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Abstract— In this paper, we introduce a simple and efficient
representation for natural images. We view an image (in either
the spatial domain or the wavelet domain) as a collection
of vectors in a high-dimensional space. We then fit a piece-
wise linear model (i.e. a union of affine subspaces) to the
vectors at each down-sampling scale. We call this amulti-scale
hybrid linear model for the image. The model can be effectively
estimated via a new algebraic method known as generalized
principal component analysis (GPCA). The hybrid and hier-
archical structure of this model allows us to effectively extract
and exploit multi-modal correlations among the imagery data at
different scales. It conceptually and computationally remedies
limitations of many existing image representation methodsthat
are based on either a fixed linear transformation (e.g. DCT,
wavelets), or an adaptive uni-modal linear transformation(e.g.
PCA), or a multi-modal model that uses only cluster means
(e.g. VQ). We will justify both quantitatively and experimentally
why and how such a simple multi-scale hybrid model is able to
reduce simultaneously the model complexity and computational
cost. Despite a small overhead of the model, our careful and
extensive experimental results show that this new model gives
more compact representations for a wide variety of natural
images under a wide range of signal-to-noise ratio than many
existing methods, including wavelets. We also briefly address
how the same (hybrid linear) modelling paradigm can be
extended to be potentially useful for other applications, such
as image segmentation.

Index Terms— image representation, hybrid linear model,
generalized principal component analysis, wavelets.

I. I NTRODUCTION

RESEARCHERS in image processing and computer vi-
sion have long sought efficient and sparse representa-

tions of images. Except for a few image representations such
as fractal-based approaches [1], most existing sparse image
representations use an effective linear transformation sothat
the (transformed) image energy will be concentrated in the
coefficients of a small set of bases of the transformation.
Computing such a representation is typically the first step of
subsequent lossy coding/decoding of the image. The result
can also be potentially useful for other purposes such as
image segmentation, classification, and recognition.
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State of the Knowledge.Roughly speaking, most of the
popular methods for obtaining a sparse image representation
can be classified into two categories.

Methods of the first category seek to transform all images
using apre-fixed linear transformation. Each image is then
represented as a superposition of a set of basis functions
(specified by the transformation). These methods mainly
evolved from the classical Fourier Transform. Its variation,
the Discrete Cosine Transform (DCT), serves as the core
of the JPEG standard [2]. Due to the Gibbs’ phenomenon,
DCT is poor at approximating discontinuities or impulses in
the imagery signal. Wavelets [3]–[7] have been developed to
remedy this problem and have been shown to be optimal for
representing 1-D signals with discontinuities.1 JPEG-2000
adopted wavelets as its standard. However, because wavelet
transforms only deal with 1-D discontinuities, they are not
well-suited for representing 2-D singularities along edges or
contours. Anisotropic bases such as wedgelets [9], curvelets
[10] and countourlets [11] have been proposed explicitly to
capture different 2-D discontinuities. These x-lets have been
shown to be (approximately) optimal for representing objects
with singularities alongC2-smooth contours. However, natu-
ral images, especially images that have complex textures and
patterns, do not consist solely of discontinuities alongC2-
smooth edges. This is probably the reason why these edge-
based methods do not seem to outperform separable wavelets
on complex images [12].

Methods of the second category aim to identify the optimal
(or approximately optimal) representation that isadaptive
to the specific statistics or structures of each image.2 The
correlation across different regions and different color chan-
nels of a image can be captured by the adaptive basis. The
Karhunen-Loève transform (KLT) or principal component
analysis (PCA) [13] identifies the optimal principal subspace
based on the statistical correlation of the imagery data and
represents the image as a superposition of the basis of the
subspace. In theory, PCA provides the optimal linear sparse
representation for imagery data that satisfy a uni-modal

1Here, “optimality” means that the transformation achievesthe optimal
asymptotic rate for approximating the class of piece-wise smooth functions
[8]. The optimality of x-lets is also used in the same sense.

2Here, unlike in the case of prefixed transformations, “optimality” means
the representation obtained is the optimal one within the class of models
considered, in the sense that it minimizes certain discrepancy between the
model and the data.
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distribution. However, natural images typically exhibit multi-
modal statistics as they usually contain many heterogeneous
regions with significantly different geometric structuresor
statistical characteristics (e.g. Figure 3). Heterogeneous data
can be better-represented using a mixture of parametric
models, one for each homogeneous subset. Bases for each
model are adaptive to the particular homogeneous subset.
Such a mixture of models is often referred to as ahybrid
model. Vector quantization (VQ) [14] is a special hybrid
model which assumes the imagery data are clustered around
many different centers. From the dimension reduction point
of view, VQ represents the imagery data with many 0-
dimensional (affine) subspaces. This model typically leads
to an excessive number of clusters or subspaces.3 Bandelets
[12] are another hybrid model, which partitions an image into
squares according to the geometric flows. Within each square,
the image is represented by warped wavelet bases, oriented
along the direction of the geometric flows. But for images
with complex textures which do not contain obvious oriented
geometrical structures, segmenting and estimating geometric
flows will be costly and inaccurate. The primal sketch model
[15] is another hybrid model which represents the high
entropy parts of images with multiple Markov random fields
[16]–[18] and the low entropy parts with sketches. The result
is also a “sparse” representation of the image as superposition
of the random fields and sketches. However, the primary
goal of primal sketch is not to authentically represent and
approximate the original image. It is meant to capture the
(stochastic) generative model that produces the image (as
random samples). Therefore, this type of models are more
suited for image parsing, recognition, and synthesis than
compression. In addition, finding the sketches and estimating
the parameters of the random fields are computationally ex-
pensive and therefore less appealing for developing efficient
image representation and compression schemes.

Motivations of This Paper. In this paper, we generalize
the techniques of PCA and VQ and propose to represent an
image by a collection of (affine) subspaces, one subspace for
a different segment (region) of the image. The dimension and
basis of each subspace will be chosen adaptively according to
the variability and correlation of the data in the corresponding
image segment. We call such a representation as ahybrid
linear modelfor the image. Conceptually, the hybrid linear
model is related to a mixture of Gaussian distributions
(PCAs), which has been previously explored for image rep-
resentation and segmentation [19]–[22]. However, the hybrid
linear model differs from the mixed Gaussian distributions
in several important aspects. The hybrid linear model does
not explicitly assume any statistical distribution for thedata

3Be aware that compared to methods in the first category, representations
in the second category typically need additional memory to store the
information about the resulting model itself, e.g., the basis of the subspace
in PCA, the cluster means in VQ.

(such as Gaussians or exponentials). It allows the subspaces
to have different dimensions (for image regions of different
textures), that do not need to be knowna priori. Unlike
a mixture of Gaussians whose estimation often requires
iterative nonlinear optimization schemes such as Expectation
and Maximization [23], there exist non-iterative and efficient
(linear) algebraic methods forsimultaneouslyestimating the
subspaces and segmenting the data. Generalized principal
component analysis (GPCA) [24], [25] is one such method.
This paper is the first to apply such useful formulation and
methods to sparse image representations. Our method is also
different from the conventional sparse representation methods
(e.g., that based onL1 minimization [26], [27]) in at least
two different aspects: First, the bases of the subspaces areno
longer given or known; Second, the assignment of respective
subspace bases to the imagery data is found simultaneously
with the subspaces, rather than obtained subsequently viaL1

minimization. The hybrid linear model has been shown to
strike a good balance between simplicity and expressiveness
for representing natural images [28]. This paper aims to
provide even more convincing results.

The conventional transformations such as DCT and x-
lets apply primarily to scalar functions (i.e. grayscale im-
ages). For vector-valued functions (e.g., color images, hyper-
spectral images, diffusion tensor images), normally one needs
to apply the transformations to each scalar channel separately.
In the literature, many effective methods have been proposed
to harness (statistical or geometric) correlation among differ-
ent color channels for the purpose of image representation
(see [29] and references therein). The method introduced
in this paper provides a natural framework for representing
and approximating high-dimensional vector-valued functions.
The results of this paper will demonstrate that one often
can obtain equally compact representations for images by
harnessing primarily the correlation among the multiple color
channels and different regions, instead of the spatial smooth-
ness of each color channel as a function.

