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1 Abstract

Background and Aims: Environmental health researchers often aim to identify sources or be-

haviors that give rise to potentially harmful environmental exposures. We have adapted principal

component pursuit (PCP)—a robust and well-established technique for dimensionality reduction

in computer vision and signal processing—to identify patterns in environmental mixtures. PCP

decomposes the exposure mixture into a low-rank matrix containing consistent patterns of exposure

across pollutants and a sparse matrix isolating unique or extreme exposure events.

Methods: We adapted PCP to accommodate non-negative data, missing data, and values below

a given limit of detection (LOD). We simulated data to represent environmental mixtures of two

sizes with increasing proportions <LOD and three noise structures. We applied PCP-LOD to

evaluate its performance compared with principal component analysis (PCA).

We next applied PCP-LOD to an exposure mixture of 21 persistent organic pollutants (POPs)

measured in 1,000 U.S. adults from the 2001–2002 National Health and Nutrition Examination

Survey (NHANES). We applied singular value decomposition to the estimated low-rank matrix to

characterize the patterns.

Results: PCP-LOD recovered the true number of patterns through cross-validation for all sim-

ulations; based on an a priori specified criterion, PCA recovered the true number of patterns in

32% of simulations. PCP-LOD achieved lower relative predictive error than PCA for all simu-

lated datasets with up to 50% of the data <LOD. When 75% of values were <LOD, PCP-LOD

outperformed PCA only when noise was low.

In the POP mixture, PCP-LOD identified a rank-three underlying structure and separated 6% of

values as extreme events. One pattern represented comprehensive exposure to all POPs. The other

patterns grouped chemicals based on known structure and toxicity.

Discussion: PCP-LOD serves as a useful tool to express multi-dimensional exposures as consis-

tent patterns that, if found to be related to adverse health, are amenable to targeted public health

messaging.
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2 Introduction

To assess exposure to multiple chemicals simultaneously, researchers must consider the high di-

mensionality of environmental exposures and the complex correlation structure across chemicals.

Environmental epidemiologists may turn to dimension reduction or variable selection methods to

weaken (or eliminate) correlations within the exposure matrix. When researchers are interested in

identifying patterns within environmental exposure mixtures, they often employ dimension reduc-

tion techniques [1]. Research questions concerning pattern identification commonly aim to represent

underlying sources or behaviors that give rise to multi-pollutant exposures. Interpretable results

may prove actionable if identified patterns reveal preventable or modifiable circumstances that lead

to exposure. Their identification enables better informed policies and targeted interventions.

Research questions concerning pattern identification in environmental mixtures usually involve un-

supervised statistical techniques whose solutions are obtained independently of any outcomes. Re-

searchers apply common methods, such as principal component analysis (PCA) and factor analysis,

to describe the variability in correlated chemicals in terms of underlying (i.e., latent) components.

PCA is the most common dimensionality reduction tool used to identify patterns in environmental

mixtures [2–6], but it has several limitations. First, various selection criteria exist to choose the

number of components selected as patterns, such as the first k principal components that explain

a certain amount of variance, all components with singular values greater than one, or the com-

ponents whose variances appear to the left of an ‘elbow’ in a scree plot [7]. However, there is no

guarantee that these criteria will agree [8]. This leaves the burden on the researcher to determine

the appropriate number of components, which is often based on implicit assumptions that are not

always explicitly stated. Further, PCA has no guarantee of an interpretable solution [9]. Its iden-

tified components are orthogonal by design, while patterns of environmental exposures are almost

certainly not, and its solution, both chemical loadings and individual scores, may contain negative

numbers, while actual chemical concentrations cannot [10]. Finally, as a least squares method, PCA

is susceptible to outliers, which may severely influence the solution [11]. Researchers also regularly

employ dimension reduction methods beyond PCA, such as factor analysis or non-negative matrix

factorization (NMF), for pattern recognition in environmental mixtures; these techniques work a bit

di↵erently than PCA, but they have similar drawbacks or introduce new ones (e.g., non-negativity
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may produce identifiability problems).

When analyzing high-dimensional datasets, a major challenge is how to recover low-dimensional

patterns from noisy, incomplete, or erroneous measurements [12]. In environmental health, ob-

servations below the analytic limit of detection (LOD) provide an example of incomplete data.

Depending on the laboratory, these observations may be marked as < LOD and not reported, or

they may be reported as measured with less certainty than those > LOD [13, 14]. Identification

of exposure patterns in datasets with large proportions of observations < LOD proves challenging

[15].

Traditional methods to handle observations < LOD include single and multiple imputation, the

most common implementation being imputation with LOD/
p
2 [16]. This method was proposed

in 1990 as providing more accurate estimation of the mean and standard deviation than imputa-

tion with LOD/2 and improved computational e�ciency over a maximum likelihood method [17].

