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Abstract

Achieving invariance to nuisance transformations is a fundamental challenge in the construction of ro-
bust and reliable vision systems. Existing approaches to invariance scale exponentially with the dimension
of the family of transformations, making them unable to cope with natural variabilities in visual data such
as changes in pose and perspective. We identify a common limitation of these approaches—they rely on
sampling to traverse the high-dimensional space of transformations—and propose a new computational
primitive for building invariant networks based instead on optimization, which in many scenarios provides
a provably more efficient method for high-dimensional exploration than sampling. We provide empirical
and theoretical corroboration of the efficiency gains and soundness of our proposed method, and demon-
strate its utility in constructing an efficient invariant network for a simple hierarchical object detection
task when combined with unrolled optimization. Code for our networks and experiments is available at
https://github.com/sdbuch/refine.

1 Introduction
In computing with any kind of realistic visual data, one must contend with a dizzying array of complex
variabilities: statistical variations due to appearance and shape, geometric variations due to pose and
perspective, photometric variations due to illumination and cast shadows, and more. Practical systems cope
with these variations by a data-driven approach, with deep neural network architectures trained on massive
datasets. This approach is especially successful at coping with variations in texture and appearance.
For invariance to geometric transformations of the input (e.g., translations, rotations, and scaling, as in
Figure 1(a-d)), the predominant approach in practice is also data-driven: the ‘standard pipeline’ is to deploy
an architecture that is structurally invariant to translations (say, by virtue of convolution and pooling),
and improve its stability with respect to other types of transformations by data augmentation. Data
augmentation generates large numbers of synthetic training samples by applying various transformations
to the available training data, and demonstrably contributes to the performance of state-of-the-art systems
[CZMV+19; CKNH20; HMCZ+20]. However, it runs into a basic resource efficiency barrier associated with
the dimensionality of the set of nuisances: learning over a 3-dimensional group of transformations requires both

data and architectural resources that are exponential in 3 [BJ17; CJLZ19; Sch19; NI20; CK21]. This is a major
obstacle to achieving invariance to large, structured deformations such as 3D rigid body motion (3 = 6),
homography (3 = 8), and linked rigid body motion [KZFM19] and even nonrigid deformations [ZMH15]
(3 � 8). It is no surprise, then, that systems trained in this fashion remain vulnerable to adversarial
transformations of domain [FF15; KMF18; XZLH+18; AAG19; ALGW+19; AW19; ETTS+19]—it simply is
not possible to generate enough artificial training data to learn transformation manifolds of even moderate
dimension. Moreover, this approach is fundamentally wasteful: learning nuisances known to be present in
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Figure 1: Comparing the complexity of covering-based and optimization-based methods for invariant recognition
of a template embedded in visual clutter. (a-d): We consider four different classes of deformations that generate
the observation of the template, ranging across shifts, rotations, scale, and skew. The dimension 3 of the family of
transformations increases from left to right. (e): A geometric illustration of the covering and optimization approaches
to global invariance: in certifying that a query (labeled with a star) is a transformed instance of the template (at the base
point of the solid red/blue lines), optimization can be vastly more efficient than covering, because it effectively covers the
space at the scale of the basin of attraction of the optimization problem, which is always larger than the template’s associated
⌘COVER. (f): Plotting the average number of convolution-like operations necessary to reach a zero-normalized cross-
correlation (ZNCC) of 0.9 between the template and a randomly-transformed query across the different deformation
classes. Optimization leads to an efficiency gain of several orders of magnitude as the dimensionality of the family of
transformations grows. Precise experimental details are recorded in Appendix A.3.

the input data wastes architectural capacity that would be better spent coping with statistical variability in
the input, or learning to perform complex tasks.

These limitations of the standard pipeline are well-established, and they have inspired a range of
alternative architectural approaches to achieving invariance, where each layer of the network incorporates
computational operations that reflect the variabilities present in the data. Nevertheless, as we will survey
in detail in Section 2, all known approaches are subject to some form of exponential complexity barrier:
the computational primitives demand either a filter count that grows as exp(3) or integration over a 3-
dimensional space, again incurring complexity exponential in 3. Like data augmentation, these approaches
can be seen as obtaining invariance by exhaustively sampling transformations from the 3-dimensional space
of nuisances, which seems fundamentally inefficient: in many concrete high-dimensional signal recovery
problems, optimization provides a significant advantage over naive grid searching when exploring a high-
dimensional space [SER17; GBW19; CDHS21], as in Figure 1(e). This motivates us to ask:

Can we break the barrier between resource-efficiency and invariance using optimization as
the architectural primitive, rather than sampling?

In Figure 1, we conduct a simple experiment that suggests a promising avenue to answer this question in the
affirmative. Given a known synthetic textured motif subject to an unknown structured transformation and
embedded in a background, we calculate the number of computations (convolutions and interpolations)
required to certify with high confidence that the motif appears in the image. Our baseline approach is
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template matching, which enumerates as many transformations of the input as are necessary to certify
the motif’s occurrence (analogous to existing architectural approaches with sampling/integration as the
computational primitive)—each enumeration requires one interpolation and one convolution. We compare
to a gradient-based optimization approach that attempts to match the appearance of the test image to
the motif, which uses three interpolations and several convolutions per iteration (and on the order of 102

iterations). As the dimensionality of the space of transformations grows, the optimization-based approach
demonstrates an increasingly-significant efficiency advantage over brute-force enumeration of templates—
at affine transformations, for which 3 = 6, it becomes challenging to even obtain a suitable transformation
of the template by sampling.

To build from the promising optimization-based approach to local invariance in this experiment to a full
invariant neural network architecture capable of computing with realistic visual data, one needs a general
method to incorporate prior information about the specific visual data, observable transformations, and tar-
get task into the design of the network. We take the first steps towards realizing this goal: inspired by classical
methods for image registration in the computer vision literature, we propose an optimization formulation
for seeking a structured transformation of an input image that matches previously-observed images, and
we show how combining this formulation with unrolled optimization [GL10; OJMB+20; CCCH+21], which
converts an iterative solver for an optimization problem into a neural network, implies resource-efficient and
principled invariant neural architectural primitives. In addition to providing network architectures incor-
porating ‘invariance by design’, this is a principled approach that leads to networks amenable to theoretical
analysis, and in particular we provide convergence guarantees for specific instances of our optimization
formulations that transfer to the corresponding unrolled networks. On the practical side, we illustrate how
these architectural primitives can be combined into a task-specific neural network by designing and evalu-
ating an invariant network architecture for an idealized single-template hierarchical object detection task,
and present an experimental corroboration of the soundness of the formulation for invariant visual motif
recognition used in the experiment in Figure 1. Taken altogether, these results demonstrate a promising
new direction to obtain theoretically-principled, resource-efficient neural networks that achieve guaranteed
invariance to structured deformations of image data.

The remainder of the paper is organized as follows: Section 2 surveys the broad range of architectural
approaches to invariance that have appeared in the literature; Section 3 describes our proposed optimization
formulations and the unrolling approach to network design; Section 4 describes the hierarchical invariant
object detection task and a corresponding invariant network architecture; Section 5 establishes convergence
guarantees for our optimization approach under a data model inspired by the hierarchical invariant object
detection task; and Section 6 provides a more detailed look at the invariance capabilities of the formulation
used in Figure 1.

2 Related Work
Augmentation-based invariance approaches in deep learning. The ‘standard pipeline’ to achieving in-
variance in deep learning described in Section 1 occupies, in a certain sense, a minimal point on the tradeoff
curve between a purely data-driven approach and incorporating prior knowledge about the data into the
architecture: by using a convolutional neural network with pooling, invariance to translations of the input
image (a two-dimensional group of nuisances) is (in principle) conferred, and invariance to more complex
transformations is left up to a combination of learning from large datasets and data augmentation. A num-
ber of architectural proposals in the literature build from a similar perspective, but occupy different points
on this tradeoff curve. Parallel channel networks [CMS12] generate all possible transformations of the input
and process them in parallel, and have been applied for invariance to rotations [DWD15; LSBP16] and scale
[JL21]. Other architectures confer invariance by pooling over transformations at the feature level [SL12],
similarly for rotation [WGTB17] and scale [KSJ14]. Evidently these approaches become impracticable for
moderate-dimensional families of transformations, as they suffer from the same sampling-based bottleneck
as the standard pipeline.

To avoid explicitly covering the space of transformations, one can instead incorporate learned defor-
mation offsets into the network, as in deformable CNNs [DQXL+17] and spatial transformer networks
[JSZK15]. At a further level of generality, capsule networks [HKW11; SFH17; Hin21; STDS+21] allow more
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flexible deformations among distinct parts of an object to be modeled. The improved empirical performance
observed with these architectures in certain tasks illustrates the value of explicitly modeling deformations
in the network architecture. At the same time, when it comes to guaranteed invariance to specific families
of structured deformations, they suffer from the same exponential inefficiencies as the aforementioned
approaches.

Invariance-by-construction architectures in deep learning. The fundamental efficiency bottleneck en-
countered by the preceding approaches has motivated the development of alternate networks that are
invariant simply by virtue of their constituent computational building blocks. Scattering networks [BM13]
are an especially principled and elegant approach: they repeatedly iterate layers that convolve an input
signal with wavelet filters, take the modulus, and pool spatially. These networks provably obtain transla-
tion invariance in the limit of large depth, with feature representations that are Lipschitz-stable to general
deformations [Mal12]; moreover, the construction and provable invariance/stability guarantees generalize
to feature extractors beyond wavelet scattering networks [WB18]. Nevertheless, these networks suffer from
a similar exponential resource inefficiency to those that plague the augmentation-based approaches: each
layer takes a wavelet transform of every feature map at the previous layer, resulting in a network of width
growing exponentially with depth. Numerous mitigation strategies have been proposed for this limita-
tion [BM13; ZTAM20; ZGM21], and combinations of relatively-shallow scattering networks with standard
learning machines have demonstrated competitive empirical performance on certain benchmark datasets
[OBZ17]. However, the resulting hybrid networks still suffer from an inability to handle large, structured
transformations of domain such as pose and perspective changes.

Group scattering networks attempt to remedy this deficiency by replacing the spatial convolution oper-
ation with a group convolution F , G 7! [F ⇤ G](6) =

Ø
G
G(60)F(6�1

6
0)d⇠(60) [Mal12; CW16; KT18; BBCV21].

