — 74, < —s]. In particular, the tails of ¥, can be controlled
in terms of those of w; for appropriate choices of s. Additionally, by Lemma E.21, we have that for each s,
t — ws(g, +tg) is differentiable at all but countably many points of [0, 1], and has derivative there equal to
t — (8, Vg,ws(g,)), where

ngws (82) = ﬂws(gZ)xgl—ngzYv(gz),

which, following from (E.9), satisfies a strengthened gradient norm estimate

1V5,0(85)ll2 < 8Vl (gy1555, -5y 1 — ¥/ (1105, g, 12) Yo (82

(E.11)
< 8u\[1 = 9(log, g, )T, —5)2.
In particular, we obtain a nearly-Lipschitz estimate of the form (E.10):
1
[w:(g3) - we(g2)] < ligh - £ll2 /0 81~ ([0, 1105 ) (T, — 5)2 . (E.12)

For each g;, we defineaset Sy, = {g,!l|vg, g,ll2 > 1} Noting that the function g, — [lo(g; cosv+g, sinv)|l2
is a convex 1-Lipschitz function (given that [sin v| < 1), we have by Gauss-Lipschitz concentration

g2
Secnt[

P |log, .l < E[log, .1z ] -
82 &2

and by Jensen’s inequality
llug, 2

\/E 7
where the last line holds because v < 7/4. By Lemma E.16, there is a g, event & having probability at least
1 - Ce™" on which |lug |2 > %, so that for any g, € &, we have by a suitable choice of ¢ in our Gauss-
Lipschitz bound Pg,[Sg, | > 1 — e™". Thus, using the first line of (E.11), the Gaussian Poincaré inequality

and the Lipschitz property of ws (which follows from (E.12) after bounding by an absolute constant) and
Rademacher’s theorem on a.e. differentiability of Lipschitz functions, we have whenever g, € &

LE[val,gz”Z] > |cos V|||ug1||2 =
2

V2
Varlwo:) < = E[I¥,05(82)1E] < - E[(1= 4/ (log, g )Y g2
V2
< 2 E[1s (1= ¢ (log, |22

+E[Les (1= 9/(log, 5, 12)%(82)°)]
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2 2
< 52” E[1-Y.(g,)] + Ce™", (E.13)
82

where we also make use of the fact that 0 < Y, < 1. Now, we calculate for g, € Eand g, € S¢ .

2
1

2

u 0
Y, =1 81 81/82

g, Ll llog, sl
P “”gl - vg1,32||§
llueg, II3
>1-8|lug, - vg1,g2||§
> 1—8||g1—(glcosv+gzsinv)||§, (E.14)

where the second inequality uses g; € &, the third uses nonexpansiveness of ¢, and the first requires a
proof; we will show that for any nonzero vectors x, y € R”, one has

llx —yll2
lyll2

x Yy
lxll2 |y,

To see this, write 0 for the angle between x and y, and distribute to obtain equivalently

2

1
—§||y||§(1 +cos 0) < ||x[5 = 2llx[l2ly |2 cos 6.

Divide through by ||x||§, write K = ||y||2[lx]|; !, and rearrange to obtain the equivalent expression

K?(1 + cos 0)) —4K cos O +2 > 0.

It suffices to minimize the LHS of the previous inequality with respect to K subject to the constraint K > 0
and then study the resulting function of 0 to ascertain the validity of the bound. Given that 1+ cos0 > 0,
the LHS is a convex function of K, with minimizer K = 2 cos 6(1 + cos )7}, and therefore for any 6 > /2,
the LHS subject to the constraint K > 0 is minimized at K = 0, where the inequality is easily seen to be true.
If 6 < 1/2, we have that the minimizer is positive, and we verify that after substituting the bound becomes

1+cos@ >2cos?0,

which is also seen to be true for 6 < 71/2, for example by showing that the polynomial x + —2x* + x + 1 is
nonnegative on [0, 1]. This proves the inequality, so returning to (E.14), we have

Y, > 1-8((1 - cosv)?||lg; I3 +sin®v||g,|I3 — 2(sinv)(1 — cos v){g;, §,))
>1-8((1 - cosv)llg I3 +sin® v]|g, I3 — 2(sinv)(1 - cos v)|| g1 [l2llgI2)
using Cauchy-Schwarz in the second inequality. By Gauss-Lipschitz concentration (e.g. following the proof
of the third assertion in Lemma E.17), there is a g, event & and a g, event &”, each with probability at least

1—-Ce™", on which we have (respectively) ||g;|l> < 2 for i = 1,2. Then using (sin v)(1 —cos v) > 0, we obtain
that when g, € £N & and when g, € S N &”

Y, >1-32((1 - cosv)? +sinv) =1 — 64(1 — cosv) > 1 — 3212,

where the final inequality uses the standard estimate cosv > 1 — 0.5v2, which can be proved via Taylor
expansion. By a union bound, we can assert that with g,-probability at least 1 — Ce™", with conditional (in
g,) probability at least 1 — C’e~" we have Y, > 1 — 3212, so that in particular, by nonnegativity of Y;, and

choosing n larger than an absolute constant, we guarantee with g,-probability at least 1 — Ce™"

E[Yv] >1-320% - C'e™", Tg, > 1-3217% (E.15)
2
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Plugging the mean estimate into (E.13), we conclude with probability at least 1 — C”e ="

4
Var[w,] < CTV 4 Cleen, (E.16)

We could have just as well applied this exact argument to Y, instead of w,, so we conclude the claimed
variance bound from this expression. We have stated the result in terms of the truncations w;s so that it can
be applied towards deviations control in the sequel. As an immediate application, we use the fact that any
median is a minimizer of the quantity ¢ — E[|X — c|] for any integrable X and ¢ € R to get with probability
atleast 1 — C”e~™"

E[ws] — gy

2

< E[|ws - tg,]] < E|jws — E[ws]|| < vVar[w;] < e, (E.17)
&2 &2 &2 \/ﬁ

where we also applied Jensen's inequality for the first inequality and the Lyapunov inequality for the third.

In particular, the same argument yields

Cv? 1 ,—cn
E[YV] —Tg | = % + Cle™". (E.18)
2

We turn to removing the ¢ dependence in (E.12) without sacrificing the dependence on 74,. To obtain
a Lipschitz estimate on the subset S¢ we need to control the norm of Vg ws on the line segment between
82,85 € Sg, - For this, write 0,(x) = max{x — y,0} for any y € R, and make the following observations:

L. Vg8 = (sin V)U—gl cotv(gz), so that

Ug, (SinV)U—gl cotv(82)

¢ (g, 1) ¢ (i v)0—g, corvlga)l12) [

Yv(gz) = <

2. forany x,y, o,(x) = max{x, y} - y; x = max{x, y} is the projection onto the convex set {x | x; > y; Vi},
so in particular x = o0, (x) is nonexpansive, has convex range, and satisfies o, (0, (x) +y) = 0,(x); and
thus

3. forany g,, Yy(g,) = Yo(0-g, cotv(g2) — &1 cotv).

We write §, = 0_¢, cotv(g,) — g7 cotv, g = 0-g, cotv(g5) — & cotv, so that (E.12) becomes

1
|ws(85) = ws(8,)] = [05(85) - ws(,)| < 1185 — %ol /0 81— 9/ (0, g5z, 12) 75, — 5)2dt

1
<lgh= gl [ 801V llog ooz (e, — 5P et

where the second line follows from nonexpansiveness and translation invariance of the distance. Having
reduced to the study of points along the segment between g, and g7, we now observe

O-g, cotv (f§§ +(1- t)gz) =0 (ta—gl cotv(gz) +(1- t)a—gl cotv(gz)) = to'—gl cotv(gz) +(1- t)a—gl cotv(gz);

because o_g L cotv has image included in the nonnegative orthant, which is convex. It then follows from (1)
above that

||vg1,t§’2+(1—t)§2“2 = (SinV)”tG—g1 cotv(gz) +(1- t)a—gl cotv(gz)”2

= ”tvglrgz +(1- t)vgl'g’z 5’
and in particular

2
_ 42 2 2 2
26,6, + 0 = Dog ]|, = Pllog, g, B +260 = )0g, 5,005, g0) + (1= 1Pll0g, 111
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1

1
o) 2

> = ’
32
where the first inequality uses that 0 > 0 and g, g’2 € Sq., and the second minimizes the convex function of

t in the previous bound. We conclude that g,, g} € Sg, implies that [[vg, iz (1-ng,|l2 > % forevery t € [0,1],
and consequently (E.12) becomes (after an additional simplification of the quantity under the square root

using 7g < 1)
|ws(gh) — ws(g,)| < 16v4J1 — (g, —5)lIgh — g,ll2, (E.19)

so that w; is 16v4/1 — (1g, — s)-Lipschitz on Sg . Then by an application of the median bound in (E.15), if
0 < s < 1-232v% with g, probability at least 1 — Ce™" we have that w; is 16vV32v2 + s-Lipschitz on Sg, .
For the previous assertion to be nonvacuous, we need to take v small; in particular, we have 1 — 3212 > % if
v < 1/8, which we can take to be the value of the absolute constant ¢y we left unspecified previously. Then
for each such s, define Ly = 16vV32v2 + s, and define

Ds(g,) = sup {ws(gh) - Ls||gh = 8all,}-

83€5g

Then @ is Ls-Lipschitz on R", and satisfies @; = ws on Sg [EG91, §3.1.1 Theorem 1]. By the Gaussian
Poincaré inequality, we obtain immediately Var[ws] < Ls, and using @5 = ws on Sg,, we compute

E [ws —Ds]
82€5%,

E[ws — o]

< E |1 lws —
82 &2

1/2 .
<p|s,| s~z
&2
< Ce™ (lwsliz + Ililzz) < C'e™, (E20)

where the second inequality follows from the Schwarz inequality, the third holds given that g, € & and
by the Minkowski inequality, and the final uses that w; and @ are both Lipschitz with Lipschitz constants
bounded above by absolute constants together with the Gaussian Poincaré inequality. Meanwhile, by
Gauss-Lipschitz concentration, we obtain a Bernstein-type lower tail

P|®s < E[®s] -5

&2

cns?
< exp (—m) ’ (EZl)

and for the upper tail, it will be sufficient to consider @y, which satisfies a subgaussian tail (for any ¢ > 0)

. N c'nt?
Pl < E[Wo] —t| < exp|——F]. (E.22)
82 v
Using the results (E.17), (E.18), (E.20), and the fact that ws = @; on Sg,, we get
2
[P’[Yv CE[Y,] < —s| < P|ds - E[ds] < CX= + Cle™" — 5| + P[sg ] (E.23)
&2 &2 &2 &2 \/ﬁ 82 !

Using d > 1, we put s = 2Cv?4/d/n + C’e~" in this bound; using that v < 1/8, and in particular 1-32v2 > 1,

we can choose 7 larger than an absolute constant multiple of d to guarantee that for all 0 < v < 1/8, this

choice of s is less than 1 — 322, and that Cv?+/d/n < 32v2. Together with the lower tail bound (E.21), these
<P

facts imply
Ws — E[Ds] < —C1/2\/E
82 82 n

M _
<e "4 C"emn,

P + C//e—c'n

82

Y, - E[Y,] < —chZ\/E —Cle™"
82 n
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Meanwhile, for the upper tail, we have for any t > 0

p[n CEY] >t
8 8>

2

2%

Wo— E[dg] 2t -C—=—-C'e™"
82 \/E

+p sgl], (E.24)

<P
&2 &2

and if we put t = 2Cv24/d/n + C’e“", our previous requirements on n and the upper tail bound (E.22) yield

P <e "4 e,

82

Y, - E[Y] = 2@&/% +Cle™en

82

Combining these two bounds gives control of absolute deviations about the mean. By independence, we

conclude
d 1" ’ g ’ 1"
P ||Y, - E[Y,]| £ 2Cv24 /S + Cle™" | > (127 = Ce™)(1 = Ce™"") > 1 - 2¢™4 — Ce™" — Cle™"™.
81/82 &2 n

To conclude, we have shown that for every v € [0, ] one has with probability at least 1 — Ce™"

7,4

Var[X, (g, -)] £ v +C'ne =",

and with (g,, g,) probability at least 1 — 2¢=¢"4 + C"”ne~*"" one has

d _
< C////VZ ’_ + C/////ne c n.
n

To simplify these bounds, we may in addition choose n larger than an absolute constant multiple of logn,
and 7 larger than an absolute constant multiple of d, to obtain that with probability at least 1 — Ce™"

Xv - [E[Xv]
&2

4
Var[X, (g, )] < C4Tv +Cle™n,

and with (g, g,) probability at least 1 — C”¢~¢"? one has

d o
< C5V2 ’__i_cwe c nl
n

which was to be shown. m|

Xv - E [XV]
&2

Lemma E.12. There exist absolute constants ¢, C,C’ > 0 and an absolute constant K > 0 such that if n > Klog*n,
then for every v € [0, 7] one has

Cv*l
Var[[E[XV(-,gz)]} < = osn + Cle™ ",

82 n
Proof. Define

(vo(g1r82)/vv(g1fgz)>

P(llvo(g1, 82)I12)Y(llov(gy, 8)ll2)”

where ¢ = g 25 is as in Lemma E.31. Then by Cauchy-Schwarz and property 2 in Lemma E.31 (the case
where either ||vgl|2 = 0 or ||v, |2 = 0 is treated separately, since in this case Y, = 0), we obtain |Y,| < 4, and

(Hc (w0, 0+) ])2
& & vy (lovlh)

Y. (81, 82) =

E
81

=E
81

2
([E[Xv] - [E[Yv])

82 &2
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< (1& (20, 01) )2
“ae|\ Ylool2)y (o)

<16u(&Ey,) < Cne™ ",

where we use the fact that if (g,, g,) € &y, then [|v, |2 > % for every 0 < v < m and hence ¢/(||v,2) = [|vv]l2
in the first line, apply Jensen’s inequality in the second line, and combine our bound on Y, with Hoélder’s
inequality and the measure bound in Lemma E.16 in the third line. An application of Lemma E.32 then
yields

Var LE [XV( ., gz)] + CE‘Cn/ZI
2

< Var[E [Yv( . ,gz)] +Cne ™" < Var[[E [YV(-,gz)]
&> &

where the last inequality holds when # is chosen to be larger than an absolute constant multiple of log n. It
thus it suffices to control the variance of Y,. Applying Lemma E.26, we get for almost all g, € R"

llooll3
P(llwoll2)?

where we follow the notation defined in Lemma E.13. We start by removing the term outside of the integral
from consideration. We have as above |Y,| < 4, so that |Eg,[Y,]| < 4. Moreover, following the proof of the
measure bound in Lemma E.16, but using only the pointwise concentration result, we assert that if n > C
an absolute constant there is an event & on which 0.5 < [|vg||> < 2 with probability at least 1 — 2e™°" with
¢ > 0 an absolute constant. This implies that if g; € & we have

v t
E[Y.(g1, 82)] = + / / E[(E1+ 82+ E5 + B4 + Es + B6)(s, 81, §,)| ds dt,
82 0 0 &2

llvoll2 1
Y(llvoll)>

and since
llooll3

P(llwoll2)?

by the same argument used for Y,,, we can calculate
ool

llooll3
P(llvoll2) Y(llooll2)
by the Minkowski inequality and the triangle inequality. An application of Lemma E.32 implies that it is
therefore sufficient to control the variance of the quantity

= X,

< 5||lgel|p2 < Ce™ ",
L2

L2

% t
flv,g) = 1+/ / E[(El +Ez+E3+E4+E5+Eé)(s,gl,g2)] ds dt.
0 0 82

By Lemma E.37, the Lyapunov inequality, and Fubini’s theorem, we have
5 v pt[ 6
(70,80~ ELF 1)) = ( [ (
0o Jo \'37 & 1-82

2
E[Zi(s, 81, 8)] - g[Eg [Ei(s,gl,gz)]) ds dt) :

Using the elementary inequality

(/OV'/Otg(s)clsdt‘)2 SV/Ovtdt‘Ltgz(s)ds,

valid for any square integrable g : [0, 7] — R and proved with two applications of Jensen’s inequality, and
Lemma E.37, we obtain

2

v t 6
(fv.gy) - [E[f(v,gl)])2 < v/o t'/o (;5[31‘(5/81/32)] - gl[I,Eg2 [2i(s, 81, 82)]| dsdt.
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Thus, again by Lemma E.37, the Lyapunov inequality, Fubini’s theorem, and compactness of [0, 7], we have

Var[f(v, -)] Sv‘/OVt'/OtVar

We can control the variance under the integral using a combination of Lemmas E.35 and E.37, together with
the deviations control given by Lemmas E.39, E.41 to E.44 and E.46, since we have chosen n according to the
hypotheses of Lemma E.13. In particular, these lemmas furnish deviation bounds of size at most

dl ,
Ci ( 87, n_c"d) + Cine™ "

ds dt. (E.25)

6
D E[Ei(s, 81, 85)]
i-1 %2

n

that hold with probabilities at least 1 — C l’/n_cyd -C l’/’ne_cx{"", for any d > 1 larger than an absolute constant
and suitable absolute constants specified above. We can simplify these bounds as follows: first, choose
n such that n > (2/c/”)logn for each i, which guarantees that the bounds hold with probability at least
1- le’n*‘:z"’d — C;”e*CQH”/ 2. Next, choose n > (2c?/ci")dlogn for all i, which implies that the bounds hold
with probability at least 1 — 2max{C”, C;”}nfcz",d. Similarly, we also choose 1 such that n > (2/c;) logn for
each i, which guarantees that the error terms that are exponential in 7 in the bounds are upper bounded by
C;e“f‘"/Z, and, choose n > (2c;/c})d logn for all i, which implies that for all i

dl , dl
Ci (\/ (:lgn + n_c"d) +Cine™ " < Ciy (;gn +2max{C;, Cj}n~5",

Finally, we make the particular choice d = 4/min;{c;, c;’}, or the minimum required value of d, whichever
is larger, so that there are absolute constants C, C’, C” > 0 such that with probability at least 1 — C "n=* we

have for all i
log n 4 logn
<Cy/—+Cn7<2C ,
n n

where the last inequality holds when 7 is larger than an absolute constant. With these bounds, we can now
invoke Lemma E.35 with Lemma E.37 to get

‘[E[Ei(v,glfgz)]— E [Ei(Vrglrgz)]
&2 81/82

6
logn (' log n

\% Ei(s, &1, <C———+—=<(C"—=,

ar i:lg[ (5, 81,85)] T .

for different absolute constants C, C’, C” > 0, and where the last inequality again holds # is larger than an
absolute constant. Plugging back into (E.25) and evaluating the integrals, we get

I
Varlf(v, -)] < Cvt2EL,

which is enough to conclude. o
Lemma E.13. Write

<7JO(81/ gz)/ vv(glr g2)>
Y(llvo(g1, 8)M2)¥(I104(81, 82)lI2)”

where V = Y25 is as in Lemma E.31. There exist absolute constants c¢,c’,C,C’,C"” > 0 and absolute constants
K, K’ > 0 such that forany d > 1, if n > Kd*log* n and if d > K’, then there is an event & such that

1. One has
< o2y 1hogn k;g" + Cee"

Y(81,82) =

Yvel0,n], |E[Y,]- E [Y]

&2 81/82

ifg, €8;

175



2. One has
P[E]>1-C'n~c",

Proof. Fixd > 0, and write
fv.81) = gz (Y81, 82)]-
2
Applying Lemma E.26, we get for almost all g, € R"

llooll3

080 = SloolP

v t
+ / / ;E [(B1+Es+ Es+ By + Es + E6)(s, 81, 8,)| ds dt, (E.26)
0 0 2

where

- - O(gu)SP(—gucotS)
Ei1(s,9¢1,9,) = . -
1882 Z: W0l g ([otl) sin® s

(0o, v)Y"(lvsll2)lwsll2 (v0,vs)
Yllvol)y(losll2)? gllvoll2)¢(losll2)
(v0,vs)(vs, i’s>2¢”(”vs”2)
Y(llwoll)¥(llvs l12)?llvs |13
(00,95)(vs, 05)P"(llvs]]2)
Pllvoll2)y (llvsll2)2lvsll2
B (o, vs) 119511590 (llvs 1)
Pllvoll2)y (llvsll2)?l1vs ll2
(vo,vs)(vs, i’s>2¢,(||vs”2) + (vo,vs)(vs, 7>S>24}’(”vs”2)
Y(llwoll2)(llvsli2®lvsl3 — wllwoll2)wllosl2)llvsll3

Here we put £1(0, g4, §,) = Z1(7, g1, §,) = 0, which does not affect the integral and which is equal to the

limits lim,\ o E1(v, &4, §,) = lim, ~- E1(v, g1, §,) for every (g, §,)-
Momentarily ignoring measurability issues, it is of interest to construct g, events &; of suitable probability

on which we have
<G (\[ dl(:lgn +ne

En(s,81,8,) =

Es(s, 81, 82) = —

54(5181132) = _2

55(5181132) =

36(5181/82) =2

[E[Ei(vfgvgz)]_ E [Ei(Vfgpgz)] +C1{”e_C;n (E.27)

&2 81/82

sup
vel0,7t]

foreachi=1,...,6,and a g; event & on which we have

l00ll3 E llooll3
Pllvoll2)? | Pllvoll2)?

< C;e‘c9”.

We can then consider the event & = (7_; &;, possibly minus a negligible set on which (E.26) fails to hold,
which has high probability via a union bound and on which we have simultaneously for all v € [0, 7]

llooll? [ looll?

g0 = EL020]] < iz~ El Geolor

6 v t

+
%)
< Cv? (\/ dl(;gn + nCd) +C'ne=",
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E[Zi(s,81,82)] = E [Eils, 81, 85)]|ds dt
&2 81,82




by Fubini’s theorem and Lemma E.37, the triangle inequality (for | - | and for the integral), (E.27), and using
v? < 7% and worst-casing the remaining constants.

To establish the bounds (E.27), we will employ lemma Lemma E.48, which shows that it is sufficient to
obtain pointwise control and show a suitable s-Lipschitz property for each i € [6]; following the lemma,
these properties also imply Lebesgue measurability of the suprema immediately.

Reduction to product space events. Fix v. By the triangle inequality, we have foreachi=1,...,6

E[Zi(v,81.8))] - E [2i(v, 81, 8)] } (E.28)
g 81/:82

<E
2 &2

Ei(v,81,8,)— E [Ei(vfglng)]
81/82

Suppose we can construct (g, §,) events &’ such that

1. If (g4, 8,) € &, then

Ei(v,81,8)— E [Ei(V,gl,gz)]
81/82

[d1 ,
<G ( Zgn + n‘c"d) +Cine™ ",

"

2. Onehas P[E/] > 1 - C/n~% — C/"ne ™.

Then for each such i, we can write

3
82

|

] = [E[(]lsg +]1<8;>c) Ei(v,81,8)~ E [Ei(v,81.8))]
&2 8182

[d1 ,
i ( _(:lgn + n_c"d) + Cine™c"

+ E
82

Ei(V/g1/gz)_ [E [Ei(v/g]/gz)]
81,82

IA
(@)

Ei(v,81,8,)— E [Ei(v,gl,g2)]} (E.29)

1782

]1(81{)c

using nonnegativity of the integrand and boundedness of the indicator for &/ in the second line. The random
variable remaining in the second line is nonnegative, and by Fubini’s theorem (with Lemma E.37 for joint
integrability) and the Schwarz inequality we have

E [[E []1(8;)c

Ei(v, 81,8 — E [Bi(v, 81, 85)]
81182 8

1182 1/82 g1 |\ ~Egug [Ei(v, 81, 85)]

2 _ ,11/2
< E []l(s,f)c] E [( Bilv, 81,82 ) l
g
" " 1/2
<C (C;’n_cfd +C"ne"i ") ,

where the second line applies Lemma E.37 and the Lyapunov inequality. We can replace this last inequality
with one equivalent to the measure bound on (&) using subadditivity of the square root and reducing the
constants ¢} and ¢’ by a factor of 2. Using this last inequality, Markov’s inequality implies for any ¢ > 0

= - Lera o1 Lo
Ei(v, 81,8 — E [Ei(v, 81, 85)] < Cn 297 4 C'ntl2em2C0n,

]l(gl()c
81/82

ol

82

1., l a
] > Cn 2% 4 C'ntf2em 2™

which, together with (E.28) and after worst-casing some exponents and constants, implies that there is a g,
event &; that satisfies (the constants C and C’ are scoped across properties 1 and 2)

dlogn 1 1 . om
< c,-w/—(;g +(Ci + O™ 2 4 (C] + C'yne~ 2 ™intei e n,
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1. If g, € &;, then

‘[E[Ei(v,gl,gz)]— E [Ei(v,gl,gz)]
£ 81/82



l ’” _l "
2. Onehas P[&;] > 1 - Cn 25 — C'ne 25",
Thus, we can pass from (g,, g,) events to g, events with only a worsening of constants, and it suffices to
construct the events &/.
Additionally, we can leverage this same framework to pass v-uniform control from the product space to
g1-space. Suppose we can construct (g;, §,) events &’ such that

[d1 ,
<C; ( C})/lgn + n_C’d) + C;ne_cf";

1. If (g,, 8,) € &, then

Vv € [0, 7],

Ei(vl glr g2) - E [Ei(V, g1/ g2)]
81:82

7"

2. One has [P’[Sl’] >1- Cl{/n—c;’d — Cl{"ne_cf n

Then following (E.29), we can assert

Yv e [0, 7], [E[
g

2

[d1 ,
<C; ( Zgn + n_cid) + Cine™"

+ E
g

2

Ei(V/gygz)_ E [Ei(vlglng)]
818

1782

Ei(v,81,8)—- E [E‘i("/ gl'gz)]

1782

]].(8;)c

|

To get uniform control of this last random variable, we can use Lemma E.37, which tells us that we have a

bound
dlogn . ,
< C; (,/ ng +n Czd) + Cine " +£[1(3;)cﬁ(g1,g2)],

(E.30)
where f; is in L*(R" X R"), and has L* norm bounded by an absolute constant C; > 0. Then Fubini’s theorem
and the Schwarz inequality allow us to assert

Vv € [0, 7], [E[
&2

Ei(v, 81,8 — E [Ei(v, 81, 85)]
81/82

]l/Z

E [1<6;)cﬁ(81rgz)] <C E []1<a;>c ,
8182 8182
which can be controlled exactly as in the pointwise control argument. In particular, an application of
Markov’s inequality gives

"

1 ” l " _l ” _l
IP[E []l(g_)cﬁ(gl,gz)] > Cn 2% 4 C'n?e725 | < Cnm29 4 Ol 2724,
82 '

so that, returning to (E.30), we have uniform control of the quantity |Eg,[Zi(v, &1, §,)] — Eg, ¢,[Zi(v, g1, )
on an event of appropriately high probability. In particular, we have incurred only losses in the constants
compared to the pointwise case.

Approach to Lipschitz estimates. We will use this framework for controlling the E; and Z5 terms only.
Accordingly, the sections for those terms below will produce results of the following type, for absolute
constants ¢;, c;, ¢, ¢}, C;, C;,C/,C/”,C/” > 0 fori = 1,2, and parameters d > 1, 6 > 0 such that d and 6 are
larger than (separate) absolute constants and # satisfies certain conditions involving d:

1. For each v € [0, ] fixed, with probability at least 1 — C{”n‘ci’d -C i”’ne_ci"”, we have that
|£E [Ei(v, &1/ gz) - E[Ei(v, 81 gz)]]l < Cl\/d log n/n+ Cin_cld + Cf”e_cin}
2

2. With probability at least 1 — Cé’e‘cé" - Cé”n’é, we have that |Eg,[Ei(v, g1, §,) — E[Ei(v, &1, 8,)]]] is
(C2 + Cjn'*?)-Lipschitz.
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We show here that we can use these properties to obtain uniform concentration of the relevant quantities.

Write M = Ci+/dlogn/n + Cin‘cld + Ci’ne‘ci" ; we are interested in showing that uniform bounds of sizes
close to M hold with probability not much smaller than that of the pointwise bounds. By Lemma E.48, it
follows from the assumed properties that for any 0 < ¢ < 1 one has

P

sup

ve[o,n] 182

E [Ei(v, 81.8) — [E[Ei(v, gl,g2)]] <M+¢e(Cr+ Cén“é)] >1- (Ci”n‘ci'd + Ci’”ne‘c'{'”) Ke 1
_ (Cé/e—c;n + Cé”i’l_é)

where K > 0 is an absolute constant. To make the RHS of the bound on the supremum of size comparable
to M, it suffices to choose ¢ = C1+/dlogn/n/(Cz + Cin'*?). We have C; + Cjn'*® < K’n'*® for K’ > 0 an
absolute constant, and so we have ¢! < K'n%?*% for K’ > 0 another absolute constant. This gives

(Ci//n—c’l'd + Ci///ne—ci”n) E_l < K/n3/2+6 (Ci//e—c’l’dlogn + Ci///e—ci”/Zn)
< K/n3/2+6e—ci’dlogn
< K/n—cld/Z,

where K’ > 0 is an absolute constant whose value changes from line to line; and where the first inequality
assumes that n > (2/c]”)logn, the second inequality assumes that n > (2cy/c]")dlogn, and the third
assumes that 6 < c¢{'d/2 — 3/2. Choosing d so that the value c{'d/2 — 3/2 is larger than the minimum value
for ¢ (i.e., larger than an absolute constant), then choosing 6 = ¢'d/2 - 3/2, and finally choosing d > 6/c7,

we obtain

P [E[Ei(v,glrgz)_[E[Ei(vfglng)”

82

sup
vel0,m]

< 21\4 > 1 - Kn~S%2 — e~ — Cyrnei 4,
where K > 0 is an absolute constant, which is an acceptable level of uniformization.