However, predictive accuracy is not often the goal in environmental epidemiology, and computa-

tional speed is no longer a barrier to new methods. Furthermore, substitution of values < LOD

with a fixed value (e.g., LOD/
p
2), especially when some information is available, will impact the

distribution of the data, potentially severely impacting exposure pattern identification in the study

population [18].

Here, we introduce a novel technique to identify patterns in environmental mixtures, adapting a

robust and well-established method for data dimensionality reduction and pattern recognition in

computer vision applications, principal component pursuit (PCP). PCP decomposes the exposure

data matrix into a low-rank matrix (to identify underlying patterns of exposure across the pollu-

tants) and a sparse matrix (to identify unusual, unique, or extreme exposure events) [19]. PCP

has several advantages over PCA in the area of pattern detection in environmental mixtures. In a

recent PCP extension, square root PCP (
p
PCP ), Zhang et al. [20] derived a new formulation with

a universal choice of regularization parameter. Thus, the user is not required to choose or tune

hyperparameters. We combined this with a separate extension introducing a non-convex penalty

on the low-rank matrix that performs well with data that may not have a strong underlying struc-

ture [21, 22]. Estimation of the sparse matrix is especially advantageous. Traditional methods are

sensitive to unusual or extreme exposure events; the patterns identified by PCP are not influenced
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by outlying values. Instead, exposures that are not explained by patterns in the low-rank matrix

are separated in the sparse matrix and available for to the researcher.

To our knowledge, this is the first time that PCP has been considered in pattern identification

in environmental health or epidemiology. Additionally, we have included three novel extensions

designed uniquely for chemical mixtures: (1) a distinct penalty for observations < LOD (PCP-

LOD) that has improved distributional assumptions over single imputation and adapts to study-

specific confidence in measurement, (2) a non-negativity constraint on the low-rank matrix to

improve interpretability of results, and (3) procedures to accommodate missing values. We also

implemented a cross-validation approach (see 3.1) so that the choice of estimated components is

not as subjective as in other methods. In this work, we conducted a simulation study based on real

multi-pollutant exposures, simulating an increasing proportion of observations measured < LOD

and varying levels and structure of added noise. We use these to compare PCP-LOD performance

to that of PCA with values < LOD imputed as LOD/
p
2. Finally, we applied PCP-LOD to an

environmental health dataset of persistent organic pollutants (POPs) measured in the 2001–2002

cycle of the National Health and Nutrition Examination Study (NHANES) to identify consistent

patterns of POP exposure while isolating unique or extreme events.

3 Methods

3.1 Principal component pursuit

We present PCP as a robust method for dimensionality reduction and pattern identification [19].

Given an exposure data matrix Xn,p, where n is the number of observations and p is the number

of pollutants, PCP seeks to express X as a superposition of two matrices: a low-rank matrix Ln,p

where r = rank(L) ⌧ min(n, p), and a sparse matrix Sn,p where most entries are zero. Because

L is of rank r ⌧ p, its rank can correspond to underlying patterns in exposure, such as specific

sources or certain behaviors. L is still defined in terms of the original variables, i.e., patterns are not

directly estimated. PCP may be paired with various matrix factorization techniques (e.g., SVD,

PCA, factor analysis, or NMF) to extract chemical loadings and individual scores. The rank of L

or the number or location of nonzero entries in S do not need to be a priori defined.
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We incorporated two PCP extensions that suit features of environmental mixtures data. First,

Zhang et al. [20] recently proposed
p
PCP with a noise-independent universal choice of regular-

ization parameters. Previous formulations of PCP required knowledge of the true noise level to

determine the appropriate parameters [22–24]. This is problematic in environmental mixtures where

we cannot know or accurately estimate the underlying noise level, and it would leave the researcher

with the subjective task of tuning parameters on a per-dataset basis. Zhang et al. provide a more

practical approach to pattern recognition in environmental mixtures.

As first proposed, PCP minimizes a weighted combination of the nuclear norm of L, kLk⇤, and the

`1 norm of S, kSk`1 [19, 23, 25]. Notably, this formulation has the desirable quality of convexity,

meaning that every local optimum is a global optimum. This, together with the particular structure

of the `1 and nuclear norms guarantees that the resulting optimization problem can be solved

e�ciently [26–28]. In practice, however, the nuclear norm assumes a stronger low-rank structure

(i.e., slowly decaying singular values) than what is the case in many real-life environmental mixtures

(e.g., POPs or air pollution). To address unsatisfactory performance with the nuclear norm, we

replaced it with a rank-r projection. While the nuclear norm is convex, the rank-r projection is

not. However, closely related non-convex formulations are accompanied by theoretical guarantees

of equivalent performance with the convex implementation [21, 22]. Combining a non-convex rank

projection with
p
PCP , we solve the following optimization problem:

non-convex
p
PCP := min

L,S
rank(L)r + �kSk1 + µkL+ S �XkF , (1)

where X denotes the original data matrix. The two parameters, � and µ, are not tuned by the

researcher; instead, they are each set using single universal values, � = 1/
p
n from Candès et al.

