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Abstract—In this paper, we introduce a simple and efficient State of the Knowledge.Roughly speaking, most of the

representation for natural images. We view an image (in eiter  popular methods for obtaining a sparse image representatio
the spatial domain or the wavelet domain) as a collection can be classified into two categories.

of vectors in a high-dimensional space. We then fit a piece- . .
wise linear model (i.e. a union of affine subspaces) to the Methods of the first category seek to transform all images

vectors at each down-sampling scale. We call this multi-scale  using apre-fixedlinear transformation. Each image is then
hybrid linear model for the image. The model can be effectively represented as a superposition of a set of basis functions
es.“m.ateld via a ”e‘;" alglebfaiC(G";eég‘;dir?o";“b"‘% ge';erﬁ'ized (specified by the transformation). These methods mainly
rincipal component analysis . The hybrid and hier- : : -
grchicpal structFL)Jre of this n}\/odel allows us to ef?ectively etract evolve_d from the _classmal Fourier Transform. lts variafio
and exploit multi-modal correlations among the imagery daa at  the Discrete Cosine Transform (DCT), serves as the core
different scales. It conceptually and computationally renedies 0of the JPEG standard [2]. Due to the Gibbs’ phenomenon,
limitations of many existing image representation methodshat  DCT is poor at approximating discontinuities or impulses in
are based on either a fixed linear transformation (e.g. DCT, the imagery signal. Wavelets [3]-[7] have been developed to

wavelets), or an adaptive uni-modal linear transformation (e.qg. : :
PCA), or a multi-modal model that uses only cluster means remedy this problem and have been shown to be optimal for

(e.9. VQ). We will justify both quantitatively and experimentally ~ fepresenting 1-D signals with discontinuitfeslPEG-2000

why and how such a simple multi-scale hybrid model is able to adopted wavelets as its standard. However, because wavelet
reduce simultaneously the model complexity and computatizal  transforms only deal with 1-D discontinuities, they are not
cost. Despite a small overhead of the model, our careful and \ye||-suited for representing 2-D singularities along esige

extensive experimental results show that this new model gig . .
more compact representations for a wide variety of natural contours. Anisotropic bases such as wedgelets [9], cusvele

images under a wide range of signal-to-noise ratio than many [10] and ?OuntOU”etS [_11] hgve_ t_)een proposed explicitly to
existing methods, including wavelets. We also briefly addss capture different 2-D discontinuities. These x-lets hagerb

how the same (hybrid linear) modelling paradigm can be shown to be (approximately) optimal for representing olsjec
extended to be potentially useful for other applications, 8ch  \yith singularities along>2-smooth contours. However, natu-
as image segmentation. ral images, especially images that have complex texturés an
Index Terms—image representation, hybrid linear model, patterns, do not consist solely of discontinuities alafrt
generalized principal component analysis, wavelets. smooth edges. This is probably the reason why these edge-
based methods do not seem to outperform separable wavelets
[. INTRODUCTION on complex images [12].
ESEARCHERS in image processing and computer vi- Methods of the second category aim to identify the optimal
sion have long sought efficient and sparse representar approximately optimal) representation that edaptive
tions of images. Except for a few image representations suchthe specific statistics or structures of each imagde
as fractal-based approaches [1], most existing sparseeimagrrelation across different regions and different coloarc
representations use an effective linear transformatiothhab nels of a image can be captured by the adaptive basis. The
the (transformed) image energy will be concentrated in tik&rhunen-Loeve transform (KLT) or principal component
coefficients of a small set of bases of the transformatioanalysis (PCA) [13] identifies the optimal principal subspa
Computing such a representation is typically the first step based on the statistical correlation of the imagery data and
subsequent lossy coding/decoding of the image. The res@presents the image as a superposition of the basis of the
can also be potentially useful for other purposes such sisbspace. In theory, PCA provides the optimal linear sparse
image segmentation, classification, and recognition. representation for imagery data that satisfy a uni-modal
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distribution. However, natural images typically exhibitiltt  (such as Gaussians or exponentials). It allows the subspace
modal statistics as they usually contain many heterogenedn have different dimensions (for image regions of différen
regions with significantly different geometric structures textures), that do not need to be knowanpriori. Unlike
statistical characteristics (e.g. Figure 3). Heterogaeatata a mixture of Gaussians whose estimation often requires
can be better-represented using a mixture of paramettierative nonlinear optimization schemes such as Expeatat
models, one for each homogeneous subset. Bases for eauth Maximization [23], there exist non-iterative and effiti
model are adaptive to the particular homogeneous subgbBhear) algebraic methods faimultaneoushestimating the
Such a mixture of models is often referred to ashgbrid subspaces and segmenting the data. Generalized principal
model Vector quantization (VQ) [14] is a special hybridcomponent analysis (GPCA) [24], [25] is one such method.
model which assumes the imagery data are clustered arodids paper is the first to apply such useful formulation and
many different centers. From the dimension reduction pointethods to sparse image representations. Our method is also
of view, VQ represents the imagery data with many Gdifferent from the conventional sparse representatioroo
dimensional (affine) subspaces. This model typically leads.g., that based of' minimization [26], [27]) in at least