Completing the proof. To obtain the desired control, we apply the uniform framework for the terms &;,
i =2,3,4,6; and the pointwise with Lipschitz control framework for the terms Z;, i = 1,5. We also establish
high probability control of the zero-order term in Lemma E.38. The events we need for the pointwise
framework terms are constructed in Lemmas E.39, E.40, E.44 and E.45. The events we need for the uniform
framework are constructed in Lemmas E.41 to E.43 and E.46. Because n and d are chosen appropriately by
our hypotheses here, we can invoke each of these lemmas to construct the necessary sub-events and obtain
an event & which satisfies

1. One has
welo,nl, [E%]- E Y] < c#( dlogn +n_Cd) +Clne=c"
82 81/82 n
ifg,€&;
2. One has

'n

P[E]>1-C"n~"4 = C"ne=<"".

We can adjust d and 7 slightly to obtain an event with the properties claimed in the statement of the lemma.
Indeed, choosing 1 to be larger than an absolute constant multiple of log 11, we can obtain C'ne =" < C’e~"/?
and C"”ne=¢"" < C"e~""12; choosing n to be larger than an absolute constant multiple of d log 1, we can
obtain C”"n=<"? 4+ C"e~¢""/12 < 2C"n~¢"1; and choosing d to be larger than an absolute constant, we can
assert \/dlogn/n + n=°¢ < 2+/dlogn/n. This turns the guarantees of & into the guarantees claimed in the
statement of the lemma, and completes the proof.

O
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E.3.3 Proving Lemma E.7
Lemma E.14. One has bounds
)
1—E§cosq0(v)§1—cv2, v € [0, m].

Proof. Write f(v) = cos ¢(v) = cosv + m~!(sinv — v cos v), where the last equality follows from Lemma E.2.
We start by obtaining quadratic bounds on f(v) for v € [0,0.1]. In particular, we will show

1-<fvy<1-52 vel0,01] (E.31)
We readily calculate
f'(v) = —sinv +n lvsinv,
f”(v) = —cosv + mH(vcosv +sinv).

Taylor expanding at v = 0 gives

infrejo,0.1) f”(£) sup;cro011 S (H)
e — s

We have f”(0) = —1, and sinv < sin0.1 on our interval of interest by monotonicity. The derivative of v cos v
is cosv — vsinv; vsinv is increasing as the product of two increasing functions (given v < 0.1), and one
checks that cos(0.1) — 0.1sin(0.1) > 0; therefore v cos v < 0.1 cos(0.1) on our domain of interest. One checks
numerically

V< fr) <1+

—cos(0.1) + ! (0.1cos(0.1) +sin(0.1)) < —% <0,

and this establishes f(v) < 1- }Evz on[0,0.1]. Ifv < 1t/2, wehave cos > Oand sin > 0, so thatv cosv+sinv > 0
on this domain. This implies f”(v) > —cosv > —1 for 0 < v < /2, which proves infic(g /2 f”(t) = -1, and
establishes the lower bound on [0, 7t/2].

To obtain (possibly) looser bounds on [0, ], we use a bootstrapping approach. The lower bound is more
straightforward; to assert the lower bound on [0, ], we evaluate constants numerically to find that the lower
bound’s value at 7t/2 is 1 — 1?/8 < 0, and given that f > 0 by Lemma E.5 and the concave quadratic bound
is maximized at v = 0, it follows that the bound holds on the entire interval.

For bootstrapping the upper bound, we note that the equation

f'(v)=—sinv+m?

. . v
vsinv = sinv (— - 1)
T
shows immediately that f is a strictly decreasing function of v on (0, 7). Therefore f(v) < f(0.1) on [0.1, ],
and so the quadratic function v +— 1 — =2(1 — £(0.1))v?, which is lower bounded by 1 — v?/4 on [0, ] by
the fact that both concave quadratic functions are maximized at 0 and the verification 1 —7%/4 < 0 < f(0.1),
is an upper bound for f on all of [0, 7t]; so the claim holds with ¢ = 772(1 — £(0.1)). O

Lemma E.15. There exist absolute constants c, C,C’, C” > 0 such that if n > Clogn, then one has

E [XV] — COS (p(V) < C/e_cn + C”VZ/n‘

81/82

Proof. Write h(v) = cos ¢(v) — E[X,]. By Lemmas E.24 and E.25, we have a second-order Taylor formula

h(v) = h(0) + /OV (h’(O) + /Ot h”(s)ds) dt.

We calculate h'(0) = 0, since E[{vo,?0)] = E[{0(g;),8,)] = 0, and szovo = 0. We also have h(0) =
[E[H”(Jo”%] - E[1g,] = u(&,) (writing m = 1), so this formula yields
)
|h(v)| < w(&r,) + > esssup|h”(v')|,

v€l0,m]
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and we see that it suffices to bound h”. We will use the (Lebesgue-a.e.) expression

1 0,0} 1 VoY,
1g, ) p—_ V2 0y, I- 02 00 ) |-
llovll2 o113 llvoll2 llvoll?

Distributing over the inner product and applying rotational invariance to combine the two cross terms, then
using the triangle inequality, we obtain the bound

| ()| = [E[{Dv, 90)] - E

<i’O/ i’v)

+2E
llwoll2llvv]l2

|h" )] < |E[0y, D0)] - [E[lls,,, Lg,

<z>o,vv><vv,m>‘ . Elﬂa (90, 20)(00, 0,) (04, 91)

looll2lloy 113 llooll3 110y 113

E1(v) ) E5()

We proceed by giving magnitude bounds for E;(v), i = 1,2, 3. Because we are working with expectations,
it suffices to fix one value v € [0, 7] and prove pointwise v-independent bounds; we will exploit this in the
sequel to easily define extra good events without having to uniformize, and we will generally suppress the
notational dependence of Z; on v as a result. We will also repeatedly use the fact that we have u(&7) < Cne™"
for some absolute constants ¢, C > 0 by Lemma E.16. We will accrue a large number of additive C/n and
C’'nP™e" errors as we bound the Z; terms; at the end of the proof we will worst-case the constants in each
additive error and assert a bound of the form claimed.

&1 control. Let & = {||9,]2 < 2} N {[|[9gll2 < 2}. By Lemma E.17 and a union bound, we have
(&) < Ce™". Define an event &; = &, N E. The first step is to pass to the control of

Le, (3, B0) (1 1 )]

llvoll2lloy 2

[

1:=[E

The triangle inequality gives

E

1— &1

[84]

< [E[15:¢6y, 50 | +

A AN TIETIEATETE
"\ ol Tooll2

|

The first term is readily controlled from two applications of the Schwarz inequality, a union bound, and
rotational invariance together with Lemma E.29:

.. 1/2 ) 1/4 . 1/4
[E[16c00, 00| < E[1ec] E[15,14] " E1201]”
_ 1/2 . 1/2
< (&) + Ce") P E[looll4] Y
, 1/2 C// 1/2
< (Cne_m +(Cle ¢ ”) (1 + 7)

< Cnl/Ze—cn

7

where in the last line we require 7 to be at least the value of a large absolute constant. The calculation is
similar for the normalized term, except we also apply the definition of &,, to get some extra cancellation:

(7.71// 7)0> ]

{9y, 00)|
vy l2llwoll2

vy ll2llwoll2

’[E[]lgm\,g ] < 415,614, 90) ]
< 4E[1e[(B, 50)]

< 4E[1ge]2E [0y 112 E[150l12]

<E |:]18m\8

—cn C, 1/2 —Ccn
< Ce 1+ o < Ce ",
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where in the last line we apply our bounds from the first term and use n > 1 to obtain the final inequality.
Next, Taylor expansion of the smooth convex function x — x~/2 on the domain x > 0 about the point x = 1

gives

1 3 [
xM=1-Z(x-1)+= / (x = t)t2/2at. (E.32)

2 4 J;

Given that &,, guarantees ||v, > > 1, we can apply this to get a bound

1 1 3 ,loolZllovl3
1g, (1 - ————]| =1g, [ = (llvol?l|v.]? - 1 ——/ voll2|lv, |2 — )t ~>2dt|.
1 ( ”00“2”01/”2) 1 (2 (“ 0“2” V”2 ) 1 ; (” 0”2” V||2 )

On &', we also have ||UO||£2||UV IIE2 < 24, s0 we can control the integral residual as

leolBlol3 ,
0< 1811[ (looll3llovll3 — )t~ dt < 1,384 (llooll3llwv 15 -1)°,

where we replace the tighter bound that we get in the case [|[og|[3 |0, |3 > 1 with the worst-case bound from
the other case. This gives bounds

1 2
g, ( (Ilwoll3llov I3 — 1) — 384 (llwoll3llov 15 — 1) ) <1g (1

1 2 2
1 ) < 16, (ool 1 -1).

lvoll2llvy [l2
Given that |9, ][> <2 on &”, it follows [(9g, D, )| < 4 on &4, so that (D¢, Dy) + 4 > 0 here. Writing

. 1 . 1 1
S [ 1P O [
lwollzllov |2 lwollzllov |2 lwollzllov |2

we can apply nonnegativity to obtain upper and lower bounds

[

1<E

o] 2
Lo, 2.) (3 (oolBlou1B - 1) +4€ (foollo. 1 -1 )

[

1> E

. 1 2
1g, (90, 9v) (5 (Ilool3llov 113 = 1) = 5C (llvoll3llov I3 — 1) )}

where C = 384.
We continue with bounding the quadratic term arising in the previous equation. We have

.. 2 2
[E[16, (20, 3.) (loolZllonl3 = 1)7]| < 4E [ (oo Bllonl3 - 1)°]
= 4E[lloolillo, 14 - 2llw0 3oy 2 +1]
< 4 (1= 2E(loolllovI13] + E[lool])

<4 (1 —21—(Cn7t+Cle™)? + (1 + %))

14
< Cnle™m 4 Cle™ + -

The first inequality applies the triangle inequality for the integral, the definition of &; and Cauchy-Schwarz,
then drops the indicator for &; because the remaining terms are nonnegative; the second line is just
distributing; the third line rearranges and applies the Schwarz inequality; and the fourth inequality applies
Jensen’s inequality and Lemma E.18 to control the second term (to apply this lemma, we need to choose n
larger than an absolute constant; we assume this is done), and Lemma E.29 to control the third term. Since
n > 1, this gives a C/n + C’e~“" bound on the quadratic term.

Next is the linear term; our first step will be to get rid of the indicator. By the triangle inequality, it
suffices to get control of the corresponding term with the indicator for &} instead; we control it as follows:

. 2., 2]1/2
[E[ 16 (20, 3.) (oo Bllonl3 = 1) || < E[tes| [ (@0, 5.0 (oolBllov 12 - 1)°]
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IN

_ e 2 2|12
(creer +cre=) T E[Igoliloul3 (ool 2oy I - 1]

/
é]lz

IN

s 20 112 4 4 - 200
E[ll9ol3llov1511voll3llwull3 + 12oll3]10y ]

. 1/4 1/4 . 1/2
(E[0lS] £ [Ieoll3*] " + E[I120l13] )
Y 1/4 1/4 1/2

((1+9) (1+9) +(1+%)

n n n

The first line is the Schwarz inequality; the second line is the good event measure bound and Cauchy-
Schwarz; the third line distributes and drops the cross term, given that all factors are nonnegative; the
fourth line applies subadditivity of the square root function, then the Schwarz inequality to the resulting
separate terms; the fifth line applies Lemma E.29; and the last line again uses square root subadditivity and
treats the remaining terms as multiplicative constants, since n > 1. Therefore passing to the linear term
without the indicator incurs only an additional exponential factor. Proceeding, we drop the indicator and
distribute to get for the linear term

E[(@0, 9v) (Ilwol3llovll3 = 1)] = E[(@0, ) lv0ll3ll0y113] — E[{D0, 91)];

it is of interest to apply Lemma E.30 to these two terms to get the proper cancellation, and for this we just
need to check that the coordinates of each factor in the product have subexponential moment growth with
the proper rate. For even powers of £ norms of v,, this follows immediately from Lemma G.11 after scaling

(Cne‘”” +Cle=n

< (Cne_‘” +Clecm

by /2/n; for the inner product term, the coordinate functions are ¢(g1;)g2i6(g1; oSV + g2; sinv)(ga; cos v —
g1isinv), and we have from the Schwarz inequality and rotational invariance

[E[|c'7(g1i)g2ic’7(g1i CosV + g2; sinv)(g2; cos v — g1; sinv)lk] < [E[c‘:(gu)gﬁf],

which has subexponential moment growth with rate Cnn~! by Lemma E.17 and Lemma G.11 after rescaling

by y/2/n. These formulas also show that when k = 1, we have a bound of precisely n~!. This makes
Lemma E.30 applicable, so we can assert bounds
o N 2 N C
[E[Go,32) (loolBlov1 = 1)] = (wElGon 1 E[o(g1)2] - nElGon Gl < =

Because E [G(g11)2]2 = n72, this is enough to conclude a C/n bound on the magnitude of the linear term.
Thus, in total, we have shown

C _ e
|51| < Z 4+ (Cle cn+c//nl/26 cn[
n

where we combine the different constant that appear in the various exponential additive errors throughout
our work by choosing the largest magnitude scaling factor and the smallest magnitude constant in the
exponent to assert the previous expression.

&, control. The approach is similar to what we have used to control Z1. We start with exactly the same
&1 event definition, and as previously define

~ (D0, v )(vy, 03 ) |00l
Ezz[Elllgl A 2|

looll3llovlI3

and then calculating

En\E

(Do, vv) {0y, vv)””O”%
lool3llov I3

< 2°E|Lg,0\& (D0, 03 ) (v, D) l00lI5]
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< 2°E[1ecl (00, vu) {0y, ) ll00lI2]
. 1/4 .

< 2B [1ge]E (0, .)*] *E[(00, 9)°]
. 1/8 1/8

< 29[ Le]PE[ll90l18] " E vy 1]

< Ce ™" 4+ C'nl/2e~c'n,

1/8 ]1/8

E ool
Elllou 2] E 194 13 °E [wollg]

using the same ideas as in the previous section, plus several applications of the Schwarz inequality and a
final application of Lemma E.29. We can therefore pass to E, with a small additive error. Next, we Taylor
expand in the same way as previously, except that larger powers in the denominator force the constant in
our residual bound to be 3 - 2%, and the event &; now gives us a bound (9o, v )(vy, 0y)|[voll5] < 2° on the
numerator, which we add and subtract as before to exploit nonnegativity. We get

[

2 <[E >

) ) 1 2
Lg, (D0, vy ) {0y, Do )llvoll3 (— (3= llvollSllwull§) + (2° + 1)C (llvol§llo IS — 1) )]

[

2> E

. . 1 2
L, 2,000, 0 ool 3 5= HoolGo.19) - 2°C (ool 1 -11°)

with C = 3-2%. Proceeding to control the quadratic term, we have

. . 2 2
[E[1s, (20, 22 (@0, )0l (00l l124 12— 1)%|| < 22 [(lzolilionlis - 1)7]
= 2 looll o, I - 2llwolSlioy I3+ 1]
< 2° (1 - 2E{lleoSllen 18] + E[leol2])
<2°(1-2(1-(Cnt+ Cle™™) + (1+C"n7Y))
: 6 2k-1
< -1 7,1 1" ,—cn -
<Cn +;(2k_l)(Cn +C"e™M)

3 2k-1

<Cnt+C Z Z n~(k=1=j)p=cnj

k=1 j=0
<Cnt+ e,
The justifications for the first four lines are identical to those of the previous section. In the last three lines,
we use the binomial theorem twice to expand the sixth power term, and we assert the final line by the fact
that k > 0, so that each term in the sum corresponding to a j = 0 has a positive inverse power of # attached,

and when j = 2k — 1 we pick up an exponential factor. Moving on to the linear term, as in the previous
section we start by dropping the indicator. We control the residual as follows:

[E[ 165 (20, 22 @0, 0)l20l (I00l1Sl0, 15 - 3)|

12 s 200 112 2 4 6 6 2|1/2
<E[1g:| " E[I90lZ12 100l Blo, 12 (ooliSlio, IE - 3)° |

1/2 1
s 200 (12 14 16 s 200 112 2 471/2
< [E[lls;] E[l1zoll3llov 15 l1v0ll 10w 1158 + 3lloll3 10w 5 llvoll3 110w 115]

1/2 1

s 20 112 14 1611/2 s 20 112 2 471/2
<E[ts|  (E[IoolBlo, IZlwolli o] + 3E [I20lZlo loo oy I13]?)
< Ce ™" + C'nl/2e=cm,

The justifications are almost the same as the previous section, although we have compressed some steps
into fewer lines here and we have omitted the final simplifications which follow from applying the Schwarz
inequality to each of the two expectations in the second-to-last line 3 times and then applying Lemma E.29.
Dropping the indicator and distributing now gives:

E[(20, v0) (@, 90} lvoll3llwoll5 |0y 115]

[E[<7}O/Uv><vw?}v>”v0”§ (HUOHSHUVHg_:B)] = —3[E[<7')0 0, vy, D >||UO||2]
7 v Vs v 2 7
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to apply Lemma E.30, we check the two new coordinate functions that appear in this linear term: for (99, v,),
we have

. ) ; 1/2 1/2
E|I6(g11)8200(g1i cos v + g sinv)[¥] < E[o(g1082] E[o(g10%*] ", (E33)
and for (0,, v, ), we have likewise
. . ) 1/2 1/2
[E[Ia(glicosv + goi sinv)(g2; cos v — glismv)lk] < [E[o(gli)ggf] / [E[a(gu)z"] / , (E.34)

both by the Schwarz inequality and rotational invariance. As before, an appeal to Lemmas G.11 and E.17
implies that these two coordinate functions satisfy the hypotheses of Lemma E.30, so we have a bound

‘[E[@o, 0, )0y, 9)looll3 (llooll3lloy 115 - 3)]

- (W EL@on @@ 1@ JE [0 ] - 30 E (@0 @1 I, 1 (0 JE[otwin ] )| < =

<

Noticing that
E[{vy, 9+)] = ~E[{v0, 90)] = ~E[{0(g1), 82)] =0,

by rotational invariance and independence, we conclude by identically-distributedness of the coordinates
of v, and v,

n2E[(00)1 (01 JE[(@u)1 (@)1 JE[0(g11)2] = 3n3E[(00)1 (@ 1 JE[(Bu )1 (01 JE[0(g11)2] = 0,

which establishes the desired control on E;. Thus, in total, we have shown
|52| < g +Cle™ " 4 Cunl/Ze—c’n,
n

where we combine the different constant that appear in the various exponential additive errors throughout
our work by choosing the largest magnitude scaling factor and the smallest magnitude constant in the
exponent to assert the previous expression.

&3 control. The argument for control of this term is very similar to the previous section, since the degrees
of the denominators now match. We start by defining

[
@
|

&1
looll3llov 15

(50,UO><UO,Uv><Uv,i7v>}

with the same &; event as previously, and then calculating

= =
|83 — Ea| =

[Elnsm\g <i70,vo><vv,i7v><volvv>l

ENETAE
< 2°E|Lg,0\&l(D0, v0) {0y, D) (w0, V)]

< 2°F[1ee| (Do, v0) {0y, D4 ) (w0, vu)|]

< 2F[16<] 2 [ (00, 00)*| "*E[(vr, 3,)8] "°E [ (00, 9,)°]
< 2 (L] 2E [ I90lIE]) "°E[lloolIE] *E[Ilou 12 E [N, 18]V E [ oo 2] [0, 1126]

2 2 2
— _/
< Cn'2e=" 4 Ce~",

1/8

using the same ideas as in the previous section. We can therefore pass to E3 with an exponentially small
error. Next, we Taylor expand in the same way as previously, obtaining

= . ) 1 2
5 < [ ey Con, 00000, 0000, 00 5 (5= ool 1) + 6+ 1C (Foollon 8 - 1)
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[m

3 >E

. .1 2
Lo 00,92} 00, 00) 0., (5 = ol 19 = £C (FoolGo. 1 - 1)) |,
with C = 3-2%. Proceeding to control the quadratic term, we notice

. . 2 2 — -
[E[ 16, (20, 20) (@1, 8 )0, 2) (l00lSl100 1 = 1)%]| < 22 [ (lwollionli§ = 1)°] = Cnt + e,

since the final term was controlled in the previous section. Moving on to the linear term, as in the previous
section we start by dropping the indicator. We control the residual as follows:

[E[165¢30,20) @, 52 (@0, 22) (ool 15 - 3)]|
1/2 ) ) ,11/2
<E[1g:| " E[I90l312 1 o0lldlo, 2 (ooliglio, 1S - 3)° |

1/2 1
s 20 12 16 16 s 20 12 4 47172
< [E[lls;] E[l1zoll3llov 115100l 10w 1158 + 3lloll3 110w 5 lloll5 10w 115]

1/2 ElloaliRllo. 12 16 1611/2
Lg (120l 115w 151100l 0 1o 115°]

E
Ce™ " + C/nl/ze—c’n’

IA

s 20 (12 4 411/2
+3E[lI9oll3llov I3 1lvoll3 10115 )

IA

by the same argument as in the previous section. Dropping the indicator and distributing now gives:

. . 6 6
E[(60,00) 01, 803 @0, 20) (Ioolgllnllg -3)] = ELC0 2000 0 oo 0ol ]

to apply Lemma E.30, we check the one new coordinate function that appears in this linear term: for (vg, v,),
we have

[E[la(gli)a(gli CoSV + g2 sinv)lk] < [E[G(g1i)2k], (E.35)

by the Schwarz inequality and rotational invariance. As before, an appeal to Lemmas G.11 and E.17 implies
that this coordinate function satisfies the hypotheses of Lemma E.30, so we have a bound

E[(@0, v0) {0y, v ) (0, vy (IlvollSllvu IS - 3)]
—”9[5[(730)1(00)1][E[(T'Jv)l(vv)l][E[(th(vo)l][E[U(g11)2]6 snh
+3n°E[(90)1(00)1 JE[(93 )1 (0)1 JE[(wy)1(vo)1]

As in the previous section, using that E[(v,,¥,)] = 0 then allows us to conclude the desired control on Es.
Thus, in total, we have shown

|E3| < g +Cle™ " 4 Cunl/Ze—c’n,
n
where we combine the different constant that appear in the various exponential additive errors throughout
our work by choosing the largest magnitude scaling factor and the smallest magnitude constant in the
exponent to assert the previous expression.

To wrap up, we take the largest of the scaling constants in the estimates we have derived, and the smallest
of the constants-in-the-exponent that we have derived, in order to assert

| (v)] < % +C'ntl2emen,

Matching constants in the exponent and choosing n larger than an absolute constant multiple of logn, it
follows

2
|h(v)| < Ce™" + c'%,

which was to be proved. O
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E.3.4 General Properties

Lemma E.16. Consider the event

Enm=) [ {81 8)]c<Iscvslsy 8, <7}
Sc[n] vel0,27]
|S|l=m
Suppose n > max{2m, m + 20}. Then we have the following properties:
1w ) < Cn"e=cn,
2. We have &y = E¢,mQ for every Q € O(2), so that in particular 1g_,(GQ) = 1g_,,(G).

Above, O(n) denotes the set of n X n orthogonal matrices.

Proof. We will show the second property first. For each ¢ > 0, if Q € O(2), notice that

COosv _
EemQ = ﬂ ﬂ {GQ c < Isca(G [sim ) <c 1}
Sc[n] vel0,2n] 2
|S|=m
- ﬂ ﬂ {G|c < |lTsca (GQul, <™}
Sc[n] uest
|S|=m
= 8c,m/

since the vector [cos v, sinv]* € S!, and O(2) acts transitively on S'. This proves the second property when
¢ > 0; the result for ¢ = 0 is obtained by applying the preceding argument to each set in the infinite union
defining the ¢ = 0, m event.

For the measure bound, we observe that &.,, C Ey  if ¢ > ¢/, so it suffices to bound the measure
of the complement for the particular choice ¢ = 1. We start by controlling pointwise the measure of the
complement of the event

Eosmu = [ |{G10.6 < |Isco (Gu)ll, < 5/3}
Sc[n]
IS|=m
for each u € S!, then uniformize over the one-dimensional manifold S!; we need to begin with ¢ = 0.6
instead of ¢ = } to survive some loosening of the bounds when we uniformize. We have

E06mu = U {G | [Isco (Gu)ll, < 0.6} U{G | [[Isco (Gu)ll = 5/3},
Sc[n]
|S|l=m

so that a union bound implies

1 (ESsma) < D, PlliTsco (Gully < 0.6] + Pll|Isco (Gu)ll, = 5/3]
Scn]
|S|=m

< (:1) ("3’[||1[m]cf7 (8, < 0-6] + P[[[Ipeo (g1)], = 5/3]), (E.36)

where the final inequality follows from right-rotational invariance of u and identically-distributedness of
the coordinates of g,. Let § € R"™" be distributed as N(0, (2/n)I), so that 0(g) has the same distribution as
Ipyco ( 31) By Gauss-Lipschitz concentration [BLM13, Theorem 5.6], we have

Plllo@ll2 > E[llo@llz] +¢] <, P[lo@ll2 < E[lo(@)ll2] ~t] <™,
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since o is 1-Lipschitz and nonnegative homogeneous. After rescaling, we apply Lemma E.19 to get

m 2 - / m
1—;—\/Z— mS[E[HG(g)Hz] < 1_551

Plugging these estimates into the Gauss-Lipschitz bounds gives

Pllo@)llz 2 1+¢] < e, P[lla@nz < 1=t m—t

Putting t = 2/3 in the upper tail bound gives the control we need for one half of (E.36). For the lower tail,
we note that the assumption n > max{2m, m + 20} yields the estimates

1-

n = \o Vivi—m ~ n—-m "~ 10’

so that

—t,

and one checks numerically that 271/2 — (1/10) > 0.6. Putting therefore t = 271/2 — (1/10) — 0.6 in the lower

tail bound yields
P[llo()ll2 < 0.6] < e™".

Plugging these results into (E.36) gives the pointwise measure bound

n
&S ) <2 e e
F‘( 0.6,m,11 m
for some constant ¢ > 0.

For uniformization, fix S C [n] with |S| = m and consider the function fs : R*> — R defined by
fs(u) = |[Isco (Gu)ll2.

By Gauss-Lipschitz concentration, we have
PIIGI > E[IGI]+#] < ™",
and by [RV11, Theorem 2.6], we have

E[IGI] < V2 + % <4

Let & = {||G|| < 5}; then it follows that u(&) > 1 —e~“"*. On &, for every S, we have that fs is a 5-Lipschitz
function of u. Let T, C S! be a family of sets with the property that u € S! implies that there is u’ € T,
such that ||’ — ul|> < € for each ¢ > 0; by standard results [Ver18, Corollary 4.2.13], T; exists and we have
IT.| < (1+2&71)2. Define

80.6,m,s = ﬂ 80.6,m,u-

ueT,

Then a union bound together with our pointwise concentration result gives

2
u (85_6’%{.) < 2(:1) (1 + %) e "

On EN &Eygm,e, for any u € S and any S, there is u’ € T, such that |fs(u) — fs(u’)| < 5¢. But since on this
event 0.6 < fs(u’) < 5/3, we conclude 0.6 — 5¢ < fs(u) < 5/3 + 5¢, and therefore the choice ¢ = 1/50 gives
0.5 < fs(u) < 2. This implies

E N &o.,m,1/50 € E0.5,m-
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Thus, by a union bound and our previous results, we have

# (88.5,m) sy (Sc V 83.6,;71,1/50)
SH (8(():46,711,1/50) +e
<2. 1502(”)e—f'" teen,
m
which is the desired measure bound. m]

Lemma E.17. We have for each fixed v € [0, ] that:

1. The coordinates of O, have subgaussian moment growth

N —
2|

E[(0.)]] =

)

3. The event {¥v € [0, 7] ||, ||2 < 4} has probability at least 1 — e~

2. The event {||9y||2 < 2} has probability at least 1 — e™“";

Proof. We have that the coordinates of ¢, are i.i.d., and

. d .
(@v)i = 6(811)82i,
by rotational invariance. By independence of g, and g,, we compute

2
op/ p”/2,

_ 1
E[@)7] = E[s(s10g5] = 5Elen] < 7

for each p > 1; the last inequality follows from Lemma G.11. This shows that the coordinates of @, are

independent subgaussian random variables with scale parameters at most C+/2/#, so we have a tail bound
[Ver18, Theorem 3.1.1]

P[llovlla > 1+¢t] < e,

also taking into account that E [(i)v)ﬂ = 1/n. This shows that the event &” = {]|9,||» < 2} has probability at
least 1 — e~ “".