[19], and µ =
p

p/2 from Zhang et al. [20] which have been shown theoretically to yield near-optimal

estimation performance. The indicator function rank(L)r constrains L to be of rank  r; the `1

norm kSk1 is the sum of the absolute values of the entries of S and encourages S to be sparse; the

final term is the error between the predicted and the observed values, which favors a solution that

is close to the original data.
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3.1.1 Environmental Health-Relevant Extensions

To better adapt non-convex
p
PCP (nc

p
PCP ) for use with environmental data, we extended

this method in three ways. First, we modified the algorithm to allow for missing values. This

proves beneficial to environmental datasets which often include participants with missing exposure

measurements. It also enables the cross-validation procedure outlined in Section 3.4. Next, we

constrained the low-rank matrix to be non-negative. Non-negativity in L allows for individual

pattern scores and chemical loadings on patterns on the same support as the original chemical

distributions. We tailored the third extension to observations < LOD. We introduced a diverging

penalty,  LOD, in the nc
p
PCP solution to accommodate values < LOD when they are not available

to the users, as is most commonly the case. This penalty treats all estimated values from zero to

the LOD as equally good approximations (Equation 3, line 2), removing the error term from the

objective function:

PCP-LOD := min
L�0, S

rank(L)r + �kSk1 + µ  LOD(L+ S �X) (2)

with

 LOD(L+ S �X) =

0

BBBBBBBBBB@

X

ij

8
>>>>>>>>>><

>>>>>>>>>>:

(Lij + Sij �Xij)2 if Xij � �ij ,

0 if Xij < �ij & 0  (Lij + Sij)  �ij ,

(L+ S � �ij)2 if Xij < �ij & (Lij + Sij) > �ij ,

(L+ S)2 if Xij < �ij & (Lij + Sij) < 0,

1

CCCCCCCCCCA

1/2

. (3)

Here, � is a matrix of LOD values, and �ij represents the observation-specific LOD. This is an

attribute of the data specified by the researcher; it can be common across all chemicals, chemical-

specific, or chemical- and individual-specific, depending on the measurements. If all observations

are > LOD, this equation simplifies to Equation 1. For estimated values > LOD (Equation 3, line

3) or < 0 (Equation 3, line 4), we include more stringent penalties than in Equation 1, which act

to push estimates to the known range, while for observations Xij below the LOD (Equation 3, line

2), we place no penalty on estimated values Lij + Sij lying between 0 and the LOD.
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3.2 Simulations

We simulated 100 exposure matrices for all combinations of two mixture sizes, three noise structures,

and three detection proportions (1800 total). We generated datasets of 500 observations each,

{xi}500i=1
, where xi = (xi,1, . . . , xi,p)

T presents an exposure profile with p mixture components. We

specified r = 4 underlying patterns and investigated two mixture sizes (p = 16 and p = 48). We

first simulated chemical loadings (r ⇥ p) to represent realistic environmental patterns where some

chemicals were distinct to a single pattern and some chemicals appeared in multiple patterns. Each

pattern included
p

8
chemicals that loaded distinctly and

p

4
chemicals that overlapped with a second

pattern. Distinct chemicals were given a loading of 1 on the single pattern on which they loaded

and a loading of 0 for the remaining patterns. One third of the chemicals appeared in only one

pattern; two thirds of the chemicals appeared in two patterns. This design corresponds to multiple

environmental sources giving rise to the chemicals in the mixture. Overlapping chemicals were

drawn from a Dirichlet distribution so that their loadings would sum to 1 over all patterns. Of the

four loadings across the four patterns for each chemical, two were drawn from Dir(↵1 = 1,↵2 =

1) and two were set to zero. This introduced variability into the overlapping chemical loadings

(Figure 1a).

We next generated individual scores (n⇥ r). We drew scores independently from logN (µ = 1,� =

1). We created the simulated data from matrix products of individual scores by chemical loadings

with added noise, replacing negative values with zero. We generated noise in one of three ways, (1)

low Gaussian noise (N (0, 1)), (2) high Gaussian noise (N (0, 5)), (3) or low Gaussian noise with high

sparse events. Figure 1b shows an example simulated correlation matrix. Finally, we designated a

quantile (25th, 50th, or 75th) and set all values below the threshold as <LOD.