Another important characteristic of natural images is that
they are comprised of structures at many different (spatial
or frequency) scales. Many existing frequency-domain tech-
niques harness this characteristic [30]. For instance, wavelets,
curvelets, and fractals have all demonstrated effectiveness
in decomposing the original imagery signal into multiple
scales (or subbands). As the result of such amulti-scale
decomposition, the structures of the image at different scales
(e.g., low v.s. high frequency/entropy) become better exposed
and hence can be more compactly represented. The avail-
ability of multi-scale structures also significantly reduces the
size and dimension of the problem and hence reduces the
overall computational complexity. Therefore, in this paper,
we propose a new approach to represent imagery data by
combining the hybrid paradigm and the multi-scale paradigm.
The result is a multi-scale hybrid linear modelwhich is
based on an extremely simple concept: Given an image, at
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each scale level of its down-sample pyramid, fit the (residual)
image or the wavelet coefficients by a (multiple-subspace)
hybrid linear model. Compared to the single-scale hybrid
linear model, the multi-scale scheme can reduce not only
the size of the resulting representation but also the overall
computational cost. Surprisingly, as we will demonstrate,
such a simple scheme is able to generate representations
for imagery data that are more compact, even with the
overhead needed to store the model, than most state-of-the-art
representations, including DCT, PCA, and wavelets.

Organization of This Paper. This paper aims to provide a
comprehensive introduction and development of the multi-
scale hybrid linear model for (lossy) image representation.
This paper focuses on algorithms and implementations, but
mathematical proofs and details of GPCA can be found in
[24], [25]. Section II gives a brief review of the basic notions
and techniques of using a subspace, called a linear model, to
represent images. It makes this paper more self-contained
for readers who might not be so familiar with subspace
methods. Section III formally introduces the notion of hybrid
linear model for image representation purposes. It develops
necessary concepts and technical components for estimating
from an given image a hybrid linear model that consists
of multiple subspaces of possible different dimensions. It
also discusses the complexity of a hybrid linear model and
what is the final result of the image represented by such
a model. Section IV shows how to implement the hybrid
linear models in a multiple-scale fashion in the spatial domain
(i.e., in the original image coordinates); while Section V
extends the techniques to the multiple-scale wavelet domain.
In both cases, we provide careful and extensive experimental
results in comparison with other popular image representation
methods (e.g., DCT, PCA, wavelets).

What We Do Not Do. In this paper, we are only inter-
ested in studying and comparing the efficiency of different
transformations in approximating the image. The results are
all compared immediately after such (linear or hybrid-linear)
transformationswithout any further quantization or entropy
coding. In order for the proposed hybrid linear models to be
truly useful for image compression, one must investigate if
there also exist efficient methods for quantizing and coding
such models. That is however beyond the scope of this paper
and we leave it for future research. However, as we will
contend later that the merit of the proposed image repre-
sentation scheme is not limited only to image representation
and compression. Potentially, it can also be very useful for
segmentation of image and other types of data, as Sections
VI suggest.

II. L INEAR MODELS

A. Imagery Data Vectors in Spatial Domain

An imageI with width W , heightH , andc color channels
can be viewed as an array of totalW × H × c numbers.

Thus, the imageI resides in a very high-dimensional space
R

W×H×c. We may first reduce the dimension by dividing the
image into a set of (non-overlapping)b by b blocks.4 Each
b by b block can then be stacked into a vectorx ∈ R

K ,
whereK = b2c is the dimension of the ambient space. For
example, if c = 3 and b = 2, then K = 12 (see Figure
1). In this way, the imageI is converted to a set of vectors
{xi ∈ R

K}M
i=1, whereM = WH/b2 is the total number

of vectors. The so-defined vectors will be referred to as the
imagery vectors “in the spatial domain,” to be distinguished
from the imagery vectors defined “in the wavelets domain”
that we will introduce later in Section V.

Borrowing ideas from existing unsupervised learning
paradigms, it is tempting to assume the imagery data vectors
{xi} are random samples from a (non-singular) probability
distribution or noisy samples from a smooth manifold. As
the distribution or manifold can be very complicated, a
common approach is to infer a best approximation within
a simpler class of models for the distributions or manifolds.
The “optimal” model is then the one that minimizes certain
measure of discrepancy to the true model. Different choices
of model classes and discrepancy measures have led to many
different learning algorithms developed in machine learning,
pattern recognition, computer vision, and image processing.
For image compression, the most commonly adopted discrep-
ancy measure is the Mean Square Error (MSE) between the
original imageI and approximated imagêI,

ǫ2I =
1

WHc
‖Î − I‖2. (1)

Since we will be approximating the (block) vectors{xi}
rather than the image pixels, in the following derivation, it
is more convenient for us to define the Mean Square Error
(MSE) per vectorwhich is different fromǫ2I by a scale,

ǫ2 =
1

M

M
∑

i=1

‖x̂i − xi‖
2 =

b2

WH

M
∑

i=1

‖x̂i − xi‖
2

=
b2

WH
‖Î − I‖2 = (b2c)ǫ2I = Kǫ2I . (2)

The Peak Signal to Noise Ratio (PSNR) of the approxi-
mated image will be used in experiment sections and it is
defined to be,5

PSNR
.
= −10 log ǫ2I = −10 log

ǫ2

b2c
. (3)

B. Estimation of A Linear Model

If we assume that the vectorsx are drawn from an
anisotropic Gaussian distribution or a linear subspace as
illustrated in Figure 1, the optimal model subject to a given
PSNR can be inferred by Principal Component Analysis

4Conventionally one choosesb to be a common divisor ofW andH.
5The peak value of the imagery data is normalized to 1.
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Fig. 1. In a linear model, the imagery data vectors{xi} reside in an
(affine) subspace.

(PCA) [31]–[33] or equivalently the Karhunen-Loève Trans-
form (KLT) [13]. We review below briefly a solution to PCA
based on singular value decomposition (SVD), also known
as the Erkart and Young decomposition [34], [35].

Typically, the principal subspace is an affine subspace
which does not necessarily pass through the origin, we can
move the affine subspace into a linear subspace by subtracting
the mean of the samples from each sample vector. Let
x̄ = 1

M

∑M

i=1 xi be the mean of the imagery data vectors,
and X = [x1 − x̄, x2 − x̄, . . . , xM − x̄] = UΣV T be
the SVD of the mean-subtracted data matrixX. Then all
the vectorsxi can be represented as a linear superposition:
xi = x̄+

∑K

j=1 αj
iφj , i = 1, . . . , M, where{φj}K

j=1 are just
the columns of the matrixU .

The matrixΣ = diag(σ1, σ2, . . . , σK) contains the ordered
singular valuesσ1 ≥ σ2 ≥ · · · ≥ σK . It is well known that
the optimal linear representation ofxi subject to the MSE
ǫ2 is obtained by keeping the firstk (principal) components

x̂i
.
= x̄ +

k
∑

j=1

αj
iφj , i = 1, . . . , M, (4)

wherek is chosen to be

k = min(n), s.t.
1

M

K
∑

i=n+1

σ2
i ≤ ǫ2. (5)

Symbolically, the process is represented by the following
diagram:

{xi} ⊂ R
K PCA

−−−−→ {x′
i} ⊂ R

K′

.

C. Model Complexity of A Linear Model

The model complexity of a linear model, denoted asΩ, is
the total number of coefficients needed for representing the
model {αj

i , φj , x̄} and subsequently a lossy approximation
Î of the imageI. It is given by

Ω(M, k)
.
= Mk + k(K − k + 1), (6)

where the first term is the number of coefficients{αj
i}

to represent{x̂i − x̄}M
i=1 with respect to the basisΦ =

{φj}k
j=1 and the second term is the number of Grassmannian

coordinates6 needed for representing the basisΦ and the
mean vector̄x. The second term is often calledoverhead.7

Notice that the original set of vectors{xi} contain MK
coordinate entries. IfΩ ≪ MK, the new representation,
although lossy, is much more compact. The search for such
a compact representation is at the heart of any (lossy) image
compression method. When the imageI is large and the
block size b is small, M will be much larger thanK so
that the overhead will be much smaller than the first term.
However, in order to compare fairly with other methods, in
the subsequent discussions and experiments, we always count
the total number of coefficients needed for the representation,
including the overhead.

III. H YBRID L INEAR MODELS

In this section we introduce and examine the hybrid linear
model. The relationship between hybrid linear models across
different scale levels will be discussed in Section IV.