In this formula, G is a group with sufficient topological structure, ⇠ is Haar measure on G, and F and G are
the filter and signal (resp.), defined on G (or a homogeneous space for G, as in spherical CNNs [CGKW18]).
Spatial convolution of natural images coincides with the special case G = Z2 in this construction; for more
general groups such as 3D rotation, networks constructed by iterated group convolutions yield feature rep-
resentations equivariant to the group action, and intermixing pooling operations yields invariance, just as
with 2D convolutional neural networks. At a conceptual level, this basic construction implies invariant net-
work architectures for an extremely broad class of groups and spaces admitting group actions [WFVW21],
and has been especially successful in graph-structured tasks such as molecular prediction where there is an
advantage to enforcing symmetries [BBCV21]. However, its application to visual data has been hindered
by exponential inefficiencies in computing the group convolution—integration over a 3-dimensional group
G costs resources exponential in 3—and more fundamentally by the fact that discrete images are defined
on the image plane Z2, whereas group convolutions require the signal to be defined over the group G one
seeks invariance to. In this sense, the ‘reflexivity’ of spatial convolution and discrete images seems to be the
exception rather than the rule, and there remains a need for resource-efficient architectural primitives for
invariance with visual data.

“Unrolling” iterative optimization algorithms. First introduced by Gregor and LeCun in the context of
sparse coding [GL10], unrolled optimization provides a general method to convert an iterative algorithm
for solving an optimization problem into a neural network (we will provide a concrete demonstration in
the present context in Section 3), offering the possibility to combine the statistical learning capabilities of
modern neural networks with very specific prior information about the problem at hand [CCCH+21]. It
has found broad use in scientific imaging and engineering applications [KKHP17; BHKW18; KBCW19;
KBRW19; OJMB+20], and most state-of-the-art methods for learned MRI reconstruction are based on this
approach [MRRK+21]. In many cases, the resulting networks are amenable to theoretical analysis [CLWY18;
LCWY19], leading to a mathematically-principled neural network construction.

3 Invariant Architecture Primitives: Optimization and Unrolling
Notation. We write R for the reals, Z for the integers, and N for the positive integers. For positive integers
<, =, and 2, we let R< , R<⇥= , and R<⇥=⇥2 denote the spaces of real-valued <-dimensional vectors, <-by-=
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matrices, and 2-channel <-by-= images (resp.). We write e 8 , e 8 9 , etc. to denote the elements of the canonical
basis of these spaces, and 1< and 0< ,= (etc.) to denote their all-ones and all-zeros elements (resp.). We write
h · , · i and k · k� to denote the euclidean inner product and associated norm of these spaces. We identify
< by = images x with functions on the integer grid {0, 1, . . . ,< � 1} ⇥ {0, 1, . . . , = � 1}, and therefore index
images starting from 0; when applying operations such as filtering, we will assume that an implementation
takes the necessary zero padding, shifting, and truncation steps to avoid boundary effects. For a subset
⌦ ⇢ Z2, we write P⌦ for the orthogonal projection onto the space of images with support ⌦.

Given a deformation vector field 3 2 R<
0⇥=0⇥2 and an image x 2 R<⇥=⇥2 , we define the transformed

image x � 3 by (x � 3)8 9 =
Õ

(: ,;)2Z2 x:;)(�8 90 � :))(�8 91 � ;), where ) : R ! R is the cubic convolution
interpolation kernel [Key81].1 For parametric transformations of the image plane, we write 3G,b to denote
the vector field representation of the transformation parameterized by (G, b), where G 2 R2⇥2 is nonsingular
and b 2 R2 (see Appendix A.1 for specific ‘implementation’ details). For two grayscale images x 2 R<⇥=

and u 2 R<
0⇥=0 , we write their linear convolution as (x ⇤ u)8 9 =

Õ
(: ,;)2Z2 G:;D8�: , 9�; . We write g�2 2 RZ⇥Z

to denote a (sampled) gaussian with zero mean and variance �2. When x 2 R<⇥= and u 2 R2 , we write
x ⌦ u 2 R<⇥=⇥2 to denote the ‘tensor product’ of these elements, with (x ⌦ u)8 9: = G89D: . We use x � u to
denote elementwise multiplication of images.

3.1 Conceptual Framework
Given an input image y 2 R<⇥=⇥2 (e.g., 2 = 3 for RGB images), we consider the following general opti-
mization formulation for seeking a structured transformation of the input that explains it in terms of prior
observations:

min
3

!(y � 3) + ⌫⌧(3). (1)

Here, 3 2 R<
0⇥=0⇥2 gives a vector field representation of transformations of the image plane, and ⌫ > 0 is a

regularization tradeoff parameter. Minimization of the function ! encourages the transformed input image
y � 3 to be similar to previously-observed images, whereas minimization of ⌧ regularizes the complexity of
the learned transformation 3. Both terms allow to incorporate significant prior information about the visual
data and task at hand, and an optimal solution 3 to (1) furnishes an invariant representation of the input y.

3.2 Computational Primitive: Optimization for Domain Transformations
We illustrate the flexibility of the general formulation (1) by instantiating it for a variety of classes of visual
data. In the most basic setting, we may consider the registration of the input image y to a known motif
x> assumed to be present in the image, and constrain the transformation 3 to lie in a parametric family of
transformations T, which yields the optimization formulation

min
3

1
2
��P⌦

⇥
g�2 ⇤ (y � 3 � x>)

⇤��2
�
+ "T(3). (2)

Here, ⌦ denotes a subset of the image plane corresponding to the pixels on which the motif x> is supported,
g�2 is a gaussian filter with variance �2 applied individually to each channel, and "T(3) denotes the
characteristic function for the set T (zero if 3 2 T, +1 otherwise). The parameters in (2) are illustrated in
Figure 2(a-d). We do not directly implement the basic formulation (2) in our experiments, but as a simple
model for the more elaborate instantiations of (1) that follow later it furnishes several useful intuitions. For
instance, although (2) is a nonconvex optimization problem with a ‘rough’ global landscape, well-known
results suggest that under idealized conditions (e.g., when y = x>�3> for some 3> 2 T), multiscale solvers that
repeatedly solve (2) with a smoothing level �2

:
then re-solve initialized at the previous optimal solution with

a finer level of smoothing �2
:+1 < �2

:
converge in a neighborhood of the true transformation [LC01; MZM12;

KF14; VF14]. This basic fact underpins many classical computer vision methods for image registration
and stitching [Bro92; MV98; BM04; Sze07], active appearance models for objects [CET98], and optical flow
estimation [HS81; LK81; Ana89], and suggests that (2) is a suitable base for constructing invariant networks.

For our experiments on textured visual data in Figure 1 and Section 4, we will need two elaborations of
(2). The first arises due to the problem of obtaining invariant representations for images containing motifs

1The function ) is compactly supported on the interval [�2, 2], and differentiable with absolutely continuous derivative.
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Figure 2: Motif registration with the formulation (1), and an unrolled solver. (a-d): Visualization of components of
a registration problem, such as (2). We model observations y as comprising an object involving the motif of interest
(here, the body of the crab template we experiment with in Section 4) on a black background, as in (a), embedded in
visual clutter (here, the beach background) and subject to a deformation, which leads to a novel pose. A mask ⌦ for the
nonzero pixels of the motif, as in (b), is used to avoid having pixels corresponding to clutter enter the registration cost.
After solving this optimization problem, we obtain a transformation 3 that registers the observation to the motif, as in
(d). In (c-d), we set the red and blue pixels corresponding to the mask ⌦ to 1 in order to visualize the relative location
of the motif. (e): Optimization formulations imply network architectures, via unrolled optimization. Here we show
two iterations of an unrolled solver for (2), as we detail in Section 3.3; parameters that could be learned from data, à la
unrolled optimization, are highlighted with red text. The operations comprising this unrolled network consist of linear
maps, convolutions, and interpolations, leading to efficient implementation on standard hardware accelerators.

x> appearing in general backgrounds: in such a scenario, the input image y may contain the motif x> in a
completely novel scene (as in Figure 2(c-d)), which makes it inappropriate to smooth the entire motif with
the filter g�2 . In these scenarios, we consider instead a cost-smoothed formulation of (2):

min
3

1
2

’
�2Z⇥Z

(g�2)�
��P⌦

⇥
y � (3 + 30,�) � x>

⇤��2
�
+ "T(3). (3)

In practice, we take the sum over a finite subset of shifts � on which most of the mass of the gaussian filter
lies. This formulation is inspired by more general cost-smoothing registration proposals in the literature
[MZM12], and it guarantees that pixels of y � 3 corresponding to the background ⌦2 are never compared
to pixels of x> while incorporating the basin-expanding benefits of smoothing. Second, we consider a more
general formulation which also incorporates a low-frequency model for the image background:

min
3, #

1
2
��Pe⌦

⇥
g�2 ⇤ (y � 3 � x> � P⌦2 [g

⇠�2 ⇤ #])
⇤��2
�
+ "T(3). (4)

Here, # 2 R<⇥=⇥2 acts as a learnable model for the image background, and ⇠ > 1 is a fixed constant that
guarantees that the background model is at a coarser scale than the motif and image content. The set e⌦
represents a dilation by � of the motif support ⌦, and penalizing pixels in this dilated support ensures that
an optimal 3 accounts for both foreground and background agreement. We find background modeling
essential in computing with scale-changing transformations, such as affine transforms in Figure 1.

3.3 Invariant Networks from Unrolled Optimization
The technique of unrolled optimization allows us to obtain principled network architectures from the
optimization formulations developed in Section 3.2. We describe the basic approach using the abstract
formulation (1). For a broad class of regularizers ⌧, the proximal gradient method [PB14] can be used to
attempt to solve the nonconvex problem (1): it defines a sequence of iterates

3(C+1) = prox⌫⇡C⌧
⇣
3(C) � ⇡Cr3!(y � 3(C))

⌘
(5)
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from a fixed initialization 3(0), where ⇡C > 0 is a step size sequence and prox⌧(3) = arg min30
1
2 k3�30k2

�
+⌧(30)

is well-defined if ⌧ is a proper convex function. Unrolled optimization suggests to truncate this iteration
after ) steps, and treat the iterate 3()) at that iteration as the output of a neural network. One can then
learn certain parameters of the neural network from datasets, as a principled approach to combining the
structural priors of the original optimization problem with the benefits of a data-driven approach.

In Figure 2(e), we show an architectural diagram for a neural network unrolled from a proximal gradient
descent solver for the registration formulation (2). We always initialize our networks with 3(0) as the
identity transformation field, and in this context we have prox⌫⇡C⌧(3) = projT(3) as the nearest point in T to
3, which can be computed efficiently (computational details are provided in Appendix A.1). The cost (2) is
differentiable; calculating its gradient as in Appendix A.2, (5) becomes

3(C+1) = projT

 
3(C) � ⇡C

2�1’
:=0

⇣
g�2 ⇤ P⌦

h
g�2 ⇤

⇣
y � 3(C) � x>

⌘
:

i
⌦ 12

⌘
�

⇣
dy

:
� 3(C)

⌘!
, (6)

as we represent visually in Figure 2(e), where a subscript of : denotes the :-th channel of the image and dy 2
R<⇥=⇥2⇥2 is the Jacobian matrix of y. The constituent operations in this network are convolutions, pointwise
nonlinearities and linear maps, which lend themselves ideally to implementation in standard deep learning
software packages and on hardware accelerators; and because the cubic convolution interpolation kernel )
is twice continuously differentiable except at four points of R, these networks are end-to-end differentiable
and can be backpropagated through efficiently. The calculations necessary to instantiate unrolled network
architectures for other optimization formulations used in our experiments are deferred to Appendix A.2.
A further advantage of the unrolled approach to network design is that hyperparameter selection becomes
directly connected to convergence properties of the optimization formulation (1): we demonstrate how
theory influences these selections in Section 5, and provide practical guidance for registration and detection
problems through our experiments in Sections 4, 5.2 and 6.