3.3 Study population

For pattern recognition in an environmental mixture with varying detection limits across chemi-

cals, we chose a mixture of dioxins, furans, and polychlorinated biphenyls (PCBs) measured in U.S.

adults from the 2001–2002 NHANES cycle. NHANES inclusion criteria have been reported previ-

ously [29]. For the chosen cycle, 11,039 participants were interviewed. One third of participants

aged 12 years and older were eligible for environmental chemical analysis. We removed individuals
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(a) Patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Simulated Chemicals

0.00

0.25

0.50

0.75

1.00

(b) Correlations

Figure 1: (a) Representative simulated chemical loadings. We simulated 100 examples for mixture size p =
16 (depicted here) and p = 48. Here, two chemicals load solely on each of the four patterns. The remaining
chemicals appear in two patterns each. (b) Correlation matrix of one simulated dataset (p = 16) with high
noise.

below 18 years of age or without any POP measurements, resulting in a final study sample of 1,000.

Eighteen PCBs, seven dioxins, and nine furans were measured. Exposure assessment of POPs in

NHANES has been described previously [30, 31]. Of the POPs measured, 21 detected in at least

50% of all samples were included in our analyses. All POP values were lipid-adjusted by the U.S.

Centers for Disease Control and Prevention (CDC) [32].

3.4 Implementation & Evaluation

We determined the appropriate rank for PCP-LOD and the number of components to retain from

PCA in the same manner for all experiments. For PCA, we a priori defined our component

retention criterion as the first k components that explained � 80% of the variance in the data, as

seen previously in environmental mixtures applications (e.g., Gibson et al. [4]). While it is possible

to perform cross-validation on PCA [33, 34], it is not a common practice in applied environmental

health research. For PCP-LOD we used the default parameters for � and µ and cross-validated to

select the rank of the L matrix. We set an initial grid of rank values from 1 to 10 for all scenarios.

We performed this cross-validation approach on a single representative dataset for each combination

of simulated mixture sizes (p = 16 and 48), proportions < LOD (25%, 50%, and 75%), and noise
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structures (low, high, and sparse) and for the POP mixture.

To cross-validate PCP-LOD on a single dataset, X, we repeated the following steps 100 times

for each rank r 2 [1, 10]. (1) We randomly corrupted 20% of the mixture X as missing (i.e., set

the value to NA) to serve as a held-out test set, denoted X⌦, yielding the corrupted matrix X̃.

(2) We ran PCP-LOD on X̃ to obtain L̂ and Ŝ. (3) We recorded the relative recovery error of

L̂⌦ + Ŝ⌦ compared with the observed data X⌦ in the held-out set, calculated via the Frobenius

norm, ||X⌦ � L̂⌦ � Ŝ⌦||F / ||X⌦||F . Finally, for each rank, we aggregated the average relative

recovery error across 100 runs and chose the optimal rank, r̂, as that with the lowest mean relative

recovery error on the held-out set. We subsequently ran PCP-LOD on the full dataset X with the

selected rank r̂.

We ran PCP-LOD and PCA on all simulated datasets. We compared PCP-LOD and PCA to

assess their relative performance when faced with large proportions of non-detectable observations.

For PCP-LOD we estimated the rank of L̂, the sparsity of Ŝ, and their relative change to assess

stability of the solution across increasing proportions of data < LOD. Because the sparse matrix

may contain non-zero values so close to zero as to be considered zero, we set a threshold above

which to regard values as legitimate extreme exposures. We evaluated sparse events two standard

deviations of the model residuals (Ŝ + "̂), per chemical, from zero, i.e., 2 ⇥
q
Var(Xobs

p � L̂obs
p ),

where obs indicates values above the LOD in the simulated data.

For both PCP-LOD and PCA, we calculated relative predictive error as the ratio of the error to

the truth in terms of their Frobenius norm: kTruth� PredictedkF / kTruthkF . For PCP-LOD we

interpreted L̂ as the predicted values, and for PCA we constructed predicted values as the product

of the score matrix (i.e., the coordinates of the rotated data on the principal components) by the

rotation matrix (i.e., right eigenvectors), truncated at the chosen rank. We defined the ‘truth’

as simulated values before noise or sparse events were added. Finally, we assessed the stability

of the identified patterns using the relative prediction error of the singular value decomposition

(SVD).
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3.5 Application

Prior to the application to the NHANES POP mixture, we examined distributional plots and

descriptive statistics for all variables. We scaled all exposure concentrations by their standard de-

viations to make variances comparable across chemicals. The solution, thus, cannot be influenced

by high-variance pollutants. We used PCP-LOD to separate unique events from underlying pat-

terns. Following PCP, we extracted individual scores and pattern loadings from L̂ using SVD. We

compared scores, loadings, and overall relative error with those obtained from PCA. We present

unique events and interpret observed patterns. All analyses were conducted using R version 4.0.4

[35].