A. Hybrid Linear Models

The linear model is very efficient when the target manifold
or distribution function is unimodal. However, if the image
I contains several heterogeneous regions{In}N

n=1, the data
vectorsxi can be viewed as samples from a collection of
(affine) subspaces of possibly different dimensions or from
a mixture of multiple (Gaussian) distributions as shown in
Figure 2. Figure 3 shows the first three principal components

R
K

I

x

x

R

G

B

S1

S2
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S4

Fig. 2. In hybrid linear models, the imagery data vectors{xi} reside in
multiple (affine) subspaces which may have different dimensions.

of the data vectorsxi (as dots inR
3) of the baboon image.

Note the clear multi-modal characteristic in the distribution
of the data.

6Notice that to represent ak dimensional subspace in aK dimensional
space, we only need to specify a basis ofk linearly independent vectors for
the subspace. We may stack these vectors as rows of ak × K matrix. Any
nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the
normal form[Ik×k, G] whereG is ak × (K − k) matrix consisting of the
so-called Grassmannian coordinates.

7Notice that if one uses a pre-chosen basis such as discrete Fourier
transform, discrete cosine transform (JPEG), and wavelets(JPEG-2000),
there is no such overhead.
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Fig. 3. Left: The baboon image. Right: The coordinates of each dot are the
first three principal components of the vectorsxi. There is a clear multi-
modal structure in the data.

Thus, it is probably more reasonable to assume that a
natural imageI can be segmented intoN disjoint regions
I = ∪N

n=1In with In ∩ In′ = ∅ for n 6= n′. In each region
In, a linear model (4) is approximately valid for the subset
of vectors{xn,i}

Mn

i=1 in In:

x̂n,i = x̄n +

kn
∑

j=1

αj
i φn,j , i = 1, . . . , Mn. (7)

As in the linear model, the dimensionkn of each subspace
should be determined by a common desired MSEǫ2 as in
equation (5). We call the result{φn,j, x̂n,i} a hybrid linear
model for the image. In essence, the hybrid linear model
assumes that the imagery data{xi} belong to a collection of
subspaces{Sn}

N
n=1:

In = {xn,i} ⊂ Sn ⊂ R
K , ∀n = 1, . . . , N. (8)

A collection of subspacesZ
.
= ∪N

n=1Sn is formally known
in algebraic geometry as asubspace arrangement.

We emphasize that here the subspacesSn are allowed to
intersect with each other and can have different dimensions
(as different textures in the image can have different com-
plexities). Thus, a subspace arrangement isnot a smooth
manifold or a mixture of (non-degenerate) Gaussians. Strictly
speaking, a subspace arrangement is an algebraic set.8 In
this paper, we contend that subspace arrangements are a
more flexible, relevant, and efficient class of models for
representing images than nonlinear smooth manifolds or
mixtures of Gaussian distributions.

Subspace arrangements constitute of a very special but im-
portant class of algebraic sets that have been studied in math-
ematics for centuries (see [36], [37] and references therein).
The importance as well as the difficulty of studying subspace
arrangements can hardly be exaggerated. Different aspectsof
their properties have been and are still being investigatedand
exploited in many mathematical fields, including algebraic
geometry & topology, combinatorics and complexity theory,
and graph and lattice theory, etc. Interested readers may
see [37] for a general review. Although the results about

8An algebraic set is defined as a set of points that are the zerosof set of
polynomial equations.

subspace arrangements are extremely rich and deep, only a
few special classes of subspace arrangements have been fully
characterized.

B. Identifying A Hybrid Linear Model

Here we are interested in only how to estimate such an
arrangement of subspaces from the un-segmented imagery
vectors{xi}. Notice that the subspacesSn do not necessarily
pass through the origin. Such a subspace is called an affine
subspace. Technically affine subspaces are slightly less con-
venient to deal with than linear subspaces that pass through
the origin. Notice that all vectors in an affine subspace of
dimensionk in R

K span a linear subspace of dimensionk+1
in R

K+1 by identifying a point inR
K as a point inR

K+1

via the so-called homogeneous coordinates,9

x =











x1

x2

...
xK











∈ R
K −−−−→ x =















x1

x2

...
xK

1















∈ R
K+1.

Using the homogeneous coordinates, identifying an ar-
rangement of affine spaces inRK is converted to identifying
an arrangement of linear subspaces, also known as a central
arrangement, inRK+1. However, identifying multiple linear
subspaces is still a very difficult problem in its full generality.
If the segmentation of the vectors{xi} were known, the
optimal subspace for each subset could be easily found
using PCA; and conversely, if the subspaces were known,
the vectors{xi} (and hence the image) could be easily
segmented into their closest subspaces. It seems that this
is a “chicken-and-egg” problem if we do not know either
the segmentation or the subspaces. Traditionally, this kind of
problem is approached with one of many clustering methods
developed in statistics or machine learning (e.g. Expectation
Maximization [23], [38], K-means [39] or its variation K-
subspaces [40]). Some of the methods have been applied
to problems in image processing [19], [20]. However, these
techniques are iterative and incremental in nature and there-
fore prone to converge to local minima if the initializationis
far off. Moreover, these methods cannot be extended so easily
to hybrid models whose components may havedifferent
and unknowndimensions. In [24], [25], it is shown that a
more pertinent method for estimating a hybrid linear model
is the so-called Generalized Principal Component Analysis
(GPCA). This method does not require prior knowledge
of the number and dimension of the subspaces and can
simultaneously estimate multiple subspaces and segment the
data into them, well suited for our purpose here.

A general solution to GPCA can be found in [25]. In this
paper, since the true nature of natural images is unknown and

9This process is formally known in algebraic geometry as “projectivitiza-
tion.”
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we only adopt an arrangement of subspaces to approximate
the imagery data, we need to solve a special case of GPCA
that can identify a hybrid linear structure for an image subject
to a given MSE thresholdǫ2. That is, unlike the algorithm
given in [25], the special algorithm needs to automaticallyde-
termine the smallest number of subspaces of lowest possible
dimensions for a given image subject to the MSE threshold.
We describe in the next few sections the development of such
a customized GPCA algorithm for the image representation
problem. But for the sake of completeness, we first give a
brief introduction to the basic ideas of GPCA via a simplified
case that will also be used later in the customized GPCA
algorithm (see Algorithm 2) as well as in the extended multi-
scale version (see Algorithm 3 and 4).

For simplicity, we will assume for now thatN , the number
of subspaces, is known. We will discuss how it can be
determined later in the Section III-E. We also assume that all
the subspaces are hyperplanes in the ambient spaceR

K+1.
That is, all subspaces have the same dimensionk1 = · · · =
kn = k = (K + 1) − 1 = K. Such a model may
initially over-fit the data as the dimensions of some of the
subspaces could be strictly smaller thanK. Nevertheless,
the grouping of the data points will in general be correct
because it is a zero-measure event that any over-estimated
hyperplane simultaneously contains more than one subspace.
Once the grouping is obtained, we can easily determine the
true dimension of each subspace by applying PCA to data
points that belong to each group.

We start by noticing that everyK-dimensional hyperplane
S ⊂ R

K+1 can be defined in terms of a nonzeronormal
vectorb ∈ R

K+1 as follows:

S
.
=

{

x : b
T
x

.
= b1x1 +b2x2 + · · ·+bK+1xK+1 = 0

}

. (9)

Therefore, a pointx ∈ R
K+1 lying on one of the hyperplanes

Sn, n = 1, . . . , N must satisfy the formula:10

(bT
1 x = 0) ∨ (bT

2 x = 0) ∨ · · · ∨ (bT
nx = 0). (10)

In other words, the product of then linear terms must be
zero regardless which subspacex is in, i.e.,

pN(x)
.
= (bT

1 x)(bT
2 x) · · · (bT

Nx) = 0. (11)

The basic idea of GPCA is to find the polynomial(s)pN and
then retrieve information about the individual subspaces (or
hyperplanes) frompN .

Note thatpN is a homogeneous polynomial of degreen
in x with real coefficients:

pN(x)=
∑

cN1,...,NK+1
xN1

1 · · ·x
NK+1

K+1 =νN(x)T
cN ,

where cN1,N2,...,NK+1
∈ R represents the coefficient of

monomialxN1

1 xN2

2 · · ·x
NK+1

K+1 , cN is the vector of all coeffi-
cients, andνN (x) is the stack of all possible monomials.νN

10Since the subspacesSn are all different from each other, the normal
vectors{bn}N

n=1 are pairwise linearly independent.

is actually the Veronese map of degreeN which is defined
as follows.