4 Invariant Networks for Hierarchical Object Detection
The unrolled networks in Section 3 represent architectural primitives for building deformation-invariant
neural networks: they are effective at producing invariant representations for input images containing local
motifs. In this section, we illustrate how these local modules can be combined into a network that performs
invariant processing of nonlocally-structured visual data, via an invariant hierarchical object detection task
with a fixed template. For simplicity, in this section we will focus on the setting where T is the set of rigid
motions of the image plane (i.e., translations and rotations), which we will write as SE(2).

4.1 Data Model and Problem Formulation
We consider an object detection task, where the objective is to locate a fixed template with independently-
articulating parts (according to a SE(2) motion model) in visual clutter. More precisely, we assume the
template is decomposable into a hierarchy of deformable parts, as in Figure 3(a): at the top level of the
hierarchy is the template itself, with concrete visual motifs at the lowest levels that correspond to specific
pixel subsets of the template, which constitute independent parts. Because these constituent parts deform
independently of one another, detecting this template efficiently demands an approach to detection that
captures the specific hierarchical structure of the template.2 Compared to existing methods for parts-based
object detection that are formulated to work with objects subject to complicated variations in appearance
[FMR08; FGMR10; GIDM15; PVGR15], focusing on the simpler setting of template detection allows us
to develop a network that guarantees invariant detection under the motion model, and can incorporate
large-scale statistical learning techniques by virtue of its unrolled construction (although we leave this latter

2Reasoning as in Section 1, the effective dimension of the space of all observable transformations of the object is the product
of the dimension of the motion model and the number of articulating parts. A detector that exploits the hierarchical structure
of the object effectively reduces the dimensionality to dim(motion model) + log(number of parts), yielding a serious advantage for
moderate-dimensional families of deformations.
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direction for future work). We note that other approaches are possible, such as hierarchical sparse modeling
[BS10; JMOB10] or learning a graphical model [SM12].

More formally, we write y
>
2 R<>⇥=>⇥3 for the RGB image corresponding to a canonized view of the

template to be detected (e.g., the crab at the top of the hierarchy in Figure 3(a) left) embedded on a black
background. For a -motif object (e.g.,  = 4 for the crab template), we let x: 2 R<:⇥=:⇥3 denote the : distinct
(canonized, black-background-embedded) transforming motifs in the object, each with non-overlapping
occurrence coordinates (8: , 9:) 2 {0, . . . ,<>} ⇥ {0, . . . , =>}. The template y

>
decomposes as

y
>
=

 ’
:=1

x: ⇤ e 8: 9:
|         {z         }

transforming motifs

+ y
>
�

 ’
:=1

x: ⇤ e 8: 9:
|               {z               }

static body

. (7)

For example, the four transforming motifs for the crab template in Figure 3(a) are the two claws and two
eyes. In our experiments with the crab template, we will consider detection of transformed templates yobs
of the following form:

yobs =

"
 ’
:=1

(x: ⇤ e 8: 9: ) � 3: +
 
y
>
�

 ’
:=1

x: ⇤ e 8: 9:

!#
� 30 , (8)

where 30 2 SE(2), and 3: 2 SO(2) is sufficiently close to the identity transformation (which represents the
physical constraints of the template). The detection task is then to decide, given an input scene y 2 R<⇥=⇥3

containing visual clutter (and, in practice, < � <> and = � =>), whether or not a transformed instance yobs
appears in y or not, and to output estimates of its transformation parameters 3: .

Although our experiments will pertain to the observation model (8), as it agrees with our decomposition
of the crab template in Figure 3(a), the networks we construct in Section 4.3 will be amenable to more
complex observation models where parts at intermediate levels of the hierarchy also transform.3 To this
end, we introduce additional notation that captures the hierarchical structure of the template y

>
. Concretely,

we identify a hierarchically-structured template with a directed rooted tree ⌧ = (+ , ⇢), with 0 denoting the
root node, and 1, . . . ,  denoting the  leaf nodes. Our networks will treat observations of the form

yobs =
 ’
:=1

((· · · (((x: ⇤ e 8: 9: ) � 3:) � 3E
3(:)�1) � · · · ) � 3E1) � 30 +

 
y
>
�

 ’
:=1

x: ⇤ e 8: 9:

!
� 30 , (9)

where 3(:) is the depth of node :, and E1 , . . . , E3(:)�1 2 + with 0 ! E1 ! · · · ! E
3(:)�1 ! : specifying

the path from the root node to node : in ⌧. To motivate the observation model (9), consider the crab
example of Figure 3(a), where in addition we imagine the coordinate frame of the eye pair motif transforms
independently with a transformation 35: in this case, the observation model (9) can be written in an
equivalent ‘hierarchical’ form

yobs =
⇥
(x1 ⇤ e 81 91) � 31 + (x2 ⇤ e 82 92) � 32 +

⇥
(x3 ⇤ e 83 93) � 33 + (x4 ⇤ e 84 94) � 34

⇤
� 35

⇤
� 30 + ybody � 30 ,

by linearity of the interpolation operation x 7! x � 3 (with ybody = y
>
�Õ

:
x: ⇤ e 8: 9: ).

4.2 Aside: Optimization Formulations for Registration of “Spiky” Motifs
To efficiently perform hierarchical invariant detection of templates following the model (9), the networks
we design will build from the following basic paradigm, given an input scene y:

1. Visual motif detection: First, perform detection of all of the lowest-level motifs x1 , . . . , x in y. The
output of this process is an occurrence map for each of the  transforming motifs, i.e. an < ⇥ = image
taking (ideally) value 1 at the coordinates where detections occur and 0 elsewhere.

3For example, consider a simple extension of the crab template in Figure 3(a), where the left and right claw motifs are further
decomposed into two pairs of pincers plus the left and right arms, with opening and closing motions for the pincers, and the same
SO(2) articulation model for the arms (which naturally moves the pincers in accordance with the rotational motion).
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2. Spiky motif detection for hierarchical motifs: Detect intermediate-level abstractions using the oc-
currence maps in y obtained in the previous step. For example, if : = 3 and : = 4 index the left
and right eye motifs in the crab template of Figure 3(a), detection of the eye pair motif corresponds to
registration of the canonized eye pair’s occurrence map against the two-channel image corresponding
to the concatenation of x3 and x4’s occurrence maps in y.

3. Continue until the top of the hierarchy: This occurrence map detection process is iterated until the
top level of the hierarchy. For example, in Figure 3(a), a detection of the crab template occurs when
the multichannel image corresponding to the occurrence maps for the left and right claws and the eye
pair motif is matched.

To instantiate this paradigm, we find it necessary to develop a separate registration formulation for reg-
istration of occurrence maps, beyond the formulations we have introduced in Section 3. Indeed, occurrence
maps contain no texture information and are maximally localized, motivating a formulation that spreads
out gradient information and avoids interpolation artifacts—and although there is still a need to cope with
clutter in general, the fact that the occurrence maps are generated on a black background obviates the
need for extensive background modeling, as in (4). We therefore consider the following “complementary
smoothing” formulation for spike registration: for a 2-channel occurrence map y and canonized occurrence
map x> , we optimize over the affine group Aff(2) = GL(2) oR2 as

min
G,b

1
22

���g�2O��2
0GG

⇤ ⇤
⇣
det�1/2(GG

⇤)
⇣
g�2

0 O
⇤ y

⌘
� 3

G
�1
,�G�1

b

⌘
� g�2O ⇤ x>

���2

�

+ "Aff(2)(G, b), (10)

where g
S

denotes a single-channel centered gaussian filter with positive definite covariance matrix S � 0,
and correlations are broadcast across channels. Here, � > 0 is the main smoothing parameter to propagate
gradient information, and �0 > 0 is an additional smoothing hyperparameter to mitigate interpolation
artifacts.

In essence, the key modifications in (10) that make it amenable to registration of occurrence maps are the
compensatory effects for scaling that it introduces: transformations that scale the image correspondingly
reduce the amplitude of the (smoothed) spikes, which is essential given the discrete, single-pixel spike
images we will register. Of course, since we consider only euclidean transformations in our experiments in
this section, we always have GG

⇤ = O, and the problem (10) can be implemented in a simpler form. However,
these modifications lead the problem (10) to work excellently for scale-changing transformations as well:
we explore the reasons behind this from both theoretical and practical perspectives in Section 5.

4.3 Invariant Network Architecture
The networks we design to detect under the observation model (9) consist of a configuration of unrolled
motif registration networks, as in Figure 2(e), arranged in a ‘bottom-up’ hierarchical fashion, following the
hierarchical structure in the example shown in Figure 3(a). The configuration for each motif registration sub-
network is a ‘GLOM-style’ [Hin21] collection of the networks sketched in Figure 2(e), oriented at different
pixel locations in the input scene y; the transformation parameters predicted of each of these configurations
are aggregated across the image, weighted by the final optimization cost (as a measure of quality of the
final solution), in order to determine detections. These detections are then used as feature maps for the next
level of occurrence motifs, which in turn undergo the same registration-detection process until reaching the
top-level object’s occurrence map, which we use as a solution to the detection problem. A suitable unrolled
implementation of the registration and detection process leads to a network that is end-to-end differentiable
and amenable to implementation on standard hardware acceleration platforms (see Section 4.4).

We now describe this construction formally, following notation introduced in Section 4.1. The network
input is an RGB image y 2 R<⇥=⇥3. We shall assume that the canonized template y

>
is given, as are as the

canonized visual motifs x1 , . . . , x and their masks ⌦1 , . . . ,⌦ ; we also assume that for every E 2 + with
E 8 {1, . . . ,  }, we are given the canonized occurrence map xE 2 R<E⇥=E⇥2E of the hierarchical feature E in
y
>
. In practice, one obtains these occurrence maps through a process of “extraction”, using y

>
as an input

to the network, which we describe in Appendix A.4. The network construction can be separated into three
distinct steps:

9



crab

eye
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left claw right claw left eye right eye y

81 ⌦ e0 + 82 ⌦ e1 + y5

y0

80

x3 x4

x1 x2

x5

x0

(a) Hierarchical detection of the crab template (b) 0 degrees (c) 7.5 degrees

(d) 15 degrees (e) 22.5 degrees

Figure 3: An example of a hierarchically-structured template, and the results of an implementation of our detection
network. (a): Structure of the crab template, described in Section 4.1, and its interaction with our network architecture
for detection, described in Section 4.3. Left: top-down decomposition of the template into motifs. A template of interest
y
>

(here, the crab at top left) is decomposed into a hierarchy of abstractions. The hierarchical structure is captured
by a tree ⌧ = (+ , ⇢): nodes represent parts or aggregations of parts, and edges represent their relationships. Right:

bottom-up detection of the template in a novel scene. To detect the template in a novel scene and pose, the network described
in Section 4.3 first localizes each of the lowest-level visual motifs at left and their transformation parameters in the
input scene y (bottom right). Motifs and the derived occurrence maps are labeled in agreement with the notation we
introduce in Section 4.3. The output of each round of optimization is an occurrence map 8E for nodes E 2 + ; these
occurrence maps then become the inputs for detection of the next level of concepts, following the connectivity structure
of ⌧, until the top-level template is reached (top right). (b-e): Concrete results for the hierarchical invariant object
detection network implemented in Section 4.4: the learned transformation at the minimum-error stride for each motif
is used to draw the motifs’ transformed bounding boxes. Insets at the bottom right corner of each result panel visualize
the quality of the final detection trace 80 for the template, with a value of 1 at the top of the inset.