4 Results

4.1 Simulations

We ran PCP-LOD and PCA on all simulated datasets. PCP-LOD had lower relative prediction

error across the majority of mixture sizes (p = 16 and 48), proportions < LOD (25%, 50%, and

75%), and noise structures (low, high, and sparse). PCP-LOD outperformed PCA on all simulations

with low noise, simulations with high noise with up to 50% < LOD, and simulations with low noise

and added sparse events with up to 50% < LOD (Figure 2). Figures 2 and 3 present simulations

where p = 16; corresponding figures where p = 48 are included in Supplemental Figures S1 and

S2.

PCP-LOD was more a↵ected by the proportion of data < LOD, which can be seen in the larger step

size between box plots in Figure 2. The decline in PCP-LOD predictive accuracy as the proportion

of values < LOD increased appears because of poorer performance on values < LOD in high noise

scenarios (Figure 3). Relative prediction error for values > LOD was approximately constant for

PCP-LOD and PCA. Supplemental Tables S1, S2, and S3 contain the median and inter-quartile

range (IQR) of relative error for predicted values overall and stratified by LOD.

Next, we assessed the stability of the identified patterns using the SVD of the simulated data before

noise or sparse events were added and compared this with the SVD of the L̂ matrix and of PCA

results. Figure 4 depicts the relative prediction error comparing the left eigenvectors (comparable
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Figure 2: Overall relative predictive error of PCP-LOD and PCA on simulated data with p = 16 across
increasing proportions of data below the limit of detection. The panels show results for di↵erent structures of
added noise. Box plots display summary statistics for each method across 100 simulations. The bottom and
top hinges of the boxes correspond to the first and third quartiles (the 25th and 75th percentiles), respectively.
The upper (lower) whiskers extend from the hinge to the largest (smallest) value no further than 1.5 ⇥ IQR
from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles).
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Figure 3: Relative predictive error of PCP-LOD and PCA on simulated data with p = 16 stratified by
detection. The panel columns separate results from di↵erent structures of added noise, and the panel rows
separate values that were simulated as observed (top row) from those simulated as below the limit of detection
(bottom row). Box plots display summary statistics for each method across 100 simulations.
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Figure 4: Relative predictive error of PCP-LOD and PCA solution scores (i.e., left eigenvectors) compared
with those of the simulated data before noise was added. The panel columns separate results from di↵erent
structures of added noise, and panel rows present two simulated mixture sizes. Box plots display summary
statistics for each method across 100 simulations.
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to scaled individual scores) of the PCP-LOD and PCA solutions with those of the simulated ‘truth.’

PCP-LOD’s median relative prediction error is generally lower than PCA’s for the larger mixture

size and higher than PCA’s for the smaller mixture size. However, these patterns appear quite

stable over increasing proportions of data < LOD for both methods. PCP-LOD solutions achieved

lower relative prediction error on chemical loadings (i.e., right eigenvectors) across all simulations

(Supplemental Figure S3).

Across PCP-LOD solutions, between 2% and 10% of Ŝ entries were non-sparse. We found decreasing

sparsity as the proportion < LOD increased, with 3% (IQR: 2%, 4%), 6% (IQR: 4%, 7%), and 7%

(IQR: 3%, 8%) unique events, on average, found in simulations with 25%, 50%, and 75% < LOD,

respectively. For simulations that included sparse events in the noise structure, PCP-LOD correctly

included 69% (IQR: 67%, 71%), 70% (IQR: 68%, 72%), and 65% (IQR: 62%, 67%) of sparse values

in the Ŝ matrix, on average for simulations with 25%, 50%, and 75% < LOD, respectively.

4.2 Application

Thirty-four POPs were measured in the NHANES 2001–2002 cycle. Detection frequency is pre-

sented in Figure 5. Fourteen PCBs, four furans, and three dioxins were detected in > 50% of

samples. Exposure levels of POPs were all positively correlated (Figure 6a).

We applied PCP-LOD to identify underlying patterns of POP exposure and extreme exposure

events that were not explained by these patterns without making a priori assumptions concerning

the number of patterns or sparse events. PCP-LOD returned a low-rank matrix of rank three, which

corresponds with three patterns of POP exposure in the L̂ matrix. Figure 6b depicts L̂’s correlation

matrix along side the correlation matrix of the raw data (Figure 6a). By removing sparse events

and residual noise, PCP-LOD increased the correlations between POPs. To characterize underlying

patterns, we extracted principal components from the low-rank matrix using SVD.