For the third assertion, we use the triangle inequality to get [|0,]l2 < [Ig,ll2 + [lg,ll2, which has RHS
independent of v; then applying Gauss-Lipschitz concentration gives for t > 0

P[Ilg,-llz > V2 + t] <e o,

using that E[||g,[l2] < /E[l gi||§]. Putting t = 0.5 in this bound and applying a union bound, we conclude
that there is an event of probability at least 1 — ™" on which ||9, ||2 < 4 uniformly in v. O

Lemma E.18. There exists an absolute constant C > 0 such that if n > C, one has

c’ _
1-—-C""< E [llvoll2llvvll2] <1,
n 81/82

where ¢, C’, C” > 0 are absolute constants.
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Proof. For the upper bound, we apply the Schwarz inequality to get
Elllooll2llov 2] < Elllvol31*Ellloy 151V < 1,

by rotational invariance and Lemma G.11. For the lower bound, we will truncate and linearize the product
using logarithms. Let & = &g5,0; by Lemma E.16, as long as n > 20 we have u(&°) < Ce™“". Define
X = |lvoll2llovll21e + L&, so that

loo(G)ll2llvv(G)ll2 G €&,
1 otherwise.

X(G) = {

We calculate

[Elllvoll2lloy[l2] = E[X]| < p(&°) + E[1e]"*Elllvoll;]'
< Ce " 4+ C'e™"(1+C'/n)/?
using the triangle inequality, the Schwarz inequality, rotational invariance, and Lemmas E.16 and E.29. It

follows
Elllvoll2llvv]l2] = E[X] - C’e™",

so it suffices to prove the lower bound for X instead. Factoring as X = (||vgll21lg + Lgc)(||vv]l2ls + 1gc), we
apply concavity of x — log x, Jensen’s inequality, and convexity of x +— e* to get

E[X] > exp ([E[log(||vg||2]15 + ]lgc)] + [E[log(llvvllz]l,g + ]lgc)])
> 1+ E[log(llvoll21e + Lee) | + E[log(lloy |21 + Lec) |
>1+2E [log(Hvo”z]lg + ]lgc)]

where the last equality is due to rotational invariance. Now write Y = ||vg|[21g +1gc, so that by the definition
of & we have Y > 1. Taylor expansion with Lagrange remainder of the logarithm about E[Y] >  gives

1

TG (Y - E[Y])

log(Y) = log E[Y] (Y = E[Y])

o1
E[Y]
for some &(Y) between E[Y] and Y. Using Y > 1 and taking expectations on both sides, we get
E[log Y] > log E[Y] — 2Var[Y].

Moreover, we have
IE[Y] = E[llvoll2]] < Ce™" + E[l&c||voll2] < Ce™ +C'e™ ",

by the Schwarz inequality, and this extra exponential error can be rolled into the exponential error accrued
via our use of X. In particular, we have

2
1- i Ce ™™ < E[Y] £1+Ce ™",

by Lemma E.19. Since n > 20, if we also enforce n > C; := ¢! log(5C/2) wehave2/n +Ce " < %; it follows
by concavity of x +— log(1 — x) that we have a bound

log (1 _2_ Ce_C”) > —2log(2) (z + Ce_”’) ,
n n
which has the form claimed. It remains to upper bound Var[Y]; using that Y2 = ||vg ||§]lg + 1gc, we have

2
Var[Y] = E[Y?] - E[Y]* <1+ Ce ™" — (1 - % - Ce‘”‘)
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2

=Ce™ " +2 (E + Ce‘C”) - (g + Ce_”‘)
n n

4

n

IN

+3Ce™"",

which is sufficient to conclude. O

Lemma E.19. One has
1—

SN

< E [llov]l2] £ 1.
81/82

Proof. By rotational invariance, it is equivalent to characterize the expectation of ||o(g;)||2. By the Schwarz
inequality, we have

1/2
Elllwoll2] < E[llwoll3] ™ =1,

by Lemma G.11. For the lower bound, we apply the Gaussian Poincaré inequality [BLM13, Theorem 3.20]
and the 1-Lipschitz property of g - ||a(g)||> to get

n
ZE|(looll2 - Elllooll2]?| <1,
so that after distributing and applying [E[||vo||§] =1, we see that

2
1= 2 < Ellloollo]”,

2 2
E > 1-2x1-%
[llvoll2] > ~ 2 n’

where the last bound holds because 1 —2n~! < 1. O

lcostx —cost y| < 4f|x - yl.

Proof. Let0 < x,y <1, and assume to begin that x < y. We apply the fundamental theorem of calculus and
knowledge of the derivative of cos™ to get

Y 1
-1 -1
Ccos™ X — cos y:/ dt
x V1—1t2

The integrand is nonnegative, so cos™ x — cos™' y > 0. Writing V1 —t2 = V1 — tV1 + t and using x > 0, we
get

Because n > 2, it follows

Lemma E.20. If0 < x,y < 1, we have

y 1
-1 -1
Ccos™ X — cos < dt
¥ /x V1-t

=Vl-x—-+41-y.
This shows that [cos™ x —cos™ y| < [V1 — x—4/1 — y| when x < y. An almost-identical argument establishes
the same when y < x, via the inequalities 0 > cos™ x — cos y > —(V1 — x — /T — y). So we have shown
lcos x —cosT y| < [V1—x —+/1-y|
for arbitrary 0 < x < 1and 0 < y < 1. Now notice
IVI-x =Ty <|[Vi-x—y1-y[|[VI-x++1-y
<lA-x)=A=-yl=lx-yl,

which establishes |cos™ x — cos™ y| < +/]x — y|. O
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E.3.5 Differentiation Results

Lemma E.21. Fora < b, let f : [a,b] — R be a continuous function that is differentiable on (a, b) except at a set of
isolated points in (a, b), and let ¢ € R. Then max{f, c} is differentiable except at a set of isolated points in (a, ).

Proof. Let A C (a, b) denote the set of points of differentiability of f, and let B C (a, b) denote the set of points
of nondifferentiability of max{f, c}. Because finite unions of isolated sets of points in (a, b) are isolated in
(a,b), it suffices to consider only points x € A.

Fix x € A, and consider the case f(x) # c¢. Then because f is continuous, there is a neighborhood of x
on which f # c. If f > ¢ on this neighborhood, then we have max{f, c} = f on this neighborhood; if f < c,
then we have max{f, c} = c. In either case, this implies that max{f, c} is differentiable at x, and thus x is
not in B.

Next, consider the case where f(x) = c. First, suppose f’(x) > 0; then by Rolle’s theorem, we can find a
neighborhood of x on which f(x") > cif x” > x and f(x’) < cif x’ < x. Possibly shrinking this neighborhood,
we can assume every point of the neighborhood is a point of differentiability of f. Thus, for x” < x in this
neighborhood, we have max{f(x’),c} = f(x’), and for x’ > x, we have max{f(x’), c} = c. We conclude that
max{f, c} is differentiable at all points of this neighborhood except x, and in particular x is an isolated point
in B. A symmetric argument treats the case where f’(x) < 0, with the same conclusion.

On the other hand, if f’(x) = 0, we can write f(x") = ¢ + o(|x” — x|) for x” in a neighborhood of x, which
implies max{f(x’), c} = max{c, c+o(|x'—x|)} = cxo(|x’—x]|). In particular, |max{f(x’), c} —max{f(x), c}| =
o(|x” — x|), which shows that max{f, c} is differentiable at x, and thus x is not in B. This shows that every
point of A N B is isolated in A N B, and we can therefore conclude that max{f, c} is differentiable except at
isolated points of (a, b). O

Lemma E.22. For 0 < v < m, consider the function

~ V)= [E ]l V, ) ’
(p( ) gl'gz"i.i.d,N(O,(Z/n)I)[ Sl(P( 81 gz)]
where < |
-1 00,0y
vV, 81/ = cog ! [ =0 2v/ )
(v, 81, 82) (||Uo||z||vv||2)

Then @ is absolutely continuous on [0, 7], and satisfies the first-order Taylor expansion

Vo 1 vtv; D
o v (Fte o (1= 1) @)
50 =50) = [ E f1g e

, 2
81/82 1- v0 0
llwoll2” llvell2

dt,

and moreover ¢ is 1-Lipschitz.

Proof. At points of (0, m) where each of the functions composed in ¢ is differentiable, the chain rule gives
for the derivative of the integrand as a function of v

20 1 I 0,0 \ .
- (4
<\|vo\|z’|lvv|\2( ||vv||§) V>
(4 0 2
1_ 0 v
Toollz” Trow T2

4 (_) S P
-1/, lxll2 ll[15
valid for any x # 0. Because &; guarantees that v, # 0 for all v € [0, 7], we see that the integrand
1

¢ is continuous. Similarly, given that ||v,|l2 > 5 on &;, we note that there are just two obstructions to
differentiability:

(v, 81,8) = - , (E.37)

where we have used the result
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1. The inverse cosine is not differentiable at {+1};
2. The activation ¢ is not differentiable at 0.

First we characterize the issue of nondifferentiability with regards to the inverse cosine. We note that
cos ¢(v, g1, 8,) = 1if and only if the Cauchy-Schwarz inequality is tight, which is equivalent to vy and v,
being linearly dependent. Suppose we have (g,, g,) € &1 and vg € (0, 7t) such that vo(g,, §,) and v,,(g¢, §»)
are linearly dependent. Because two vectors u1,u; € R" have o(u1) and o(uy) linearly dependent if and
only if o(u1) and o(u2) have the same support and are linearly dependent on the support, and given that
lvyvllo > 1 for each v, we have that there is a 2 X 2 submatrix of GM,, having positive entries and rank 1
(since the rank is zero if and only if the submatrix is zero), where

1 cosv
M, = [0 sinv] )

Write the corresponding 2 X 2 submatrix of G as X. Because rank M, = 2by vy € (0, ), we have rank X = 1.
On the other hand, if G ~j; 4. N(0,2/n), we have

P [G has a singular 2 x 2 minor] < Z P [rank ([giz g;l]) <2
] ]

1<i<j<n

=0,

where the first line is a union bound, and the second line uses the fact that 2 x 2 submatrices of G are i.i.d.
N(0,2/n), and that the complement of the set of full-rank 2 X 2 matrices is a positive-codimensional closed
embedded submanifold of R?*2. It follows that the subset of &; of matrices having no singular 2 X 2 minor
has full measure in &, and we conclude that for almost all (g, §,), we have cos ¢(v, g,, g,) < 1 for every
v € (0, ). Next, we characterize nondifferentiability due to the activation o; by the chain rule, it suffices to
consider nondifferentiability of v, as a function of v, and then Lemma E.21 implies that for every (g, ,),
v, is differentiable at all but at most countably many points of [0, 7]. Next, we observe that whenever v, is

nonvanishing, one has
- 0,05, | o
o, 13 | llwoll2

v 1 (A
, I-——215,) <
llvoll2” llovll2 llov1l3
_IP5, 9,2 L < w0 o >2
vl looll2” Tovll2 /7
where the first inequality is due squaring the orthogonal projection and Cauchy-Schwarz, and the second

equality follows from distributing to evaluate the squared norm, cancelling, and taking square roots. Using
the fact that orthogonal projections have operator norm 1, we thus conclude

IP5,2vll2

ov]l2

2

S C||z.]1/|| 7 E.38
ENE 2 (E.38)

o' (v, 81,82 <

where the last inequality is valid whenever (g,, g,) € &1. Since

19v1l2 = ||6(g, cosv + g, sinv) © (g, cosv — g, sinv)|l
<|lg,cosv — g, sinv|»
< llgall + 111 ll2,

and this upper bound is jointly integrable in v and (g, g,) over [0, 7] X R" X R", we can apply [Coh13,
Theorem 6.3.11] to obtain that whenever (g, §,) € & minus a negligible set, we have for every v € [0, 7]

(v, 81,8, = 00,81, 8) + /0 P'(t, 81, 8,) dt.
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In particular, multiplying by the indicator for &1, taking expectations over (g,, g,), and applying the previous
joint integrability assertion for ¢’ together with Fubini’s theorem yields

0 =50+ [ € [0,g, )]

so to conclude the Lipschitz estimate, it suffices to obtain a suitable estimate on Eg ¢, [d)’(v, 81/ gz)] . Inlight
of (E.38) we calculate more precisely

[ _ (gl
IPLo Vm] [ﬂ|w %M} “U'|www)@@0@&”
—_— = 81 B T ———

loollz |~ | lo(g )l

Ellg
[ bolo v||2

o(g1)o(gy)
”(1_ lotgIE )(“(gl)QgZ H
llo(gq)ll2

< ElLjo(gllo>1

"zn() (- h@ﬂz)w@0®g2m|b@ﬂmzk
2

Z lo(g )1z

n
1
2—"(2) E [X] E [—}
e X~x(k=1) Y~x0| Y

In the first line, we apply rotational invariance and unpack notation; in the second line, we use nonnegativity
of the integrand to pass to the containing event where v is at least 2-sparse; and in the third line, we condition
on the size of the support of g,. In the fourth line, we use several facts; first, we note that P (5(g,) © §,) =
P, Ps(g,)>0)8, forany g, € R", and that the commutation relation P, P(,(g,)>0y = P{o(g,)>0) Pz, implies that
the operator PjUP{o(gl)>0} is itself an orthogonal projection, with range equal to the (||vgl|o — 1)-dimensional
subspace consisting of vectors with support supp(v) orthogonal to vg. In particular, 6(g,) and Py, P (5,50 §>»
are independent gaussian vectors, and conditioned on the size of the support of 0(g,) the quantities [|o(g;)||2
and ||P;,LOP{,,D>O} §,ll2 are distributed as independent chi random variables with (respectively) k and k — 1
degrees of freedom. An application of Lemma G.9 then gives

IIP;,LVY'JVIIz]
.. | =1

lovll2

E []1& (E.39)

which is sufficient to conclude. o
Lemma E.23. The random variable X, satisfies the following regqularity properties:

1. If0 <v < 7, we have X,, < 1 almost surely.

2. If (g4, 8,) € &1, then X, is absolutely continuous on [0, ], with a.e. derivative

. v 1 0,0, | .
XV = 0 y I_ ! VZ vv 7
llvoll2” lovll2 lovll3

and moreover we have Eg, ¢, [1X,]] < 1, so the analogous differentiation result applies to Eg,.g,[Xv].

Proof. The first claim is a corollary of the proof of differentiability of the inverse cosine part of @ in
Lemma E.22 and the observation that X; = 0. The second claim is also a direct consequence of the
proof of Lemma E.22 and Fubini’s theorem. O
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Lemma E.24. Consider the function

f= E [X]= E [1131< % O >]

—’
81/82 8182 llvollx” llovll,

Then f is continuously differentiable, with derivative

, ”UO 1 UVU; .
(1/): E ]18 , I- (4 .
F= E e\ ool Toula \' " T 2] >

Moreover, f’ is absolutely continuous, with Lebesgue-a.e. derivative

1 v, 1 VU
g, - 213, 1-—2 |
||Z71/||2 ”"01/”2 ||U0||2 ”vOHZ

Proof. The expression for f’ is a direct consequence of Lemma E.23. To see that f” is actually continuous,
apply rotational invariance of the Gaussian measure and of 1g, by Lemma E.16 to get

v 1 Vv | |
]181 L ’ I- 02 00 )|,
lovll2” lvoll2 llvoll3

then notice that this expression is an integral of a continuous function of v, which is therefore continuous.
Moreover, the v dependence in this expression for f” mirrors exactly that of f; in particular, the integrand

v 1 Vo0 | .
_ v , I-— 02 D0
lovll2” llwoll2 llvoll

is absolutely continuous whenever (g, g,) € & by Lemma E.23, with a.e. derivative

1 ; 1 V07
- - 22005, I-—%15).
lloyl2 v, 15 llooll2 llwoll3

We can therefore conclude the claimed expression for f” provided we can show absolute integrability over
&1 of this last expression, using Fubini’s theorem in a way analogous to the argument in Lemma E.22. But

1 y 1 VU
- 2205, - —2C13%,
llovll2 o, 1I2 llvoll2 llvoll2

using, in sequence, Cauchy-Schwarz and the lower bound in the definition of &;; the operator norm of
orthogonal projections being 1, the Schwarz inequality, nonnegativity of the integrand, and rotational
invariance; and Lemma E.17. We can therefore conclude the claimed expression for f” and complete the
proof. m]

f”(V) =— [

81/82

fv=-E

81/82

E
81/82

1g,

] <4 B [ta Pt ool,]
81:82

< 4E[||9ol3] = 4,

Lemma E.25. For the heuristic cosine angle evolution function

cosp(v) = E [(vo,v.)],

81/82

we have the following integral representations for its continuous derivatives:

(cosop)(v) = E [(vo,¥v)]
81/82

(cosop)’(v) = = E [(Do,0v)].

81/82
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Proof. The proof follows exactly the arguments of Lemma E.24, but with a simpler integrand and different
integrability checks; the continuity assertion relies on Lemma E.5. Indeed, this approach gives that (vo, v,)
is absolutely continuous, with Lebesgue-a.e. derivative (vg, 0, ); we check

) 1/2 . 1/2
E [[{vo, o)1 < E [llooll3] ™™ E [llool3] " <1
81:82 81/82 81/82

by Cauchy-Schwarz, the Schwarz inequality, rotational invariance, and Lemma E.17. This verifies the
claimed expression for (cos c@)’. For the second derivative, we apply rotational invariance to get

(cosop) (v) == E [(vy,P0)],

81/82
which has an absolutely continuous integrand, with Lebesgue-a.e. derivative
- <i)01 i]V > .
Checking absolute integrability, we have as before

E (00,91 < E [llooll?] <1
81:82 81:82

by Cauchy-Schwarz, the Schwarz inequality, rotational invariance, and Lemma E.17. This establishes the
claimed expression for (cos og)”. m]

Lemma E.26. Let i : R — R be defined by Y(x) = g.25(x), where 25 is the function constructed in Lemma E.31.
Then the function

B (v0,0y)
fv,g1) = £[¢(||vo||2)¢(llvvl|z)]

satisfies for all v € [0, ] and Lebesgue-a.e. g, the second-order Taylor expansion
_ llwoll3 YIS o(g11)’p(=gii cots)

T80 = Gyl +/0 /o (E[Zl d(looll2) ([0} ]2 sin®s
_ [Ei (v0,v5) _ ooy (losl2)loslla (00,05 )(vs, 9 )*" (I[vs 12)
o[ Vlvoll2)y(losll2) — P(llvoll2)ip(los]l2)? Y(llvoll2)y (llvsll2)llvs 13
L E >_2 (©0,95) (s, 009" (Ilosll2)  (wo, w2139 (s ]l2)

& Ylloll)y(losli)?lvsllz pllvoll)y(llosll2)*llvs 2
+E >2<170/vs><7751 Z')s>21//(||175||2) n (vo,vs){(vs, i’s>2¢/(”vs”2) )ds
| Yllvoll)y(losll®llosll; — yllvoll)gllosll2)llos 13

where previously-unspecified notation in this expression is introduced in (E.43).

Proof. Take g; € R" such that f(v, -) exists and is g,-integrable; by Fubini’s theorem such g, have full
measure in R". Because ¢ > 0 and ¢(||v,]|) is locally (as a function of v) constant whenever ||v,|| < 1, we
need only consider nondifferentiability of c when assessing differentiability of f(-, g;). By Lemma E.21, we
conclude that f( -, g,) is differentiable at all but at most countably many points of (0, 7t); since ¢ > 0 and ¢
is smooth, f is continuous, and we can therefore apply Lebesgue differentiation theorems [Coh13, Theorem
6.3.11] to f provided we satisfy the standard derivative product integrability checks. Writing

<UOI vv)

P(llvoll2)¢(llvyll2)”

P(v, 81,8, =

the chain rule gives (at points of differentiability)

(A p >_< <Z70/vv>¢/(”vv”2)vv o >
Y(llvoll2)y(llovll)” ™ Y(llooll)¢ (o]l lloull” "/

(v, 81,82) = <
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In this expression, we follow the convention 0/0 = 0 to account for the possibility that ||v, ||z = 0 (in this
case, the ¢’ term handles the denominator). For product integrability, we Lemma E.31 to get |¢'| < C for
some absolute constant C > 0 together with Cauchy-Schwarz and the triangle inequality to get

1§"(v, 81, 82)1 < 16llvoll2llDv]l2 + 64C|lvoll2llvv 12119y 2,

and applying the Schwarz inequality, rotational invariance (to eliminate v dependence in the resulting
expectations) and Lemma E.17, we conclude that ¢ is jointly absolutely integrable over [0, 7] x (R™?, u® p).
We have therefore a first-order Taylor expansion

_ ” TR )
vg0=s080+ [ | s )| El{ramao oo )|

E1(v) Ea(v)

We have

f0,8)=E
&2

Yllooll2? | ¥llwoll2)?”

since vg depends only on g,. Next, we show t-differentiability of the inner expectation. Our aim is to apply
Lemma E.27 to differentiate 51 and ;. We first focus on E;; distributing and applying linearity, we have

l l[vol12 }_ l[vol12

o O | 9(811)(g2i cos v = guisiny)
=)=, [ (loolDw (1o, T2)

G(g1icos Vv + g sinv)].
i=1 %2

We have shown absolute integrability of the quantity inside the expectation above; we can therefore apply
Fubini’s theorem and the previous definition to write

0(g11)(g2i cos v — g1 8inv)
Y(lloo(g1, 82)112)P(1ov (g1, 82)1l2)

Ei(v) = Z E [g G(g1i cos v + go; sin v)} ] (E.40)

i=1 (27):j#i

For each i € [n], write it; : R" — R"-1 for the linear map that deletes the i-th coordinate from its input, and
let #; : R x R"~! — R" be the linear map such that 7t;(g;, 7;(g)) = g. With 8, fixed (in the context of (E.40)),
if we define

0(g1i)(g cos v — g1;sinv)

P(llvo(gy, i(g, mi(gNI)Y (lov (g, Ri(g, i(g2))l2)

fl(vl g) =
then we can write )
Ei(v) = E [[E (v, §2i)3(g1: COSV + go; Sinv) }

1 ;(gy‘)i]'#i Qi [f1 &2i)0(&1i &2i ]

Thus, to differentiate &1, it suffices to check the regularity of fi(v, g) and apply Lemma E.27. As before,
¢ > 0 and 1P smooth implies that f; is continuous on [0, ] X R. For integrability of f, we appeal to the
Fubini’s theorem justification that we applied previously. For absolute continuity, we apply Lemma E.21 to
get that the derivative of f with respect to v is, by the chain rule,

f10,9) = ~o(g1) (

g1icosv+gsinv  (gcosv — gi; sinv)z,b’(llvvllz)(vv,z}v))

Yool (loul) © P(llvoll2)y(lovll2)* o [l2

at all but at most countably many values of v; and the triangle inequality, Cauchy-Schwarz, and Lemma E.31
yield

If{(v, )l < o(g1:) (16(1g1:l + Ig]) + 64C(Ig| + Ig1:DlIFvI2)
< o(g11)(Igl +1g1:]) (16 + 64C (1 gy [l + lIg,1I2))

197



< o(gu)(lgl +1g1l) (16 + 64C(llgy [l + lImi(g,)ll2 + 18D) , (E.41)

(we apply square root subadditivity in the last line) which is jointly integrable over [0, 7] X R, and moreover
over [0, ] X R". We conclude absolute continuity of fi(-, g) and the integrability property of f]. Finally,
for the growth estimate, we obtain an estimate for f; similar to the one we just obtained for f| as follows:

(v, 9)| < 16]g1:l(1g] + 18uil); (E.42)

the RHS of the final inequality above is a linear function of |g|, and when |g| > 1 we can therefore obtain
Ifi(v, 9| < 16(|g1i| + |g1:1*)|g|, which is a suitable growth estimate with p = 1. Then as long as g1; # 0 for
all i (such g, form a set of measure zero, which we can neglect), we can apply Lemma E.27 to get

= \ Eg.i [f (t, 2i)6(g1i cost + gz; sin t)]
Dl(v) ; (gzj) ]#Z = [fl (0 gZz)O(glz)] / ( 2 _1g fl (t -Q1i C::i)‘t)( Q1 COtt) dt

The estimates (E.41) and (E.42) show, respectively, that f/ and f; are absolutely integrable functions of (v, g, ).
We have
o(g1i )2

Y(llvo(gy, g2 (v (g, ti(—gui cott, mi(g,)))l2) sint”
so that Lemma E.31 and nonnegativity give

f1 (f,—gliCOtt) = -

f1(t,—g1icott) p(—gui ott) a( 1)

‘gu ( — 2)p A gl P( g1 cott).
sin“ ¢

As in the proof of Lemma E.37, in particular using the estimates (E.51) (E.52) to control the magnitude of

the RHS for all values of ¢, we can conclude that the Dirac term is absolutely integrable over [0, 7] X R". An

application of Fubini’s theorem then allows us to re-combine the split integrals in the previous expression:

Eﬂ ; V[ Eg, [f{(t, §20)5(g1i cost + gaisint)]
2 = E 0, 82i i)+ ’ i co
) i1 82 [0 g200(g10)] /o ( —81 12 ;g;; ttt_ Eg, [ /i (£, —guicott)]

We notice that
0(g11 cos v + go1 sinv)

0(&1(i~1) COSV + go(i-1) SIN V)
vi(gy, (=g cott, mi(g,))) = 0 ,
U(gl(i+1) COSV + §o(i+1) sin V)

0(g1n COSV + g2, SIN V)

and thus motivated introduce the notation

g'(t, g1, 8,) = fi(—gui cott, mi(g,));

1, » (E.43)
v1(81,82) = v+(81,8'(t, 81, 82))-

We can then write
fi(t,—giicott) p(=giicott)  0(g1:)°p(—gicott)

sin? t ~ Y(llvoll)y (o) sin® ¢

Finally, we apply linearity of the integral to move the summation over 7 back inside the integrals, obtaining

. (vo,v+)
=1(v) = [ (vo, Do) ] + /V ([E Zn: a(g1i)3p(—gucot t) l _ [El( <¢(|\v>0<||20)¢£|>|$(||”2) " ) )dt
= 2 i .3 00,0 ){(v,01)Y’ ([0t ||2 :
lylool2 ] Jo \s:| T vlllwol)ydlivil2)sin’t | s |\ + oy To

—&1i
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Noting that, in the zero-order term, the only g, dependence is in 79 = 6(g,) © g,, we apply independence
of g, and g, to obtain finally

o Yol N 081 p(=guicott)
=) /o (;E[Z; ool (i) sin |

We run the same type of argument on E; next. Distributing and applying linearity, we have

Y(llvoll2)¢(lloell2) — ¢llvoll2)y(llotll2)* o ll2

[( (00, 0:) <vo,zat><vt,z>t>¢'(||vt||z))}) "

" (vo, vv)0(g1i COSV + gi SinV)(g2;i cos v — g1; sin V)Y’ (||vy]|2)
Er(v) = =™
2(v) Z [ Y(llwoll2)y oy ll2)? 1oy 1l2

6(g1i cosv + g2i sinv)}.
i1 %2

By the preceding (product) absolute integrability check when taking first derivatives, we can apply Fubini’s
theorem to split the integral as we did with E;. We define, with g, fixed, the function

(vo(g1), vv(gy, Tti(g, Ti(g,))))0(g1i cos v + g sinv)(g cos v — g sinv)'(||vy (g, i(g, T (32)))”2)
Y(llvo(g D) (llvv (g4, (g, mi(g)2)? 10 (84, Tti(g, mi(g )2

fZ(V/ 8)

so that

n

Ea(v) = ; (gzjf)Em L - [f2(V §2i)0(g1i COSV + Q2i SIHV)]

Now we check that the hypotheses of Lemma E.27 are satisfied for f,. The continuity argument is identical
to that employed for fi, as is the joint absolute integrability property of f,. For absolute continuity, we again
use P > 0, i smooth, and Lemma E.21 to obtain the derivative at all but finitely many points of [0, n] (by
the chain rule and the Leibniz rule) as

(vo,vv)a(gh cosv + gsinv)(g cosv — g1 sin )y’ (v, ]|2)
Y(llvoll2)y(lovll2)? 1oyl
(vo,vv)o(gh cosV + gsinv)(g cosv — g1; sin v)2¢ (lovll2)
Y(llvoll2)¥([lvyll2)?]1vy ll2
B (v0,vy)0(g1icos v + gsinv)(g1; cosv + gsinv)P'(||vy]|2)
Y(llvoll2)¢(lovll2)?0v ]2
(vo,vv>a(g11 cosv + gsinv)(g cosv — g1 sin V)i’ ([[vy]|2){vy, 0v)
Yllooll)y(llov 1210113
_ (©0,0,)0(g1i cos v + g sinv)(g cos v — g1 sin V)Y'([[oy[|2)(wy, Dv)
Yool oy 122 ll0 113
(vo,vv)a(gh cosV + gsinv)(g cosv — g1; sin v)yb”(||vv||2)(vv,vv)
Yllooll)y(lloy 122104113

Because ¢ or ¢”” and our convention handle cancellation in the case where ||v,||> = 0, we can proceed when
necessary with the convenient estimate

Lv,g

o(g1i cosv + gsinv)

y <1,
l0v(81,7ti(g, 7i(82)))ll2

which follows from the fact that ||#||« < ||u]|2 for any # € R". As with Z1, we then estimate the magnitude
of f; using Lemma E.31, Cauchy-Schwarz, the triangle inequality, and square-root subadditivity (skipping
some steps that we wrote out in the =1 estimate):

’

If3(v, &)l < 64C(Igl + g1 Dllvoll2 (Ilifvllz (2 + %) + (18] + 181l (2 + 8||i7v||2))

| (lg1ll2 + IImi(g,)ll2 + 18D (2 + ) )
sesclst+ sl g o TR G g )
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which is jointly integrable over [0, 7] X R, and moreover over [0, ] x R". We conclude absolute continuity
of (-, &) and the integrability property of f,. For the growth estimate, we argue similarly to our bound on

f, to get
|f2(v, @) < 64C][voll2(Ig] + 1g1i)?
< 64C|Ig1l2 (I81* + 2Ig1illg] + |1i1%) ; (E.45)

the RHS in the final inequality is a quadratic function of |g|, and we therefore obtain a suitable growth
estimate with p = 2 and C’ = 64C||g,|I(1 + 2|g1:| + |g1:|?) as soon as |g| > 1. We can therefore apply
Lemma E.27 to get that for all but a negligible set of g, that

Y [E 2i
[E[fz(O,gZi)é(gli)]Jr/O ( o |

n

B2)=), E

o fz(t,—gl,‘ cot t)p(—gl,'cott)
im1 (gzj):]¢l i

— &1 sin? t

Qi

fz’(t, gQi)d(gU cost + go; sin t)] ) dtl

The estimates (E.44) and (E.45) show, respectively, that £, and f, are absolutely integrable functions of (v, g, ).
Because 0(g1; cosv — g1; cotvsinv) = 0, we have (fortuitously)

f2 (t, —g1i cot f) =0,
so that there is no Dirac term in the derivative expression for Z;. An application of Fubini’s theorem then
allows us to re-combine the split integrals in the previous expression:

n

Ea(v) = Z E [fZ(OI gzi)('f(gu)] +/0 (éE [le(f,gzi)é(gli cost + §; Sint)]) dt.

i=1 %2
We have by linearity of the integral

n

D E[A0,820)5(311)] =

i=1 %2

(wo, vo)l[volly’([voll) |
f[ P (lool)? =0

where the last equality applied independence of g, and g,, as in the zero-order term of E;. Finally, we
apply linearity of the integral to move the summation over i back inside the remaining integrals, obtaining

= (V):/” E <vo,z>t><vt,z>f>sb’(llvtllz)+ @0, o0llo:l39"(loell2) (oo, o)y’ (loll2)lloel2
“2 o \&| Y(lvoll)y(lvell2lloell — ¢llwoll)dlloell2)*lwellz - ¢llwoll2)d(llo:ll2)?