Traversal. The network topology is determined by a simple traversal of the graph ⌧. For each E 2 + , let
3(E)denote the shortest-path distance from 0 to E, with unit weights for edges in⇢ (the “depth” of E in⌧). We
will process motifs in a deepest-first order for convenience, although this is not strictly necessary in all cases
(e.g. for efficiency, it might be preferable to process all leaf nodes 1, . . . ,  first). Let diam(⌧) = maxE2+ 3(E),
and for an integer ✓ no larger than diam(⌧), we let ⇡(✓ ) 2 N denote the number of nodes in + that are at
depth ✓ .

Motif detection at one depth. Take any integer 0  ✓  diam(⌧), and let E1 , . . . , E⇡(✓ ) denote the nodes in
⌧ at depth ✓ , enumerated in increasing order (say). For each such vertex E: , perform the following steps:

1. Is this a leaf? If the neighborhood {E0 | (E: , E0) 2 ⇢} is empty, this node is a leaf; otherwise it is not.
Subsequent steps depend on this distinction. We phrase the condition more generally, although we have
defined 1, . . . ,  as the leaf vertices here, to facilitate some implementation-independence.

2. Occurrence map aggregation for non-leaves: If E: is not a leaf, construct its detection feature map
from lower-level detections: concretely, let

y
E:

=
’

E
0 : (E: ,E0)2⇢

8E
0 ⌦ e�E

:
(E0) , (11)

where �E: (E0) denotes a vertex-increasing-order enumeration of the set {E0 : (E: , E0) 2 ⇢} starting from 0.
By construction (see the fourth step below), y

E:
has the same width and height as the input scene y, but

2E:
= |{E0 : (E: , E0) 2 ⇢}| channels (one for each child node) instead of 3 RGB channels.
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3. Perform strided registration: Because the motif xE: is in general much smaller in size than the
scene y

E:
, and because the optimization formulation (1) is generally nonconvex with a finite-radius basin of

attraction around the true transformation parameters in the model (9), the detection process consists of a
search for xE: anchored at a grid of points in y

E:
. Concretely, let

⇤E:
= {(8�� ,E:

, 9�, ,E:
) | (8 , 9) 2 {0, . . . ,< � 1} ⇥ {0, . . . , = � 1}} \ ({0, . . . ,< � 1} ⇥ {0, . . . , = � 1})

denote the grid for the E:-th motif; here �� ,E:
and �, ,E:

define the vertical and horizontal stride lengths of
the grid (we discuss choices of these and other hyperparameters introduced below in Appendix A.4). When
E: is a leaf, for each , 2 ⇤E:

, we let ([ (E: , ,), b(E: , ,)) 2 SE(2) denote the parameters obtained after running
an unrolled solver for the cost-smoothed visual motif registration problem

min
3

1
2

’
�2Z⇥Z

(g�2
E
:

)�
���P⌦E

:

h⇣
g�2

in
⇤ y

⌘
� (3 + 30,�+,) � xE:

i���2

�

+ "SE(2)(3), (12)

for )E: iterations, with step size ⇡E: . In addition, we employ a two-step multiscale smoothing strategy,
which involves initializing an unrolled solver for (12) with a much smaller smoothing parameter (�0

E:
)2 at

([ (E: , ,), b(E: , ,)) and running it for an additional fixed number of iterations; we let loss(E: , ,) denote the
final objective function value after this multiscale process, and abusing notation, we let ([ (E: , ,), b(E: , ,))
denote the updated final parameters . Precise implementation details are discussed in Appendix A.4. When
E: is not a leaf, we instead define the same fields on the grid ⇤E:

via a solver for the spike registration
problem

min
3

1
22E:

����P⌦E
:


g�2

E
:

��2
0,E

:

⇤
⇣
y
E:

� (3 + 30,,) � xE:

⌘�����
2

�

+ "SE(2)(3), (13)

with ⌦E:
denoting a dilated bounding box for xE: , and otherwise the same notation and hyperparameters.

We do not use multiscale smoothing for non-leaf motifs.

4. Aggregate registration outputs into detections (occurrence maps): We convert the registration
fields into detection maps, by computing

8E:
=

’
,2⇤E

:

✓
g�2

0,E
:

⇤ e,+b(E: ,,)
◆

exp
⇣
��E: max

�
0, loss(E: , ,) � ✏E:

 ⌘
, (14)

where each summand g�2
0,E

:

⇤ e,+b(E: ,,) is truncated to be size < ⇥ =.4 The scale and threshold parameters
�E: and ✏E: appearing in this formula are calibrated to achieve a specified level of performance under
an assumed maximum level of visual clutter and transformation for the observations (9), as discussed in
Appendix A.4.

We prefer to embed detections as occurrence maps and use these as inputs for higher-level detections
using optimization, rather than a possible alternate approach (e.g. extracting landmarks and processing
these using group synchronization), in order to have each occurrence map 8E for E 2 + be differentiable
with respect to the various filters and hyperparameters.

Template detection. To perform detection given an input y, we repeat the four steps in the previous section
for each motif depth, starting from depth ✓ = diam(⌧), and each motif at each depth. After processing depth
✓ = 0, the output occurrence map 80 can be thresholded to achieve a desired level of detection performance
for observations of the form (9). The detection process is summarized as Algorithm 1.

By construction, this output 80 can be differentiated with respect to each node E 2 +’s hyperparameters
or filters, and the unrolled structure of the sub-networks and⌧’s topology can be used to efficiently calculate
such gradients via backpropagation. In addition, although we do not use the full transformation parameters
[ (,, E) calculated in the registration operations (12) and (13), these can be leveraged for various purposes
(e.g. drawing detection bounding boxes, as in our experimental evaluations in Section 4.4).

4This convolutional notation is of course an abuse of notation, to avoid having to define a gaussian filter with a general mean
parameter. In practice, this latter technique is both more efficient to implement and leads to a stably-differentiable occurrence map.
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Algorithm 1 Invariant Hierarchical Motif Detection Network, Summarizing Section 4.3

input scene y, graph ⌧ = (+ , ⇢), motifs (xE ,⌦E)E2+ , hyperparameters (⇡E ,)E ,�� ,E ,�, ,E , �2
E
, �2

0,E , �E , ✏E)E2+
set diam(⌧) and node enumerations by depth-first traversal of ⌧
for all depths ✓ = diam(⌧), diam(⌧) � 1, . . . , 0 do

for all nodes E at depth ✓ do
set #E = {E0 | (E , E0) 2 ⇢} and 2E = |#E |
if 2E > 0 then

concatenate occurrence maps into y
E
=

Õ
E
02#E 8E

0 ⌦ e�E (E0)
for all , 2 ⇤E(�� ,E ,�, ,E) do

if 2E > 0 then
set [ (E , ,), b(E , ,) = arg min3

1
22E kg�2

E
��2

0,E
⇤ (y

E
� (3 + 30,,) � xE)k2

�
+ "SE(2)(3)

set loss(E , ,) = min3
1

22E kg�2
E
��2

0,E
⇤ (y

E
� (3 + 30,,) � xE)k2

�
+ "SE(2)(3)

(both with a )E-layer unrolled solver)
else

set [ (E , ,), b(E , ,) = arg min3
1
2
Õ
�(g�2

E

)�kP⌦E
[(g�2

in
⇤ y) � (3 + 30,�+,) � xE]k2

�
+ "SE(2)(3)

set loss(E , ,) = min3
1
2
Õ
�(g�2

E

)�kP⌦E
[(g�2

in
⇤ y) � (3 + 30,�+,) � xE]k2

�
+ "SE(2)(3)

(both with a )E-layer unrolled solver, with two-round multiscale smoothing)
construct the occurrence map 8E =

Õ
,2⇤E

(g�2
0,E

⇤ e,+b(E ,,)) exp(��E max{0, loss(E , ,) � ✏E})
output template occurrence map 80

4.4 Implementation and Evaluation
We implement the hierarchical invariant object detection network described in Section 4.3 in PyTorch
[PGML+19], and test it for detection of the crab template from Figure 3(a) subject to a global rotation (i.e.,
30 in the model (9)) of varying size (Figure 3(b-e)). In 512 ⇥ 384 pixel scenes on a “beach” background, a
calibrated detector perfectly detects the crab from its constituent parts up to rotations of �/8 radians—at
rotations around�/6, a multiple-instance issue due to similarity between the two eye motifs begins to hinder
the detection performance. Traces in each panel of Figure 3, right demonstrate the precise localization of
the template.

For hyperparameters, we set )E = 1024 and �� ,E = �, ,E = 20 for all E 2 + , and calibrate detection
parameters as described in Appendix A.4; for visual motifs, we calibrate the remaining registration hyper-
parameters as described in Appendix A.4 on a per-motif basis, and for spike motifs, we find the prescriptions
for �2

E
and the step sizes ⇡E implied by theory (Section 5) to work excellently without any fine-tuning. We

also implement selective filtering of strides for spiky motif alignment that are unlikely to succeed: due
to the common background, this type of screening is particularly effective here. The strided registration
formulations (12) and (13) afford efficient batched implementation on a hardware accelerator, given that
the motifs xE for E 2 + are significantly smaller than the full input scene y, and the costs only depend on
pixels near to the motifs xE . On a single NVIDIA TITAN X Pascal GPU accelerator (12 GB memory), it takes
approximately five minutes to complete a full detection. We expect throughput to be further improvable
without sacrificing detection performance by decreasing the maximum iterations for each unrolled network
)E even further—the setting of )E = 1024 is conservative, with convergence typically much more rapid. Our
implementation is available at https://github.com/sdbuch/refine.