Definition (Veronese Map).Given N and D, the Veronese
map of degreeN , νN : R

D → R
GN (D), is defined as:νN :

[x1, . . . , xD]T 7→ [. . . , xN , . . .]T , wherex
N is a monomial

of the form xN1

1 xN2

2 · · ·xND

D with N = (N1, N2, . . . , ND).
The monomialsxN in νN (x) are ordered in the degree-
lexicographic order.

The number of linearly independent monomials isGN
.
=

(

D+N−1
D

)

, hencecN andνN (x) are vectors inRGN .
Since the given set of samples{xi}M

i=1 all satisfy the
equation (11), we obtain the following system of linear
equations on the vector of coefficientscN :

V N cN
.
=











νN (x1)
T

νN (x2)
T

...
νN (xM )T











cN = 0 ∈ R
M . (12)

Because the number of hyperplanesN was known, we
could immediately recovercN as the eigenvector ofV T

NV N

associated with its smallest eigenvalue.
Now let us consider the derivative ofpN (x) evaluated at

eachx. Supposex ∈ Sj, we have:

∇pN (x) =
∂pN(x)

∂x
=

∂

∂x

N
∏

n=1

(bT
nx)

=

N
∑

n=1

(bn)
∏

ℓ 6=n

(bT
ℓ x) = bj

∏

ℓ 6=j

(bT
ℓ x), (13)

because
∏

ℓ 6=n(bT
ℓ x) = 0 for j 6= n.11 Thus, one can obtain

a normal vector for each subspace,

bn =
∇pN (xj)

|∇pN (xj)|
, ∀ xj ∈ Sn. (14)

After obtaining the normals of all the subspaces, all the
data vectors{xi} can be segmented into the subspaces to
which they are the closest. Subsequently, for each group of
data vectors, a linear model is identified using the method
described in Section II-B. The correct dimension of each
subspace is determined according to equation (5).12

We summarize in pseudocode the GPCA algorithm that
we are using in this paper as Algorithm 1.13

Example 1 (Simulation of One Plane and Two Lines).
Figure 4 shows an example of 5,000 points sampled from
one plane and two lines inR3: 3,000 points from the plane

11For noisy data, it is not exactly 0 but can be ignored because it is
insignificant relative to the term withj = n.

12In identifying the linear model for each group, we do not needto
use homogeneous coordinate anymore because the mean of the vectors is
subtracted first in PCA.

13Be aware that the derivation and summary of the GPCA algorithm given
in this paper is a gross simplification of the more complete version. The
interested reader may refer to [24] for a more rigorous derivation and proofs.



WEI HONG, JOHN WRIGHT, KUN HUANG, AND YI MA 7

Algorithm 1 (Subspace Segmentation – GPCA).
1: function {φn,j ,xn,i} = SubspaceSegmentation({xi}, N)
2: ConstructV N from {xi} in homogeneous coordinates;
3: Solve forcN from V NcN = 0;
4: SetpN (x) = c

T
NνN(x);

5: Determine the normal vectors of each subspaceSn as bn =
∇pN (xj)

|∇pN (xj)|
, ∀ xj ∈ Sn;

6: Assignxi to the groupn which minimizes‖bT
n xi‖

2.
7: Apply PCA to each group{xn,i} and obtain the dimension

and a basis{φn,j} for each subspaceSn.

and 1,000 points from each of the line. Each sample point is
corrupted with 5% independent Gaussian noise. The results
of Algorithm 1 applied to the data set are shown in Figure 4.
The sample points are segmented correctly according to the
three subspaces.

Fig. 4. An example of the subspace segmentation. Left: The sample points.
Right: The sample points are segmented into 3 groups which are denoted
by different colors.

As the above example shows, although Algorithm 1 is
purely algebraic, each of its steps involves only numerically
stable procedures and hence the algorithm is able to tolerate
moderate amount of noise. In general, large noise and out-
liers pose significant challenges to GPCA. However, in our
context, since we are seeking an approximation of the data
set subject to a hard MSE threshold, we cannot simply throw
away any subset of data as outliers and instead we need to
either increase the number of subspaces or their dimensions
in order to reduce the resulting fitting error. How to do so
properly will be addressed in Section C-E.

C. Model Complexity of A Hybrid Linear Model

The model complexity, i.e., the total number of coefficients
needed for representing the hybrid linear model{φn,j , x̂n,i}

is14

Ω = Ω(M1, k1) + · · · + Ω(MN , kN )

=

N
∑

n=1

(

Mnkn + kn(K − kn + 1)
)

. (15)

Notice thatΩ is similar to the effective dimension (ED) of
the hybrid linear representation defined in [41]. Thus, finding
a representation that minimizesΩ is the same as minimizing
the effective dimension of the imagery data set.15

Instead, if we model the union of all the vectors
∪N

n=1{xn,i}
Mn

i=1 with a single subspace (subject to the same
MSE), the dimension of the subspace in general needs to
be k = min{k1 + · · · + kN , K}. It is easy to verify from
the definition (6) that under reasonable conditions (e.g.,N
is bounded from being too large), we have

Ω(M, k) > Ω(M1, k1) + · · · + Ω(MN , kN ). (16)

Thus, if a hybrid linear model can be identified for an image,
the resulting representation will in general be much more
compressed than that with a single linear or affine subspace.
This will also be verified by experiments on real images in
subsequent sections.

D. Dimension Reduction via Projection.

The application of hybrid linear model to image repre-
sentation has previously been explored in [28]. However, it
misses two critical factors that prevent the final performance
from being comparable to other competitive methods such
as wavelets. The first factor is how to further reduce the
negative effect of overhead by incorporating a pre-projection
of the data; the second factor is to how to implement the
hybrid linear model in a multi-scale fashion. We will discuss
the first factor in the remainder of this section and leave the
issues with multi-scale implementation to the next section.

In the complexity of the hybrid linear model (15), the
first term is always smaller than that of the linear model (6)
becausekn ≤ k for all n and

∑N

n=1 Mn = M . The second
overhead term however can be larger than in that of the linear
model (6) because the bases of multiple subspaces now must
be stored. We here propose a method to further reduce the
overhead by separating the estimation of the hybrid model
into two steps.

In the first step, we may project the data vectors{xi} onto
a lower-dimensional subspace (e.g., via PCA) so as to reduce
the dimension of the ambient space fromK to K ′, with
K ′ chosen to achieve an MSE12ǫ2. The data vectors in the
lower ambient spaceRK′

are denoted as{x′
i}. In the second

step, we identify a hybrid linear model for{x′
i} within

14We also needs a very small number of binary bits to store the
membership of the vectors. But those extra bits are insignificant comparing
to Ω and often can be ignored.

15In fact, the minimalΩ is closely related to the Kolmogorov complexity
or to the minimum description length (MDL) of the imagery data [41].
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the lower-dimension ambient spaceR
K′

. In each subspace,
we determine the dimensionkn subject to the MSE1

2ǫ2.
Symbolically, the process is represented by the following
diagram:

{xi} ⊂ R
K PCA

−−−−−→ {x′
i} ⊂ R

K′ GPCA
−−−−−→ {x′

i} ⊂ ∪N
n=1S

′
n,

whereK ′ < K. The two steps combined achieve an overall
MSE ǫ2, but they can actually reduce the total model com-
plexity to

Ω =
N

∑

n=1

(

Mnkn + kn(K−kn + 1)
)

+ K(K ′+1). (17)

This Ω will be smaller than theΩ in equation (15) because
K ′ is smaller thanK. The reduction of the ambient space
will also make the identification of the hybrid linear model
(say by GPCA) much more efficient.

E. Determining the Number of Subspaces

If the number of subspaces,N , is given, algorithms like
GPCA or EM can always find a segmentation. The basis
{φn,j} and dimensionkn of each subspace are determined
by the desired MSEǫ2. As N increases, the dimension of the
subspaces may decrease, but the overhead required to store
the bases increases. The optimalN∗ is then the one that
minimizesΩ. From our experiments, we found thatN∗ is
typically in the range from 2 to 6, especially in a multi-scale
implementation that we will introduce next. Therefore,N∗

can be easily identified by applying the algorithm repeatedly
to differentN ’s.