(o, ve) (v, 01)2Y (|loell2)  (wo, ve){(0r, D)W ([oell2) (w0, ve){ve, D1)2Y"(||0t]l2) )
+E|-2 - + dt
& Yool ol llodl;  wlwoll)y(lodll2)?lloll; — pllvoll)y(loll2)? o3

Since f(v,g,) = f(0,8,) + /OV Eg,[E1(t) — Ea(t)] dt, the claim follows. O

Lemma E.27. Let u denote the distribution of a N(0, (2/n)) random variable, and let p denote its density. Let u € R
and u # 0, and let f : [0, ] X R — R satisfy:

1. f is continuous in its second argument with its first argument fixed;

2. f is absolutely continuous in its first argument with its second argument fixed, with a.e. derivative f’;

3. f and f’ are absolutely integrable with respect to the product of Lebesgue measure and p over [0, 1] X R;
4. There exist p > 1 and C > 0 constants independent of x such that |f (v, x)| < C|x|V whenever |x| > 1.

Consider the function
glv) = / f(v,x)6(u cosv + x sinv) du(x).
R

Then q is absolutely continuous, and the following first-order Taylor expansion holds:

q(v)=q(0)+/ov (—uf(t’_”m”)p(_”co”) +/Rf'(t,x)c'f(ucost+xs'1nt)dy(x) dt.

sin?t
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Proof. For m € N, define
0 x<0
Om(x)=3mx 0<x<m~

1 x>ml

1

Then 0 < 6, < 1; 6y is continuous, hence Borel measurable; 6,, — ¢ pointwise as m — oo; and &, is
differentiable on R except at x € {0, m~'}, with derivative &,, = m1j< <,,-1. Moreover, we have

/ mlgeyem-1dx =1,
R

and the first-order Taylor expansion

X
Im(x) =/ mlgc<m-1 dx’.
0

Define

gm(v) = / f(v, x)6m(ucosv + xsinv)du(x).
R
Then at every v € [0, 1], we have by assumption
/|f(v, X)0 (4 cosv + x sin v)| du(x) < /|f(v, x)| du(x) < 400,
R R

so that the dominated convergence theorem implies

lim g, (v) = q(v).

m—00
By the chain rule, the expression 6,,(x) = —max{—m max{x,0}, -1}, and Lemma E.21, v — &, (u cosv +

x sinv) is an absolutely continuous function of v € [0, 7], and we therefore have by the product rule for AC
functions on an interval [Coh13, Corollary 6.3.9]

Gm(v) = g (0) + / du(x) / dt (f'(t, x)dm(ucost + xsint) + mf(t, x)(x cost — 1 sint) Loy cos vx sinvem-1) -
R 0

We have - N
/R/O |f’(t,x)e;m(ucost+xsint)|dtdy(x)s/R/O |f/(t, x)| dt du(x) < +oo,

by assumption, and

1/2

1/2
/|f(t, x)(xcost —usint)lye, Costsmtsm_lidy(x) < (/ f(t,x)? dy(x)) (/(x cost — usint)* du(x)
R R R

1/2
< Cy (|u| + (/ xzdy(x)) ) < +o0,
R

by the growth assumption on f and the Schwarz inequality. Applying compactness of [0, 7] and the lack of
v dependence in the final inequality above, an application of Fubini’s theorem therefore yields

Gm(v) = qm(0) + / / (f'(t, x)m(ucost + xsint) + mf(t,x)(x cost — usint)Lo<y costrxsint<m-1) dp(x) dt.
0o JR

By dominated convergence and the first of the preceding two product integrability checks, it is clear

lim ‘/O ‘/Rf (t,x)0m(u cost + xsint) du(x) dt :‘/0 ‘/Rf (t,x)d(u cost + xsint)du(x)dt.

m-—oo
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For the second term, we need to proceed more carefully. For k € N sufficiently large for the integral to be
over a nonempty interval, we consider

1 22

52
e ]IOSucostsintSm*l dx,

v—k1
Gm (V) := / dt / mf(t, x)(x cost — usint)
= R 2mc
which is a truncated version of the integral constituting the second term in g,,, with a change of variables
applied to explicitly show the density corresponding to i, and where we write ¢ = 2/n. In particular, by the
calculation used to apply Fubini’s theorem in this context previously, we have by dominated convergence

tim 0,10 = [ [ 0,200 €08 = S0 )0y conrsr i+ )

By the product integrability assumption on f and Fubini’s theorem, we can consider the inner R-integral
for fixed t, and due to our truncation we have 0 < t < 7; we therefore change variables x — x sin~!t in the
inner integral to get

2

y—k1
b cost 1 X
V) = dt | m (t, . ) X -u e 2c%sin’t ~1dx.
erl,k( ) ;/k‘l -/[Rl f sint ( Sin2 f ) ) 0<u cos t+x<m=!

If0<t<mand x € R, define

2

x
g(t, x) = f (t X ) (x cos u) ! e_ZCzsinzt,
2

7 . . -
sint sin?t T7c2

so that, after an additional change of variables x — x — u cos t, we obtain

y—k1
Gmx(v) =m /kl dt ‘/[R g(t,x —ucost)Locycpy1 dx.

Using the growth estimate for f, we have

x —ucost|Plxcost —u X — 1 cos t)?
|g(t,x —ucost)| < C| ] |ex (—Q)

sinP*2 ¢ 2c2sin? t
where C > 0 depends only on c. We are going to bound this quantity under the assumption that |x| < |u|/2,
where we use the assumption |u| > 0. First, note that when 71/4 < t < 31t/4, we have sint > 1/ V2, and we

always have sint < 1for 0 <t < 7; so in this regime
(x — u cos t)z)

|g(t,x —ucost)| < C2P/%*1|x — u cost|P|x cost —ulexp (— 2
c

which is a continuous function of (¢, x), and is therefore bounded by a constant depending only on ¢, f, u
over the compact set [11/4,37/4] X [-u/2,u/2]. Next, we consider the case 0 < t < 1/4; by the symmetry
sin(rt —t) = sint, controlling |g(¢, x —u cos f)| in this regime implies control of it in the regime 371/4 < t < 7.
Here, we note that by our assumption on ¢ and the triangle inequality

|x —ucost| > |ul||cost| — |x|

> |ul(|cos t| - 4) > Klul,

where we can take K = 271/2 — 271 > (0. Applying the triangle inequality and the condition on |x| gives

|u|p+l ( K242 )

t,x —ucost)| < C(3/2)F+! -
8 ) /2 sinP*2 ¢ 2c2sin? t

which only depends on t. For any constants ¢’, C* > 0, the continuous map y — C |y|7”+ze‘c'y2 is a bounded
function of ¥ € R by L'Hopital’s rule applied to determine limy_>i<><,|y|”e‘y2 = 0 for any p > 0. It follows
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that there is a constant M > 0 depending only on ¢, u, p such that |g(f, x —u cos t)| < M whenever 0 < f7/4;
we obtain the result for t = 0 by the previous limit calculation. Applying symmetry and taking the
sum of our two bounds then yields |g(t, x — u cost)| < M’ for M’ > 0 not depending on k, m whenever
(t,x) [0, ] X [-u/2,u/2].

Now, we have after one additional change of variables x xm™1

y—k~1
Gm (V) = / dt / g (t,xm™ —ucost) Lper<r dx.
k-1 R

We can invoke our M’ bound when xm ™! < |u|/2, and the indicator enforces |x| < 1; thus, taking m > 2/|u]
(here we use |u| > 0 critically) implies

y—k71 y—k1
/ dt /|g (f,xm™" = ucost) Tor<i dX| < M'/ dt < 400,
k1 R k-1

so that by dominated convergence, we have

v
klim Gk (V) =/ dt/g (t,xm™ —ucost) Lo<x<r dx.

By the same estimate together with second-argument continuity of f, hence of g, we have by the dominated
convergence theorem

v Vf(t,—ucott) 1  _ulcot’t
lim lim g, k(v) = / g(t,—ucost)dt = —u f( — ) e~ 22 dt.
m—o0 k—o0 0 0 sin“ t ”27'(C2

Combining with our results on g,, and the first term, we conclude

v f(t,—ucott) 1 _ulcot’t / . .
v)=g(0 +/ dt(—u e 22+ "(t,x)6(ucost + xsint)du(x)|,
1) =90+ | I [ e 0 )du(x)

as claimed. O

E.3.6 Miscellaneous Analytical Results
Lemma E.28. If m > 0, then ¢ is 1-Lipschitz.

Proof. We recall

p(v) = E cost X, |.
v gl,g2~i.i.d./v<o,(2/n>1>[ d

Considering instead the related function ¢ defined by

)= E lg,0(v, 81, 85|,
gl'gz"i.i.d,N(O,(Z/n)I)[ 1¢ 81 gz]

where
1 (wo,vv)
v, g4, )=cosl(— ,
Pl s1 82 Tooll2loy ]z
we notice
P(v) = ¢(v) + (1/2)u(&EY).
It is therefore equivalent to show that ¢ is 1-Lipschitz; but this follows from Lemma E.22. o

Lemma E.29 (Even Moments). If k € N and k < n, one has
[Elllow 5] = 1] < Cen™, [E[Iloul13] = 1] < Cen ™,

where Cy < (k — 1)2451(2k — 1)!1.
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Proof. First notice that the claim is immediate if k = 1, since E [||vv ||§] = 1. We therefore proceed assuming
k > 1. Also notice that Lemmas G.11 and E.17 show that 9, and v, have matching even moments, so it
suffices to prove the claim for v,. By rotational invariance, we can write

k n k
Eflo, 3] = 2 € (Za(gi)z)

nk g-No |\ &

k

2> e[ et

1<iy, . ix<n | j=1

where the last sum is taken over all elements of [n]F. We split this sum into a sum over terms whose
expectations contain no repeated indices, and a sum over all other terms. There are exactly k!(}) ways to
choose a k-multi-index from an alphabet of size n without repetitions—select the k distinct indices, then
arrange them in every possible way—and multi-indices without repetitions correspond to terms in the sum
where the expectation factors completely, by independence, so we can write

1<iy,...,ix<n
only repeated indices

k k
Ello 3] = 3 |k Elote?l + 3 [E[]‘[o@ij)z
j=1

We will prove the elementary estimate

k_ 1™
n k.(k)

Assuming it for the time being, we use that E [o( 91 )2] o 27k to conclude

< (k - 1)*nk12k2, (E.46)

< (k-1)222n1,

‘(2/n)kk!(Z)[E[o(g1)2]k -1

Next we study the expectation-of-products arising in the sum. The expectation factors over distinct indices;
we can classify repeated indices in a multi-index by partitions j; + ... j, = k, where each j is a positive
integer. Formally, for each multi-index (i1, ..., ix), there is a partition j; + ... j,; = k such that

k m
E n U(gi]')z = l_[ E [G(gip(z) )2].1:|/
j=1

=1

where p : [m] — [k]is injective. We can evaluate these expectations using the result E [a( g1 )Zk] = %(Zk -,
because the coordinates of g are i.i.d.:

ﬁ [E[a(gi,,(,))zj’] = zim ﬁ(2ji - 1.
i=1

=1

We claim that
1 1
o l_I(Zji ~ i< S@k-11, (E.47)
i=1

which is the expectation obtained from a term with all indices equal, whence

2k k 2k )
e Z E Ho(gij)2 < ﬁnk 1(k—1)22k 2[E[(f(g1)‘2k]

1<iy, . ig<n j=1
only repeated indices
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= ((k = 1?2232k - D1)n?

by (E.46), which gives a bound on the number of terms in the sum. Noticing that this constant is larger than
(k — 1)%2k-2, we can conclude the claimed estimate on Cy provided we can justify (E.47). For this, it suffices
to show

(2k = 1)
M7 @) - D

Observe that m > 1 for any partition, so 2”~! > 1 and we need only study the second term on the righthand
side. We write this term as

1< m—1

@k-11 ’F1(2i—1)
4@ =D e @ -1y

The fact that j; +--- + j,, = k implies that there are k factors in the denominator, so we can put the factors
in the numerator and denominator into one-to-one correspondence. Consider the ordering of the factors in

the denominator ([T)L, (21 - 1)).... ([T",(2I - 1)). Then

Hl 1(2Z
(i -1).
H{l 1(2 - 1) 11:[1

If j; = k, then this product is empty and m = 1, so the claim is established. If not, then we proceed to the
next group of factors in the denominator: we get

l—I /1+1(21 )
—>1
nf:l(zz -1)

because j; > 0 implies that every term in the numerator (ordered in ascending order) is larger than the
corresponding term in the denominator. This gives the claim in the case m = 2; for m > 2, we conclude the
claim by induction.

To close the loop, we prove (E.46). Using simple algebra, we observe

nF—nn-1)...(n—k+1)

k-1 )
= nk 1—1—[(1—%) ,

j=1

=
=~
|
x
—_—
= S
~———
I

and we note bounds

(1—k;1)k_1sﬁ(1—%)sl.

=1

Working on the upper bound first, we obtain with the help of the binomial theorem

1—ﬁ(1—£)31—(1—k;1)k_1

=1
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where the last expression removes cancellation by making each term in the sum nonnegative, then applies
a change of index. With the identity ( D=k-1)/G+ 1)(k ?), we proceed as

k=2

SR - ““”12( )]il(";l)"

oy

given that 1/(j + 1) < 1. Since n > k, this gives
nk — k!(Z) < (k = 1)*nk-12k2,
The upper bound on the product gives immediately 7% — k!(}) > 0, which completes the proof.

O

Lemma E. 30 (M1xed Moments). Let g',..., g" denote the n (i.i.d. according to N(0, (2/n)Iy)) rows of the matrix
G. Let k € [n], and for each 1 < j < k let f; Rz — R be a function such that

1. E[Ifj(gHIF1MP < Cn~tp, with C > 0 an absolute constant and p > 1;

2 E[lfi(gHl] < n”!

Consider the quantities

k n k
]—[(Zf;(g >) B[ ELf].
1 j=1

Then one has |A — B| < Cn~Y, with the constant depending only on k.

Proof. Start by writing

k
A= EHﬁ(gff)
a

1<iy,...,ix<n
n k £ 1
/:1 1<iy,...,ix<n ]:1

only repeated indices

k
—k n i;
" k!(k)B+ S e[ e
1<iy,...,ix<n j=1
only repeated indices

as in Lemma E.29. Applying the triangle inequality and the first moment assumption on the functions f;,

we get
n‘kk!(Z)B - B‘ - |B|‘k!(’£)n-k —1| < (k-1722%2,71,
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with the last inequality following from the estimate (E.46). For the remaining term, we have by the triangle

inequality
nk — k! (Z)

< (k- 1)211"‘12"‘2 sup l_[f](g’f)

sup ﬂﬁ@O

(i1,...,ix)Cln

k
ii
> [ <
1<iy,...,ix<n j=1

only repeated indices

using again (E.46) to control the number of terms in the sum. To control the supremum, we apply the
Schwarz inequality k — 1 times to get

k
E(] [fits™
j=1

1/2

I/\

k
E[AG™?] | ] fi(g"?
j=2

IA

- 2-(k-1)

IA

k-1 5
[ e[|
j=1

By the subexponential assumption on the functions f;, we have moment growth control, and we therefore
have a bound

E| g™

k k-1
E l_lf](gl/) < ncln‘lzf C1n_12k_1
j=1 j=1

= Chu koD I = chyykp 3 (ks

and consequently

k
‘ 1
Z = l_[fj(glf) < CR(k —1)222%k+9), -1,
j=1

1<iq,...,ix<n
only repeated indices

which proves the claim. m]
Lemma E.31. Forany 0 < ¢ < 1, there exists a smooth function . : R — R satisfying

1 Ye(x) =xifx > 2cand P.(x) = cif x < c, and . is between ¢ and 2c if c < x < 2c;

2. Pe(x) = %x;

3. There are constants My, My > 0 depending only on ¢ such that || < My and |7 | < M.
Proof. The function f(x) =1 J(>oe_% is smooth on R, and satisfies 0 < f < 1and f = 0if x < 0. The function

)
) = T fle—m)

is therefore smooth, satisfies 0 < ¢, < 1, and satisfies ¢.(x) = 0if x < 0 and ¢p.(x) = 1 if x > c. Simplifying
using the definitions, we can write

0 x<0
1
_)——————— 0O<x<c
¢C(x) - 1+exp(xc(czi))
1 X =>c.
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It follows that x +— x¢.(x) is zero when x < 0, x when x > ¢, and in between otherwise. Thus, the function
Pe(x) = ¢ + (x — c)pc(x — c) satisfies property 1.

For property 2, we note that ¢.(x) = ¢ + (x — ¢)¢.(x — c) implies that ¢ > ¢, since ¢.(x —c) = 0 whenever
x < cand ¢. > 0. Since P.(x) = x when x > 2c, we can then conclude ¢.(x) > %x, since %x < ¢ when
x < 2c¢ and %x < x when x > 2c.

For property 3, we note that by property 1, {.(x) = 1 if x > 2c¢ and ¢/(x) = 0 if x < 0; consequently
Y?(x) =01if x ¢ [0, 2c], and it suffices to control i, and ¢/ in this region. By translation equivariance of the
derivative, it then suffices to control the derivatives of h(x) = x¢.(x) for 0 < x < c. We calculate

' (x) = xp(x) + Pe(x),

" (x) = X7 (x) + 2 (x), (E.48)
" fle=x)f"(x) = f(x)f'(c — x)
ooy Jle=x)f(x) - fx)f'(c—x
P T e e (E.49)
(P”(X) :(f(x) +f(C - x)) (f(c - x)f//(x) +f(X)f”(C _ X) _ 2f/(x)f/(c _ X))
| e (E.50)

_,U) = fle = 0))(fle = 0)f'(x) - fx)f"(c — x)
(f(x) + fle —x))° '

Completely ignoring possible cancellation, we see that it suffices to get a lower bound on f(x) + f(c — x) and
upper bounds on f’ and f” to bound |h’| and |h”|. We calculate

) ) 1 1 1
frx)+ filc—x)= ;6 ¥y — me —xly<e,

and since f(x) > 0if x > 0 and ¢ > 0, we see that any solution of f’(x) — f’(c — x) = 0 must occur for
x € (0, ¢), which implies as well ¢ — x € (0, ¢). Writing g(x) = x2¢™* and using ¢! < x™! < oo for x € (0, ¢),
we note from our previous work that f'(x) — f'(c —x) = 0 < g(x7!) = ¢((c = x)7'). We calculate
g’(x) = xe™*(2—x), so thatif x > 2 then g’(x) < 0, which implies that g is injective on (2, o). By assumption,
we have ¢! > 2; consequently there is at most one solution to f’(x) — f'(c —x) =0in 0 < x < ¢, and given
that x = %c is a solution, there is exactly one solution. We check

2f(c/2) < f(0)+ f(c) & log2 < 1/c,

where the first RHS is the value of f(x) + f(c — x) at both x = 0 and x = ¢, and since 1/c > 2, we conclude
that f(x) + f(c — x) = 2f(c/2) > 0. Next, we use

) 1 .1
f'(x) = ¢ *Lys0,
1 _1 2 _1
f(x) = (Fe x — FE x) 1ys0,

together with the bound x7e™ < pPe7? for p > 0, which is proved by differentiating x + x”e™¥, equating
to zero, and comparing the values of the function at x = 0, x = p, and x — oo, to obtain with the triangle
inequality

If'(x)] < 4/e?, [f”(x)] < 4%e™* +2.3%5.
Combining these bounds with our lower bound on f(x) + f(c — x) and repeatedly applying the triangle

inequality and modulus bounds in (E.49) and (E.50), then subsequently in (E.48) (using also |x| < c), we
conclude the claimed bounds on |¢| and |¢p7]. O

Lemma E.32. Let Z,7Z € L2 be square-integrable random variables. Suppose that Z<Cas. and ||Z-Z|2 < M.
Then
Var[Z] < Var[Z] + CM + M?.
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Proof. This is a simple consequence of the triangle inequality and the centering inequality for the L? norm.
We have _ _ _ _
1Z = E[Z]ll2 < |Z = Z = E[Z = Z]|[12 + 1 Z = ELZ]l.2,

and additionally _ _ -
I1Z-Z-EZ-Z]l;2 < 1Z-Z]l;2 < M,

so that, after squaring, we get

Var[Z] < Var[Z] + M||Z - E[Z]||;2 + M?
< Var[Z] + M||Z||;2 + M?
< Var[Z] + CM + M?,

by centering and the a.s. boundedness assumption. m]

Lemma E.33. Let X,Y be square-integrable random variables, and let d > 0. Suppose |X| < My a.s., and suppose
P[lY —=1| > Cy/d/n] < C’e=Y and ||Y - 1||;2 < M. Then one has with probability at least 1 — C’e=¢4

XY~ EDXY]] X~ E[X) + 2001y L+ VE MM

Proof. We apply the triangle inequality:

IXY — E[XY]| < |XY - X| +|X — E[X]| + |[E[X] - E[XY]|
< My|Y = 1]+ MaiE[[Y = 1] + |X - E[X]],

where the second inequality also applies Jensen’s inequality. We have
E[|Y - 1/] = [E[(]lly_llzc\/dn—,l + 1|Y—1\<CW) Y - 1|]

< c\/gJr [E[]lw—uza/d/_nly - 1|]
: C\/g i [E[]I|Y—1|ZCW]1/2[E[(Y -1

]1/2

where we apply the Schwarz inequality in the third line. Consequently, with probability at least 1 — C re=cd,
we have
XY~ EIXY] < X ~ EIX]| 2001y 2 4 VM M2,
as claimed.
O

Lemma E.34. Fori =1,...,n, let X;,Y; be random variables in L*, and let d > 0 and 6 > 0. Suppose X; = 0 for
each i and Y7 1||Xi|l;2 < M3, and suppose P[Vi € [n], |Y; — 1| > C+/d/n] < 6 and for each i, ||Y; — 1|+ < Mp.
Moreover, suppose that C+/d/n < 1. Then one has with probability at least 1 — 6

d
+ 2CM3\/7 SVAMLMs;.

Yi] - E[Xi]
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Proof. The proof is a minor elaboration on Lemma E.33. We apply the triangle inequality:

< anXiYi—Xi + ixl—
i=1

n
+> EIXi] - E[X;Yi]
i=1 i=1
n
ZIXi|
i=1

i < o
\/;Jr Zmnxinm —-1]]+ in - E[Xi]|,
i=1 i=1

where the second line holds with probability at least 1 — 6. Another application of the triangle inequality
together with nonnegativity of the X; gives

n
leil =
i=1

D XY —E[X:Y)]
i=1

<C

< M+ ZXi—[E[Xi],

i=1

where the second line applies the Lyapunov inequality. By the Schwarz inequality and the Lyapunov
inequality, we have

n d n n
DLEIXIYG ~ 17 < Cyf = S EIXN + ) E[1, e amlXillYi =1
i=1 i=1 i=1

d
< CMg\/; + 64 My M.

Consequently, with probability at least 1 — 6, we have
4
+2CM;3 + 0 /"MyM3

Vi — E[XiYi]

as claimed, where we use that C+/d/n < 1 here.
|

Lemma E.35. Let k € N, and let Xy, ..., Xy be integrable random variables satisfying || X; — E[X;]|l;s < M; for
some constants M; > 0. Suppose moreover that with probability at least 1 — 0;, one has |X; — E[X;]| < N for some
constants N; > 0. Then one has

k
Var < ) NiNj+ \[6; + 6;MiM;.

i,j=1

k
> x
i=1

Proof. We start from the formula

Var

ZVar Xi]+2 )" cov[Xy, X;],

X
i=1 i<j

where cov[X;, X;] = E[X;X;] — E[X;]E[X;] = E[(X; — E[X;])(X; — E[X;])]; one establishes this formula by
distributing in the definition of the variance. By assumption, there are events &; on which | X; — E[X;]| < N;
and such that P[E;] > 1 — 6;. Partitioning the expectation, we therefore have

Var[X;] = E[(X; ~ E[X;])*] < N7 + E[1g<(X; — E[X;])’]
< N7+ E[Lee ] PE(X; = E[Xi])*]?
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< N2 +/6;M?,

where the first line uses nonnegativity of the integrand to discard the indicator after applying the deviations
bound, the second line applies the Schwarz inequality, and the third line uses fourth moment control. For
the covariance terms, we apply Jensen’s inequality to obtain

|cov[Xi, X1 = [E[X: X;] - E[XG]E[X;]] < E[|1X; — E[X:]I1X; - E[X;][],
so that, again partitioning the outermost expectation and applying our assumptions, we get
|lcov[X;, X;]| < N7 + Ellgeues | Xi — EIXi]l1X; - E[X;][]
< N7 + E[Lecues "V 2EI(X: — ELGDYAENX; - ELGD) Y
< NiN; +,/6i + 6;M;M;,
where in the first line we again use nonnegativity of the integrand to discard the indicator after applying

the deviations bound, in the second line we apply the Schwarz inequality twice, and in the third line we use
a union bound to control the indicator. Since §; < 26;, we conclude the claimed expression. a

Lemma E.36. If C > 0and p > 0, the function g(t) = tpe=Ct? for t > 0 satisfies the bound g(t) < (p/(2Ce))P/2.