The three components distinguished by PCP-LOD included one component of overall POP ex-

posure, a component that separated dioxins and furans from PCBs, and a third component that

separated higher molecular weight PCBs from lower molecular weight PCBs (Figure 7). The first

component explained 79.4% of the variance in the low-rank matrix, the second explained 14.6%,

and the third explained 6.0%.
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analysis.
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Figure 6: (a) Spearman correlation matrix of 21 persistent organic pollutants measured in NHANES
2001–2002. Observations below the limit of detection were handled by case-wise deletion. (b) Spearman
correlation matrix of low-rank structure across POPs estimated by PCP-LOD.
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High Unique Events

0 1 2 3 4 5 6 +⇤
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0 439 141 41 11 5 0 1 638

1 147 46 30 13 5 1 0 242

2 27 19 11 6 3 1 0 67

3 8 11 9 8 2 1 1 40

4 0 1 2 3 2 0 1 9

5 0 0 0 1 0 0 1 2

6 0 0 0 0 1 1 0 2

+† 621 218 93 42 18 4 4 1000

+† Column sums of uniquely high events.

+⇤ Row sums of uniquely low events.

Table 1: Summary of extreme events captured in the sparse component of PCP-LOD from a mixture of
21 POPs measured in 1,000 participants in NHANES 2001–2002. Entries are counts of participants with
uniquely low and/or high events, organized by row and column, respectively.

PCP-LOD partitioned the variation that was unexplained by the low-rank structure into a sparse

matrix of large outlying values and the remaining residuals. The Ŝ matrix contained mostly zero

values, with 5.7% of entries being non-sparse. Sparse observations were generally weakly cor-

related, with the absolute value of r < 0.15 for 70% of Spearman correlations between sparse

chemical exposure events. Table 1 summarizes the number of individuals with uniquely high
⇣
> 2⇥

q
Var(Xobs

p � Lobs
p )

⌘
or low

⇣
< �2⇥

q
Var(Xobs

p � Lobs
p )

⌘
exposure events. Figure 8 de-

scribes participant-specific sparse events. Most participants had no extreme exposures (44%) or

only extremely low exposures (18%). Twenty-two percent had one high unique event on a single

chemical, and 16% had between two and six high exposures across 21 chemicals left unexplained

by the identified patterns.

PCA conducted on the POP mixture chose three components that explained � 80% of the variance

and returned loadings and scores much the same as those from L̂ (results not shown). Using the

three chosen components, PCA’s relative prediction error on values > LOD was 0.30, similar to

PCP-LOD’s relative error of 0.32 when comparing only L̂ with the original data. However, when

including Ŝ in the solution (L̂ + Ŝ), PCP-LOD’s relative error on values > LOD was 0.07. This

is more comparable to the PCA solution when including all 21 components, 0.06, which does not

accomplish any dimension reduction.
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Figure 8: PCP-LOD solution Ŝ matrix of sparse events of POP exposure in 2001–2002 NHANES partici-
pants. To facilitate visualization, we have categorized sparse values into high and low exposure events. Red

indicates an extremely high exposure event
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⌘
; blue indicates an extremely low

exposure event
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⌘
. White indicates sparsity. POPs (columns) and NHANES

participants (rows) are hierarchically clustered to further facilitate visualization.
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5 Discussion

We propose PCP-LOD as a new approach to identify patterns—and extreme events left unexplained

by patterns—underlying environmental chemical mixtures in the presence of values < LOD. Our

simulation studies highlighted three main advantages of PCP-LOD over PCA at identifying patterns

in environmental mixtures: (1) reduced error in estimated patterns of exposure, (2) identification

of extreme or unique events, and (3) improved estimation of values < LOD.

Patterns identified by PCP-LOD are additionally more robust to noise and incomplete data than

more traditional pattern identification methods because patterns in L are not influenced by events in

S. PCP-LOD estimated the underlying low-rank structure of L with lower relative error than PCA

under all realistic simulation scenarios. PCA outperformed PCP-LOD for two error structures when

75% of the dataset was simulated as < LOD. In this case, PCP-LOD used 25% to re-construct 75%

of the data, and poorer performance was expected. However, it is unlikely that an environmental

health researcher will face a chemical mixture with 75% of all values < LOD. In our application to

POPs detected in over 50% of measurements among NHANES participants, 76% of all observations

were > LOD. In the entire POP mixture of 34 chemicals, with five chemicals never detected, 52% of

all observations were> LOD. We observed the highest relative prediction error across all simulations

for values < LOD in simulated datasets. This held for PCA, as well, and applies to all methods to

address censored or missing data.

In our simulations and application to NHANES data, we did not make use of the non-negativity

constraint, as SVD returns solutions with negative values. However, we paired PCP-LOD with SVD

to make results comparable with those of PCA. This is not a constraint of PCP-LOD, as it may

be paired with various dimension reduction techniques. Because of the non-negativity constraint

on the L matrix, for example, PCP-LOD can be paired with NMF to provide results interpretable

on an additive scale with a parts-based representation. [36].