F. Algorithm for Estimating A Hybrid Linear Model

Algorithm 2 below describes in pseudocode how to esti-
mate the hybrid linear model of an imageI, in which the
SubspaceSegmentationfunction is implemented in this paper
using the GPCA Algorithm 1. But it can also be implemented
using some variations of EM or other subspace segmentation
methods.16

Example 2 (A Hybrid Linear Model for the Gray-Scale
Barbara Image). Figure 5 and Figure 6 show intuitively
a hybrid linear model identified for the8 × 8 blocks of
the standard512 × 512 gray-scale Barbara image. The total
number of blocks isN = 4, 096. The GPCA subspace
segmentation algorithm identifies three subspaces for these
blocks (for a given error tolerance), as shown in Figure
5. Figure 6 displays the three sets of bases for the three
subspaces identified, respectively. It is worth noting thatthese
bases are very consistent with the textures of the image
blocks in the respective groups.

16However, by the time this paper is written, we are not aware ofthe
existence of any such variation that provides a principled solution to the
subspace segmentation problem while using as little prior knowledge on the
subspaces as GPCA.

Algorithm 2 (Hybrid Linear Model Estimation).

1: function Î = HybridLinearModel(I , ǫ2)
2: {xi} = StackImageIntoVectors(I);
3: {x′

i}, {φj}, {α
j
i} = PCA({xi − x̄}, 1

2
ǫ2);

4: for each possibleN do
5: {x′

n,i} =SubspaceSegmentation({x′
i}, N);

6: {x̂′
n,i}, {φn,j}, {α

j
n,i} = PCA({x′

n,i − x̄
′
n},

1
2
ǫ2);

7: computeΩN ;
8: end for
9: Ωopt = min(ΩN );

10: Î = UnstackVectorsIntoImage({x̂′
n,i} with Ωopt);

11: output {αj
i }, {φj}, x̄, {αj

n,i}, {φn,j}, {x̄
′
n} with Ωopt;

12: return Î.

Fig. 5. The segmentation of the 4,096 image blocks from the Barbara
image. The image (left) is segmented into three groups (right three). Roughly
speaking, the first subspace contains mostly image blocks with homogeneous
textures; the second and third subspaces contain blocks with textures of
different spatial orientations and frequencies.

IV. M ULTI -SCALE HYBRID L INEAR MODELS IN SPATIAL

DOMAIN

There are at least several reasons why the above hybrid
linear model needs further improvement. Firstly, the hybrid
linear model treats low frequency/entropy regions of the
image in the same way as the high frequency/entropy regions,
which is inefficient. Secondly, by treating all blocks the same,
the hybrid linear model fails to exploit stronger correlations
that typically exist among adjacent image blocks.17 Finally,
estimating the hybrid linear model is computationally expen-
sive when the image is large. For example, we use 2 by 2
blocks, a 512 by 512 image will haveM = 65, 536 data
vectors. Estimating a hybrid linear model for such a huge
number of vectors is impossible for a PC. In this section, we
introduce a multi-scale hybrid linear representation which is
able to resolve the above issues.

17For instance, if we take all theb by b blocks and scramble them
arbitrarily, the scrambled image would be fit equally well bythe same hybrid
linear model for the original image.

Fig. 6. The three sets of bases for the three subspaces (of blocks) shown
in Figure 5, respectively. Each row is for one subspace and the number of
base vectors (blocks) is the dimension of the subspace.
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A. Laplacian Pyramid of Hybrid Linear Models

The basic ideas of multi-scale representations such as
the Laplacian pyramid [30] have been exploited for image
compression for decades (e.g., wavelets, subband coding).A
multi-scale method will give a more compact representation
because it encodes low frequency/entropy parts and high fre-
quency/entropy parts separately. The low frequency/entropy
parts are invariant after low-pass filtering and down-sampling,
and can therefore be extracted from the much smaller down-
sampled image. Only the high frequency/entropy parts need
to be represented at a level of higher resolution. Furthermore,
the stronger correlations among adjacent image blocks will
be captured in the down-sampled images because every four
images blocks are merged into one block in the down-
sampled image. At each level, the number of imagery data
vectors is one fourth of that at one level above. Thus, the
computational cost can also be reduced.

We now introduce a multi-scale implementation of the
hybrid linear model. We use the subscriptl to indicate the
level in the pyramid of down-sampled images.18 The finest
level (the original image) is indicated byl = 0. The larger
is l, the coarser is the down-sampled image. We denote the
highest level to bel = L.

Pyramid of Down-Sampled Images.First, the level-l image
Il passes a low-pass filter F1 (averaging or Gaussian filter,
etc) and is down-sampled by 2 to get a coarser version image
Il+1:

I l+1
.
= F1(I l) ↓ 2, l = 0, . . . , L − 1. (18)

The coarsest level-L imageIL is approximated bŷIL using
a hybrid linear model with the MSEǫ2L. The number of
coefficients needed for the approximation isΩL.

Pyramid of Residual Images. At all other level-l, l =
0, . . . , L − 1, we do not need to approximate the down-
sampled imageI l because it has been roughly approximated
by the image at level-(l + 1) upsampled by 2. We only need
to approximate the residual of this level, denoted asI

′
l:

I
′
l

.
= I l − F2(Î l+1) ↑ 2, l = 0, . . . , L − 1, (19)

where the F2 is an interpolation filter. Each of these residual
imagesI

′
l, l = 0, . . . , L − 1 is approximated bŷI

′

l using
a hybrid linear model with the MSEǫ2l . The number of
coefficients needed for the approximation isΩl, for each
l = 0, . . . , L − 1.

Pyramid of Approximated Images. The approximated im-
age at the level-l is denoted aŝI l:

Î l
.
= Î

′

l + F2(Î l+1) ↑ 2, l = 0, . . . , L − 1. (20)

The Figure 7 shows the structure of a three-level (L = 2)
approximation of the imageI. Only the hybrid linear models
for Î2, Î

′

1, andÎ
′

0, which are approximation forI2, I
′
1, and

18This is not to be confused with the subscriptn used to indicate different
segments of an image.
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Î
′
1

Î1
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Fig. 7. Laplacian pyramid of the multi-scale hybrid linear model.

I
′
0 respectively, are needed for the final representation of the

image. Figure 8 shows theI2, I
′
1, and I

′
0 for the baboon

image.

Fig. 8. Multi-scale representation of the Baboon image. Left: The coarsest
level imageI2. Middle: The residual imageI′

1. Right: The residual image
I
′
0. The data at each level are modeled as the hybrid linear models. The

contrast of the middle and right images has been adjusted so that they are
visible.

The total number of coefficients needed for the represen-
tation will be

Ω =
L

∑

l=0

Ωl. (21)

B. Constraints at Different Levels

MSE Threshold at Different Scale Levels. The MSE
thresholds at different levels should be different but related
because the up-sampling by2 will enlarge1 pixel at level-
(l+1) into 4 pixels at level-l. If the MSE of the level-(l+1)
is ǫ2l+1, the MSE of the level-l after the up-sampling will
become4ǫ2l+1. So the MSE thresholds of level-(l + 1) and
level-l are related as

ǫ2l+1 =
1

4
ǫ2l , l = 0, . . . , L − 1. (22)
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Usually, the user will only give the desired MSE for the
approximation of original image which isǫ2. So we have

ǫ2l =
1

4l
ǫ2, l = 0, . . . , L. (23)

Vector Energy Constraint at Each Level. At each level-
l, l = 0, . . . , L − 1, not all the vectors of the residual
need to be approximated. We only need to approximate the
(block) vectors{xi} of the residual imageI ′

l that satisfy the
following constraint:

‖xi‖
2 > ǫ2l . (24)

In practice, the energy of most of the residual vectors is
close to zero. Only a small portion of the vectors at each
level-l need to be modeled (e.g. Figure 9). This property

Fig. 9. The segmentation of (residual) vectors at the three levels—different
subspaces are denoted by different colors. The black regions correspond to
data vectors whose energy is below the MSE thresholdǫ2

l
in equation (24).

of the multi-scale scheme not only significantly reduces the
overall representation complexityΩ but also reduces the
overall computational cost as the number of data vectors
processed at each level is much less than those of the original
image. In addition, for a single hybrid linear model, when the
image size increases, the computational cost will increasein
proportion to the square of the image size. In the multi-scale
model, if the image size increases, we can correspondingly
increase the number of levels and the complexity increases
only linearly in proportion to the image size.