to an excessive number of clusters or subspadsndelets two different aspects: First, the bases of the subspacesoare
[12] are another hybrid model, which partitions an image infonger given or known; Second, the assignment of respective
squares according to the geometric flows. Within each squasabspace bases to the imagery data is found simultaneously
the image is represented by warped wavelet bases, orientgth the subspaces, rather than obtained subsequentll/'via
along the direction of the geometric flows. But for imagesiinimization. The hybrid linear model has been shown to
with complex textures which do not contain obvious orientestrike a good balance between simplicity and expressigenes
geometrical structures, segmenting and estimating ge@mefor representing natural images [28]. This paper aims to
flows will be costly and inaccurate. The primal sketch modekovide even more convincing results.

[15] is another hybrid model which represents the high The conventional transformations such as DCT and x-
entropy parts of images with multiple Markov random fieldkets apply primarily to scalar functions (i.e. grayscale- im
[16]-[18] and the low entropy parts with sketches. The tesuiges). For vector-valued functions (e.qg., color imagepehy

is also a “sparse” representation of the image as supeigositspectral images, diffusion tensor images), normally orezlae

of the random fields and sketches. However, the primaty apply the transformations to each scalar channel segharat
goal of primal sketch is not to authentically represent and the literature, many effective methods have been prapose
approximate the original image. It is meant to capture the harness (statistical or geometric) correlation amoffgrdli
(stochastic) generative model that produces the image & color channels for the purpose of image representation
random samples). Therefore, this type of models are mqeze [29] and references therein). The method introduced
suited for image parsing, recognition, and synthesis th@nthis paper provides a natural framework for representing
compression. In addition, finding the sketches and estimatiand approximating high-dimensional vector-valued fuoresi

the parameters of the random fields are computationally e results of this paper will demonstrate that one often
pensive and therefore less appealing for developing efficiean obtain equally compact representations for images by
image representation and compression schemes. harnessing primarily the correlation among the multipllco

I . . .__channels and different regions, instead of the spatial #moo
Motivations of This Paper. In this paper, we generalize .
ness of each color channel as a function.

the techniques of PCA and VQ and propose to represent an . iy . .
iAnother important characteristic of natural images is that

image by a collection of (affine) subspaces, one subspace fo . . .
a different segment (region) of the image. The dimension a y are comprised of structures at many different (spatial
[ frequency) scales. Many existing frequency-domain-tech

basis of each subspace will be chosen adaptively accomlingi(z h his ch istic 1301, For i e
the variability and correlation of the data in the corregfing "'du€s hamess this characteristic [30]. For instanceeless,

image segment. We call such a representation asyhrid f:urvelets, anq fractals .h:_;we ‘f.i" demongtrateq effects@ne
jn decomposing the original imagery signal into multiple

linear modelfor the image. Conceptually, the hybrid linea g
I imag praty yone cales (or subbands). As the result of suchnaulti-scale

model is related to a mixture of Gaussian distributio » . .
(PCAs), which has been previously explored for image re ecomposition, the structures of the image at differeniesca

resentation and segmentation [19]-[22]. However, theibdyb e.g., low v.s. high frequency/entropy) become better eggo

linear model differs from the mixed Gaussian distribution@nq hence can be more compactly_repiesented. The avail-
ility of multi-scale structures also significantly redsdhe

in several important aspects. The hybrid linear model do@_téJ ) .
not explicitly assume any statistical distribution for ttiata size and d|mens_|on of the prqblem and henc_:e re_duces the
overall computational complexity. Therefore, in this pape
we propose a new approach to represent imagery data by
3Be aware that compared to methods in the first category, septations Combining the hybrid paradigm and the multi-scale paradigm