The three components underlying the NHANES mixture distinguished by PCP-LOD represent one

pattern of exposure to all POPs and two patterns grouped by known structural and toxicological

properties. More than 90% of human exposure to PCBs, dioxins, and furans is through the food

supply, mainly meat, dairy, and seafood [37–39]. Thus, the first component of comprehensive
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exposure may be interpreted as a dietary source of these POPs. The second component separated

dioxins and furans, which are generally more toxic, from PCBs [40]. Accordingly, we can understand

the second component as a measure of toxicity. The third component separated lower molecular

weight PCBs from higher molecular weight PCBs, where larger numbers indicate more chlorine

atoms and larger molecules. Higher chlorinated congeners tend to bioaccumulate more than lower

chlorinated congeners [41, 42]. Depending on the research question, any or all of these components

could be included in subsequent analyses with health outcomes.

In the original POP mixture, individuals with high values on any chemicals were likely to have

high values on other chemicals, or equivalently, individuals with low values on any chemicals were

likely to have low values on other chemicals. PCP-LOD captured this in a component representing

overall mixture exposure. After removing the underlying patterns in the mixture described in L̂,

high (or low) exposure events on individual chemicals did not indicate high (or low) exposure to

other chemicals, i.e., sparse events in Ŝ were not highly correlated. About half (51%) of the unique

low exposure events were < LOD in the original mixture; these values < LOD were not explained

by overall low exposure or by the other identified patterns.

The ability to identify and separate extreme events is a unique feature o↵ered by PCP-LOD and

cannot be found in other methods. These unique or extreme events not captured in L may them-

selves be risk factors (e.g., wildfires—unique events not explained by commonly recognized air

pollution sources—for asthma emergency admissions)[43], or they may modify an association with

one of the L components (e.g., a Saharan dust episode might modify the association with tra�c-

related pollution) [44]. Next steps could entail including S exposures along with identified patterns

from L in a health model with some form of penalization (e.g., lasso or elastic net).

While PCP-LOD addresses several drawbacks of existing methods, it does not overcome all lim-

itations of pattern identification in environmental mixtures. First, in multi-pollutant exposures

the ‘true’ originating mechanism is almost never known, thus PCP-LOD cannot provide the ‘cor-

rect’ answer. PCP-LOD, like other methods employed in our field, should be used in conjunction

with subject area expertise. The interpretability of results relies on this expert knowledge. This

limitation applies, however, to all methods to address research questions concerning patterns of en-

vironmental exposures. Second, including scores obtained from any dimension reduction technique
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paired with PCP-LOD in a health model ignores the uncertainty inherent in the solution selection,

resulting in underestimated confidence intervals and, potentially, spurious results [3]. Third, some

datasets will likely be high-dimensional, with a large number of correlated chemical measurements

for each participant. In this situation, PCP-LOD still performs well, provided the rank of the

target matrix L0 is small enough compared to n (e.g., r < cp/ log2 n, where c is a constant) [23].

Additionally, our application findings should be interpreted in light of their limitations. First, as is

the case when using chemical biomarkers, our study is susceptible to exposure measurement error.

In a noisy setting, any method will exhibit an inaccuracy in the estimated left singular vectors,

which is commensurate with the noise level. Nevertheless, even in this setting, the results produced

by PCP-LOD are stable with respect to noise [23]. Second, our results may not be generalizable

beyond the study population. While NHANES includes a nationally-representative sample of the

general non-institutionalized US population [45], we did not account for the complex sampling de-

sign and weights of the study [46]. Thus, the PCP-LOD-identified patterns may represent sources

or behaviors distinct to the participants.

PCP-LOD also has numerous strengths when compared with existing methods to identify exposure

patterns in environmental mixtures, which require strong assumptions and have key limitations.

As a consequence, their use has resulted in heterogeneous and inconsistent findings across studies

[1]. Moreover, results from methods that are not generalizable or interpretable hinder their use

in the design and development of regulations, policies, and targeted interventions. Original PCP

has few assumptions, namely that L is not sparse and that S is not low-rank [19]. This is an

appealing feature of a tool when the underlying truth is not known. PCP-LOD directly addresses

several additional limitations of existing methods: (1) its solution is not necessarily orthogonal,

allowing correlations between patterns, (2) its solution is non-negative, so patterns can exist in an

interpretable space, (3) its parameters do not require tuning by the researcher, meaning that the

choice of number of patterns in L is not subjective, and (4) PCP-LOD is robust to extreme values

because of the novel S matrix.