5 Guaranteed, Efficient Detection of Occurrence Maps
In Section 4, we described how invariant processing of hierarchically-structured visual data naturally leads
to problems of registering ‘spiky’ occurrence maps, and we introduced the formulation (10) for this purpose.
In this section, we provide a theoretical analysis of a continuum model for the proximal gradient descent
method applied to the optimization formula (10). A byproduct of our analysis is a concrete prescription for
the step size and rate of smoothing—in Section 5.2, we demonstrate experimentally that these prescriptions
work excellently for the discrete formulation (10), leading to rapid registration of the input scene.
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Figure 4: Numerical verification of Theorem 5.1. (a): A multichannel spike motif containing 5 spikes. (b): A scene
generated by applying a random affine transformation to the motif. (c): The solution to (10) with these data. The skewing
apparent here is undone by the compensated external gaussian filter, which enables accurate localization in spite of
these artifacts. (d): Change in objective value of (10) across iterations of proximal gradient descent. Convergence occurs
in tens of iterations. (e): Change in normalized cross correlation across iterations (see Appendix A.3). We observe that
the method successfully registers the multichannel spike scene. (f): Comparison between the left and right-hand side of
equation (18) with gradient descent iterates from (10) (labeled as ! here). After an initial faster-than-predicted linear rate,
the discretized solver saturates at a sub-optimal level. This is because because accurate estimation of the transformation
parameters (G, b) requires subpixel-level preciseness, which is affected by discretization and interpolation artifacts. It
does not hinder correct localization of the scene, as (e) shows.

5.1 Multichannel Spike Model
We consider continuous signals defined on R2 in this section, as an ‘infinite resolution’ idealization of
discrete images, free of interpolation artifacts. We refer to Appendix B for full technical details. Consider a
target signal

^ > =
2’
8=1

%v 8
⌦ e 8 ,

where %v 8
is a Dirac distribution centered at the point v 8 , and an observation

^ =
2’
8=1

%u 8
⌦ e 8 ,

satisfying
v 8 = G8u 8 + b8.

In words, the observed signal is an affine transformation of the spike signal ^ > , as in Figure 4(a, b). This
model is directly motivated by the occurrence maps (11) arising in our hierarchical detection networks.
Following (10), consider the objective function

!
!

2
,�(G, b) ⌘ 1

22

2’
8=1

���g�2O��2
0(G⇤

G)�1 ⇤
⇣
det1/2(G⇤

G)
⇣
g�2

0 O
⇤ ^ 8

⌘
� 3G,b

⌘
� g0,�2O ⇤ (^ >)8

���2

!
2
.
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We study the following “inverse parameterization” of this function:

!inv
!

2
,�(G, b) ⌘ !

!
2
,�(G�1

,�G�1
b). (15)

We analyze the performance of gradient descent for solving the optimization problem

min
G,b

!inv
!

2
,�(G, b).

Under mild conditions, local minimizers of this problem are global. Moreover, if � is set appropriately, the
method exhibits linear convergence to the truth:

Theorem 5.1 (Multichannel Spike Model, Affine Transforms, !2). Consider an instance of the multichannel spike

model, with [ = [u1 , . . . , u2] 2 R2⇥2
. Assume that the spikes [ are centered and nondegenerate, so that [1 = 0 and

rank([ ) = 2. Then gradient descent

G:+1 = G: � CGrG!inv
!

2
,�(G: , b:),

b:+1 = b: � Cbrb!inv
!

2
,�(G: , b:)

with smoothing

�2 � 2
max8 ku 8 k2

2
Bmin([ )2

�
Bmax([ )2kG8 � Ok2

�
+ 2kb8k2

2
�

(16)

and step sizes

CG =
8�2�4

Bmax([ )2 ,

Cb = 8��4
,

(17)

from initialization G0 = O , b0 = 0 satisfies

8��4

CG

kG: � G8k2
�
+ kb: � b8k2

2 
✓
1 � 1

2�

◆2: ⇣8��4

CG

kO � G8k2
�
+ kb8k2

2

⌘
, (18)

where

� =
Bmax([ )2
Bmin([ )2 ,

with, Bmin([ ) and Bmax([ ) denoting the minimum and maximum singular values of the matrix [ .

Theorem 5.1 establishes a global linear rate of convergence for the continuum occurrence map registration
formulation (15) in the relevant product norm, where the rate depends on the condition number of the
matrix of observed spike locations [ . This dependence arises from the intuitive fact that recovery of
the transformation parameters (G8, b8) is a more challenging problem than registering the observation
to the motif—in practice, we do not observe significant degradation of the ability to rapidly register the
observed scene as the condition number increases. The proof of Theorem 5.1 reveals that the use of inverse
parameterization in (15) dramatically improves the landscape of optimization: the problem becomes strongly
convex around the true parameters when the smoothing level is set appropriately. In particular, (16) suggests
a level of smoothing commensurate with the maximum distance the spikes need to travel for a successful
registration, and (17) suggests larger step sizes for larger smoothing levels, with appropriate scaling of the
step size on the G parameters to account for the larger motions experienced by objects further from the
origin. In the proof, the ‘centered locations’ assumption [1 = 0 allows us to obtain a global linear rate of
convergence in both the G and b parameters. This is not a restrictive assumption, as in practice it is always
possible to center the spike scene (e.g., by computing its center of mass and subtracting), and we also find
it to accelerate convergence empirically when it is applied.
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5.2 Experimental Verification
To verify the practical implications of Theorem 5.1, which is formulated in the continuum, we conduct
numerical experiments on registering affine-transformed multichannel spike images using the discrete
formulation (10). We implement a proximal gradient descent solver for (10), and use it to register randomly-
transformed occurrence maps, as visualized in Figure 4(a-b). We set the step sizes and level of smoothing
in accordance with (16) and (17), with a complementary smoothing value of �0 = 3. Figure 4 shows
representative results taken from one such run: the objective value rapidly converges to near working
precision, and the normalized cross-correlation between the transformed scene and the motif rapidly reaches
a value of 0.972. This rapid convergence implies the formulation (10) is a suitable base for an unrolled
architecture with mild depth, and is a direct consequence of the robust step size prescription offered
by Theorem 5.1. Figure 4(f) plots the left-hand and right-hand sides of the parameter error bound (18)
to evaluate its applicability to the discretized formulation: we observe an initial faster-than-predicted
linear rate, followed by saturation at a suboptimal value. This gap is due to the difference between the
continuum theory of Theorem 5.1 and practice: in the discretized setting, interpolation errors and finite-
resolution artifacts prevent subpixel-perfect registration of the parameters, and hence exact recovery of
the transformation (G8, b8). In practice, successful registration of the spike scene, as demonstrated by
Figure 4(e), is sufficient for applications, as in the networks we develop for hierarchical detection in Section 4.

6 Basin of Attraction for Textured Motif Registration with (4)
The theory and experiments we have presented in Section 5 justify the use of local optimization for alignment
of spiky motifs. In this section, we provide additional corroboration beyond the experiment of Figure 1
of the efficacy of our textured motif registration formulation (4), under euclidean and similarity motion
models. To this end, in Figure 5 we empirically evaluate the basin of attraction of a suitably-configured
solver for registration of the crab body motif from Figure 2 with this formulation. Two-dimensional search
grids are generated for each of the two setups as shown in the figure. For each given pair of transformation
parameters, a similar multi-scale scheme over � as in the above complexity experiment is used, starting
at � = 10 and step size 0.05, and halved every 50 iterations. The process terminates after a total of 250
iterations. The final ZNCC calculated over the motif support is reported, and the figure plots the average
over 10 independent runs, where the background image is randomly generated for each pair of parameters in
each run. The ZNCC ranges from 0 to 1, with a value of 1 implying equality of the channel-mean-subtracted
motif and transformed image content over the corresponding support (up to scale).

Panels (a) and (b) of Figure 5 show that the optimization method tends to succeed unconditionally up to
moderate amounts of transformation. For larger sets of transformations, it is important to first appropriately
center the image, which will significantly improve the optimization performance. In practice, one may use
a combination of optimization and a small number of covering, so that the entire transformation space is
covered by the union of the basins of attractions. We note that irregularity near the edges, especially in
panel (a), can be attributed in part due to the randomness in the background embedding, and in this sense
the size of the basin in these results conveys a level of performance across a range of simulated operating
conditions. In general, these basins are also motif-dependent: we would expect these results to change if
we were testing with the eye motif from Figure 3(a), for example. A notable phenomenon in Figure 5(b),
where translation is varied against scale, is the lack of a clear-cut boundary of the basin at small scales.
This is due to the effect illustrated in Figure 5(c-d), where interpolation artifacts corrupt the motif when
it is ‘zoomed out’ by optimization over deformations, and hence registration can never achieve a ZNCC
close to 1. For applications where perfect reconstruction is not required, such as the hierarchical detection
task studied in Section 4, these interpolation artifacts will not hinder the ability to localize the motif in the
scene at intermediate scales, and if the basin were generated with a success metric other than ZNCC, a
better-defined boundary to the basin would emerge.
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Figure 5: Plotting a basin of attraction for the textured motif registration formulation (4). (a): Heatmap of the ZNCC at
convergence (see Appendix A.3), for translation versus rotation. Optimization conducted with SE(2) motion model. (b):
Heatmap of the ZNCC at convergence, for translation versus scale. Optimization conducted in ‘similarity mode’, a SE(2)
motion model with an extra global scale parameter. In both experiments, each reported data point is averaged over 10
independent runs. (c-d): Notably, when the registration target y is zoomed out relative to the motif x> , resolution is lost
in the detection target, so recovering it will cause interpolation artifacts and blur the image. This prevents the ZNCC
value from converging to 1 despite correct alignment with the motif, and accounts for the results shown in (b) at small
scales.

7 Discussion
In this paper, we have taken initial steps towards realizing the potential of optimization over transformations
of domain as an approach to achieve resource-efficient invariance with visual data. Below, we discuss several
important future directions for the basic framework we have developed.

Statistical variability and complex tasks. To build invariant networks for complex visual tasks and real-
world data beyond matching against fixed templates x> , it will be necessary to incorporate more refined
appearance models for objects, such as a sparse dictionary model or a deep generative model [BDS19;
DTLW+21; SSKK+21], and train the resulting hybrid networks in an end-to-end fashion. The invariant
architectures we have designed in this work naturally plug into such a framework, and will allow for
investigations similar to what we have developed in Section 4 into challenging tasks with additional structure
(e.g., temporal or 3D data). Coping with the more complex motion models in these applications will demand
regularizers ⌧ for our general optimization formulation (1) that go beyond parametric constraints.

Theory for registration of textured motifs in visual clutter. Our experiments in Section 5 have demon-
strated the value that theoretical studies of optimization formulations have with respect to the design of
the corresponding unrolled networks. Extending our theory for spiky motif registration to more general
textured motifs will enable similar insights into the roles played by the various problem parameters in a
formulation like (4) with respect to texture and shape properties of visual data and the clutter present, and
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allow for similarly resource-efficient architectures to be derived in applications like the hierarchical template
detection task we have developed in Section 4.3.