Proof. The function g is smooth has derivatives g’(f) = t#~1e~C*(p — 2Ct2) and g”(t) = t'2e~"(p(p - 1) -
2(4p —1)Ct?+4C?t*). Tt therefore has at most two critical points, one possibly at t = 0and oneat t = 1/p/(2C),
and these points are distinct when p > 0 and C > 0. We check the sign of ¢” at the second critical point;

since 4/p/(2C) > 0 we need only check the value of (p(p —1) —2(4p — 1)Ct? +4C?t*) evaluated at t = /p/(2C),

which is —2p? < 0. Then since lim;_,.« g(t) = 0 and g(0) = 0, we conclude that g(t) < g(+/p/(2C)), which
gives the claimed bound. o

Lemma E.37. Following Lemma E.26, consider the random variables

— - 0(g11)°p(=g1i cots)
E1(5, 81, 82) = T
8082 = ) g el

(o, vs)P ([[vsll2)l[wsll2 (0, s)
P(lvoll)yllwsllz)*  ¢llvoll2)¢(llosll2)
(v0,v5)(vs, 95)°¢" (|05 12)
Y(llvoll2)y (Ilvsll2)llvs 13
(00, 95)(vs, 0s)P" ([0 |2)
P(llwoll2)y(lvsll2)?osll2
_ (wo, vl 139" (losl2)

P(llvoll2)¢(lvsll2)* sl
(vo, v5)(vs, 05)*Y' ([lvs]l2) . (vo,v5)(vs, 95 )Y (|lvs]l2)
Y(llooll)g(lvsll2Pllosll; — (llooll)g(lvsll2)llvs]l3

Eo(v, 81, 82) =

Es(v, 81,82 = -

84(1// gll gZ) = _2

ES(V/ gll gZ) =

E‘6(1// 81/ gz) =2
where E1(-, g1, §,) is defined at {0, 7} by continuity (following the proof of Lemma E.27, it is O here). Then for each
i=1,...,6,o0nehas:

1. Foreach i, there is a i ® p-integrable function f; : R" xR" — R such that |E;(-, g1, &,) —E[Zi(-, &1, 8]l <
fi (g1 ’ gz)}

2. There is an absolute constant C; > 0 such that for every 0 < v < m, one has ||fi||;+ < C;, so that in particular
12i(v, -, ) —E[Ei(v, -, )]s < C.
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Proof. First we reduce to noncentered fourth moment calculations. If X is a random variable with finite
fourth moment, we have by Minkowski’s inequality

X = E[X]lls < [IXlzs + [E[X]],
so that the triangle inequality for the expectation and the Lyapunov inequality imply
X = E[X]l[s < 2/ X ]+

We can therefore control the noncentered fourth moments of the random variables E; and pay only an
extra factor of 2 in controlling the centered moments. For the proofs of property 1, we have similarly
|X — E[X]] < |X]| + E[|X]] from the triangle inequality, so that it again suffices to prove property 1 for the
noncentered random variables |Z;].

&1 control. If v = 0 or v = 7, the integrand is identically zero; we proceed assuming 0 < v < . Using
¥ > 1 wehave

p(=giicotv)

sin?

n o i 3
0<Ei(v,8,8) <16 (811) :
i=1

For property 1, by elementary properties of cos we have for 0 < v < /4 and 3rt/4 < v < 7 that cos? v > 3,

so
n - ngy;
—gricotv) < ([—e 8sin’v
P( g1i ) e
This gives
3 3 i ?
0(811)° p(=g1i cotv) < [81iPp(=g1icotv) _ 215 81 36—K‘%| ,
sin®v sin®v T sinv

where we define K = 1 /8. By Lemma E.36, we have that ¢ < g(4/3/2K) = CK~3/2, where C > 0is an absolute
constant. We conclude

0(81:)°p(=g1i cotv) _

3 <

C/n, (E.51)

sin

provided v is not in [11/4, 31t/4]. On the other hand, if /4 < v < 371/4, we have sinv > 1/v2, so that

v

0(g1:)°p(—g1i cotv)
3

; < Cvno(gu)?, (E.52)
sindv

where C > 0 is an absolute constant. Since these v constraints cover [0, 1r], we have for all v and all g, (by
the triangle inequality)

|El(vl glr gz)| < C+ C,nS/ZU(gli)g’/

where C, C’ > 0 are absolute constants, and by Lemma G.11, we have
E[C + C’n3/20(g1i)3] =C+(C",

where C” > 0 is an absolute constant. This proves property 1 with fi(g,,g,) = C + C'n%20(g1;)?, with
different absolute constants, and property 2 follows from Lemma G.11 after applying the Minkowski
inequality and calculating the integral, which has the necessary cancellation of the 732 factor.

&, control. By Lemma E.31, we have |¢’| < C for an absolute constant C > 0 and x/¢(x) < 2. Cauchy-
Schwarz then implies

(0o, v )Y ([[vsI2)l[ws ll2
P(llvoll2)¢(llosl2)?

In an exactly analogous manner, we have

< 8C.

<'U(), vS>

P(llooll2)¢(llosll2)
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Both bounds satisfy the requirements of property 1, with f,(g;, g,) = 16C + 8. The triangle inequality and
Minkowski’s inequality then implies ||Z21(v, -, )|+ < C".

&3 control. By Lemma E.31, we have |¢”| < C for an absolute constant C > 0, ¢ > }1, and x/¢(x) < 2.
Cauchy-Schwarz then implies

(vo, vs){vs, 95)*" ([lvsl2)
Y(llvoll2)y (Ilvsll2)llvs 13

< 16C|1sll3,

and the triangle inequality gives ||9;[% < |g; ||§ + ||g2||% + 2|/, 11211g,l2, whose expectation is bounded by

4, by the Schwarz inequality and Lemma G.11. We can therefore take f3(g;, 8,) = C + C'(|[g4ll2 + || g2||2)2,
and we have

2
g1l + g2l s = gl + igalblls < ([llgy llls + Mg lalls) < €,

where C > 0is a (new) absolute constant, by the Minkowski inequality and lemmas Lemmas G.10 and G.11.
This establishes property 2.

&4 control. By Lemma E.31, we have |¢| < C for an absolute constant C > 0, i > i, and x/¢(x) < 2;
Cauchy-Schwarz then implies

2<770/ 0s)(vs, Ds)Y'(||vs2)
P(llooll2)p (llosl12)*llvs 12
Following the argument for Z3 exactly, we conclude property 1 and 2 from this bound with a suitable

modification of the constant.
Hs control. We have

< 64C| 19513

(o, ) 1951139 (llos 2)
Y(llvoll)¢(llosll2)llos 12
following exactly the setup and instantiations in the argument for Z4. Following the argument for Z3 exactly,

we conclude property 1 and 2 from this bound with a suitable modification of the constant.
E¢ control. The triangle inequality gives

< 32C|1%s1l3,

(vo, v5)(vs, 95)*¢"([lvs]]2)

(vo, vs) (s, 95)*Y' ([lvs]l2) N
Yllooll2)¥ (s ll2)2llvs]13 |

Y(llvoll2)y (llvsll2)*llvs |13

1Z6(s, 81,82l <2

and following the setup of Z4 and Z5 control gives |Z6(v, §;, §,)| < 128C||9 |3 + 32C||9, |3 Following the
argument for E3 exactly, we conclude property 1 and 2 from this bound with a suitable modification of the
constant. O

Lemma E.38. In the notation of Lemma E.13, there are absolute constants c,c’,C > 0 and an absolute constant
K > 0 such that if n > K, there is an event with probability at least 1 — 2e~" on which one has

| lloll2 l[oo]l? l

U(llooll)? | ¢(llwoll2)?

—c'n

Proof. There is no v dependence in this term, so we need only prove a single bound. Following the proof
of the measure bound in Lemma E.16, but using only the pointwise concentration result, we assert that if
n > C an absolute constant there is an event & on which 0.5 < ||vg||2 < 2 with probability at least 1 — 2¢~¢"
with ¢ > 0 an absolute constant. This implies that if g, € & we have

llooll3

oloollz?
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which we can use together with nonnegativity of the integrand to calculate

o IO PR ( loollz )2
P(looll? ¢ “\y(lvoll2)
> E[lg] = 1-2¢7°",
whence
2 2
llvoll2 . lvoll <20
P(lvoll? | v(llvoll2)
whenever g; € &. Similarly, we calculate
l[voll ( llwoll )2
E| ——— | =E[lg] +E|l1lge | ————
llP(HUon)Z el + e\ ool

looll: \*]"”
U2 0oll2
<14 Flizl e 5ok ]

applying the Schwarz inequality, property 2 in Lemma E.31, and the measure bound on &, with ¢/,C’ > 0
absolute constants, whence

<1+16Ce™ ",

2 2
v v ’
gl Mol | wold
P(llvoll2)* | ¢(llvoll2)
whenever g, € & Worst-casing constants, we conclude
2 2
v v
ool | Mols ||
P(llvoll2) P(llvoll2)

when g, € &, which is sufficient for our purposes.
o

Lemma E.39. In the notation of Lemma E.13, if d > 1, there are absolute constantsc,c’,c”, ¢, C,C’,C”,C",C"" >
0 and absolute constants K, K’ > 0 such that if n > Kd*log* n and d > K’, there is an event with probability at least
1=C”n=<"42 = C""ne="" on which one has

dlogn < ,
|El(v, £1,8)— [E[El(v, 31/82)H < C\/Tg +C'n= 4 C" e,

Proof. If v € {0, i}, then E1(v, g4, §,) = O for every (g, §,); we therefore assume 0 < v < 7 below.
We will apply Lemma E.34 to begin, with the instantiations

_ 0(81:)>p(—g1i cotv) Y = 1
sin® v ’ " Yllwoll)w(l0h 1)

X;
since then Z1(v, g4, §,) = 2; XiY;. We have X; > 0; writing k* = 2/n, we calculate

E[Xi] =

1 1 /’ g3 exp _L g2 d
3 2 2
T
V871k2 V2rk2 Jr sin® v 2k? sin? v
= 2 sinv (E.53)
mn
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where the second line uses the change of variables ¢ — g sinv and Lemma G.11. Additionally, we have

k1 g° 1. 2
[E[Xi]:EVT_n Rsin6veXp ~58 (1+2cot”v)]|dg
_ ktsinv 1 )
pp \/2_77 gl exp (—— (1 +cos v)) dg
k*sinv 6
= -8 /2d
47(1 + cos?v)7/2 \ort /R §¢ g
15sinv

- nn2(1 + cos? v)7/2’ (E.54)

where in the second line we change variables ¢ +— gsinv, in the third line we change variables g

¢/V1+cos?v, and in the fourth line we use Lemma G.11. We can calculate the derivative of the map
g(¥) = (1 + cos?v)72sinv as g'(v) = cos(v)(1 + cos? v)7[(1 + cos? v)7/? + 7sin?(v)(1 + cos? v)*/?], which
evidently has the same sign as cos(v); so g is strictly increasing below 7/2 and strictly decreasing above it,
and is therefore maximized at g(7t/2). We conclude the bound

E[X?] < — 15 (E.55)
7'(11

which shows that } ;|| X;||;2 = O(1). Next, we have Y; < 16 by Lemma E.31, so by the Minkowski inequality
IIY; — 1|4 < 17 for each i, and it remains to control deviations. We consider the event & = &5, in the
notation of Lemma E.16, which has probability at least 1 — Cne™" and on which we have % < ||oill2 < 2 for
all i € [n] and in particular % < ||voll2, and thus by Lemma E.31
B 1
lvoll2llv} 112

foralli € [n]. By Taylor expansion with Lagrange remainder of the smooth function x + x~! on the domain
x > 0 about the point 1, we have

1 1
—=1-(x -1+ —=(x-1)
SRR TCa N
where & lies between 1 and x. If (g,, §,) € &, then for all i ||vo||§||v§ |12 > (1/64), and we can therefore assert

. . 2 .
(lwoll2lloilla = 1) = 64 ([lwoll2lloilla = 1)" < 1=Y; < ([lvoll2llod ]l = 1) . (E.56)

By Gauss-Lipschitz concentration, we have P[|||vo]l2 — E[||voll2]| > t] < 2e=" and P[|||voll» - Ellloill2]] =
t] < 2¢="*. Lemma E.19 implies that 1 —2/(n — 1) < E[||v}|l2] < 1and 1 -2/n < E[|lvo|l2] < 1, so we can
conclude when n > d and when 7 is larger than a constant that
1| < Cwlé
n

d )
llvoll2 = 1| < C\/;; Vi € [n],

with probability at least 1—C’ne™, by a union bound. Using then the fact that ||vi || < 2 for all i on the event
& together with the previous estimates and (E.56), we obtain with probability at least 1 — C”ne=" — C""ne~?
(via a union bound with the measure of &) that for all 7,

n n n

As long as n > d, we conclude that with the same probability, for all i we have |Y; — 1| < C+/d/n. We can
therefore apply Lemma E.34 to get that with probability at least 1 — C”ne™" — C"’ne~? we have

= , E|E ,
| 1(v, 81 gz) [ 1(v, 81 32) sin®

Z (1)’ p(—g1i cotv) [E[U(gu)?’p( g1i cotv)
sin® v

215



+ c\/g +(C") et 4 (C) e~ 4, (E.57)

where we also used the triangle inequality for the 4 norm to simplify the fourth root term, together with
n > 1. For v € [0, t], we define f, : R — R by
o(g)’ 2 12
e — N t p
V2mk?sin® v P ( ak28 Y

so that the task that remains is to control |}, f,(g1i) — E[ f,(g1:)]|. We start by applying Lemma E.36 to obtain
an estimate

fu(g) =

fu(g) <
where C > 0 is an absolute constant. When 0 < v < 1/4 or 3n/4 < v < m, we have therefore f,(g) < C/n.
Meanwhile, if /4 < v < 31/4, we have f£,(g) < C’vno(g)3, so we can conclude f,(g) < C/n + C'vno(g)®

for all v, which shows that f,(g) is not much larger than C’v/na(g)®. Next, let § ~ N(0, 1), so that g =y 3
we have forany t > 0

n|cosv|3’

[P’[C’\/Ea(g)3 > t] = P[a(g) >C” (nt)l/3] < exp (—%(C”)z(nt)2/3) ,

where we use the classical estimate P[g > t] < e~/2 valid for t > 1,and accordingly require t > (C”)™3n"L.

In particular, there is an absolute constant C” > 0 such that we have
/ 5. ¢
P|C'Vno(g)® = =P

a0 ) e [ G <o

where the last inequality holds in particular when n > 84* (and this condition implies what is necessary for
the second to last to hold when d > 1). Returning to our bound on f,, we note that when n > (C/C”)2d, we
have that

20" C 2C” c”
v(g) — < = +C'Vno(g) - —— < C'Vna(g)® - ,
fulg N Rl g Nev g New

from which we conclude that when our previous hypotheses on 7 are in force

1

2C
P[f\/(g) 2 Vnd

n

<e™, (E.58)

We are going to use this result to control |}}; f,(g1:) — E[f,(g1:)]| using a truncation approach. Define
M =2C"”/Vnd, where C” > 0 is the absolute constant in (E.58). We write using the triangle inequality

+ va(gli)ﬂﬁ,(g]f)sM - [E[fv(gli)ﬂfv(glz‘)SM]

i=1

<

va(gli) - E[£(811)] va(gli) = (1)1 5, (q1)<M
i=1 i=1

n

D E[ A1) guzm] — E[f(810)]

i=1

+

By (E.58) and a union bound, we have with probability at least 1 — ne~*

D" F810) = Fol 1)y g2 | = 0.

i=1

Moreover, we calculate

n

D E[A (1) guzm] — E[f(g10)]

i=1

n

< Z [E[fv(gli)]lfv(gu)>M]

i=1
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< Y P[filgi) > M|l A0l

i=1
< Ce 2

for an absolute constant C > 0, using in the second line the Schwarz inequality, and in the third line (E.55)
and (E.58). The second term can be controlled with Lemma G.3, together with the observation that

n n

2
Z [E[(]lfv(gl,-)<va(gli) - [E[]lﬂ,(gl,-)Sva(gli)]) } = Z E[17, (g fo(810)] = E[Lp (gt folgin]”

i=1 i=1
< Z [E[fv(glz')z]
i=1
< C/n,

where the last inequality is due to (E.55). Lemma G.3 thus gives for any t > 0

n
D @ gem — E[folg1)1 fguyem] | = ¢

i=1

P

t2/2
< 2exp (_Cn—l +Mt/3)'

ey
n
and therefore with probability at least 1 — 2ne™ (by a union bound) we have

< C’\/E+ C"e™2,
n

Combining with (E.57) using a union bound and worst-casing constants in the exponent, we conclude that
with probability at least 1 — C"”"ne=¢"? — C""ne~"", we have

It follows that there is an absolute constant C’ > 0 such that

P < 26“’1,

Z fv(gli)]lfv(gli)SM -E [fv(gli)]lfv(gli)SM]

i=1

va(gli) —E[f(g11)]
i-1

d ’
’El(v, £1,8)— [E[E1(v,g1,g2)]| < C\/; +Ce™ 4 C"ne ",

Aggregating our hypotheses on 7, there are absolute constants C1, Cp, C3 > 0 such that we have to satisfy
n > max{Cd, C’d*, C”}. Moreover, to be able to assert ne="¢ < ¢="%/2 we have to satisfy d > 2/c” logn.

Introducing an auxiliary d > 0 and setting d = d log 11, we have to satisfy n > max{Cd logn, C’d*log* n,C"}
and d > 2/c”. Choosing 1 in this way, we can finally conclude that with probability at least 1 — C""n~<"4/2 —
C"ne=<"", we have

dlogn 5 ,
g +C/n—cd+c//ne—c n’

|E1(V,g1,g2)—[E[El(v/gygz)” <C n

which is the desired type of bound.
o

Lemma E.40. In the notation of Lemma E.13, there are absolute constants c, C, C’, C” > 0 such that for any 6 > 3/2,
we have

is C + C'n'*°-Lipschitz | > 1 —2¢™" — C"n™°.

PH[E[El(v,gl,gz)]— E [El(%gpgz)]
&2 81/82
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Proof. Write f(v, g;) = Eg,[E1(v, g1, §,)]; it will suffice to differentiate f and [E[f] with respect to v, bound
the derivatives on an event of high probability, and apply the triangle inequality to obtain a high-probability
Lipschitz estimate for |Eg,[21(v, 81, 8,)] — Eg,.¢,[E1(v, 81, &,)1I-

Define k = \/Z/_n . For fixed (g4, ), the function

v 0(811)°p(=gii cotv)
90,81/ 82) = Z; Y(llooll2)¢(lloy ll2) sin v

is differentiable at all but at most n points of (0, v), using Lemma E.31 to see that the only obstruction to
differentiability is the function ¢ in the term ||v}||2; and there has derivative

Z o(g1i)? gfl-‘cos v _ _¥V(leilk)(ey 0y) 2
q(v, 81,8, = ky(loyll)sin®v - ¢(llo}l12)2 10} ll2 sin® v exp ( 2g1 co V)
1 V21k2y(|lvoll2) -3 ¢(||v§ﬁs)vsin4v 2k

The triangle inequality and Lemma E.31 yield

485 16Cl1oplla 12 1
3 1i v 9 )
1 (k2 sin® + e + Sty exp —@glicot v (E.59)

19'(v, 81,82 <

for C > 0 an absolute constant. We have ||7 |, < ||g 1112 + 11812 by the triangle inequality, so to obtain a
(v, g,)-integrable upper bound it suffices to remove the v dependence from the previous estimate. We argue

as follows: if 0 < v < m/4 or 3m/4 < v < 7, we have cos?v > 3, and so for any p > 3

sin? v 4k2 sin? ¢

exp |~ 555 % cot? v 2
( 2o )_ex (& ! )sin_”v. (E.60)

By Lemma E.36, where we put C = g2 /4k? and therefore have to require that g1; # 0 for all i € [1] (a set of
measure zero in R"), this yields

l9'(v, 81, 8,)1 < ClIg,ll2, (E.61)

where C > 0 is a constant depending only on n and g;. In cases where g1; = 0 for some i, we note that
the bound (E.59) is then equal to zero, which also satisfies the estimate (E.61). On the other hand, when
n/4 < v < 3m/4, thensint > 2712, and we can assert for any p > 3

exp (—zlﬁgi cot? v)

. < 2p/?,
sin? v

By the triangle inequality, this too implies

|‘7,(V/ g1/ g2)| S C’”gz”Z,
where C’ > 0 is a constant depending only on 7 and g,. Invoking then Lemma G.9, we conclude that g’
is absolutely integrable over [0, 7] X R", so that an application of Fubini’s theorem and [Coh13, Theorem
6.3.11] gives the Taylor expansion f(v, g;) = f(0,g,) + /OV Eg,[q'(t, 1, 8,)]dt. Next, we show also that q” is

absolutely integrable over [0, ] xR" xR", which implies that E[ f (v, g,)] = E[f(0, gl)]+/ov Elq'(t, g1, &,)]dt
as well. Starting from (E.59), we have

4g7. 16C(lIgill2+ lIghll) 12
Z|8 |3(k2 LU 1, 3 2 - |exp ( kzgllcotz )

SlI'l 14 sm- v sm-v

Ellg'(v, 81,81 < E

V2mk2 £

and the expectation factors over g1;, gi, gé, so we can separately compute the g7; integrals first. For the first
of the three terms on the RHS of the previous expression, we have

|gli|5 1 2 2 |g|5 1 2/ .2
_ L2 o] = - d
Ef[sin6v P\ T8 oty \/2nk2 R sin® v € 228 [sinv]dg
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e E.62
2nk2/|g| ( 2628 )dg' (62

after the change of variables ¢ — g sinv in the integral, which is valid whenever 0 < v < n. To take care
of the case where v = 0 or v = 7, we can use the estimate (E.60), valid for v sufficiently close to 0 or 7,
and the assumption g1; # 0 for all i to conclude that lim,\ o 4’(v, §;, §,) = 0 for any such fixed (g,, g,), and
by symmetry the analogous result lim, ~, q'(v, §;, §,) = 0; and whenever for some i we have g;; = 0, we
use (E.59) to see that the term in the sum involving g1; poses no problems as v N\, 0 or v /* 7 because it is
identically 0. Returning to the integral (E.62), we have after a change of variables

K° 1
2nk2/|g|5 (_ﬁ 2) dg = E/RWBXP (—Egz) dg = Ck°,

where C > 0 is an absolute constant, and where we use Lemma G.11 for the last equality. The remaining
two terms can be treated using the same argument: we get

lghP L 2 1.3
gﬂi Sln3v exp _Z_kzguCOt vl = Ck
(after using [sinv| < 1) and
et g.cmz)}ZC”P
gu | sin*v K281

for absolute constants C’, C” > 0. Combining these estimates gives

n

Elly (v, 83,80 < = Y E [lighll + ligblle],

i=1 gl’gZ

and using Lemma G.9 (or equivalently Jensen’s inequality) gives finally

’ n-—1
Ellq'(v, 81, 8,)I] < C4/ — <C.

To conclude, we need to show that Eg,[q(v, &1, &,)] is uniformly bounded by a polynomial in n with high
probability. For this we start from the estimate (E.59) and apply the argument following that, but with more
care in tracking the constants: if v is within 7t/4 of either 0 or 7, we can assert

C < Cyk . ) Csk?*
‘8,8l < = > 1 Cok(lIgil + llghll) +
19'(v, 81, 82)l < ; gl 2 (g1l + 182l |81l

whenever gi; # 0 for every i (a set of full measure); and when v is within 7/4 of /2, we can assert

mw&,m_kZ

where C;, C! > 0 are absolute constants. By the triangle inequality, independence, and Lemma G.9, when
we consider |Eg,[9'(v, §,,8,)]l, the term E[| géllz] is bounded by an absolute constant. Additionally, by

Gauss-Lipschitz concentration and Lemma G.9, we have that simultaneously for all i [|g}]l2 < [lg;ll2 < 2
with probability at least 1 —2e~¢". Moreover, since ||g; [l < ||g;]l2 we also have control of the magnitude of
each |g1;| on this event, so with probability at least 1 — 2e™“"* we have for every v

|g1 , . . ,
L+ ClgulPlgillz + lIghllz) + Chlgiil®,

_kZC1k C2k3+—+C4

[q (V/gllg2) | 11 K2

for absolute constants C, C; > 0. If X ~ N(0, 1), we have for any t > 0 that P[|X]| > ¢t] > 1 - Ct, where C >0
is an absolute constant; so if X; ~ji4 N(0,1), we have by independence and if ¢ is less than an absolute
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constant P[Vi, |X;| = t] = (1 - Ct)" = 1 — C’nt, where the last inequality uses the numerical inequality
e 2t <1—t<et validfor0<t < % From this expression, we conclude that when 0 < t < cn~Y2 for an
absolute constant ¢ > 0, we have

P[Vi € [n], |g1i]l = t] = 1—-Cn®?t,

3

so choosing in particular ¢ = en~0*2) for any 6 > 0, we conclude that P[Vi € [n], |g1;] = cn™3/%7%] >
1 - C’'n™°. Consequently, for any 6 > 0 we have with probability at least 1 — C'n~% — 2¢~"

C v C
< 4.3/2+6 3 3
<7 i; Cik*n + Cok” + 2 + Cy,

El7(v, 81,8
82

and since k = 4/2/n, this yields |[Eg2 [q'(v, 81 gz)] ’ < CinM0 4+ Cy+ C3n5/2 + C4n®/? with the same probability.
Consequently we can conclude that for any 6 > 3/2, we have

gl

[E[E1(v,g1,g2)]— E [81(v,g1,g2)]
2 81/8

1782

is C + C'n'™-Lipschitz | > 1—2¢™" - C"n™°,

O

Lemma E.41. In the notation of Lemma E.13, if d > 1, there are absolute constants c,c¢’C, C" > 0 and an absolute
constant K > 0 such that if n > K, there is an event with probability at least 1 — Ce™" on which

Vv € [0, 7],

Ea(v, 81, 85) — E[Ea(v, g1, 8)]| < Ce™ ™.

Proof. Let & denote the event & 5, in Lemma E.16; then by that lemma, & has probability at least 1 — Ce ™"
aslongasn > C’, where c,C,C’ > 0 are absolute constants, and for (g, g,) € &, one has forall v € [0, 7t]

E‘2(1//g1/g2) =0.
This allows us to calculate, for each v,
E[E2(v, 81, 8,)] = E[LgEa(v, g1, 85)] < E[Lge] || Ex(v, -)llp2 < C'e™",

after applying Lemma E.37 and Lyapunov’s inequality and worst-casing constants. We conclude that with
probability at least 1 — Ce™"

Vv e [0, 7],

Ea2(v, 81, gz) - E[Ea(v, 81/ gz)]l <Clem.
O

Lemma E.42. In the notation of Lemma E.13, if d > 1, there are absolute constants c,c¢’C,C’ > 0 and an absolute
constant K > 0 such that if n > K, there is an event with probability at least 1 — Ce™" on which

Vv € [0, 7],

B3(v, 81, 8,) — E[E5(v, g1, 81| < Ce™ ™.

Proof. The argument is identical to Lemma E.41. Let & denote the event &g 59 in Lemma E.16; then by that
lemma, & has probability at least 1 — Ce™*" as long as n > C’, where ¢, C, C’ > 0 are absolute constants, and
for (g,,8,) € & onehas forall v € [0, ]

33(1// 31/ 32) = 0
This allows us to calculate, for each v,
E[E3(v, 81, 85)] = E[1e<Es(v, 81, 8,)] < E[lege]?[|Z5(v, -)llp2 < C'e™™,

after applying Lemma E.37 and Lyapunov’s inequality and worst-casing constants. We conclude that with
probability at least 1 — Ce™"

—c'n

Vv € [0, 7],

Es(v, 81, 8,) ~ E[Es(v, 81,81 < Cle
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Lemma E.43. In the notation of Lemma E.13, if d > 1, there are absolute constants ¢, C,C’,C” > 0 and absolute
constants K, K’ > 0 such that ifn > Kdlogn and d > K’, there is an event with probability at least 1 — Ce=" —C'n %
on which one has

dlogn

Vv e [Or T(]/ |E4(Vr 31/ gz) - [E[E4(V/ g]r gz)]| < C” n .

Proof. We are going to control the expectation first, showing that it is small; then prove that |E4| is small
uniformly in v. Let & denote the event &5 in Lemma E.16; then by that lemma, & has probability at least
1-Ce " aslongasn > C’, where c,C,C’ > 0 are absolute constants, and for (g,, g,) € &, one has for all
v e [0, 7]

(vo, Dy){(vy,Dy)

54(1// glr g2) =-2
looll2llov 113

Thus, if we write
<UO/ Z‘71/><FUV/ vv>

E4(1//3.1/<g2): _2]18(g]/g2) 3
llvoll2llovll;

7

we have B4 = E, for all v whenever (g, g,) € &, so that for any v

|E[E4(v1g1/82)]| = ‘[E[Efl(vlgl/gz)] + [EI:]ISC‘E‘I(V/gl/gZ)]‘
< |E[Ea(v, 81, 8))I| + Ce™",

where the second line uses the triangle inequality and the Schwarz inequality and Lemma E.37 together with

the Lyapunov inequality. We proceed with analyzing the expectation of ch Using the Schwarz inequality
gives

1/2
1g }

= . . 1/2
[E[Eav, 21, 82)]| < 2E (00,0220, 8)7] B | —E—
ool o, IS

. . 1/2
< 32[E[<vo,vv>2<vw Uv>2] / ’

and the checks at and around (E.33) and (E.34) in the proof of Lemma E.15 show that we can apply
Lemma E.30 to obtain

E [<UO/ v,)%(vy, i’v>2]
g [E[o(gu)é(gu cos v + 21 sinv)(go1 cos v — g11 sinv)]2 < C/n.
*[E [o(gu cosV + g21 sinv)(g21 cos v — g11 sin 1/)]2

But we have using rotational invariance that E[c(g11 cos v+ 21 sin v)(g21 cos v —g11 sinv)] = 0, which implies
|E[(@o, )% (wy, 94)?]| < C/n,

from which we conclude
|[E[E4(v,g1,g2)]| < C/vn.