C. Algorithm of Estimating A Multi-scale Hybrid Linear
Model

The overall process of estimating the multi-scale hybrid
linear model can be written as the recursive pseudocode in
Algorithm 3.

D. Experiments and Comparisons

Comparison of Different Lossy Representations.The first
experiment is conducted on two standard images commonly
used to compare image compression schemes: the480×320

Algorithm 3 (Multi-Scale Hybrid Linear Model: Spatial Do-
main).

1: function Î = MultiscaleModel(I , level, ǫ2)
2: if level < MAXLEVEL then
3: Idown = Downsample(F1(I));
4: Înextlevel = MultiscaleModel(Idown, level + 1, 1

4
ǫ2);

5: end if
6: if level = MAXLEVEL then
7: I

′ = I;
8: else
9: Iup = F2(Upsample(Înextlevel));

10: I
′ = I − Iup;

11: end if
12: Î

′ = HybridLinearModel(I ′, ǫ2);
13: return Iup + I

′.

Fig. 10. Testing images: the hill image (480×320) and the baboon image
(512 × 512).

hill image and the512× 512 baboon image shown in Figure
10. We choose these two images because they are representa-
tive of two different types of images. The hill image contains
large low frequency/entropy regions and the baboon image
contains mostly high frenquency/entropy regions (see Section
IV-E for more images). The size of the blocksb is chosen to
be 2 and the level of the pyramid is 3 – we will test the effect
of changing these parameters in subsequent experiments. In
Figure 11, the results of our method are compared with
several other commonly used image representations including
DCT, PCA/KLT, single-scale hybrid linear model and Level-
3 biorthogonal 4.4 wavelets (JPEG 2000). Thex-axis of the
figures is the ratio of coefficients (including the overhead)
kept for the representation, which is defined as,

η =
Ω

WHc
. (25)

The y-axis is the PSNR of the approximated image defined
in equation (3). The multi-scale hybrid linear model achieves
the best PSNR among all the methods for both images. Figure
12 shows the two recovered images using the same amount
of coefficients for the hybrid linear model and the wavelets.
Notice that in the area around the whiskers of the baboon,
the hybrid linear model preserves the detail of the textures
better than the wavelets. However, the multi-scale hybrid



WEI HONG, JOHN WRIGHT, KUN HUANG, AND YI MA 11

Fig. 11. Top: Comparison of several image representations for the hill
image. Bottom: Comparison for the baboon image. The multi-scale hybrid
linear model achieves the best PSNR among all the methods forboth images.

linear model produces a slight block effect in the smooth
regions.

Effect of the Number of Scale Levels.The second exper-
iment shown in Figure 13 compares the multi-scale hybrid
linear representation with wavelets for different number of
levels. It is conducted on the hill and baboon image with 2
by 2 blocks. The performance increases while the number
of levels is increased from 3 to 4. But if we keep increasing
the number of levels to 5, the level-5 curves of both wavelets
and our method (which are not shown in the figures) coincide
with the level-4 curves. The performance cannot improve any
more because the down-sampled images in the fifth level are
so small that they cannot be further compressed. Only when
the image is large, can we use more levels of down-sampling
to achieve a more compressed representation.

Effect of the Window Size of the Blocks. The third
experiment shown in Figure 14 compares the multi-scale

Fig. 12. Left: The baboon image recovered from level-3 biorthogonal
4.4 wavelets using7.5% coefficients of the original image (PSNR=23.73).
Right: The baboon image recovered from the level-3 multi-scale hybrid
linear model in spatial domain using the same amount of coefficients.
(PSNR=24.18).

hybrid linear models with different block sizes from2 × 2
to 16 × 16. The dimension of the ambient space of the
data vectorsx ranges from 12 to 192 accordingly. The
testing image is the baboon image and the number of down-
sampling levels is 3. For large blocks, the number of data
vectors is small but the dimension of the subspaces is large.
So the overhead would be large and seriously degrade the
performance. Also the block effect will be more obvious
when the block size is large. This experiment shows that 2 is
the optimal block size, which also happens to be compatible
with the simplest down-sampling scheme.

E. Limitations

We have tested the multi-scale hybrid linear model on a
wide range of images, with some representative ones shown
in Figure 15.

From our experiments and experience, we observe that the
multi-scale hybrid linear model is more suitable than wavelets
for representing images with multiple high frequency/entropy
regions, such as those with sharp 2-D edges and rich of
textures. Wavelets are prone to blur sharp 2-D edges but
better at representing low frequency/entropy regions. This
probably explains why our model performs slightly worse
than wavelets for the Lena and the monarch – the back-
grounds of those two images are out of focus so that they do
not contain much high frequency/entropy content.

Another limitation of our model is that it does not perform
well on grayscale images. For a gray level image, the dimen-
sion K of a 2 by 2 block is only 4. Such a low dimension
is not adequate for any further dimension reduction. If we
use a larger block size, the block effect will also degrade the
performance.

Unlike pre-fixed transformations such as wavelets, our
method involves identifying the subspaces and their bases.
Computationally, it is more costly. With unoptimized MAT-
LAB codes, the overall model estimation takes 30 seconds
to 3 minutes on a Pentium 4 1.8GHz PC depending on the
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Fig. 13. Top: Comparison of the multi-scale hybrid linear model with
wavelets for level-3 and level-4 for the hill image. Bottom:The same
comparison for the baboon image. The performance increaseswhile the
number of levels increases from 3 to 4.

image size and the desired PSNR. The smaller the PSNR,
the shorter the running time because the number of blocks
needed to be coded in higher levels will be less.

V. M ULTI -SCALE HYBRID L INEAR MODEL IN WAVELET

DOMAIN

From the discussion in the previous section, we have
noticed that wavelets can achieve a better representation for
smooth regions and avoid the block artifacts. Therefore, in
this section, we will combine the hybrid linear model with the
wavelet approach to build multi-scale hybrid linear models
in the wavelet domain.

A. Imagery Data Vectors in Wavelet Domain

In the wavelet domain, an image is decomposed into an
octave tree of subbands by certain separable wavelets. At

Fig. 14. Comparison of the multi-scale hybrid linear model with different
block sizes: 16, 8, 4, 2. The performance increases while thesize of blocks
decreases.

Fig. 15. A few standard testing images we used. From the top-left to the
bottom-right: monarch (768× 512), sail (768× 512), canyon (752× 512),
tiger (480×320), street (480×320), tree (512×768), tissue (microscopic)
(1408 × 1664), Lena (512 × 512), earth (satellite) (512 × 512), urban
(aerial) (512 × 512), bricks (696 × 648). The multi-scale hybrid linear
model outperforms wavelets except for the Lena and monarch images.

each level, the LH, HL, HH subbands contain the information
about high frequency edges and the LL subband is further
decomposed into subbands at the next level. Figure 16 shows
the octave tree structure of a level-2 wavelet decomposition.
As shown in the Figure 17, the vectors{xi ∈ R

K}M
i=1

are constructed by stacking the corresponding wavelet co-
efficients in the LH, HL, HH subbands. The dimension of
the vectors isK = 3c because there arec color channels.
One of the reasons for this choice of vectors is because
for edges along the same direction, these coefficients are
linearly related and reside in a lower dimensional subspace.
To see this, let us first assume that the color along an edge
is constant. If the edge is along the horizontal, vertical or
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Fig. 16. The subbands of a level-2 wavelet decomposition.
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Fig. 17. The construction of imagery data vectors in the wavelet domain.
These data vectors are assumed to reside in multiple (affine)subspaces which
may have different dimensions.

diagonal direction, there will be an edge in the coefficients
in the LH, HL, or HH subband, respectively. The other two
subbands will be zero. So the dimension of the imagery data
vectors associated with such an edge will be 1. If the edge
is not exactly in one of these three directions, there will be
an edge in the coefficients of all the three subbands. For
example, if the direction of the edge is between the horizontal
and diagonal, the amplitude of the coefficients in the LH
and HH subbands will be large. The coefficients in the HL
subband will be insignificant relative to the coefficients in
the other two subbands. So the dimension of the data vectors
associated with this edge is approximately 2 (subject to a
small error ǫ2). If the color along an edge is changing,
the dimension the subspace will be higher but generally
lower than the ordinal dimension3c. Notice that the above
scheme is only one of many possible ways in which one
may construct the imagery data vector in the wavelet domain.
For instance, one may construct the vector using coefficients
across different scales. It remains an open question whether
such new constructions may lead to even more efficient
representations than the one presented in this paper. We will
leave this for future research.