Hierarchical detection networks in real-time. The above directions will enable the networks we have
demoed for hierarchical detection in Section 4 to scale to more general data models. At the same time,
there are promising directions to improve the efficiency of the networks we design for a task like this
one at the modeling level. For example, the networks we design in Section 4.3 essentially operate in a
‘sliding window’ fashion, without sharing information across the strides ,, and they perform registration
and detection separately. An architecture developed around an integrated approach to registration and
detection, possibly building off advances in convolutional sparse modeling [QLZ19; KZLW20; LQKZ+20],
may lead to further efficiency gains and push the resulting network closer to real-time operation capability.
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A Implementation and Experimental Details
A.1 Implementation Details for Parametric Transformations of the Image Plane
Our implementation of parametric image deformations revolves around the specific definition of interpola-
tion we have made:

y � 3 =
’

(: ,;)2Z2

H:;)(30 � :1) � )(31 � ;1),

and the identification of the image y 2 R<⇥= with a function onZ2 with support in {0, . . . ,<�1}⇥{0, . . . , =�
1}.5 Although we use the notation � for interpolation in analogy with the usual notation for composition of
functions, this operation is significantly less well-structured: although we can define interpolation of motion
fields 30 � 31, it is impossible in general to even have associativity of � (let alone inverses), so that in general
(x � 30)� 31 < x � (30 � 31). This failure is intimately linked to the existence of parasitic interpolation artifacts
when computing and optimizing with interpolated images, which we go to great lengths to avoid in our
experiments. On the other hand, there does exist a well-defined identity vector field: from our definitions,
we can read off the canonical definition of the identity transformation, from which definitions for other
parametric transformations we consider here follow. Defining (with a slight abuse of notation)

m =

26666664

0
1
.
.
.

< � 1

37777775
; n =

26666664

0
1
.
.
.

= � 1

37777775
,

we have from the definition of the cubic convolution interpolation kernel ) that

y � (m1⇤ ⌦ e0 + 1n⇤ ⌦ e1) = y.

One can then check that the following linear embedding of the affine transformations, which we will write
as Aff(2) = GL(2)⇥R2, leads to the natural vector field analogue of affine transformations on the continuum
R2 (c.f. Appendix B):

Aff(2) � span{m1⇤ ⌦ e0 , 1n⇤ ⌦ e0 ,m1⇤ ⌦ e1 , 1n⇤ ⌦ e1 , 1< ,= ⌦ e0 , 1< ,= ⌦ e1}. (19)

Of course, these vector fields can be any size—they need not match the size of the image. As we mention in
Section 3.3, we always initialize our networks with the identity transform; in the basis above, this corresponds
to the vector (1, 0, 0, 1, 0, 0) (i.e., this is like a row-wise flattening of the affine transform’s matrix G 2 GL(2),
concatenated with b).

Next we turn to computation of the proximal operator, which we need for unrolling (see Section 3.3).
Given (6) and the fact that (19) is a subspace, we can compute the proximal operator for Aff(2) given an
orthonormal basis for Aff(2). It is then unfortunate that the natural basis vectors that we have used in the
expression (19) are not orthogonal: we have hm1⇤ , 1n⇤i = hm , 1ihn , 1i � 0, for example. To get around
this, in practice we apply a technique we refer to as centering of transformations. Indeed, notice that for any
c 2 R2, we have

Aff(2) � span{(m � 201)1⇤ ⌦ e0 , 1(n � 211)⇤ ⌦ e0 , (m � 201)1⇤ ⌦ e1 , 1(n � 211)⇤ ⌦ e1 , 1< ,= ⌦ e0 , 1< ,= ⌦ e1}
+ 1< ,= ⌦ c.

(20)

In the continuum, applying an affine transform in this way corresponds to the mapping x 7! G(x� c)+b+ c,
hence the name: the image plane is shifted to have its origin at c for the purposes of applying the transform.
When we implement affine transforms as suggested by (20), we choose c to make the basis vectors orthogonal

5These conventions are not universal, although they seem most natural from a mathematical standpoint—for example, PyTorch
thinks of its images as lying on a grid in the square [�1,+1] ⇥ [�1,+1] instead, with spacing and offsets depending on the image
resolution and other implementation-specific options. In our released code, we handle conversion from our notation to this notation.
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this necessitates that c = ((< � 1)/2, (= � 1)/2). Then we are able to write down a concrete expression for
the projection operator in these coordinates:6

projAff(2)(3) =
�(m � <�1

2 1)⇤301, 1⇤30(n � =�1
2 1), (m � <�1

2 1)⇤311, 1⇤31(n � =�1
2 1), 1⇤301, 1⇤311

�
. (21)

The low-rank structure of the basis vectors implies that this transformation can be computed quite rapidly.
Although it may seem we have undertaken this discussion for the sake of mathematical rigor, in our
experiments we observe significant computational benefits to centering by the prescription above. For
example, when computing with (10), using a non-orthogonal basis for the affine transforms (or a center that
is not at the center of the region being transformed) often leads to skewing artifacts in the final transformation
recovered. We also notice slower convergence.

Finally, for our experiments in Section 4 with the rigid motion model SE(2), some additional discussion
is required. This is because the orthogonal transformations SO(2) are not a linear subspace, like the affine
transforms (19), but a smooth manifold (diffeomorphic to a circle). For these transformations, we modify
the formula (1) by differentiating in a parameterization of SE(2): concretely, we use

SO(2) �
⇢

cos � sin
sin cos

� ����  2 [0, 2�]
�
.

Writing � : R ! R<⇥=⇥2 for this parameterization composed with our usual vector field representation
(20) for subgroups of the affine transforms, we modify the objective (1) to be min !(y � �()). A simple
calculation then shows that gradients in this parameterization are obtainable from gradients with respect
to the affine parameterization as

r[!(y � �)]() =
⌧
rG[!(y � 3 · ,b)]

✓ 
cos � sin
sin cos

� ◆
,


� sin � cos
cos � sin

��
.

This is a minor extra nonlinearity that replaces the proximal operation when we unroll networks as in
(5) with this motion model. Gradients and projections with respect to the translation parameters are no
different from the affine case.

A.2 Gradient Calculations for Unrolled Network Architectures
We collect in this section several computations relevant to gradients of the function ! (following the structure
of (1)) in the optimization formulations (2), (3), (4) and (10).

3 gradients. All of the costs we consider use the ✓ 2 error k · k� , so their gradient calculations with respect
to 3 are very similar. We will demonstrate the gradient calculation for (2) to show how (6) is derived; the
calculations for other costs follow the same type of argument. To be concise, we will write r3! for the
gradient with respect to 3 of the relevant costs !(y � 3).
Proposition A.1. Let ! denote the k · k� cost in (2). One has

r3!(3) =
2�1’
:=0

�
g�2 ⇤ P⌦

⇥
g�2 ⇤

�
y � 3 � x>

�
:

⇤
⌦ 12

� � �
dy

:
� 3

�
.

Proof. The cost separates over channels, so by linearity of the gradient it suffices to assume 2 = 1. We
proceed by calculating the differential of !(y � 3) with respect to 3. We have for � of the same shape as 3
and C 2 R

%
%C

����
C=0

!(y � (3 + C�)) =
⌦
P⌦

⇥
g�2 ⇤ (y � 3 � x>)

⇤
⌦ 12 ,P⌦

⇥
g�2 ⇤

�(dy � 3) � �� ⇤ ↵,
6In practice, our choice of step size is made to scale each element in this basis to be orthonormal (in particular, applying different

steps to the matrix and translation parameters of the transformation)—strictly speaking the projection in (21) is not the orthogonal
projection because this extra scaling has not been applied. We do not specify this scaling here because its optimal value often depends
on the image content: for example, see the step size prescriptions in Theorem 5.1.
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where dy 2 R<⇥=⇥2 is the Jacobian matrix of y, defined as (here §) denotes the derivative of the cubic
convolution interpolation kernel ))

dy0 =
’

(: ,;)2Z2

H:;
§)(m1⇤ � :1) � )(1n⇤ � ;1), dy1 =

’
(: ,;)2Z2

H:;)(m1⇤ � :1) � §)(1n⇤ � ;1),

and where for concision we are writing g�2 ⇤dy to denote the filtering of each of the two individual channels
of dy by g�2 . Using three adjoint relations (P⌦ is an orthogonal projection, hence self-adjoint; the adjoint of
convolution by g�2 is cross-correlation with g�2 ; elementwise multiplication is self-adjoint) and a property
of the tensor product, the claim follows. ⇤

Convolutional representation of cost-smoothed formulation (3). The cost-smoothed formulation (3) can
be directly expressed as a certain convolution with g�2 , leading to very fast convolution-free inner loops in
gradient descent implementation. To see this, write��P⌦

⇥
y � (3 + 30,�) � x>

⇤��2
�
=

��P⌦
⇥
y � (3 + 30,�)

⇤��2
�
+ kP⌦ [x>]k2

�
+ 2

⌦
P⌦

⇥
y � (3 + 30,�)

⇤
,P⌦ [x>]

↵
=

D⇥
y � (3 + 30,�)

⇤�2
,P⌦ [1]

E
+ kP⌦ [x>]k2

�
+ 2

⌦
y � (3 + 30,�),P⌦ [x>]

↵
,

using self-adjointness of P⌦ and the fact that it can be represented as an elementwise multiplication, and
writing [ · ]�2 for elementwise squaring. Thus, denoting the k · k� cost in (3) by !(3), ! can be written as

2!(3) =
*’
�

(g�2)�
⇥
y � (3 + 30,�)

⇤�2
,P⌦ [1]

+
+

⌦
g�2 , 1

↵
kP⌦ [x>]k2

�

+ 2

*’
�

(g�2)� · y � (3 + 30,�),P⌦ [x>]
+
.

This can be expressed as a cross-correlation with g�2 :

2!(3) =
D
g�2 ⇤

⇥
y � 3

⇤�2
,P⌦ [1]

E
+

⌦
g�2 , 1

↵
kP⌦ [x>]k2

�
+ 2

⌦
g�2 ⇤ (y � 3),P⌦ [x>]

↵
,

and taking adjoints gives finally

2!(3) =
D⇥
y � 3

⇤�2
, g�2 ⇤ P⌦ [1]

E
+

⌦
g�2 , 1

↵
kP⌦ [x>]k2

�
+ 2

⌦
y � 3, g�2 ⇤ P⌦ [x>]

↵
.

This gives a convolution-free gradient step implementation for this cost (aside from pre-computing the fixed
convolutions in the cost), and also yields a useful interpretation of the cost-smoothed formulation (3), and
its disadvantages relative to the background-modeled formulation (4).