Next, we control the deviations of 24 with high probability. By Lemma E.17, there is an event &, with
probability at least 1 — e™*" on which ||9,|[2 < 4 for every v € [0, t]. Therefore on the event &, = EN E,,
which has probability at least 1 — Ce™*" by a union bound, we have using Cauchy-Schwarz that for every v

|E4(V/ 81 gz)l < 256|(vy, v )|.
The coordinates of the random vector v, © ¥, are o(g1; cos v + go; sinv)(g2; cos v — g1, sinv), and we note

E[o(g1i cosv + g2 sinv)(goi cos v — g1 sinv)] = —E[0(g1i)g2i] = 0,
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by rotational invariance. Moreover, the calculation (E.34) together with Lemmas G.11 and E.17 demonstrates
subexponential moment growth with rate C/n, so Lemma G.2 implies for t > 0

P[(Uv,i]v> > t] < Zefcntmin{c’t,l}.

For large enough n, this gives

dlogn

P <2on~,

? >
<vV/ UV> = C n

We turn to the uniformization of this pointwise bound. The map v — }}; 0(g1; cos v + g; sinv)(g2;i cosv —
g1 sinv) is continuous, and differentiable at all but finitely many points of [0, 7] (following the zero crossings
argument in the proof of Lemma E.22) with derivative

Vi Z 5(g1; coS v + go; sinv)(ga; cos v — g1; sinv)? — 6(g1; cos v + go; sinv)?,
i

which is evidently integrable using the triangle inequality and Lemma G.11. In particular, we can write the
derivative as ||izv||§ - ||v0||§. Thus, by [Coh13, Theorem 6.3.11], to get a Lipschitz estimate on v — (v,, 0,
it suffices to bound the magnitude of the derivative v ||i)v||§ - ||vol|§. But this is immediate, since on
the event &, we have |||0, ||§ - ||vol|§| < 20. It thus follows from Lemma E.48 that with probability at least
1—Ce " — C’'n~2+1/2 we have

dlogn

Ve [0,m), (0, ,) < C' 2= (E.63)

Aslong as d > 1, we have that this probability is at least 1 — Ce™" — C’n~?, and so the triangle inequality
and a union bound yield finally that with probability at least 1 — Ce™" — C'n™*

dlogn

Vv e [0,m], [E4(v, g1, 8,) — E[Ea(v, 81, 8)]l < C” .

O
Lemma E.44. In the notation of Lemma E.13, if d > 1, there are absolute constants c¢,c’,¢”,C,C’,C"”,C"”,C"" >0

and an absolute constant K > 0 such that if n > Kd log n, there is an event with probability at least 1 — Ce=" + C’e™
on which one has

— - ” d m —c’ mr —c”
|E5(v, 81, 82) —ElEs(v, 81,811 < C \/;+C e Ce e,

Proof. Fix v € [0, t]. Let & denote the event &5 in Lemma E.16; then by that lemma, & has probability at
least 1 — Ce™“" aslong as n > C’, where ¢, C,C’ > 0 are absolute constants, and for (g;, g,) € &, one has for
allv € [0, ]
_ (00, v:) 19413
Es5(v,81,82) = BT
llwoll2llovll3
Thus, if we write

= (vo, vv>”vv”§

Es5(v, 81,82 = ~1e(81,8) —————3

llvoll2llovll3

we have 25 = & for any v whenever (g, §,) € &, so that by the triangle inequality, for any v

|E5(v,gl,g2) - [E[E5(v,g1,g2)]| < ’55(‘/1 81,82 — [E[ES(V/ g1rgz)]| + |[E[E5(v,g1,g2)] - E[§5(V,g1,g2)H

< ’55(% 81/8)— [E[ES(% 31182)” + [E[]lac Es(v, 81, 82) — 55(V,g1,g2)”

cn

S ‘ES(VI 31/ g2) - E[ES(V/ g1/ gz)” + Ce_ 7
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where the second line uses the triangle inequality, and the third line uses the Schwarz inequality and
Lemma E.37 together with the Lyapunov inequality.

So, we can proceed analyzing Es. First, we aim to apply Lemma E.33 with the choices

o112
X = -1g (vo,vy) Y =1 o115
lo0ll2llol2” lov 13’

since XY = E5(1/, -, +); square-integrability of X and Y is evident from the definition of 1g, and we have
|X| < 1 by Cauchy-Schwarz. To control Y, we start by noting

1Y =1l < 1+ Y]l < 1+4E[|o,[14]* < 1+4VI+C,

where C > 0 is an absolute constant; the first inequality is the Minkowski inequality, the second uses the
property of & and drops the indicator by nonnegativity, and the third applies Lemma E.29, and discards the
n~! factor. For deviations, we start by noting that E[||v,, ||§] =1, and that by Lemmas G.2 and G.11, we have

|]3’[|||7;V||§ — 1| > t] < De—cntmin{Ct1}

It follows that there exists an absolute constant C’ > 0 such that, putting t = C’4/d/n and choosing

n > (C’/C)*d, we have
d
N 2_1 > L L
sl -1 = 'y

Moreover, by Lemma E.17, we can run a similar argument on ||9,, ||§ to get that if # is larger than a constant

multiple of d
d
0y 2_1 > \/j
13,13 =1] > C/ %

Next, Taylor expansion with Lagrange remainder of the smooth function x + x~! on the domain x > 0
about the point 1 gives

P <2¢7, (E.64)

P <2¢79. (E.65)

1 1
—=1-(x-1+ g(x -1)?, (E.66)

where & lies between 1 and x. If (g,, g,) € &, then ||v,]|$ > (1/64), and we can therefore assert

1-(loy|2 - 1) < <1-(floy2 = 1) + 64 (ou ]2 - 1)

" loli3

with probability at least 1 — Ce™". Using a union bound together with (E.64) (and changing the constant to
C), we have with probability at least 1 — 24 — C’e™¢" that

—C\/E—64C2£§l— ! 5<C 4
n n oVl n

Given that n > d, it follows that with the same probability we have

—C(1+64C)\/g§1— 1 o2

loul3 =V

which implies that with probability at least 1 — 2¢~% — C’e~", we have

d

> e

‘ 1

oy 113
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Now, the triangle inequality gives

||m||§_1< o3 1 1
oy 12 vl lloul2| |llwull?
< o115 - 1| + -
[EATE: (AT

When (g, §,) € &, we have ||v1,||2 > 4, so, by a union bound, with probability at least 1 — 4e=4 — C’e™" we

have
Y
v d
LS B
va“z n
and since o2
(81,80 €6 = Y=y,

another union bound and the measure bound on & let us conclude that with probability at least 1 — 4e~ —

C’e™", we have
Y —-1| < 4Cw/g.
n

If we choose n > (1/c)(d + log C’/4), we have 47 4+ C’e™" < 87, so the previous bound occurs with
probability at least 1 — 8¢~%. We can now apply Lemma E.33 to get with probability at least 1 — 8¢

H5—[E[u5]| < Ov >—[E[]18<&, v >”+C\/E+C’e_d/2.
llwollo” llovll, llvolla” llovll, n

Next, we attempt to apply Lemma E.33 again, this time to X = 1g{vg, v,) and Y = 1g(||vo|l2]|vv]l2)~*. Using
the definition of &, we have |X| < 4 and ||Y — 1|2 < [|Y]|;2 + 1 < 5, where the second bound also leverages
the Minkowski inequality; so we need only establish deviations of Y. Applying again (E.66), and using
(81, 8>) € & implies |lvoll2llvy 2 > , we get

(lwollzllovll = 1) = 64 ([[voll2llov ]l = 1)* < 1 - < (llooll2llovll2 = 1) (E.67)

1
llvoll2llovll2

with probability at least 1 — Ce™". Using Lemma G.11 and [Ver18, Theorem 3.1.1], we can assert for any
vel[0,m]andany t >0
Plllloyll2 = 1| = t] < 2e7"

which implies that there exists an absolute constant C > 0 such that for any d > 0

d
Pllllovllz =11 > Cq/—
n

In particular, when n > d, we can assert that ||v, ||» < 1+ C with probability at least 1 —2e . By the triangle
inequality and a union bound, it follows

<2e74,

llwollzllovll2 = 1] < [lwoll2lllovllz = 1] + [looll2 — 1

/!
n

with probability at least 1 — 6e . Then a union bound gives that with probability at least 1 — 6™ — C’e ™"

(E.67) leads to
—C\/E 1+64CﬂE Sl—;ﬁcﬂér
n n llvoll2llwyll2 n
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and using n > d and worst-casing constants implies that with the same probability

el
n

Then since (g, 8,) € & = Y = (Ilvoll2llvw|l2)~t, another union bound gives that with probability at
least 1 — 6% — C’e™" we have |Y — 1| < C+/d/n. As in the previous step of the reduction, we can choose
n > (1/c)(d +1log C’/6) to get that 6e~% +C’e~" < 12¢7, 50 that the previous bound occurs with probability
at least 1 — 12¢™. We can thus apply Lemma E.33, a union bound, and our previous work to get that with
probability at least 1 — 20e ™

‘ 1
llvoll2llvy |2

%5 — E[3s]| < 11s (20, 02) - ElLe(wo, 011 + c\/g + e,

Whenever (g, §,) € & we have by the triangle inequality, the Schwarz inequality, and Lemmas E.16 and E.29
that

[Le(wo, vy) = E[lg(vo, v,)]| < [{vo, vv) — E[{vo, ) ]| + [E[(v0, v1)] = E[1&(vo, v)]|
< [{wo, vv) — E[{vo, v,)]I + Ce™",

allowing us to drop the indicator. We have (vg,v,) = 3; 0(g1:)0(g1i cos v + g2; sinv), which is a sum of
independent random variables; following the argument at and around (E.35), we conclude moreover that
these random variables are subexponential with rate C /n, where C > 01is an absolute constant. We therefore
obtain from Lemma G.2 the tail bound

P[|{vo, v,) — E[{vo,v,)]| = t] < 2pcntmin{Ct,1}

which, for a suitable choice of absolute constant C’ > 0 and choosing n > C’d, yields the deviations bounds

<2e74,

P|l{vo, v} — E[{vo, v,)]| = C\/g

Taking a final union bound (since we assumed throughout that (g, g,) € &) gives that with probability at
least 1 — Ce™" + C’e™, one has

— — ” d m —c’ m —c”
|E5(v, 81, 8,) —E[Es(v, 81,811 < C \/;+C e e,

which is sufficient to conclude pointwise concentration as claimed for sufficiently large n after we put
d = d’logn and include extra log n factors in any points where we need to choose n larger than 4. O

Lemma E.45. In the notation of Lemma E.13, there are absolute constants ¢, C,C’,C”,C"" > 0 such that for any
o> %, one has

P is C + C'n'"Lipschitz | > 1~ C"e™" = C""n™°

[E[E5(V,g1/gz)]— E [55(v,g1,g2)]
% 81,8

1782
aslong as 6 > 3.
Proof. We will differentiate with respect to v the function

(vo, v) 11041159 (lvy 2)

P(llvoll2)¢ (lovll2)*llvy]l2

flv,.g))=-E
82

4

and construct an event on which f” has size poly(n). We need to also differentiate the function E[f(-, g,)];
for this we will additionally show that f’(v, -) is absolutely integrable over the product [0, ] X R" x R”,
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which allows us to apply Fubini’s theorem to move both the g, and g, expectations under the v integral
in the first-order Taylor expansion we obtain. In particular, the derivative of E[f( -, g,)] will in this way be
shown to be E[f’(-, g;)], so that linearity and the triangle inequality imply a poly(n) magnitude bound for
the derivative of Eg,[Z5] — E[Z5].

Define
(w0, v )Y (lvvl2)(g2i cos v — g1y sinv)?

P(lwoll)Y(llvvll2)*llov 2 '

qi(v, 81, 8,) =
so that, for almost all g,

n

fv,g)=- ;E[q,»(v,gl,gz)d(gli cosV + g sin v)]
.:1 2

1
For each fixed (g, §,) and each i, the only obstructions to differentiability of q; in v arise from the function o
(using smoothness of i from Lemma E.31 and the fact that it is constant whenever ||v, || is small enough that
nondifferentiability of || - || could pose a problem); following the zero-crossings argument of Lemma E.22,
q; fails to be differentiable at no more than n points of [0, 7], and otherwise has derivative

q7i(v, 81, 82) =
1 (00, 0,V ([l0y]12)(2i cos v — grisinv)? (0o, 0y )(vy, Dy )P ([0 [|2)(g2i cOs v — g1 sinv)?
Y(llwoll2) (v 12210, ]2 Y(lloyll2)? o 113

_ (00, v)Y’ ([0 ]12)(g2i cos v — g1; sinv)(g1i cos v + g2; sin v)
Y(llovll2)?lov 2
3 217["(||Uv||2)2<77v,f7v><770, 0y) (821 cosv = guisinv)* P’ (llvyll2){vy, &) (w0, vv)(g2i cos v = g1 sinv)?

V(lloyl12)3llv 113 Yoyl o3

(E.68)

by the chain rule and the product rule. To conclude absolute continuity of 4;( -, g,, §,), we need to show that
q; is integrable; this follows from Cauchy-Schwarz, the integrability of ||voll2, [|vv]l2, [|[9v]]2 (Lemma E.17),
the triangle inequality, and the Lemma E.31 estimates ¢ > 1, [¢’| < C, [¢”| < C’, and [¢/(x)/x| < C” for
any x € R (to see this last estimate, note that [¢’| is bounded on R, and use that ¢’ is constant whenever
x < %). Then [Coh13, Theorem 6.3.11] implies that g;( -, §,, §,) is absolutely continuous with a.e. derivative
q;- Next, we can write

fv,g1) = —Z E [[E [qi(v,gl,gz)c'f(glicosv + Qo s'mv)] ,

07 S2jif#i L8

using Lemma E.37 to see that Fubini’s theorem can be applied. Our aim is now to apply Lemma E.27,
so we need to check its remaining hypotheses. First, continuity of q;(v, -) follows from continuity of o,
smoothness of ¢, and the fact that the denominator never vanishes. Joint absolute integrability of g; and
q; follows from our verification of absolute integrability of q; above, which produces a final upper bound
that does not depend on v (which is therefore integrable over [0, 7] as well); the corresponding result for g;
follows from Lemma E.37. Last, we need the growth estimate. We have from Lemma E.31

19:(v, g1, 82)| < 32C(g2i cosv — g1;sinv)? < 32C(|g2i] + [g1:1)* < 32C|gui|(1 + [g2:1)?,

which is evidently quadratic in | g»;| once |g2;| > 1. Consequently we can apply Lemma E.27 to differentiate
f(-,g,); we getat almost all g,

io1 \82: #1182 82jj#i -5119i(t, g1, 85)p(—g1i cott) sin™2 ¢

f(Vr81):_Z( E [[E[qi(O,gl,gz)c'f(gu)] + E [/Ovdt( [EXZi[q;(t,gl’g2)d(gliCOSt+gZiSint)] )}),
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where §12 is the vector g, but with its i-th coordinate replaced by —gi;cott, and where p is the pdf of

a N(0,2/n) random variable. The changes in g5 drive updates to the terms in g; as follows: we have
0(g1i cos v + g2; sinv) becoming 0, and g»; cos v — g1; sin v becoming —g1;/sin v. Thus, we have

(@b oy (Iofll2)p(=gi cot £)
Y(llooll)y (ot 1) N0 |2 sin* ¢

~81iqi(t, §1,85)p(~gi cott) sin™2 ¢ =

i
t
similarly (the R"~! vector which is the projection of v( onto all but the i-th coordinates). Using Lemma E.31,

we can further assert

where the notation ¢! is in use in the Eq control section and is defined in Lemma E.26, and vé is defined here

|g1i1>p(—g1i cot t)

sin® ¢

gliqi(t,gl,gé)p(—gl,- cott)sin~? t| <16C (E.69)

where we use that [[o}ll2 < [lvoll2. For each fixed g; having no coordinates equal to zero, we write
Ki=|g1:| > 0;if0 < t < /4 or3n/4 < t < 71, we have cos® t > %,and SO

—gq; cott K*n q
—p( 81 )< lsin_4texp ! )

sin* t “ Vi4n

p(=g1icott) - [n [ 16
sinft T V4m|Kn
On the other hand, when 7t/4 < t < 37/4, then sint > 271/2, and we can assert

w S 81}71/7-(‘

sin® ¢

8 sin?t

Using Lemma E.36, we have
2

We conclude for any ¢

|g1iqi(t,g1,§£)p(—g1i cott)sin~? t’ < C/(Kl-n3/2) + C’\/EK? (E.70)

for absolute constants C, C" > 0, and this upper bound is integrable jointly over t and g,. We have checked
previously the joint integrability of the g; terms when applying Lemma E.27, so we can therefore apply
Fubini’s theorem to get g;-a.s.

v _n ’ . .
~ / Z [E[ qi(t,gl,gz)i(glicost + goisint) } dt.
0 -814i(t, 81, 85)p(—gui cot t) sin~ ¢

fv,g)) = _gz lz q:(0, 81, 82)9(811)
21i=1

i—1 82

Consequently, to conclude a Lipschitz estimate for f(-, g;) it suffices to control the quantity under the ¢
integral in the previous expression. We will start by controlling the second term using Markov’s inequality.
Following (E.69), we calculate

1 8% cos? t )

3
|g1il eXP( i

sin*t

~i . n
§1:9i(t, 81, 85)p(—g1i cot t) sin Zt” < SCN/;QE
1

e |
81/82

3 2
_4Cn [ 18l ex(ng )dg

. Jg sin®t 4 gin? ¢

= 4(:—n/R|z>?|:“e><19 (-58%) s,

Tt
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where the last line follows from the change of variables ¢ — g¢sint in the integral. We can evaluate this
integral with Lemma G.11, which gives a bound

A
818

1782

128C

$1i9:(t, gl,gz)p( Qi Cott)sm_zt”

and therefore a bound of C’ > 0 an absolute constant on the sum over i. As a byproduct of this estimate, we
can assert that the second term is jointly integrable over [0, ] x R" x R", which allows us to apply Fubini’s
theorem and obtain the same differentiation result for E[f(-, g;)]. Meanwhile, beginning from (E.70), we
can write using the triangle inequality

n

St

By Gauss-Lipschitz concentration and Lemma G.9, we have that ||g,[[> < ||g;[l2 < 2 with probability at least
1-2¢7", and since ||g;[l < ||g;l2, we conclude with the same probability that |g1;| < 2 simultaneously
for all i. Meanwhile, if X ~ N(0,1), we have for any f > 0 that P[|X| > f] > 1 — Ct, where C > 0 is
an absolute constant; so if X; ~jjq. N(0,1), we have by independence and if ¢ is less than an absolute
constant P[Vi, |X;| = ] > (1-C t)” 1 — C’nt, where the last inequality uses the numerical inequality

e <1-t<et, valid for 0 < t < . From this expression, we conclude that when 0 < t < cn™/2 for an
absolute constant ¢ > 0, we have

+C’ \/_|g11 |3

E Z 19i(t, §1,83)p(~g1i cot t) sin ™ t}

2Li=1 |n3/2

|81

P[Vi € [n], |g1:] = t] = 1-Cn®?t,

so choosing in particular t = cn (b+2) for any 6 > 0, we conclude that P[Vi € [n], |g1i| > ecn™/?7°] >

1 - C’'n™°. Then with probability at least 1 — C’n~% — 2¢™", we have

< Cnl+(§ + C/n3/2,

n
E Z $1i4i(t, §1, §5)p(—g1i cot t) sin~> ¢
2l i=1

so as long as 6 > 3, we have

n

E Z 19i(t, 81, 8>)p(—g1i cot t) sin > ¢

2li=1

P > Cn'™| < C'n0% +2¢7°",

Proceeding now to the g} term, from the expression (E.68) we get

Z q;(vr 81/ gz)é(gli cosV + go;isinv)

i=1

_ 1 (<vo,z>v>¢'(||vv||2>||m||§+<vo,vv><vv,m>¢"(||vv||z)||z>v||§

P(looll2) | v(llovll2Pllovlz (llovll2P o3

@0, oY oul) By, 0 Y lovlR) (v, 9u) (R0, 00) 10y 5
(llovll2Plo 2 Yllovll2Pllov 13

_¢'<||vv||z><vv,m><vo,vv>||z>v||§)

(E.71)

V(llovll2 o 13

Using the triangle inequality, Cauchy-Schwarz, and Lemma E.31, we obtain

(vo, 00)Y (Iloy 12)119v113 <vo,vv>(vv,m>¢”(|lvv|lz)llf>v||§

< Clla.g,
Pl lendz *  plodpiolPlodg =
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(using also the fact that ¢’(x) = 0 and 1" (x) = 0 whenever x is sufficiently near to 0); and

(00, 2P (ll0y[12)(0v, vv)
P(llovll2)llovll2
+¢’(I|vvllz)2<vw 0,)(v0, v) 119,113
Yoyl o3
V' (Ilovll2){y, D) (w0, v1) 19413

Yol o3

< Cliowlla + C'lloy 13,

from which we conclude

< Cllowll2 + N9y 113

n
Z q;(v, &1, 8,)6(g1i cos v + gz; sinv)
i=1

for some absolute constants C, C’ > 0. By Lemma E.17, there is an event & of probability at least 1 — Ce™"
on which we have ||9,]2 < 4 for every v. Moreover, we have from the triangle inequality that ||?,]|2 <
llg1ll2 + llg,ll2, which is independent of v; and in particular we have

2
n

, . . , 2
D4V, 81, 82)6(g1 cosv + gaisinv)| < (C(llgylla + lIg,ll2) + C'(lIgs 1l + l1g5112))

i=1

which is a polynomial in ||g,||> and |/g,||> by the binomial theorem. Thus, applying independence,
Lemma G.10, Lemma G.11 yields that there is an absolute constant C” > 0 such that

’ 2 ”
E [(Cllgillo+ ligall) + Cllgala + g, 120°) | < €.
81/82

Therefore, as in the framework section of the proof of Lemma E.13, we can use the inequality

n
Z q;(v, 81, 8,)6(g1i cOSV + g2; sinv)
i=1

n
E [Z q:(v, 81, 8,)6(81i cos v + g sin v)} <E ], (E.72)
&3 82

together with the partition

Z q:(v, 81, 8,)6(g1i cosv + g sinv)||, (E.73)

i=1

E
&2

n
Z 9;(v, 81, 8,)6(g1i cos v + gz sinv)|[ < C’ +;E Ligne
i=1 2

and this last expression can be used to obtain a g; event of not much smaller probability 1 — Ce™" on
which the LHS of (E.73), and hence the LHS of (E.72), is controlled by an absolute constant uniformly

in v (in particular, using Markov’s inequality as in the framework section of the proof of Lemma E.13).
Consequently, one more application of the triangle inequality gives that

is C + C’'n'™-Lipschitz | > 1~ C"e™" - C"”"n™°

PH[E[ES(v,glfgz)] - E [85(v,81,8))]
&2 81/82

1
aslongas 6 > 5. ]

Lemma E.46. In the notation of Lemma E.13, if d > 1, there are absolute constants ¢, C,C’,C” > 0 and absolute
constants K, K’ > 0 such that ifn > Kdlogn and d > K’, there is an event with probability at least 1 — Ce™" —C'n %

on which one has
, [dlogn
W € [0,7], 126(v, 81, 82) ~ EIZ6(v, g1, £l < €/ 2.
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Proof. The argument is extremely similar to Lemma E.43, since both terms have small expectations and
deviations essentially determinable by the same mean-zero random variable.

We are going to control the expectation first, showing that it is small; then prove that |Z¢| is small
uniformly in v. Let & denote the event &5 in Lemma E.16; then by that lemma, & has probability at least
1-Ce“"aslongasn > C’, where c,C,C" > 0 are absolute constants, and for (g,, g,) € &, one has for all
v € [0, n]

(vo, vy)(vy, i7v>2

looll2llvy I3

Eo(v,81,82) =3

Thus, if we write
<770r vv><vw 7.}1/)2

looll2llvy I3

Eo(v, 81, 8,) = 315(81, 82

we have Z¢ = & for all v whenever ( 81, 8») € &, s0 that for any v

E[26(v, 81, £2)]] = [EIEe(v, 81, 821+ E[1e:Ee(v, 21, 8,
< [E[E6(v, g1, 821 + Ce™",

where the second line uses the triangle inequality and the Schwarz inequality and Lemma E.37 together with
the Lyapunov inequality. We proceed with analyzing the expectation of Z¢. Using the Schwarz inequality
gives

1/2
1g
llooll3lloy 15

.[E[Edv, 81 g2)” < 3[E[<770r vv>2<vw i’v>4]l/2ﬂ£l
< 192E [(vg, 0.)%(0y, 91)*] 7,

and the checks at and around (E.35) in the proof of Lemma E.15 show that we can apply Lemma E.30 to
obtain

E [<UOr vv>2<vw i’v>4]

- n6[E[o(g11)o(g11 cosV + go1 sin v)]z[E[a(gu CosV + g21 sinv)(g21 cos v — g11 sin v)]4 < C/n.

But we have using rotational invariance that E[0(g11 cos v+ g21 sin v)(g21 cos v — g11 sin v)] = 0, which implies
|E[(@o, v)*(wy, 0)*]| < C/n,

from which we conclude for all v
[E[E6(v, 81, 8)]| < C/Vn.

Next, we control the deviations of Z¢ with high probability. By Lemma E.17, there is an event &, with
probability at least 1 — e™*" on which ||9,|[2 < 4 for every v € [0, t]. Therefore on the event &, = EN E,,
which has probability at least 1 — Ce™*" by a union bound, we have using Cauchy-Schwarz that for every v

|Z6(v, g1, 85)| < 61440, D).

Using the high probability deviations bound established in (E.63), it follows that if 7 is large enough then
with probability at least 1 — Ce™" — C’n~2**1/2 we have

dlogn
Vv e [0, 7], [26(v, 81, 8,)l < c'a/Tg.
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Aslong as d > 1, we have that this probability is at least 1 — Ce™" — C’n?, and so the triangle inequality
yields finally that with probability at least 1 — Ce™" — C'n~¢

dlogn

VV € [0/ T(]/ |E‘6(V/ gll gZ) - [E[E6(V/ g]/ g2)]| S C” n .

Lemma E.47. Consider the function
g(v) = —(7® = [(m = v) cos v + sinv]?)[(1 — v) cos v — sinv] + (1 — v)?[(t — v) cos v + sin v] sin’ v,

which is the negated numerator of $. Then if 0 < v < /2, one has a bound

and the lower bound is positive if 0 < v < 17t/2.

Proof. To see that the lower bound is positive under the stated condition, write

2?2 5 83 , ,(2n* 83
— V- =V = — - =V,
3 24 3 24 )

the quantity in parentheses is positive in a neighborhood of zero by continuity, and in fact one calculates
for its unique zero vy = 487> /249, and one verifies numerically that 4871%2/249 > 1.9 > 11/2. We conclude
that the bound is positive for 0 < v < 1.9 by continuity.
To establish the bound, we employ Taylor expansion of the numerator, which is a smooth function on
(0, ) with continuous derivatives of all orders on [0, 7], in a neighborhood of zero. In our development
in the proof of Lemma E.5, we showed that the analytic function —g(v) = —(2r2/3)v® + O(v*) near zero, so
Taylor’s theorem with Lagrange remainder implies
21

4
v

+— inf ¢¥) <),

3 v 24 ve[l()r:ln/2]g ) < gv)

and so it suffices to get suitable bounds on the fourth derivative of g. We will develop the bounds rather
tediously. Start by distributing in g to write

g(v) =13 (= cosv) + v (3 cos v + sinv) +v (cos v — 2t cos v — 2 sin v — cos® v)
———

g3(v) £2(v) s1(v)

3

+ (mcos® v +2m?sinv —sin’ v — mcos v) .

go(v)
Using the Leibniz rule, we have for the fourth derivative
g9) = (g5)) + 2 (&) + 1280 () + v (51 ) + 885 () + 3681 ()
+ (g(()4)(v) + 4g§3)(v) + 12g§2)(v) + 24g§1)(v)) .