B. Estimating A Multi-scale Hybrid Linear Model in Wavelet
Domain

In the wavelet domain, there is no need to build a down-
sampling pyramid. The multi-level wavelet decomposition
already gives a multi-scale structure in the wavelet domain.

For example, Figure 18 shows the octave three structure of a

Fig. 18. The subbands of level-3 bior-4.4 wavelet decomposition of the
baboon image.

level-3 bior-4.4 wavelet decomposition of the baboon image.
At each level, we may construct the imagery data vectors
in the wavelet domain according to the previous section. A
hybrid linear model will be identified for the so-obtained
vectors at each level. Figure 19 shows the segmentation
results using the hybrid linear model at three scale levels
for the baboon image.

Vector Energy Constraint at Each Level. In the nonlinear
wavelet approximation, the coefficients which are below an
error threshold will be ignored. Similarly in our model, not
all the vectors of the imagery data vectors need to be modeled
and approximated. We only need to approximate the (coeffi-
cient) vectors{xi} that satisfy the following constraint:

‖xi‖
2 > ǫ2. (26)

Notice that here we do not need to scale the error tolerance
at different levels because the wavelet basis is orthonormal
by construction. In practice, the energy of most of the vectors
is close to zero. Only a small portion of the vectors at each
level need to be modeled (e.g. Figure 19).

Fig. 19. The segmentation of data vectors constructed from the three
subbands at each level—different subspaces are denoted by different colors.
The black regions correspond to data vectors whose energy isbelow the
MSE thresholdǫ2 in equation (26).
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C. Algorithm for Identifying A Multi-scale Hybrid Linear
Model in Wavelet Domain

The overall process of estimating the multi-scale hybrid
linear model in the wavelet domain can be summarized as
the pseudocode in Algorithm 4.

Algorithm 4 (Multi-Scale Hybrid Linear Model: Wavelet
Domain).

1: function Î = MultiscaleModel(I , level, ǫ2)
2: Ĩ = WaveletTransform(I, level);
3: for each level do
4: ˆ̃

I level = HybridLinearModel(Ĩ level, ǫ
2);

5: end for
6: Î = InverseWaveletTransform(ˆ̃I , level);
7: return Î.

D. Comparison with Other Lossy Representations

In this section, in order to obtain a fair comparison, the
experimental setting is the same as that of the spatial domain
in the previous section. The experiment is conducted on the
same two standard images – the480 × 320 hill image and
the 512 × 512 baboon image shown in Figure 10.

The number of levels of the model is also chosen to be 3. In
Figure 20, the results are compared with several other com-
monly used image representations including DCT, PCA/KLT,
single-scale hybrid linear model and Level-3 biorthogonal
4.4 wavelets (JPEG 2000) as well as the multi-scale hybrid
linear model in the spatial domain. The multi-scale hybrid
linear model in the wavelet domain achieves better PSNR
than that in the spatial domain. Figure 21 shows the three
recovered images using the same amount of coefficients for
wavelets, the hybrid linear model in the spatial domain, and
that in the wavelet domain, respectively. Figure 22 shows the
visual comparison with the enlarged bottom-right corners of
the images in Figure 21.

Notice that in the area around the baboon’s whiskers, the
wavelets blur both the whiskers and the subtle details in the
background. The multi-scale hybrid linear model (in the spa-
tial domain) preserves the sharp edges around the whiskers
but generates slight block artifacts in the relatively smooth
background area. The multi-scale hybrid linear model in the
wavelet domain successfully eliminates the block artifacts,
keeps the sharp edges around the whiskers, and preserves
more details than the wavelets in the background. Among
the three methods, the multi-scale hybrid linear model in the
wavelet domain achieves not only the highest PSNR, but also
produces the best visual effect.

As we know from the previous section, the multi-scale
hybrid linear model in the spatial domain performs slightly
worse than the wavelets for the Lena and monarch images
(Figure 15). Nevertheless, in the wavelet domain, the multi-
scale hybrid linear model can generate very competitive
results, as shown in Figure 23. The multi-scale hybrid linear

Fig. 20. Top: Comparison of several image representations for the hill
image. Bottom: Comparison for the baboon image. The multi-scale hybrid
linear model in the wavelet domain achieves better PSNR thanthat in the
spatial domain.

model in the wavelet domain achieves better PSNR than the
wavelets for the monarch image. For the Lena image, the
comparison is mixed and merits further investigation.

Figure 24 demonstrates the average performance curves of
the multi-scale hybrid linear models for all the images in
Figure 15 both in spatial and wavelet domain.The error
bars on each average curve show the standard deviations
of the performance curves for all the images. The lengths
of the bars are scaled down by 0.1 to fit into the figure.
The hybrid linear models in spatial and wavelet domain both
outperform wavelets. One interesting observation is that the
hybrid linear model in spatial domain even outperforms the
one in wavelet domain when the ratio of coefficients kept is
high. One reason is that the block artifacts are largely reduced
when the number of coefficients are large enough. Another
reason is that the dimension of the ambient space in wavelet
domain is lower than the one in spatial domain. So the room
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Fig. 21. Visual comparison of three representations for thebaboon image
approximated with7.5% coefficients. Top-left: The original image. Top-
right: The level-3 biorthogonal 4.4 wavelets (PSNR=23.73). Bottom-left: The
level-3 multi-scale hybrid linear model in the spatial domain (PSNR=24.18).
Bottom-right: The level-3 multi-scale hybrid linear modelin the wavelet
domain (PSNR=24.88).

for dimension reduction will be very small in wavelet domain
if the the ratio of coefficients kept is high. Hence, for a
particular image, whether spatial or wavelet domain will offer
better representation depends on the statistics of this image
and the required PSNR.

E. Limitations

The above hybrid linear model (in the wavelet domain)
does not produce so competitive results for gray-scale images
as the dimension of the vector is merely 3 and there is
little room for further reduction. For gray-scale images, one
may have to choose a slightly larger window in the wavelet
domain or to construct the vector using wavelet coefficients
across different scales. A thorough investigation of all the
possible cases is beyond the scope of this paper. The purpose
of this paper is to demonstrate (using arguably the simplest
cases) the vast potential of a new spectrum of image repre-
sentations suggested by combining subspace methods with
conventional image representation/approximation schemes.
The quest for the more efficient and more compact represen-
tations for natural images without doubt will continue as our
understanding of different classes of mathematical models
improves while the nature of natural images remains largely
a mystery.

Fig. 22. Enlarged bottom-right corner of the images in Figure 21. Top-
left: The original image. Top-right: The level-3 biorthogonal 4.4 wavelets.
Bottom-left: The level-3 multi-scale hybrid linear model in the spatial
domain. Bottom-right: the level-3 multi-scale hybrid linear model in the
wavelet domain.

VI. I MAGE SEGMENTATION

As we now know, the hybrid linear model uses dif-
ferent subspaces to model different regions of an image.
It essentially gives a rough “segmentation” of the image.
Pixels with a similar color or texture profile are likely
grouped into the same subspace. It is well-known that image
segmentation is an important problem in computer vision
and image processing as it is the first step towards many
important high-level tasks such as image understanding and
object recognition. Many methods have been proposed in the
literature for segmenting images based on different criteria
or technical tools. The concepts and techncial tools (e.g.,the
GPCA Algorithm 1) introduced in this paper can potentially
be used for image segmentation.

A. Hybrid Linear Models for Image Segmentation

Notice that for image representation, we normally divide
the image I into non-overlappingblocks in the spatial
domain (see the Section II-A). The hybrid linear model fit
to the block vectors{xi} essentially gives some kind of a
segmentation of the image – pixels that belong to blocks in
the same subspace are grouped into one segment. However,
such a segmentation has a few undesirable features. If we
choose a very large block size, then there will be severe
“block effect” in the resulting segmentation, as allb2 pixels
in a block are assigned into the same segment (see Figure 5).
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Fig. 23. Top: Comparison of multi-scale hybrid linear modelin the wavelet
domain with wavelets for the Lena image. Bottom: Comparisonof multi-
scale hybrid linear model in the wavelet domain with wavelets for the
Monarch image. The multi-scale hybrid linear model in the wavelet domain
achieves better PSNR than wavelets for a wide range of PSNR for these
two images.