Filter gradient for complementary smoothing formulation (10). Relative to the standard registration
model formulation (2), the complementary smoothing spike registration formulation (10) contains an extra
complicated transformation-dependent gaussian filter. We provide a key lemma below for the calculation
of the gradient with respect to the parameters of the complementary smoothing cost in “standard param-
eterization” (see the next paragraph below). The full calculation follows the proof of Proposition A.1 with
an extra “product rule” step and extra adjoint calculations.
Proposition A.2. Given fixed �2 > �2

0 > 0, define ⌃(G) = �2
O � �2

0(G⇤
G)�1

, and define

g(G) =
p

det(G⇤
G)g⌃(G) ,

where the filter is < by = and the domain is the open set {G | 2O � 22
0(G⇤

G)�1 � 0}. Then for any fixed \ 2 R<⇥=
,

one has

rG[h\ , gi](G) = �2
0G

�⇤ ©≠
´
⌃(G)�1 ©≠

´
’
8 , 9

+89 6(G)8 9w 8 9w
⇤
8 9

™Æ
¨
⌃(G)�1 � hg(G),\ i⌃(G)�1™Æ

¨
(G⇤

G)�1 + hg(G),\ iG�⇤
,

where G
�⇤ = (G�1)⇤.
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Proof. For (8 , 9) 2 {0, . . . ,< � 1} ⇥ {0, . . . , = � 1}, let w 8 9 = (8 � b</2c , 9 � b=/2c). Then we have

g(G) = 1
2�

’
8 , 9

e 8 9 exp
✓
�1

2w
⇤
8 9
⌃(G)�1

w 8 9 �
1
2 log det⌃(G) + 1

2 log detG⇤
G

◆
.

Let dg denote the differential of G 7! g(G). By the chain rule, we have for any � 2 R2⇥2

⌦
\ , dg

G
(�)

↵
=

1
2

’
8 , 9

+89 6(G)8 9
%
%C

����
C=0

h
�w⇤

8 9
⌃(G + C�)�1

w 8 9 � log det⌃(G + C�) + log det(G + C�)⇤(G + C�)
i
.

We need the differential of several mappings here. We will use repeatedly that if ^ 2 GL(2) and ] 2 R2⇥2,
one has

d[^ 7!
⌦
] ,^

�1↵]^ (�) = �h�,^�⇤
]^

�⇤i. (22)

Applying (22) and the chain rule, we get

d[h] ,⌃i]G(�) = �2
0
⌦
(G⇤

G)�1
] (G⇤

G)�1
,�⇤G + G

⇤�
↵

= �2
0
⌦
G

�⇤(] +]
⇤)(G⇤

G)�1
,�

↵
. (23)

In particular, using the chain rule and (23) and (22) gives

%
%C

����
C=0

h
w

⇤
8 9
⌃(G + C�)�1

w 8 9

i
= �2�2

0

D
G

�⇤⌃(G)�1
w 8 9w

⇤
8 9
⌃(G)�1(G⇤

G)�1
,�

E
. (24)

Next, using the Leibniz formula for the determinant, we obtain

d[log det]^ (�) = h^�⇤
,�i. (25)

The chain rule and (23) and (25) thus give

%
%C

����
C=0

⇥
log det⌃(G + C�)

⇤
= 2�2

0
⌦
G

�⇤⌃(G)�1(G⇤
G)�1

,�
↵
, (26)

and similarly
%
%C

����
C=0

⇥
log det(G + C�)⇤(G + C�)

⇤
= 2hG�⇤

,�i. (27)

Combining (24), (26) and (27), we have

⌦
\ , dg

G
(�)

↵
=

’
8 , 9

+89 6(G)8 9
D
�2

0G
�⇤

⇣
⌃(G)�1

w 8 9w
⇤
8 9
⌃(G)�1 � ⌃(G)�1

⌘
(G⇤

G)�1 + G
�⇤
,�

E
,

and the claim follows by distributing and reading off the gradient.7 ⇤

Differentiating costs in “inverse parameterization”. Our theoretical study of spike alignment in Ap-
pendix B and our experiments on the discretized objective (10) in Section 5.2 suggest strongly to prefer
“inverse parameterization” relative to standard parameterization of affine transformations for optimiza-
tion. By this, we mean the following: given a cost !(3G,b) optimized over affine transformations (G, b),
one optimizes instead !(3

G
�1
,�G�1

b
). This nomenclature is motivated by, in the continuum, the inverse of

the affine transformation x 7! Gx + b being x 7! G
�1(x � b). Below, we show the chain rule calculation

that allows one to easily obtain gradients for inverse-parameterized objectives as linear corrections of the
standard-parameterized gradients.

7After distributing, the sum over 8 , 9 in the first factor can be computed relatively efficiently using a Kronecker product.
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Proposition A.3. Let ! : R2⇥2 ⇥ R2 ! R, and let �(G, b) = (G�1
,�G�1

b) denote the inverse parameterization

mapping, defined on GL(2) ⇥R2
. One has

rG[! � �](G, b) = �G�⇤ �rG[!] � �(G, b)� G�⇤ + G
�⇤ �rb[!] � �(G, b)� (G�1

b)⇤ ,
rb[! � �](G, b) = �G�⇤ �rb[!] � �(G, b)� ,

where G
�⇤ = (G�1)⇤.

Proof. Let d[! � �] denote the differential of ! � � (and so on). We have for �G and �b the same shape as G
and b

d�G,b(�G ,�b) =
%
%C

����
C=0

�(G + C�G)�1
,�(G + C�G)�1(b + C�b)

�
=

��G�1�GG
�1
,� �

G
�1�b � G

�1�GG
�1
b
� �

where the asserted expression for the derivative through the matrix inverse follows from, say, the Neumann
series. Now, the chain rule and the definition of the gradient imply

d[! � �]G,b(�G ,�b) =
⌦�rG[! � �](G, b),rb[! � �](G, b)� , ��G�1�GG

�1
,� �

G
�1�b � G

�1�GG
�1
b
� �↵

,

and the claim follows by distributing and taking adjoints in order to read off the gradients from the previous
expression. ⇤

We remark that centering, as discussed in Appendix A.1, can be implemented identically to the standard
parameterization case when using inverse parameterization.

A.3 Additional Experiments and Experimental Details
General details for experiments. We use normalized cross correlation (NCC) and zero-normalized cross
correlation (ZNCC) for measuring the performance of registration on textured and spike data respec-
tively. Specifically, for two multichannel images ^ ,_ 2 R<⇥=⇥2 , let ˜̂ and _̃ be the channel-wise mean-
subtracted images from ^ and _ . The quantities NCC and ZNCC are defined as NCC(^ ,_ ) = h^ ,_i

k^ k� k_ k� and

ZNCC(^ ,_ ) = h ˜̂ ,_̃i
k ˜̂ k� k_̃ k�

.

A.3.1 Figure 1 Experimental Details

In the experiment comparing the complexity of optimization and covering-based methods for textured motif
detection shown in Figure 1, the raw background image used has dimension 2048⇥1536. The crab template
is first placed at the center, then a random transformation is applied to generate the scene y. Translation
consists of random amounts on both G and H directions uniformly in [�5, 5] pixels. Euclidean transforms
in addition apply a rotation with angle uniformly from [��

4 ,
�
4 ]. Similarity transforms in addition applies a

scaling uniformly from [0.8, 1.25]. Generic affine transforms are parameterized by a transformation matrix
G 2 R2⇥2 and offset vector b 2 R2, with the singular values of G uniformly from [0.8, 1.25] and the left and
right orthogonal matrices being rotation matrices with angle uniformly in [��

4 ,
�
4 ]. For each of the 4 modes

of transform, 10 random images are generated. The optimization formulation used is (4), with x> the crab
body motif shown in Figure 2(a). The optimization-based method uses a multi-scale scheme, which uses a
sequence of decreasing values of � and step sizes, starting at � = 5 and step size 0.005� (except for affine
mode which starts at � = 10), with � halved every 50 iterations until stopping criteria over the ZNCC is
met, where ZNCC is calculated over the motif support ⌦ only. For each value of �, a dilated support ⌦̃ is
used, which is the dilation of ⌦ two � away from the support of the motif. The background model covers
the region up to 5� away from the motif. The background # is initialized as a gaussian-smoothed version
of the difference between the initialized image and the ground truth motif, and then continuously updated
in the optimization. For the first 5 iterations of every new scale �, only the background is updated while
the transformation parameters are held constant. The covering-based method samples a random transform
from the corresponding set of transforms used in each try.
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A.3.2 Figure 4 Experimental Details

In the experiment of verifying the convergence of multichannel spike registration as shown in Figure 4,
the motif consists of 5 spikes placed at uniformly random positions in a 61 ⇥ 81 image. To allow the spike
locations to take non-integer values, we represent each spike as a gaussian density with standard deviation
�0 = 3 centered at the spike location, and evaluated on the grid. A random affine transformation of the
motif is generated as the scene. As a result, we are able to use this �0-smoothed input in (10) without extra

smoothing, and we can compensate the variance of the filter applied to x> in the formulation to account for
the fact that we already smoothed by �0 when generating the data. The smoothing level in the registration
is chosen according to equation (16) in Theorem 5.1. Due to the discretization effect and various artifacts,
the step sizes prescribed in Theorem 5.1 will lead to divergence, so we reduce the step sizes by multiplying
a factor of 0.2.

A.3.3 Further Experimental Details

The beach background used for embedding the crab template throughout the experiments is CC0-licensed
and available online: https://www.flickr.com/photos/scotnelson/28315592012. Our code and data are
available at https://github.com/sdbuch/refine.

A.4 Canonized Object Preprocessing and Calibration for Hierarchical Detection
The hierarchical detection network implementation prescription in Section 4.3 assumes the occurrence maps
xE for E 2 + \ {1, . . . ,  } are given; in practice, these are first calculated using the template y

>
and its motifs,

by a process we refer to as extraction. Simultaneously, to extract these occurrence maps and have them be
useful for subsequent detections it is necessary to have appropriate choices for the various hyperparameters
involved in the network: we classify these as ‘registration’ hyperparameters (for each E 2 + , the step
size ⇡E ; the image, scene, and input smoothing parameters �2

E
, �2

0,E , and �2
in; the number of registration

iterations )E ; and the vertical (“height”) and horizontal (“width”) stride sizes �� ,E and �, ,E) or ‘detection’
hyperparameters (for each E 2 + , the suppression parameter �E and the threshold parameter ✏E). We
describe these issues below, as well as other relevant implementation issues.

Hyperparameter selection. We discuss this point first, because it is necessary to process the ‘leaf’ motifs
before any occurrence maps can be extracted. In practice, we ‘calibrate’ these hyperparameters by testing
whether detections succeed or fail given the canonized template y

>
as input to the (partial) network. Below,

we first discuss hyperparameters related to visual motifs (i.e., the formulation (12)), then hyperparameters
for spiky motifs (i.e., the formulation (13)).