To calculate these derivatives, we just need to differentiate sin, cos, and their third powers. Write c(v) =
cos®>(v) and s(v) = sin®(v); using the elementary calculations

D) =3s(v)=3sinv, P@)=6cosv-9c(v), c®)=21sinv-27s5(v), c®(¥)=60cosv+8lc(v);

sWw)=3cosv -3c(v), c®P)=6sinv-9s(v), c®Ww)=27c(v)-21cosv, cP)=60sinv+81s(v),
(E.74)
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one can calculate the results

g§4)(v) = —cosv, gf)(v) =3mcosv +sinv, gi‘l)(v) = (61 —2n%)cosv —2msinv — 81 cos’ v,

ggl)(v) = (2n? — 60) sinv + 507 cos v + 817 cos® v — 81 sin’ v;

and
gés)(V) = —sinv, 853)(1/) =3msiny —cosv, gf’)(v) = (7 —2n?)sinv + 2m cos v — 27 cos* vsin v;
and
8;,2)(1/) = CosV g;z)(v) = =37 cosv — sinv;
and finally

gél)(v) =sinv.
Plugging back into (E.74) and canceling, we get
g(4)(v) =13 (—cosv) +v? (Brcosv — 11sinv) +v (22 sinv + (89 — 27%) cos v — 81 cos® v)

N———
h3(v) ha(v) i (v)

+(27 sin’® v + 8171 cos® v + 317 cos v — (67> + 128) sin v).

ho(v)

Sincev > 0, we can leverage lower bounds on each ; term. We have trivially | i3] < 1,sothat [v3hs(v)| < 73/8.
We will study vhi(v) + ho(v) together to get a better bound. We have

vhii(v) + ho(v) = (22mv — (672 + 128)) sinv + 27 sin® v + ((89 — 27%)v + 317) cos v + (817 — 81v) cos’ v
> (227tv — (67% + 128)) sinv + 27sin’ v + ((89 — 27?)v + 317) cos v,

q(v)
(E.75)

using v < t/2 and cos > 0 on this domain. We will show that the RHS of the final inequality, denoted ¢, is a
decreasing function of v, and is therefore lower bounded by its value at v = /2 on our interval of interest.
We calculate

q'(v) =9msinv + (42 — 8m?) cos v + 22mv cos v — (89 — 2r%)v sinv — 81 cos® v.

Reordering terms, we can write

q’(v) = -8lcos>v+| 9m —(89-2r%)v|sinv — [ (8% —42) - 227 v [cosv. (E.76)
—— ——
G Cy Cs Cy

We can estimate numerically
69<Cr<70; 69<Cy<70; Cy>Cy,

which shows that Cq, C, C3, C4 > 0 and both of the linear prefactors are decreasing functions of v. We have
on all of (0, /2) by concavity of sin

2
(C1—=Cv)sinv < v (C1 - %v) ,
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using in particular sinv < v and sinv > (2/n)v. Using similarly concavity of cos on this domain, in
particular the inequalities cosv < /2 — v and cosv > 1 — (2/m)v, we have

—(C3—=Cyqv)cosv < — (C41/2 - (2?(:3 + %) v+ C3) .

In total, we have a bound

265 , 7

q'(v) < —81cos®v — (2—C2+C4) v+ ( +C1)V—C3.
i s 2

We calculate the maximizer of the concave quadratic function of v in the previous bound via differentiation;
plugging in, we get

2
2C3 nCy

g'(v) < =81 cos® v + - Cs.

2Cy
4 (7 + C4)
A numerical estimate gives

2
2C. C C
( n3 ﬂ24 1)
- C3 <20,

4(% +C4)

and using that —cos® is strictly decreasing for v < 7, we can therefore guarantee ' < 0 as long as

v < cos™! 4/20/81. Writing ¢ = cos! 4/20/81, we estimate numerically 0.90 > ¢ > 0.89, so that this bound is
nonvacuous. For v > ¢, we apply again concavity of cos to develop the lower bound

T
cosvz( /

7I/z_c)cosc, v € [c,m/2].

Using this to estimate the — cos® term in our upper bound for q’, we obtain a bound

3
q’(v)S—ZO(n/Z_V) —(&+C4)v2+(&+n—c4+C1)v—C3, c<v<m/2
/2 —c T T 2

We define D = 20/(n/2 - )3, A =2Cy/m + C4, B = 2C3/m + 1C4/2 + C1, and C = Cz, so that the RHS can be

written as —D(n/2 — v)® — Av? + Bv - C. Differentiating once and equating to zero results in the quadratic
equation

3D vz—(%+n)v+(£+n2/4) =0,

3D 3D
S—— N—
M N

which has roots M/2 + 1VM?2 — 4N. Numerically estimating the constants, we get that the two roots lie in
[0.99,1] and [3.3, 3.4], so that we need only consider the smaller root. Differentiating once more to determine

the class of the critical point, we find for the second derivative at M /2 — % VM?2 — 4N

-3DVM? - 4N <0,

so that M/2 — 2VM?2 — 4N is a maximizer for our cubic bound, and the bound is increasing for arguments
less than this point and decreasing for arguments greater than it; we can conclude that the zero in [3.3, 3.4]

is a minimizer, so that our bound can be ascertained negative by checking its value at M /2 — VM2 — 4N.

233



We find using a numerical estimate

0 (n/Z — (M/2 - M2 —41\1))3

m/2—c
- (2%2 + C4) (M/2 - 1VM?2 - 4N)?

+(&+NTC4+C1)(M/2—%“M2_4N)_C3S_1'7<0’

which proves that 4° < 0 on [c, /2]. This shows that our lower bound on vhi(v) + ho(v) in (E.75) is
nonincreasing on [0, /2], so that we can assert
vii(v) + ho(v) > (22r(n/2) — (6m* + 128)) sin(m/2) + 27 sin®(1t/2) + ((89 - 21?)(1/2) + 317) cos(m/2)
= 5m% — 101.
It remains to bound v2hy(v) = v2(3mt cos v — 11sinv). On [0, /2], cos is decreasing and sin is increasing, so
3mcosv — 11sinv is decreasing here; it is positive at v = 0 and negative at v = 71/2, so that by continuity it
has a unique zero in (0, 7t/2). Denote this zero as vo; then using that v?> > 0 with no zeros in the interior, we
can write
inf v2hy(v) >0,
0<v<vy

and

inf vth(V)Z( sup 1/2)( inf h2(v))

vo<v<m/2 vo<v<m/2 vo<v<m/2

> (1/2)*(3m cos(1t/2) — 11 sin(nt/2)) = _%nz’

which gives the bound v2hy(v) > —=1172/4 on [0, 7/2]. Putting it all together, we have

1172
D) > —T” +572 — 101 - °/8 > —83,

where the last inequality follows from a numerical estimate of the constants. m|

Lemma E.48 (Uniformization). Let (Q, F,P) be a complete probability space. For some t € R, 5; > 0, S c RY,
and event & € F, suppose that f : S x QO — R is second-arqument measurable and satisfies

1. Forallx € S,P[f(x, -) <t] = 1-0y
2. Forallg €&, f(-,g)is L-Lipschitz;
3. Thereis M > 0 such that sup,,_g ||x|l» < M.

Then g w— sup,..s f(x,g) is measurable, and for every ¢ > 0, one has

d
Plsup f(x,-) <t+Le| >1-0; (1+ %) -PLE]. (E.77)

xeS

Proof. Because S is a subset of the separable metric space (R?, || - ||) and all sample trajectories f( -, g) are
assumed (Lipschitz) continuous, the supremum in the definition of g + sup, . f(x, g) can be taken on a
countable subset of S, and the resulting function of g is measurable (e.g., [LT91, §2.2 p. 45]). By [Ver18,
Proposition 4.2.12] and boundedness of S, for every ¢ > 0 there exists an e-net of S having cardinality at
most (1 +2M/¢e)?; denote these nets as N,. Since each N is finite, we may also define for each x € S a point
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x¢ such that ||x — x|z < ¢; then for every g € &, we have |f(x, g) — f(x,, )| < Le. We define a collection of
events &, by
& ={geQ|V¥xeN,, f(x,g) <t}. (E.78)

The triangle inequality then implies that if g € & N &, then for all x € S, one has f(x,g) < t + Le.
Consequently, several union bounds yield

Plsup f(x, 1) >t +Lel <Pisup f(x,g) <t|+P[E]
"~ o g (E.79)
<o (1 + @) + P[&],
as claimed. i

E.4 Deferred Proofs

Proof of Lemma E.5. The function cos™ is C* on (-1, 1), and because f(v) := cos ¢(v) is smooth and satisfies
f'(v) = (v = 1)sinv < 0if v < © with f(0) = 1 and f(r) = 0, we see that ¢ is C* on (0, 7t) by the chain
rule. This also shows ¢(0) = cos™(1) = 0 and ¢(n) = cos™(0) = 7/2. Direct calculation gives

_ 2 il
¢(v)=\/ (- vysinv (E80)

2 — ((m = v) cos v + sinv)?

and

(2 = [(t = v) cos v + sinv]?)[(t = v) cos v — sinv] — (1 — v)?[(7 — v) cos v + sin V] sin? v
3/2

pv) = (E.81)

(2 = [(t = v) cos v + sinv]?)

Calculating endpoint limits using these expressions will suffice to show the derivatives are continuous on
[0, 7] and give the claimed values there. We have

2(t — v)sinv[(1t — v) cos v — sin v]

VPVIRY (= v)?sin?v ,
lim(@(v))” = lim = lim - -
N YN0 72 — ((t — v) cosv + sinv)>  v\0 (=2)[(m —v) cosv + sinv][cosv — (m — v)sinv — cos V]
. (m—=v)cosv —sinv
= lim - =
vWO (1T — V) cosv + sinv

by L'Hopital’s rule, whereas a direct evaluation gives
o2 _ 0
li =—=0.
lim((v)” = 3

Continuity of the square root function gives the claimed results for ¢. Again by direct calculation, we find

w2 0
KT})((P(V)) =—5=0

Since ¢»? is meromorphic in a neighborhood of 0 with, as we have shown, a removable singularity at 0, it
is actually analytic, and we can calculate further derivatives at 0 by expanding it locally at 0. We use the
expansions sinv = v —13/6 + O(v°) and cosv = 1 — v?/2 + v*/24 + O(v°) near 0 to calculate

2 2_13
(1—3) sin? v = v? 1—31/—“ 2+ 0P
T T 32

and

: 2
B v sinv\ _ Hf, 2 1, 3
1 ((1 n)cosv+ — ) =v (1 3’ " 37 + 0],



from which it follows

, 2 -3 2 1 B
((p(v))2 =(1-=v- 3 V2 + O(vs)) (1 ~ 3LV 51/2 +0(v%)

Tt

By the geometric series, we then obtain

. 4 1
((p(v))2 =1- v ﬁvz + 0.

Taking the square root of this expression and applying the binomial series, we thus have

o) =1 onk o 14 +0(°),

from which we read off

lim ¢(v) = _2 Iim (v) = 1

N0 ¢ 3n’ N0 ¢ 3m2’
It is clear from the analytical expression for ¢ and the mean value theorem that ¢ is strictly increasing on
[0, ], since (m —v)sinv > 0if 0 < v < w. To prove strict concavity for v € (0, i), we start by simplifying
notation. Consider the function ¢,(v) = @(n —v), which satisfies by the chain rule ¢,(v) = ¢(n—v). Because
@y is strictly concave if and only if ¢ is strictly concave, it suffices to prove that ¢(m — v) < 0. We note

P(m-v) <0 & (7® - [vcosv —sinv]*)(—=sinv — vcosv) < v?sin® v(sinv — v cos v).

Multiplying both sides of the latter inequality by sin v —v cos v, dividing through by (v cos v —sin v)? (which
is positive on (0, ), since it equals cos? ¢ composed with a reversal about 7), and distributing and moving
terms to the RHS gives the equivalent condition

2 2

, V% cos 2

v —sin“v 9

<v? —sin v,

(v cosv — sinv)?
and canceling once more gives equivalently

2 2

—sin“ v

vcosv+s%nv v . (E82)
vcosv —sinv T
Using vcosv —sinv < 0, which follows from its derivative —v sin v being negative on (0, 7t), and writing
¢(v) = m2(v? — sin® v), we have equivalently v cos v +sinv > g(v)(v cos v —sin v), and rearranging gives the
inequality

(1-g(W))vcosv + g(v)sinv > —sinv. (E.83)

Strict concavity of sin on (0, 7) gives sinv < v, and 0 < g(v) < 1 follows after squaring; so the LHS is
a convex combination of vcosv and sinv, which in particular satisfies |(1 — g(v))vcosv + g(v)sinv| <
max{|sinv|, |[vcosv|}. As argued before, we have sinv — vcosv > 0 if v € (0,7); moreover, because
v > 0 we have vcosv > 0if v € (0,7/2) and vcosv < 0 if v € (n/2, ). We can numerically determine
sin(57t/8) + (57/8) cos(57/8) > 0, and given that 57t/8 > 1.95 > m/2, it follows

|(1-g())vcosv + g(v)sinv| < |sinv|, 0<v <195,

which implies (E.83) when 0 < v < 1.95. Recalling that we are arguing for ¢, in this setting, we translate our
results back to ¢ and conclude that p(v) < 0if 1—1.95 < v < 1. To address the case where 0 < v < m—-1.95,
we employ Lemma E.47; it allows us to conclude ¢ < 0 provided 0 < v < m/2, and a numerical estimate
gives that m — 1.95 < 1/2, so that we have ¢ < 0 for all 0 < v < 7. Taking limits in ¢ gives concavity at the
endpoints {0, 7} as well.

To bound § away from zero on [0, /2], we apply Lemma E.47 to assert

2 34 831/4

3V T s

PO g " TET
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The numerator in the last expression is nonpositive if 0 < v < /2, and using the lower bound in Lemma E.14
on [0, t/2], we have

1 1
, v>0.
— cos? (1/) 1 - max?{1 - %VZ,O}
From nonpositivity of the numerator, it follows
3, 8 4
Pp(v) < ~5V 0<v<m/2 (E.84)

(1 - max?{1 - Evz,O})3/2l

Wehave 1 - %vz >0aslongas0<v < V2; so after removing the max, distributing, and cancelling, we have

2 83

+ v
(p(v)<—24“3, 0<v<V2
(1-112)°?
1

The denominator of this last expression is nonnegative and has singularities at +2, and is clearly even
symmetric; so it is maximized on 0 < v < V2 at V2, and we have

qo(v)<\/_( 3271 %v), 0<v<V2

Taking limits v \ 0, we can assert this bound on [0, V2], and the bound is clearly an increasing function of
v, from which it follows
(_ 2 83V2

— —) -0.15,
31

sup P(v) < V8 Y

ve[0,V2]
where the last inequality follows from a numerical estimate of the constants. On the other hand, when
V2 < v < 1/2, we have from (E.84) that

P < —vP 4 ooyt

<y < )
oy e 3V \/E_v_n/z

If we differentiate the degree four polynomial on the RHS of this bound and solve for critical points, we find
a double critical point at v = 0 and a critical point at v = 127t?/83; a numerical estimate confirms that this
critical point lies in the interior of [V2, 7t/2]. The second derivative of the RHS is —(4/7)v + 83/(27)v2, and
plugging in v = 127t?/83 gives a value of —487/83 + 1447 /83, which is positive; hence the RHS is maximized
on the boundary, i.e.,

. 2 5, 8 25283 n? 83n
< - — < —t —, —— + ——, 2<v<m/2.
POV < =gVt sy S max{ e T T as) V2svsm

A numerical estimate shows that the RHS of the last inequality is no larger than —0.14. Since the intervals
we have proved a bound over cover [0, 7t/2], this proves the claim with ¢ = —0.14.

The bound ¢ < 1 on (0, ) follows from the fact that ¢ is strictly concave on (0, 77) and the mean value
theorem; we have already shown ¢ > 0 in proving strict increasingness of ¢. Similarly, the proof of strict
concavity in the interior has already established ¢ < 0. To obtain the lower bound on ¢, we use that ¢ is
continuous on [0, 7] and the Weierstrass theorem to assert that there is C > 0 such that ¢ > —C on [0, 7t];
because ¢(0) # 0, we actually have C > 0.

For the quadratic model, we use our previous results and Taylor expand ¢ about 0; we get immediately

lnfve n
) = v+v —02 190 (cpamt.

For the upper bound, we can assert immediately on [0, /2] a bound

p(v) <v—cv?,
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where ¢ = 0.07 suffices. To extend the bound to v € [1t/2, ], we employ a bootstrapping argument; because
@ is concave, we have a bound

p(v) < 9(r/2) + p(r/2)(v = 7/2)

/2
v—T/2),
N A

where the second line plugs into the formulas for ¢ and ¢. We will show that the graph of v — cv? lies
entirely above the graph of the RHS of this inequality. This condition is equivalent to

—cv? + (1 L 1)1/ + ( (/2" — cos™ 711) > 0;

17_(—1+

= Ccos”

n? — V2 -1
the LHS of this inequality is a concave quadratic with maximizer v, = 1/(2¢)(1 — \/%), and numerical

estimation of the constants gives v, > 7. Since v4 is outside [7/2, ] and the quadratic is concave, we

conclude that the bound is tightest at the boundary point 77/2, and one checks numerically

/2 (1/2)?
‘Vnz—l)n/2+ (Vn2—1

which establishes that the bound ¢(v) < v — ¢v? actually holds on all of [0, 7t]. This completes the proof of
all of the claims. o

—cm? /4 + (1 - —cos’! n_l) > 0.15 > 0,

F Controlling Changes During Training

F.1 Preliminaries

We now consider the changes in the integral operator ®, during gradient descent. In this section we restore
the iteration subscript (that is dropped in other sections to lighten notation) to various quantities. ©
changes during training as a result of both smooth changes in the features at all layers and non-smooth
changes in the backward features {,Bf(x)} due to the non-smoothness of the derivative of the ReL.U function.

Because of the difficulty of reasoning precisely about the changes in ©;, we will bound these rather
naively by controlling ®; over all possible support patterns of the features given a bound on the norm
change of the pre-activations.

We now define a trajectory in parameter space that interpolates between the iterates of gradient descent,
given for any k’ € {0,...,k} and s € [0,1] by

o, . =0y —1sVLN (oY), (F.1)

(with the formal derivative V defined in Appendix A.1). We will henceforth use k’ to denote an integer
indexing the iteration number and ¢ to denote a continuous parameter taking values in [0, k] (such that
k" =[t],s =t —|t]). Quantities indexed by ¢ are ones where the parameters take the value Gf\] . To lighten
notation, we will drop the N superscript when referring to time-indexed quantities (aside from CkN and @II(V ),
but all such quantities depend on the parameters as defined by (F.1).

Instead of considering the change in the features {ozf(x)} directly, it will be more convenient to work in
terms of the pre-activations, which are given at layer ¢ by

pi(x) = WPy, W ™ P1, )W Py Wi,
We define a maximal allowable change in the pre-activation norm by

~ CqL3/2+q

n= NG (F2)
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for g > 0 and a constant C,, to be specified later, where the scaling is chosen with foresight. We can then
define a maximal number of iterations such that the pre-activation norms at all layers along the trajectory
(F.1) change by no more than . This number k, must satisfy

sup I} (x) = p)|l, <7 (E3)
tel0,ky],xeM, Le[L]

for ) given by (F.2). Our goal will be to show that we can in fact train for long enough so as to reduce the
fitting error without exceeding k,, iterations.

F.2 Changes in Feature Supports During Training

Recalling the definition of the feature supports atlayer ¢, time t and x € Mby I, +(x) = supp(a’(x) > 0) C [n],
we denote by 7;(x) = (I1,¢(x), ..., I +(x)) the collection of these support patterns at all layers. We would next
like to relate the smooth changes in the pre-activation norms to the non-smooth changes in the supports of
the features. We denote by J = (J1, . .., J) a collection of support patterns with J; € [n]. We now consider
sets of support patterns that are not too different from those at initialization, as defined by

B(y,n) = {supp (y +v > 0) | [vll, < n}, (F4)
T _ {
T p(x) = k@[’L]B(Po(")'n)/ (E.5)
TyM) = [ T, ). (E.6)
xeM

Note that B(p{(x),n) is simply the set of supports of the positive entries of p(x) + v for every possible
perturbation v of norm at most 1. We consider all possible perturbations due to the complex nature of the
training dynamics. As a result of this worst-casing, the scaling we will require of the depth and width of
the network in order to guarantee that the changes during training are sufficiently small is expected to be
suboptimal.

For a given general support pattern 7, we define generalized backward features and transfer matrices

¢ NL+1 NL Ne+2 *
By = (Wt TPLWT LW, +le) ,

g0l ¢ Ne-1 N
rjt = WtP]HWt ...P](,,Wt

(E.7)

g fx) ;). By controlling these objects for every possible

set of supports J that can be encountered during training, we can control the smooth changes in the features
themselves. A first step towards this end is understanding how many such support patterns we expect to
see given the constraint in (F.2).

In order to bound the number supports that can be encountered during training, we need to control the
diameter of 8 (pg(x), 1). This can be done by defining

where the weights are given by (F.1) (and thus ﬁf(x) =

5y(ph(x) = max [supp (p(*) > 0) © supp (pj(x) + v > 0)] (E8)

where © denotes the symmetric difference. Since the pre-activation at a given layer are Gaussian variables
conditioned on all the previous layer weights, bounding the size of 6n(p6(x)) can be reduced to showing
concentration of a certain function of Gaussian order statistics. This is achieved in the following lemma :

Lemma F.1. For n given by (F.2), if n, L, d satisfy the requirements of lemma F.6 and n > d° for some constant K,
then for a vector g € R", g; ~iig N(O, %) we have

P [6,(g) > Cnn??| < C’e™

for some constants ¢, C, C’.
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Proof. Let
1glay < 1gle) < -~ < 18l

denote the order statistics of the magnitudes of the elements of g. We will show that bounding 6,(g) can be
reduced to understanding what is the smallest k such that

2 2 2
|g|(1)+"'+|g|(k) 277 .

We denote this value of k by k. Define indices j; by | g],.| = | g|(i) (and breaking ties arbitrarily in case several
order statistics are equal). To see that
ky—1 < 64(g) < ky (F9)
ky—1
it suffices to note that since '21 | gl%k) < n? one can choose ¢ > 0 small enough such that
i=

ky—1
y=8- Z(l + E)g]ieji € BE(g/ﬂ),

i=1
b’l
which will give ds(g,y) = k; =1 = 0, > k; — 1. To prove the second inequality, consider y = g — 3. gj,ej,.
i=1
Clearly for any y’ such that ds(g,y’) = &, we have ||g — y||, < ||g — ¥’||,- Since there exists at least one such

y’ € Be(g, n), it follows that ||g - y“2 < ||g - y’”2 < 1, and hence the smallest k such that i |g(l-)|2 > 1? must
i=1

obey k > 6.
For 1 defined in (F.2), we can satisfy the requirement on 7 in lemma F.6 by requiring n > d° for some K.
Applying this lemma, we find that there is a constant K’ such that for k = [K'n1?*] we have

k
P Z |g|i.) > >1-Cle™
i=1

from which it follows immediately that
P [ky < [K'n??]] > 1-Ce™.

Choosing some constant C such that [K’nnz/ 3.| <C nnz/ % and using (F.9) allows us to bound 0,(g) with the

same probability. O
With this result in hand, we can control the objects in (F.7) for all the supports in ?,,(M).

Lemma F.2. Assume d, L, n satisfy the assumptions of lemmas D.2, F.1, D.8, D.14 and additionally

n 2 max {KdL%zq, K’ (logn)S/2 , CSC%L“M} )

for some constants K, K’, Co, where q is the constant in (F.2).
Then
i) for n, J,(x) defined in (F.2),(F.5), on an event of probability at least 1 — e~ simultaneously

sup sup sup ||p6(x)“2 <Gy,
xeM jejn(x) 1{<€€[’L<]t/
sup sup sup ||ﬁ§’%” < Covn,
xeM <7, () (el ?

~ 0t
sup sup sup HFJ'OH < VL.
YEMIET @) 1[<€i['L<]e
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ii) for T, defined in (F.3), on an event of probability at least 1 — e=°%,

sup
xeM,tel0,T;],L€[L]

Hﬁfo(x ﬁIz(X) 0 ‘ < CC721/3 10g3/4(L)d3/4L3+2q/3115/12.

for some constants c, C.

Proof. Deferred to F.5. m]

F.3 Changes in Features During Training
We can now bound the smooth changes during training:

Lemma F.3 (Smooth changes during training). Set the step size T and a bound on the maximal number of iterations
kmax such that

L4
kmaxT =
n

for some constant q. Assume n, L, d satisfy the requirements of lemmas F.2, and in particular n > KdL*?1 for some
K. Assume also that given some k < kmax — 1, forall k' € {0, ..., k},

||C5||L2N < CVd. (F.10)

Then on an event of probability at least 1 — e=°?, one has simultaneously

d
sup ||P£r(x) b, < c' \/; /

xeM, le[L], k’€{0,..

sup (I -0l - Hﬁfk,om priw],) < VA,

xeM, le[L], k' €/0,...,
for some constants ¢, C, C'.

Proof. We will bound the smooth changes in the network features during gradient descent with respect to

either the population measure u* or the finite sample measure uN. We denote a measure that can be one of
these two by V.

For any collection of supports J € 7,,(/\/(), define generalized backward features and transfer matrices

at t by ﬁgt, fgv[t, . These are obtained by setting the network parameters to be 8N according to (F.1), but
setting all the support patterns to be those in .
We then define for any ¢ € [0, k + 1],

pi = sup |l -pi@|,+ sup
xe M, Le[L],t’€[0,t] xeM, le[L]
—
Blo= s g e s e 1)
Ce[L], T €T (M), tel0,t] (e[L],TET H(M) :
= 00 =l ~ 00
Il - L A S
rr<te[L],Te JW(M) #€[0,4] r<te
We have forall k¥’ < k+1,
— —
Hpi'(x) _pg(x)“Z < pZ/ - p(;/ (F12)

while

¢ ¢ P ¢ ¢ ¢ ¢ ¢
Hﬁk’(x) - ﬁo(x)“z - Hﬁ[k,(x),kf - ﬁ[g(x),O” = ”ﬁfk,(x),k’ - ﬁfk,(x),o”2 + Hﬁ]'k/(x),o - ﬁ,ro(x),oH2

21 0 ¢ ¢ (E13)
< Br = Bot||Pr0 ﬁfo(x),()”Z'
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It follows that we can control the difference norms of the pre-activations and backward features by
controlling the magnitudes of ﬁZ,, EZ/ In order to control these, we also note that for any ¢ € [0, k + 1],

lat @I, < lloll, < [lpi ) = poll, + [leoll, < 77 (F.14)
and similarly
o], <7
o _ (F.15)
||r o <T}.

In particular the above bounds hold when J = 7;(x). We would now like to understand how the quantities
(p o [3 K Fk,) evolve under gradient descent. Towards this end, for any k' € {0,...,k} and s € [0,1] we
compute at any point of differentiability

9 __ ' S NN
25Pies() =T 50 _ VL6
O —sTVLN(0Y
ép£’+s(x) ) o N/ AN
=—7 (T V.£ (ek,

LI Ipp, () ILN (0
SPPIRE T

i=1j=1 =1 il
{
i =L i ’
==y [ (e, ol @) EL 0Pyl 0" ).
i=1 x’eM

Using (F.14) and (F.15) then gives

J {
%pkw—s (x)

IA
Il

2 _ _
L (52%) ﬁ2’+sr‘2’+s / |Cg(x’)|df*lN(x,)

2 x’eM

2 _ —
= L(ﬁzurs) ﬁ2’+sr2’+s ”C ”L2

2
— 21w
< CVdrL (pz,ﬂ) BrrasTirass

where we used Jensen’s inequality in the second line and our assumption that the error up to iteration k has
bounded Lzl » norm, and we additionally assumed p;, E?, 1_"? > 1. Arguing as in the proof of Lemma B.7 for
absolute continuity, it follows that

Lt]-1
ot =t <> lloba() = Pl + o0 -l )

k’_
_ ~ t=t] .
0 d
:,(Zf) /£p£,+s(x)ds + /gp‘[ths(x)ds

2 2
Lt]

t—
ds+/

(F.16)

[t]-11
<Z/

<C\/_TtL( )BT

Pk'+s (x) ds

¢
gpmﬂ (x)
2
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Since the above holds for all choices of x, { simultaneously, we conclude that

ol -7 < CVdrtL (p])’ BT, (E.17)

An analogous calculation for the other quantities in (F.11) gives the following set of coupled difference
inequalities:

77 7
By -Fy |= CVdLztp!B,T} B | (F.18)
T, - T, T,

Instead of solving (F.18), we obtain sufficient control by defining k* s.t.
Viel0,k: Pl <250 A By <28, A Tj<2L,. (F.19)
For any t € [0, k*], we obtain a sufficient condition for satisfying the above constraint using (F.18), namely
_ , —m\2 200 —
7+ CNEL (7)) BT <27
1 (F.20)

o1 <—m— =
C'VALPIB T,

for some constant C’. Using the bounds for E? - Eg and 1_";7 - fg in (F.18) to satisfy the second and third
condition in (F.19) gives an identical constraint on tt.
In order to control these quantities at t = 0 we define an event

{llosll, < €2}

-1
6= {854, = c2va} (F.21)
M, =L
jzejq(x), ﬂ{ FJ’O < Cz\/Z} ,
1<t'<te[L]

the probability of which can be controlled using lemma F.2. On G, the upper bound on 7t in (F.20) is at least

1 1
C'VdLpB, T = CNaL

(F.22)

for some C”.