If we choose a smaller block size to reduce the block effect,
then the block might not contain sufficient neighboring pixels
that allow us to reliably extract the local texture.19 Thus, the
resulting segmentation will be determined primarily by the
color of the pixels (in each small block) but not the texture.

One way to resolve the above problems is to choose a
block of a reasonable size aroundeachpixel and view the
block as a (vector-valued) “label” or “feature” attached to
the pixel. In many existing image segmentation methods, the
feature (vector) is chosen instead to be the outputs of the
block passing through a (pre-fixed) bank of filters (e.g., the
Gabor filters). That is, the feature is the block transformed
by a set of pre-fixed linear transformations. Subsequently,the
image is segmented by grouping pixels that have “similar”
features.

From the lessons that we have learned from image rep-
resentation in the previous sections, we observe that the
hybrid linear model may be adopted to facilitate this approach
in several ways. First, we can directly fit a hybrid linear
model to the un-transformed and un-processed block vectors,
without having to choose beforehand which filter bank to

19Notice that a smaller block size is ok for compression as longas it
can reduce the overhead and subsequently improve the overall compression
ratio.

Fig. 24. The average performance curves of the multi-scale hybrid linear
models for all the images in Figure 15 both in spatial and wavelet domain.
The error bars on each average curve show the standard deviations
(scaled by 0.1) of the performance curves for all the images.

use. The hybrid linear model essentially chooses the linear
transformations (or filters) adaptively for different images
and different image segments. Second, once the hybrid linear
model is identified, there is no further need of introducing
a similarity measure for the features. Feature vectors (and
hence pixels) that belong to the same subspace are naturally
grouped into the same image segment.

B. Dimension and Size Reduction

The problem of identifying a hybrid linear model for
image segmentation is mathematically equivalent to that for
image representation. However, two things have changed
from image representation and make image segmentation a
computationally much more challenging problem. First, the
number of feature vectors (or blocks) is now always the same
as the number of pixels:M = WH , which is larger than that
(M = WH/b2) in the case of image representation. For a
typical 512 × 512 image, we haveM = 262, 144. Second,
the block sizeb now can be much larger that in the case of
image representation. Thus, the dimension of the block vector
K = b2c is much higher. For instance, if we chooseb = 10
and c = 3, then K = 300. It is impossible to implement
the GPCA algorithm on a regular PC for262, 144 vectors
in R

300, even if we are looking for up to only four or five
subspaces.20

Dimension Reduction via Projection.To reduce dimension
of the data, we rely on the assumption (or belief) that “the
feature vectors lie on very low-dimensional subspaces in the
high-dimensional ambient spaceRK .” Then based on our
discussion in Section III-D, we can project the data into a
lower-dimensional space while still being able to preserve
the separation of the subspaces. Principal component analysis
(PCA) can be recruited for this purpose as the energy of the

20The dimension of the Veronese embedding of degree 5 will be inthe
order of1010 .
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feature vectors is mostly preserved by their first few principal
components. From our experience, in practice it typically
suffices to keep only the first ten principal components.
Symbolically, the process is represented by the following
diagram:

{xi} ⊂ R
K PCA

−−−−−→ {x′
i} ⊂ R

K′ GPCA
−−−−−→ {x′

i} ⊂ ∪N
n=1S

′
n,

whereK ′ ≪ K and i = 1, . . . , M = WH .

Data Size Reduction via Down-Sampling.Notice that the
number of feature vectorsM = WH might be too large for
all the data to be processed together since a regular PC has
trouble in performing singular value decomposition (SVD)
for tens of thousands of vectors.21 Thus, we have to down
sample the data set and identify a hybrid linear model for only
a subset of the data. The exact down-sampling scheme can be
determined by the user. One can use periodic down-sampling
(e.g., every other pixel) or random down-sampling. From our
experience, we found periodic down-sampling often gives
visually better segmentation results. The size of the down-
sampled subset can be determined by the memory and speed
of the computer the user has. Once the hybrid linear model
is obtained, we may assign the remaining vectors to their
closest subspaces. Of course, in practice, one may run the
process on multiple subsets of the data and choose the one
which gives the smallest fitting error for all the data. This is
very much in the same spirit as the random sample consensus
(RANSAC) method. Symbolically, the process is represented
by the following diagram:

{xi}
sample
−−−−−→ {xi′} ⊂ R

K PCA
−−−−−→ {x′

i′} ⊂ R
K′

GPCA
−−−−−→ {xi′} ⊂ ∪N

n=1Sn

min d(xi,Sj)
−−−−−−−−→ {xi} ⊂ ∪N

n=1Sn,

where{xi′} is a (down-sampled) subset of{xi}.

C. Experiments

Figure 25 shows the results of applying the above schemes
to the segmentation of some images from the Berkeley image
database. The dimension of the subspace (in homogeneous
coordinates) associated with each segment is marked by the
number to its right. A20×20×3 “feature” vector is associated
with each pixel that corresponds to the color values in a
20× 20 block. We first apply PCA to project all the feature
vectors onto a 6-dimensional subspace. We then apply the
GPCA algorithm to further identify subspace-structures of
the features in this 6-dimensional space and to segment the
pixels to each subspace. The algorithm happens to find three
segments for all the images shown below. Different choices
in the error tolerance, window size, and color space (HSV or
RGB) may affect the segmentation results. Empirically, we
find that HSV gives visually better segments for most images.
Figure 26 shows additional results of some more challenging
images from the Berkeley image database.

21With the increase of memory and speed of modern computers, wehope
this step will soon become unnecessary.

4 3 4

4 3 4

4 3 5

Fig. 25. Image segmentation results obtained from the hybrid linear model.
The dimension of the subspace (in homogeneous coordinates)associated
with each segment is given by the number to its right.

VII. C ONCLUSIONS ANDOPEN ISSUES

In this paper, we have introduced a simple but effective
class of mathematical models for representing and approxi-
mating natural images, namely the multi-scale hybrid linear
models. This class of models can be efficiently computed
from the given imagery data. The resulting model obtained
for an image can effectively capture the heterogeneous and
hierarchical structures of the image as well as harness the cor-
relation among multiple color channels. Experiments show
that the performance of the proposed method is comparable
to or even better than most image representation schemes
(including wavelets). In addition, this new method actually
complements the existing schemes and together they achieve
even higher performance.

As the proposed method is adaptive in nature, it is com-
putationally more costly than methods that are based on
pre-chosen (linear) transformations. We will investigatein
the future how to reduce the complexity and develop more
efficient implementations. We would also like to investigate
optimal quantization and entropy coding schemes for hybrid
linear models so as to develop a full package for compressing
natural images.

There might be more efficient schemes to combine the
hybrid linear models with wavelets and/or other x-lets. The
scheme introduced in Section V is only one of the most
straightforward options (that demonstrates the potential). A
more systematic study of the approximation theory of vector-
valued functions may lead to a principled (and therefore
optimal) solution for the combination.

The proposed method is not limited to only representing
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Fig. 26. Additional results of some more challenging imagesfrom the
Berkeley image database.

(color) images. It is a general method for modeling any
high-dimensional data that have heterogeneous internal struc-
tures. In this paper, we have demonstrated how the method
can be extended to image segmentation – an application
that is closely related to the proposed image representation
scheme. However, the segmentation algorithm in this paper
is only based on a single scale. More investigation about
the consensus of segmentation results across different scales
will improve the segmentation performance. In addition, our
ongoing work has also shown that one can apply the same
method to a collection of images that belongs to certain
category, rather than a single image, and learn a hybrid linear
model for the entire image category. The so-obtained models
can potentially capture the essential statistical characteristics
of different image categories and hence be useful for purposes
such as image classification and retrieval. In the future, we
will also investigate the potential of hybrid linear modelsfor
modeling other imagery data (e.g., MRI, DTI, hyper-spectral,
etc.), as well as other data types (e.g., audio, video, gene
expression data, etc.).
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