To our knowledge, this work represents the first instance of decomposing the structure among

chemicals in an additive manner. By separating the unique events from underlying patterns, PCP-

LOD provides the opportunity to include extreme events in analyses, where they previously may
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have been suppressed or discarded. The theory-backed parameter selection and cross-validation

enhances reproducibility of PCP-LOD, ensuring that two di↵erent research groups with the same

dataset will identify the same optimal number of patterns. PCP-LOD may be employed when

environmental epidemiologists have research questions concerning sources or behaviors leading to

chemical exposure or patterns underlying exposure to multi-pollutant mixtures, especially when

data are noisy, incomplete, or may contain extreme exposure events.
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6 Supplemental Materials

25% < LOD 50% < LOD 75% < LOD

Simulated Data Method 25th 50th 75th 25th 50th 75th 25th 50th 75th

Low noise PCA 0.27 0.30 0.31 0.28 0.31 0.32 0.36 0.38 0.39

PCP-LOD 0.07 0.08 0.10 0.12 0.13 0.14 0.24 0.26 0.27

High noise PCA 0.40 0.43 0.45 0.40 0.42 0.45 0.55 0.57 0.59

PCP-LOD 0.24 0.30 0.37 0.35 0.38 0.42 0.63 0.67 0.71

Low noise PCA 0.15 0.21 0.31 0.19 0.23 0.33 0.35 0.37 0.44

+ sparse events PCP-LOD 0.08 0.09 0.12 0.15 0.16 0.17 0.36 0.38 0.40

Table S1: Overall relative prediction error comparing PCA and PCP-LOD solutions with simulated data
before noise or sparse events were added. Values represent 25th, 50th, and 75th percentiles of error distribution
over 200 simulations (100 for p = 16; 100 for p = 48).

25% < LOD 50% < LOD 75% < LOD

Simulated Data Method 25th 50th 75th 25th 50th 75th 25th 50th 75th

Low noise PCA 0.25 0.27 0.29 0.23 0.25 0.26 0.21 0.23 0.25

PCP-LOD 0.06 0.07 0.09 0.06 0.07 0.08 0.05 0.05 0.07

High noise PCA 0.39 0.41 0.43 0.35 0.38 0.41 0.31 0.35 0.36

PCP-LOD 0.23 0.29 0.36 0.27 0.32 0.38 0.33 0.36 0.41

Low noise PCA 0.13 0.19 0.29 0.12 0.18 0.27 0.12 0.18 0.27

+ sparse events PCP-LOD 0.06 0.08 0.11 0.07 0.08 0.11 0.11 0.12 0.14

Table S2: Relative prediction error on observations > LOD comparing PCA and PCP-LOD solutions with
simulated data before noise or sparse events were added. Values represent 25th, 50th, and 75th percentiles
of error distribution over 200 simulations (100 for p = 16; 100 for p = 48).

25% < LOD 50% < LOD 75% < LOD

Simulated Data Method 25th 50th 75th 25th 50th 75th 25th 50th 75th

Low noise PCA 0.92 1.04 1.17 0.78 0.85 0.93 0.82 0.85 0.90

PCP-LOD 0.36 0.37 0.38 0.51 0.52 0.54 0.68 0.70 0.73

High noise PCA 0.67 0.72 0.75 0.64 0.67 0.70 0.99 1.01 1.03

PCP-LOD 0.39 0.45 0.52 0.66 0.70 0.73 1.10 1.25 1.36

Low noise PCA 0.65 0.77 1.03 0.67 0.74 0.88 0.84 0.89 0.95

+ sparse events PCP-LOD 0.41 0.42 0.44 0.60 0.62 0.63 0.88 0.97 1.03

Table S3: Relative prediction error on observations < LOD comparing PCA and PCP-LOD solutions with
simulated data before noise or sparse events were added. Values represent 25th, 50th, and 75th percentiles
of error distribution over 200 simulations (100 for p = 16; 100 for p = 48).
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Figure S1: Overall relative predictive error of PCP-LOD and PCA on simulated data with p = 48 across
increasing proportions of data below the limit of detection. The panels show results for di↵erent structures of
added noise. Box plots display summary statistics for each method across 100 simulations. The bottom and
top hinges of the boxes correspond to the first and third quartiles (the 25th and 75th percentiles), respectively.
The upper (lower) whiskers extend from the hinge to the largest (smallest) value no further than 1.5 ⇥ IQR
from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles).
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Figure S2: Relative predictive error of PCP-LOD and PCA on simulated data with p = 48 stratified
by detection. The panel columns separate results from di↵erent structures of added noise, and the panel
rows separate values that were simulated as observed (top row) from those simulated as below the limit of
detection (bottom row). Box plots display summary statistics for each method across 100 simulations.
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Figure S3: Relative estimation error of PCP-LOD and PCA solution chemical loadings (i.e., right eigen-
vectors) compared with those of the simulated data before noise was added. The panel columns separate
results from di↵erent structures of added noise, and panel rows present two simulated mixture sizes. Box
plots display summary statistics for each method across 100 simulations.
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