Stride density and convergence speed: The choice of these parameters encompasses a basic compu-
tational tradeoff: setting )E larger allows to leverage the entire basin of attraction of the formulations (12)
and (13), enabling more reliable values of min,2⇤E

loss(E , ,) and the use of larger values of �� ,E and �, ,E ;
however, it requires more numerical operations (convolutions and interpolations) for each stride , 2 ⇤E . In
our experiments we err on the side of setting )E large, and tune the stride sizes �, ,E and �� ,E over multiples
of 4 (setting them as large as possible while being able to successfully detect motifs). The choice of the
step sizes ⇡E is additionally complicated by the smoothing and motif-dependence of this parameter. As we
describe in Section 3.3, we treat the step sizes taken on each component of (G, b) independently, and in our
experiments use a small multiple (i.e., 1/10) of CG

E
= 4�/max{<2

E
, =

2
E
} and Cb

E
= 2�/max{<E , =E} for all visual

motifs. This prescription is a heuristic that we find works well for the motifs and smoothing parameters
(see the next point below) we test, inspired by the theoretical prescriptions in Section 5 for spike alignment
that we discuss later in this section.

Smoothing parameters: The smoothing level �2
E

in (12) increases the size of the basin of attraction
when set larger. For this specific formulation, we find it more efficient to expand the basin by striding, and
enforce a relatively small value of �2

E
= 9 for all visual motifs. Without input smoothing, we empirically

observe that the first-round-multiscale cost-smoothed formulation (12) is slightly unstable with respect to
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high-frequency content in y: this motivates us to introduce this extra smoothing with variance �2
in = 9/4,

which removes interpolation artifacts that hinder convergence. We find the multiscale smoothing mode of
operation described in Section 4.3 to be essential for distinguishing between strides , which have “failed” to
register the motif xE and those that have succeeded, through the error loss(,, E): in all experiments, we run
the second-phase multiscale round for (12) as described in Section 4.3, for 256 iterations and with �2 = 10�2

and �2
in = 10�12. We describe the choice of �2

0,E below, as it is more of a spike registration hyperparameter
(c.f. (14)).

Detection parameters: The scale parameters �E are set based on the size of the basin of attraction around
the true transformation of xE , and in particular on the scale of loss(,, E) at “successes” and ”failures” to
register. In our experiments, we simply set �E = 1 for visual motifs. The choice of the threshold parameter ✏E
is significantly more important: it accounts for the fact that the final cost loss(,, E) at a successful registration
is sensitive to both the motif xE and the background/visual clutter present in the input y. In our experiments
in Section 4.4, we tune the parameters ✏E on a per-motif basis by calculating loss(,, E) for embeddings y

>
�30

for 30 2 SO(2) up to some maximum rotation angle in visual clutter, classifying each , as either a successful
registration or a failure, and then picking $

E
to separate the successful runs for all rotation angles from

the failing runs. For the motifs and range of rotation angles we consider, we find that such a threshold
always exists. However, at larger rotation angles we run into issues with the left and right eye motifs being
too similar to each other, leading to spurious registrations and the non-existence of a separating threshold.
In practice, this calibration scheme also requires a method of generating visual clutter that matches the
environments one intends to evaluate in. The calibrated threshold parameters used for our experiments in
Section 4.4 are available in our released implementation.

Hyperparameters for spiky motifs: The same considerations apply to hyperparameter selection for
spiky motifs (i.e., the formulation (13)). However, the extra structure in such data facilitates a theoretical
analysis that corroborates the intuitive justifications for hyperparameter tradeoffs we give above and leads
to specific prescriptions for most non-detection hyperparameters, allowing them to be set in a completely
tuning-free fashion. We present these results in Section 5. For detection hyperparameters, we follow the
same iterated calibration process as for visual motifs, with scale parameters �E = 2.5 · 105 (typical values of
the cost (13) are much smaller than those of the cost (12), due to the fact that the gaussian density has a small
!

2 norm). For the occurrence map smoothing parameters �2
0,E , our network construction above necessitates

setting these parameters to be the same for all E 2 + ; we find empirically that a setting �2
0,E = 9 is sufficient to

avoid interpolation artifacts. Finally, the bounding box masks ⌦E are set during the extraction process (see
below), and are dilated by twice the total size of the filters g�2

E

. In practice, when implementing gaussian
filters, we make the image size square, with side lengths 6� (rounded to the next largest odd integer).

Occurrence map extraction. Although the criteria above (together with the theoretical guidance from Sec-
tion 5) are sufficient to develop a completely automatic calibration process for the various hyperparameters
above, in practice we perform calibration and occurrence map extraction in a ‘human-in-the-loop’ fashion.
The extraction process can be summarized as follows (it is almost identical to the detection process described
in Section 4.3, with a few extra steps implicitly interspersed with calibration of the various hyperparameters):

1. Use the canonized template as input: We set y
>

as the network’s input.

2. Process leaf motifs: Given suitable calibrated settings of the hyperparameters for leaf motifs E 2 + ,
perform detection and generate all occurrence maps 8E via (14).

3. Extract occurrence motifs at depth diam(⌧) � 1: For each E with 3(E) = diam(⌧) � 1, we follow the
assumptions made in Section 4.1 (in particular, that each visual motif occurs only once in y

>
and ⌧ is

a tree) and after aggregating the occurrence map from E’s child nodes via (11), we extract xE from y
E

by cropping to the bounding box for the support of y
E
. Technically, since (14) uses a gaussian filter,

the support will be nonzero everywhere, and instead we threshold at a small nonzero value (e.g. 1/20
in our experiments) to determine the “support”.
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4. Continue to the root of ⌧: Perform registration to generate the occurrence maps for nodes at depth
diam(⌧) � 1, then continue to iterate the above steps until the root node is reached and processed.

Note that the extracted occurrence motifs xE for E 2 + \ {1, . . . ,  } depend on proper settings of the
registration and detection hyperparameters: if these parameters are set imprecisely, the extracted occurrence
maps will not represent ideal detections (e.g. they may not be close to a full-amplitude gaussian at the
locations of the motifs in y

>
as they should, or they may not suppress failed detections enough).

Other implementation issues. The implementation issue of centering, discussed in Appendix A.1, is
relevant to the implementation of the unrolled solvers for (13) and (14). We find that a useful heuristic is
to center the transformation 3 at the location of the center pixel of the embedded motif xE (i.e., for a stride
, 2 ⇤E , at the coordinates , + ((<E � 1)/2, (=E � 1)/2)). To implement this centering, the locations of the
detections in the spike map definition (14) need to have the offsets ((<E � 1)/2, (=E � 1)/2) added.

The network construction in Section 4.3 relies on the extraction process described above to employ an
identical enumeration strategy in the traversal of the graph ⌧ as the detection process (i.e., assuming that
nodes are ordered in increasing order above). In our implementation described in Section 4.4, we instead
label nodes arbitrarily when preparing the network’s input, and leave consistent enumeration of nodes
during traversal to the NetworkX graph processing library [HSS08].

B Proof of Theorem 5.1
We consider a continuum model for multichannel spike alignment, motivated by the higher-level features
arising in the hierarchical detection network developed in Section 4: signals ^ are represented as elements
of RR⇥R⇥⇠ , and are identifiable with ⇠-element real-valued vector fields on the (continuous, infinite) image
plane R2. In this setting, we write k^ k2

!
2 =

Õ
⇠

8=1k^ 8 k2
!

2 for the natural product norm (in words, the ✓ 2 norm
of the vector of channelwise !2 norms of ^ ). For p 2 R2, let %p 2 RR⇥R denote a Dirac distribution centered
at p, defined via π

R2
%p(x) 5 (x)dx = 5 (p)

for all Schwartz functions 5 [SW71, §I.3]. This models a ‘perfect’ spike signal. For p 2 R2 and S 2 R2⇥2

positive semidefinite, let g
p,S

denote the gaussian density on R2 with mean p and covariance matrix S .
Consider a target signal

^ > =
2’
8=1

%v 8
⌦ e 8 , (28)

and an observation

^ =
2’
8=1

%u 8
⌦ e 8 (29)

satisfying
v 8 = G8u 8 + b8 (30)

for some (G8, b8) 2 GL(2)⇥R2. These represent the unknown ground-truth affine transform to be recovered.
Consider the objective function

!
!

2
,�(G, b) ⌘ 1

22

���g0,�2O��2
0(G⇤

G)�1 ⇤
⇣
det1/2(G⇤

G)
⇣
g0,�2

0 O
⇤ ^

⌘
� 3G,b

⌘
� g0,�2O ⇤ ^ >

���2

!
2
,

where G
⇤ denotes the transpose, convolutions are applied channelwise, and for a signal Y 2 RR⇥R⇥2 ,

Y � 3G,b(D , E) = Y(011D + 012E + 11 , 021D + 022E + 12). We study the following “inverse parameterization” of
this function:

!inv
!

2
,�(G, b) ⌘ !

!
2
,�(G�1

,�G�1
b).
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We analyze the performance of gradient descent for solving the optimization problem

min
G,b

!inv
!

2
,�(G, b).

Under mild conditions, local minimizers of this problem are global. Moreover, if � is set appropriately, the
method exhibits linear convergence to the truth:

Theorem B.1 (Multichannel Spike Model, Affine Transforms, !2). Consider an instance of the multichannel

spike model (28)-(29)-(30), with [ = [u1 , . . . , u2] 2 R2⇥2
. Assume that the spikes [ are centered and nondegenerate,

so that [1 = 0 and rank([ ) = 2. Then gradient descent
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where

� =
Bmax([ )2
Bmin([ )2 ,

with Bmin([ ) and Bmax([ ) denoting the minimum and maximum singular values of the matrix [ .

Proof. Below, we use the notation kS k✓ ?!✓
@ = supkxk?1kSxk@ . We begin by rephrasing the objective

function in a simpler form: by properties of the gaussian density,
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whence by an orthogonal change of coordinates
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So
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Differentiating, we obtain
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where for concision
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In these terms, we have the following expression for a single iteration of gradient descent:
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Writing �G = G � G8, �b = b � b8, we have
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To facilitate a convergence proof, we modify this equation to pertain to scaled versions of �G, �b:
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In matrix-vector form, and writing �̄G = C�1/2
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where in this context ⌦ denotes the Kronecker product of matrices. Since O6 = O4 ⌦ O2, and because the
eigenvalues of a Kronecker product of symmetric matrices are the pairwise products of the eigenvalues of
each factor, we have
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By our choice of CG and Cb, and the assumption [1 = 0, we can write
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and by Hölder’s inequality
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Inductive argument for (31). We begin by noting that since G0 = O, b0 = 0, (31) holds for : = 0. Now
assume that it is true for 0, 1, . . . , : � 1. If we can verify that
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then by (33) and (34) together with Cb = 1, we have
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Applying the inductive hypothesis, we obtain (31) for iteration :. So, once we can show that under the
inductive hypothesis, (35) holds, the result will be established.

We begin by showing that under the inductive hypothesis, the errors %8 are all bounded. Indeed, by the
parallelogram law
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Under our choice of CG and hypotheses on �, this is bounded by 1
4� . ⇤
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