We would now like to pick Tkmax, and ensure that any ¢ € [0, k + 1] satisfies the constraint above if
k +1 < kmax. The analysis also assumes that Tkmax < T, for which (F.3) holds. We will then pick the scaling
factor C;, for the pre-activation norm bound in (F.2) in order to satisfy that constraint as well. We choose

q
S (F.23)
n

In order to ensure that kmax < k* holds, we use (F.20) and (F.22), and require
L1 1
- <

n - CN\/HLL%/ZW

which is satisfied by demanding n > KdL3*27 for some constant K. Using (F.17) and (F.22), on G we have

1 ! — —
sup  [loi(x) - py@)ll, <P} -py
te[0,k+1],xe M, L€[L]

< C'ttVaL (py)” By
< C'ttVdL¥\n
< C' Thyax VAL 2.
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In order to ensure that kmax < k; we therefore require

C'”Tkmax \/EL?)/Z\/E <n,

which using (F.2) and (F.23) is equivalent to

o \/ELq+3/2 - 1,4+3/2
i SO

and thus the constraint can be satisfied by choosing C,, = C ”+/d. Note that the constant Cs in (F.21) (which
enters C”) is set in lemma F.2 which takes C, as input (despite this, C; is independent of C;). This lemma

2
holds as long as n > CgCAL**, which we can guarantee by demanding n > C; (\/EC”) Lo+24,

We have thus ensured that our choice of knax satisfies kpax < min {k*, k,,}. We then obtain from the
constraints in (F.19), the inequalities in (F.18) and the definition of G, that on this event

= — L3/2+q
sup B~ Bl < Crekmu VALY < cr YA
k'e{0,... k+1} Vi
sup By — Bu < C"Thmax VALY 1 < C/ VALY,
k’€{0,..., k+1}
Then using (F.12) and (F.13), we obtain on an event of probability at least 1 — ¢~*¢ simultaneously
’ d
sup ”pir(x) —pg(x)Hz <C L3/2+q\/;’
xeM, te[L], k’€{0,..., k+1}

sup (”ﬁi?l(x) B )|, - Hﬁé‘;lo(x) - pgol(x)..z) < CVAL3H,

xeM, le[L], k’€{0,...,k+1}
O

The combination of the last two lemmas allows us to control the changes in all the forward and backward
features uniformly:

Lemma F.4. Assume n,L,d, k satisfy the requirements of lemmas F.2 and F.3, and additionally n > KL36*814° for
some K. Then one has simultaneously on an event of probability at least 1 — e~

Sup [lerf () = arg ()], < CL3/2+‘I\/g,

xeM, te[0,k+1], €€[L]

sup ”ﬁf_l(x) _ﬁg_l(x)”z < C10g3/4(L)d3/4L3+2q/3n5/12,
xeM, te[0,k+1], €€[L]

sup Hozf(x)”2 <C,
xeM, te[0,k+1], €€[L]
wp ], <R

xeM, te[0,k+1], (€[L
for some constants ¢, C.

Proof. Combine the results of lemmas F.2 and F.3 and take a union bound, using the triangle inequality to
obtain the second two bounds. The assumption n > KL3¢*874° is required in showing || ' (x)||, < Cvn. O
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F.4 Changesin @}(\] During Training

With these results in hand, control of the changes in @II(\] during training is straightforward.

Lemma F.5 (Uniform control of changes in ® during training). Denoting the gradient descent step size by T,

choose some kmay such that
14

kmaxT = —
n

for some constant q. Assume also that given some k < kmax — 1, forall k” € {0, ..., k},

¥z, < Vd. (F.24)
Define
-1
O(x,x) = (af(x), af (X)) + Pl (@), af(x)) (Bo), BH(X))
A{j = sup |®£\,’(x,x’) - @(x,x’)\.
(x,x")eEMXM,
k' e{0,...,k}

Assume n > KL30*81d°, d > K'dglog (nnoCp) for constants K, K'. Then on an event of probability at least 1 — e~
RN < Clogd/H(L)d3/AL4+21/3 1112

for some constants ¢, C.

Proof. Recall that

afe(x)
20

1 ~
ot = 0

9N

s=0 k+s k

L 1
=3 [ (e, o) (Bl 0, L) s
=09

with the convention BX(x) = 1 for all £, x, and the parameters 8 given by (F.1). We thus have

N "n_ / "‘k+s(x) "‘k(x,» <ﬁ1€+s(x)'ﬁ£(x')>
05 (x, ) - O, )| < ;-/' (ab(x), ab(x) (B4 (x), Bo(x")) ds.

We consider a single summand in the above expression. On the event defined in lemma F.4, for all
x,x’ e M, £€{0,...,L},

(s (), @ () (B (x), BL(x)) = {arg(x), ag(x)) (Bo(x), By (x))|
(s () — ag(x), @ () (B, (). B (x)))]
+[{ag(x), @ (x) = ag(x) (B, (%), B(x)))|
+ [(ag(x), ag(x)) (Bi,s(x) = B(x), By (x))|
+|(af(x), al(x)) (B(x), BL(x") = BS ()|
( [l () = ag@)f], + 7 [l () - ag@)], )
VI [|Bss () = Bo@), + Vi [|BL(x) = Bo (],
<C’ L3/2+q\/%+10g3/4(L)d3/4L3+2q/3 11/12)
gC”log3/4(L)d3/4L3+2‘7/3n11/12,

for some constants. Summing this bound over ¢ gives the desired result. m]
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F.5 Auxiliary Lemmas and Proofs

Lemma F.6. Consider a collection of n i.i.d. variables X; = g2, gi ~ N(0, 2) and denote the order statistics by X

(so that X1y < X(p) ... ). Forany d > K'logn, n > K"d® n > C"’ +7 and integer Knn?/3 < k < n, where K, K’, K”
are appropriately chosen absolute constants, we have

k
P ZX(i) > 772

i=1

>1-Cle

where ¢, C, C’ are absolute constants.

Proof. We will relate sums of order statistics of X; to functions of uniform order statistics and show that
these concentrate. We denote the CDF of the X; and its inverse by F and F~! respectively. We use

4, _
(Xay, - X)) = (FHUq)), ..., FH(Uy))

where U;) are order statistics with respect to Unif(0, 1) [DN04]. Since X; ~ %Yi, Y; ~ )(% we have

F(x) = erf( %)

i) = %(erf*l(t))2 > 92

where in the inequality we used the series representation of erf™!. This gives

k k k
4 -1 ‘o 2
ZX(i) = ZlF (U(,-)) > ;Z;U(i).
1= 1= i=

The joint PDF of the first k order statistics for any distribution admitting a density is given by

fay(x1, e Xi) = s k), (1- F(Xk))"k]—[f(x)

where x1 < x < ... < x; [DNO4]. Applying this to the uniform order statistics, we can compute the mean
of the summands

Uy up 1 1

n! —k Tl'l(l + 1) k _k
[EU(zl) Zm/‘/‘/ulz (]. — lek)n duk...du1 = m/ﬂk+l (]. - Mk)n duk
0 0 0 0

i+ 1)
T m+2)(n+1)

k1) +2) | ok
EZU@ R e

In order to show concentration, we appeal to the Rényi representation of order statistics [BT+12]. This

allows us to write Z U2 as a Lipschitz function of independent exponential random variables, and we

(0
can then apply standard concentration results for such functions [Tal95]. This representation is due to a
useful property unique to the exponential distribution whereby the differences between order statistics are
independent exponentially distributed variables themselves when properly normalized.
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If we define by E;, ..., E,, a collection of independent standard exponential variables, the Rényi represen-
tation of the uniform order statistics gives

k

Uqy, - Ugr) ) =(1-exp (——) —exp Zn i1
j=

We now truncate the (Ej, ..., Ex), so that wp. P > 1 — ke X we have Vi : E; € [0, K], and denote this event
k
by Ek. Using K < 7, itis evident that }, U(Zl.) is equal in distribution to a convex function of (Eq, ..., E) after
i=1

truncation (which can be seen by Calcuiating second derivatives). The Lipschitz constant of this function is
bounded by f—_kk = A

- k
If we define rescaled variables E; = AE; then with the same probability they take values in [0, KA]. }; U(zl.)
i=1

written in terms of E; is now 1-Lipschitz and convex, and we can apply Talagrand’s concentration inequality
[Tal95] to obtain
k k
2 2
Z;]ISK u? - Elg, Zl:um
1= i=

, if we now assume

> tKA| < Cexp (—ct?).

c1k®  _ cak®(n-k)
2n2KA — 8n2K

Setting ¢ =

cznn2/3 <k<cn

for some ¢’ < 1 we obtain
”k4 C”leT]g/3 )

Z]ng lEZ]]"SK 0 K2 ) < Cexp (— e

We would also like to ensure that the truncation does not cause a large deviation in the mean. We have

<Cexp(

2 2
k k i E. k i E.
£ e 3= 1o Ry R e P
! k E 2 I
ZIMSE E,> kz 1-exp Zn—z]+1 < Z ]lE,,,>1< k* E 1g5k
m=1 i=1

=k2 —K

Since we would like this to be small compared to [EZU(,) > C;—’f we can require K > log%i which

ives E ZU
& {upyi=t @

P >1-exp (logk — K) - Cexp ( mznsm)

k k 3
Co C1k
Yoz D13 = 2 [ere 3, - 5
i=1 i=1
k
_ Co 2 C1k
=2 ([EZU(Z) +[E118K§ u?, [EE u?,

i=1

4n2

- 1gg 21Ué) < 9% We can then choose the constant cz such that with probability
i=
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coC1 k3 > 2
4n?
The upper bound on k can then be removed since the inequality then applies to all larger k automatically.
If we now set 1 according to equation (F.2), and choose K = d > K’logn and n satisfying n > K”d> for
appropriate constants K’, K” we obtain

k cCB/314+8q/3,2/3 )
P ;X@-) >n?| 2 1-exp (logk —d) — Cexp | z1-C a
and due to our choice of 7, this result holds for all k > Cnn?/® > CC$/3n2/3L1+2q/3. m]

Proof of lemma F.2. i) We begin by controlling the pre-activation norms. Considering a pointx € N, _; 12,
0
where N _; -1 is the net defined in Appendix D.3.1, rotational invariance of the Gaussian distribution gives
0

2
lps@s = b @WEWS @) £ ol @)

w! )
( 0/ )

where (Wé)( " is the first column of WS. Bernstein’s inequality then gives

2

P [lob@I; < Cllat @[] = 1-ce

for appropriate constants. As discussed in Lemma D.8, if we choose d to satisfy the requirements of this

< e©"? for some constant. We can then uniformize over the net using a union bound,

lemma then [N _, i
n no
obtaining

p [vz €N, (@l <C ||ag—1(f)||§] >1— e > 1 = Clee"

35

for some c’, assuming n > Kd. We now need to control the feature norms and pre-activation norms off of
the net. From (D.56) and lemma G.10 we obtain that for d satisfying the requirements of lemma D.9,

(ot - b ||, < Cn52)
n{llles @], -1] < 3}

By taking a union bound over the above two results, we obtain

P [Vx eM,le[l]:dx e N 5 -120 Nn,3n-1/z(x) s.t. >1—e"%,
0 0

PVxe M, te[Ll]: |pix)|,<C]>1-Ce*" (F.25)

for some constants
We next turn to controlling the generalized backward features and transfer matrices. Our first task is

to bound the number of support patterns that can be encountered, namely |7,] (M)| In order to do this it

will be convenient to introduce a set that contains 7,7(/\/() and is easier to reason about. We define a metric
between supports by
dsupp(sz S’) = |S © S,|

and denote by B,(S, ) € P([n]) a ball defined with respect to this metric, where 6 € {0} U [n] and P(A) is
the power set of a set A. For 6,(y) and B(y, n) defined in (F.8) and (F.4) respectively, it is clear that

B(y,n) < Bs(supp(y > 0),65(y))
and consequently

— L
TyiMye [ & Bulsupplpjx) > 0),8y(pf(x)). (F.26)
xeM

248



We will aim to control the volume of this set, which we will achieve by controlling it first on a net. This will
require transferring control between different nearby points.
Forany S,S’ € [n] and 6 € {0} U [n], the triangle inequality implies

Bs(S,0) € Bs(S", 0 +ds(S, S")).

For some p € Be(g, r), we also have

oy(p) = max ds(p,y) <ds(p,g)+ max ds(g,y)<ds(p,g)+ max ds(gv)
yeBe(p.n) yeBe(p.n) yeBe(gn+r) (F.27)

=d; (p, g) + Oy+r(8)
where we used Be(p, 1) € Be(g, n + ). It follows that

Bs(supp(p > 0), 6,(p)) € Bs(supp(g > 0), 6,(p) + ds(p, g)) S Bs(supp(g > 0), 65++(g) +2ds(p, g)). (F.28)

From (D.56) and lemma G.10 we obtain that for d satisfying the requirements of lemma D.8,

{llp5x) - pi@)||, < Cn=>/2}

P
N {ds(pf(x), py(x)) < d} >1-6e7?, (F29)

PlVxeM,le[l]:3xc N -1 ﬂNn,Sn—l/z(x) s.t.
0 0

L
since under the assumptions of the lemma d (pf)(x), pé(i)) <> ’Rg (x, Cn~®)|, with Ry (¥, Cn=3) denoting
=1

the number of risky features as defined in section D.3.1. We denote this event by &,,.
On &, we can transfer control of the ball of feature supports from a point on the net to any point on the
manifold. For some ¢, x we denote by x the point on the net that satisfies the above condition. Considering
(F.28), we choose g = p{(%), p = p}(x), r = Cn™5/> and n = C,L3/**1n~1/2, obtaining
Bs(supp(p)(x) > 0), 5,(p)(x)) € Bs(supp(p)(X) > 0), 8,.c,-s2(p5(F)) + 2ds (pf(x), p (X))

o " (E.30)
C  Bs(supp(py(x) > 0), 62,(p(x)) + 2d),

where we assumed C,L%?*1n? > C.
We next turn to controlling 6zr,(pé(§)), which is now a random variable, for all ¢ € [L], X € N __; 1.
0

From lemma F.1 we have for a vector g with g; ~iig N(0, % ,
P [629(8) > Conn2/3] < Cle™,

Considering a vector pé(f) forsomel € [L],x €N _; -1, wehave pg(f) ~ N(0,2 ||aé_1(f)||§ n1). Lemma
0
D.2 then gives
P [V2]laf @), < 1] < Cre < cee

for some constants, assuming d > KlogL for some K. Since on the complement of this event we have
V2 ||ag_1(§)||; "< 21, lemma F.1 and a rescaling gives

P [624(pf(%)) = Conn™?]

2/3
P |0y 8) 2 o

< P [o2y(g) 2 ComP] + P [V2 a1 @)|, < 1] < Cemol + e < e,
(F.31)
for some constants. Taking a union bound over N, _; -1» and [L] we obtain
0
P [3E € Nn‘3n61/2’€ € [L] s.t. 62r](p(l;(i)) > C0n172/3] < |Nn‘3nal/2 Lce—Cd < C/e—c’d (F32)

under the same assumptions on 4 as in lemma D.8, and additionally assuming d > Klog L for some K.
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Since n, d, 1) satisfy the assumptions of lemma F.1, we have nn?*3 > C'n'/2d%* > C’d for some C’ and
hence

P [az €N, 5, b€ [L] s.t. O2y(pS(x)) +2d > Clnn2/3] < Ce™ (F.33)

for some constants ¢, C, C1. Denoting the complement of above event by EY, we find that on &, N &Y, for
every x wecan findx € N , .12 NN, _; 12(x) such that
0 0

Bs (supp(pf(x) > 0), 6,(pf(x))) € Bs(supp(pi(x) > 0), 62,(p}(¥)) + 2d) C By (supp(p}(x) > 0), Cinn*?),

where we used (F.30). On &, N Sg’ , we can thus bound the size of the set that contains 7, denoting its size
by
L - ¢ ¢
Sy =Vol[ ] ® Bi(sign(p(x), 6,(p(x))).
xeM =
We first note that for any p,

[Cun??]
VolB;(p, C11’ZT]2/3) = Z :l ) =C |-C1nr]2/3-| nlCin?] < C/nC”Clnq2/3
i=0

for appropriate constants, assuming n1*/3 > Klog(nn*/®) for some K. It follows that on &, N EY,

r L _
Sy= Vol J 8 By (supp(p5(x)), 5y(p'(x))) < Vol | 8 Bs(supp(pf(x)), Crn®?)
xeM xeM
L

< 1_[ Z VolB, (supp(p}y(x)), Cinn*/?) < C’

=1 EENn*3n61/2

2/3 ” 2/3
eCdLnr] / < C/eC dLnn?/

NWSnSl/z

for appropriate constants, since n1?/®> > C"”d and d satisfies the assumptions of lemma D.8. Since after
worsening constants we have P [, N 8({)\] | < C’e4, we obtain

p [s,7 > C’eC"dL””m] < Clec (F.34)
for some constants.
We would next like to employ lemma D.14 in order to control the quantities of interest for a single

J € ?,I(M), and then take a union bound utilizing the upper bound above on |?fl) This will require

controlling the event Esk in the lemma statement with an appropriate choice of the constants 05, Ks. As in
other sections, we use the convention l"fj}o+ =1 for any ¢ € [L].

At a given collection of supports J € J,(x) for some x € M, we choose x as the anchor point in lemma
D.14.
From (F.27) we have, for any x € N, 5 -2,
0

Sn(po(x)) < ds (py(x), Po()) + Byt x)-pt |, PO ()-
Then using (F.29) we obtain to bound the two terms in the RHS gives
P [Vx eM,tell]:Txe N, 12 0 Nn,w/z(x) s.t. Op(ph(x)) < d + doy(p(X))| = 1 - 6e7/2.

where we used n = C,L3?*1n~1/2 and d satisfies the requirements of lemma D.8. Using (F.33) to bound
d + 62y (pé(i)) uniformly on N, -1 and ¢, and combining the failure probabilities of these events by a
0

union bound, we obtain

P[E3xeM st 5(ph(x) > Crn?| < 6e™2 4+ Cem? < e
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for some constants. Since 6,(p}(x)) > ¢ © Ir,o(x)| for any J; € J € Fy(x), implies directly that
P[VxeM,Ji €T € Fy(x): e ©Iox)| < Cing??| > 1-C'e™". (E.35)

In the notation of lemma D.14 we denote this event by &s, and choose 65 = C1n1]2/ 3
From the definition of T, for every x € M and J; that is an element of J € J,(x),
_ ¢
Je = supp (py(x) +v > 0)

for some v such that ||v]|, < 1. We now consider the vector

w = (Pj, = Py) po(x).

Note that for any element of w; that is non-zero, we must have |v;| > |p6(x)i| (since the perturbation must
change the sign of this element), in which case we have |w;| = ’ pg(x)i|. Denoting the set of indices of these
non-zero elements by Q, we have

ol = > w?= > (ph(x))* < > 07 < loll3 < .
i€Q i€Q ieQ

This holds for all £ € [L]. Thus if we set K; = 1 for K;, the event Ek in lemma D.14 holds with probability 1.
We therefore choose
Esk = Es

with &;s defined in (FE.35). In order to apply D.14 we must also ensure

| =

6S=Connz/3§%, =n< L 3/2,

3/2+q
Setting n = C”i/ﬁ as per (F.2), we can satisfy these requirements by demanding n > CSC,ZIL“Z[’ .

We are now in a position to apply lemma D.14 to control the objects of interest. We use rotational
invariance of the Gaussian distribution repeatedly to obtain

{ _ L+1ypL:6+2 L+1ypL:6+2
Lesk ﬁJ'OHZ =lgy ||Wy rj Ph+1 ]lgoK Wy rj
4 Lib+2ya7L+14|| 4 L:0+2 L+1x
Sley |[THGP WS Z_HSM o e, [wg™™|l,-

Recalling that W+ ~ N(0,1), we use Bernstein’s inequality to obtain P [||WL+1||2 > Cyn| < C’e™", and

another application of lemma D.14 gives P []1561( 1"ng+2 e1“2 > C] < C”e¢~“T for some constants. Hence

after worsening constants

P [tew o], > CVi| < et (F.36)
We also obtain »
Lo rj’OH = Les Wgr?,l():e 1Ph' < 15(»1< |W ”Hré o H
P []lgbK FJOH > C\/_] < Cle~" 4 C"e ' <C"e —cmt

where we used an e-net argument to bound ||W || and lemma D.14 to bound &gk Hl"f L# 1|| We now

combine this result with (F.36). It remains to uniformize this result over the choice of ¢ and J. Combining
(F.26) and (F.34) gives

p H?,](M)’ > c’eC”dL""”S] < Cled, (F.37)
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3/2+
Denoting the complement of this event by & ¢, and setting n = C”f/% i , on this event we have
~ 0
J— {]]'SOK rjlo’ < C\/E}
P VT € I,(M), ' <l elL], p Eg
0 {1 B |2 < Cir)
2/3 dL.2+24/3,,2/3

>1 - CleCr P =ct > 1 - €7 i >1-Clet

assuming n > KL*214 for some constant K. Taking a union bound over the probabilities of & or Eks not
holding, we finally obtain

{ ff}%) < C\/E}

PIVT e TyM,C<telll, s 84|, < vl
Toll, =

v

1-Cle vt -y | - P[]

—c'n —c” A
1=C’e L = C"e cd_cme c”d

_
> 1-C"e ¢ d

v

6K], and in the last inequality we used
n > KLd for some K. Combining this with (F.25) and taking a union bound gives the desired result.

for appropriate constants, where we used (F.35) to bound P [&¢

ii) We will control ”ﬁf;o(x) 0~ ﬁ’}t ®) 0“2 using lemma D.21. For t € [0, T;] we note that by definition of T;,
and 7 (%),
1i(x) € Jy(x).

As noted in the previous section, if we set d to satisfy lemma D.8 and n > KdL?*27 for some K, then the
requirements of lemma D.14 are satisfied with

6s = Conn?3, Ky =n.

and
P[Esk]=P[Es] =1 Ce™

where the last bound uses the definition of &;s in (F.35). From the definition of d in lemma D.21, on the

event Esx we have
||EH < ds < Conn?3.

Thus for some fixed t € [0, T, ], if we denote d; = |I; +(x) © I; o(x)| for i € [L], we can apply the second result
of lemma D.21, choosing

K///d0L2+2q/3n2/3

do=dl L, = Kd L2+2q/3 —1/3, d, = K'd L2+2q/3 2/3[ )
0 og S 0 n b 0 n Si max{l,di}

(F.38)

for some appropriately chosen constants K, K/, K. Assuming 1 > dL? and n'/12VL3+24331/4 > K for some
constant K to simplify the result, we obtain

_xm 2+24/3,,2/3 o
P []18“( H S K”C,27/3n5/12L3+2'7/3d§/4] < Cle KL | oo —c'
2

¢ ¢
ﬁfo(x),o _ﬁff(x),O

The constants K, K’ are chosen such that this result can be uniformized over the set of possible supports
)7,7(/\/()’ and [L]. Since on the event & 4 defined in (F.37) the size of this set is bounded, we have

-1 _ ﬁ(’—l
Io(x),0 1i(x),0

Lk ‘
2+2q/3,,2/3
zaj Zl_cle—CdQLJrq/}’l/

P|Vxe M,te[0,T,], ¢ €[L] :
SK//C'Z]/?’n5/12L3+2q/3d(?;/4
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for some constant ¢, C, C’, assuming n > K" 12+214 for some constant K. Taking a union bound over the
complements of &g and Esk using (F.37) and (F.35), we have

xeM, 23 /
121315012 10,3741 \[3+24/3 134
e N0 = Bl = KrC 10 L
>1— C/e—cd0L2+2’7/3n2/3 _ Ve
>1 — C///e—c"d
for appropriate constants, assuming log(L)L227/342/3 > K for some constant K. O

G Auxiliary Results

Lemma G.1 (Hoeffding’s Inequality [Ver18, Theorem 2.2.6]). Let Xy, ..., Xn be independent random variables.
Assume that X; € [m;, M;] for every i. Then for any t > 0, we have

<eX _2—t2
= o SN (M —mp)2 |

Lemma G.2 (Bernstein’s inequality [Verl8, Theorem 2.8.1]). Let X, ..., Xy be independent mean-zero subex-
ponential random variables. Then, for every t > 0, one has

P ix- >t <2ex (—cmin - : )
[ R iy, " maxilXille,

i=1
where ¢ > 0 is an absolute constant, and || - ||y, = inf{t > 0| Elel"1/t] < 2} is the subexponential norm.

N
P Z(Xf —E[X;]) > ¢t

i=1

Lemma G.3 (Bernstein’s inequality for bounded RVs - [Ver18] Thm. 2.8.4). For Xy, ..., X, independent, zero
mean random variables such that Vi : | X;| < K, and every t > 0, we have
t2/2 )

i >t —
02+ Kt/3

<2exp (—

n
where 02 = Y, EX2.
i=1

Lemma G.4 (Hanson-Wright Inequality [Ver18, Theorem 6.2.1]). Let g be a vector of n iid., mean zero,
sub-Gaussian variables and A be an n X n matrix. Then for any t > 0, we have

12 t
P >t <2exp|—cmin ,
[ | p( {K4 A2 K2 IIAII}

< K (with |||, denoting the sub-Gaussian norm).

where max || g,-H r

Lemma G.5 (Freedman’s Inequality [Fre75, Theorem 1.6]). Let (A, F*) be a sequence of martingale differences,
with
E[A"|FY] =0,
and suppose that '
A" <R as.

Define the quadratic variation

Ve = ZL‘J E[(a)?|71].

i=1
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Then

i

24

=1

2

P|di=1...Ls.t. >t and Vi<o

t2/2 )

s 2exp (_02 +Rt/3

Lemma G.6 (Moment control Freedman’s [Pei99]). Let (A?, ') be a sequence of martingale differences, with
E[A"|F '] =0,

and suppose that

el 7] = el s
Set .
] ;
i=1 ’
Then ) .
i , t2/2
. ) 0 2
P|3i=1...]s.t ;A >t and V'<o SzeXP(_Gz_,_Rt)'

Lemma G.7 (Martingales with subgaussian increments). Let (A', F') be a sequence of martingale differences,
and suppose that
/\ZVZ

E[exp (AA7) | F77]

A >t 2 - .
; eXp( 2LV2)

Proof. By assumption, E[A’] = 0 for each i € [L]. We calculate using standard properties of the conditional
expectation

[E[eAZlL:l Ai] _ [E[[E[EAZ"Lzl Al ’TL_l]] — [E[EAZ,-L;ll AI‘[E[e/\AL

IN

exp( ), VA, as.
Then

P

IA

¢L—1” < eazvz/z[E[eAzfgf A"].
Moreover, one has E[e*" | F0] = E[e*'] < ¢**V*/2, An induction therefore implies
[E[eAZiLﬂ Af] < MLVE2

and the result follows from standard equivalence properties of subgaussian random variables [Ver18, Propo-
sition 2.5.2]. O

Lemma G.8 (Azuma-Hoeffding Inequality [Azu67]). Let (A', F') be a sequence of martingale differences, and
suppose that '
|A’| <R;as.

Then

2

P >t

L
2N

=1

< 2exp

2 R?

e=1
Lemma G.9 (Chi and Inverse-Chi Expectations). Let X ~ x(n) be a chi random variable with n degrees of freedom,
equal to the square root of the sum of n independent and identically distributed squared N(0,1) random variables.
Then
I(3(n+1)

E[X] = V2 @

7
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and, ifn 2 2,

1 T3 -1)
V2 TGn)
Proof. We use the fact that the density of X is given by

E[X7!] =

1 n—le—xZ/Z

p(x) = Itxzo(x)m

7

which can be proved easily using the Gaussian law and a transformation to spherical polar coordinates
[Mui82, Theorem 2.1.3]. The expectation of X then results from a simple sequence of calculations using the
change of variables formula:

E[X] = ;1‘/ x"e 12 dx
ZH/ZF(ET’Z) 0

:;/ 121/2,7x12 gy
212T(4n) Jo

— \{E / x(n/2+1/2)—1e—xdx
F(ETl) 0

_ ﬁr(%(n + 1)).
I(3n)

Now we study X~!. By the change of variables formula, its density is given by

ron 1 —n-1/(2x2)
p'(x)= ﬂxzo(x)zn/Tr(%n)x e .

A similar sequence of calculations then yields
-1 2 " /@)
E[X']= —— x"e ) dx

2121 (3n) Jo

_ 1 /°° 30D ,=1/20) g
2”/2T(%n) 0

- N x%("_l)_le_%x dx
212T(3n) Jo

_ 1 ® Luna g
\/il”(%n)/o * ¢

_ 1 TGm-1)

V2 T(n)

provided n > 1. o

7

Lemma G.10 (Equivalence of ¢’ Norms). Let 1 < p < g < +oo. Then for every x € R" one has
Ixlly < llxll, < "7 ]l

Lemma G.11 (Gaussian Moments). Let p > 1, and let g ~ N(0, 1) be a standard normal random variable. Then

E[Igl] = 2;7/2%; E[lgl}] = %[E[Iglf’]/

where [x]y = max{x,0}. In particular E[|g|P] < pP/?, so that g is subgaussian and g* is subexponential.
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Lemma G.12 ([Zhu97, Lemma 3.6]). If M is a d-dimensional manifold with Ric > (d—1)and r, e > Qare arbitrary
constants, then for any p € M there exists an e-net (measured in the Riemannian distance disty,) of the metric ball
{x e M |distp(p, x) < r} with cardinality at most P(2r)/(e/4), where P : Ry — Ry gives the volume of a cap
in S having radius equal to its argument.
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