in the second category typically need additional memory tmres the . . - . .
information about the resulting model itself, e.g., theibad the subspace The result is a multi-scale hyb”d linear modeivhich is

in PCA, the cluster means in VQ. based on an extremely simple concept: Given an image, at
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each scale level of its down-sample pyramid, fit the (red)dud hus, the imagd resides in a very high-dimensional space
image or the wavelet coefficients by a (multiple-subspacRf" > << We may first reduce the dimension by dividing the
hybrid linear model. Compared to the single-scale hybrichage into a set of (non-overlapping)by b blocks? Each
linear model, the multi-scale scheme can reduce not ortlyby b block can then be stacked into a vecterc R,
the size of the resulting representation but also the overahere K = b%c is the dimension of the ambient space. For
computational cost. Surprisingly, as we will demonstratexample, ifc = 3 andb = 2, then K = 12 (see Figure
such a simple scheme is able to generate representatibpdn this way, the imagd is converted to a set of vectors
for imagery data that are more compact, even with ther; € RX}M, where M = WH/b? is the total number
overhead needed to store the model, than most state-afrthesf vectors. The so-defined vectors will be referred to as the
representations, including DCT, PCA, and wavelets. imagery vectors “in the spatial domain,” to be distinguihe
from the imagery vectors defined “in the wavelets domain”
H]at we will introduce later in Section V.
Borrowing ideas from existing unsupervised learning
radigms, it is tempting to assume the imagery data vectors
;} are random samples from a (non-singular) probability
[24], [25]. Section Il gives a brief review of the basic nat® |strib_uti9n or noisy samples from a smooth mapifold. As
t,qg distribution or manifold can be very complicated, a

and techniques of using a subspace, called a linear model his to inf best mati ihi
represent images. It makes this paper more self-contairtég N approach Is 1o nfer a best approximation within

for readers who might not be so familiar with subspa simpler class of models for the distributions or manifolds

methods. Section Il formally introduces the notion of higbr he “optimal” model is then the one that minimizes certain

linear model for image representation purposes. It Ole\‘Belogeasure of discrepanc_y to the true model. Different choices
necessary concepts and technical components for estgnaé[hm()dilldass_es a||1d q;icrep;ncyﬁ mezs_ures h?]\_/e I?d to many
from an given image a hybrid linear model that consis erent learning aigorithms developed in machine laagnl

of multiple subspaces of possible different dimensions. ftern recognition, computer vision, and image procgssin

also discusses the complexity of a hybrid linear model a ¢ image compreﬂs}sm'\;ll, the;nost co{rznmonll\zlg(éopbte;j d'scrfﬁ'
what is the final result of the image represented by sufficy measure 1S the Viean square rror ( ) between the

a model. Section IV shows how to implement the hybri8rlglnal imagel and approximated imagg,
linear models in a multiple-scale fashion in the spatial divm 9 1 9
) . - . ; | . €7 = ——||I — I Q)
(i.e., in the original image coordinates); while Section V '™ WHe ‘
extends the techniques to the multiple-scale wavelet domai Since we will be approximating the (block) vectofs; }

In both cases, we provide careful and e>_<tensive expe_rimer}tgther than the image pixels, in the following derivation, i
results in comparison with other popular image represemats more convenient for us to define the Mean Square Error

methods (e.g., DCT, PCA, wavelets). (MSE) per vectorwhich is different frome2 by a scale,

What We Do Not Do. In this paper, we are only inter- M M
ested in studying and comparing the efficiency of different 2 _ 1 Z & — a4 = b? Z &5 — @42
M — K2 3 H — K2 K2

Organization of This Paper. This paper aims to provide a
comprehensive introduction and development of the mul
scale hybrid linear model for (lossy) image representation
This paper focuses on algorithms and implementations,
mathematical proofs and details of GPCA can be found

transformations in approximating the image. The resuks ar
all compared immediately after such (linear or hybrid-tine b2
transformationswithout any further quantization or entropy = WH
coding. In order for the proposed hybrid linear models to be ) _ ) )
truly useful for image compression, one must investigate if 1€ Peak Signal to Noise Ratio (PSNR) of the approxi-
there also exist efficient methods for quantizing and codif§ated image will be used in experiment sections and it is
such models. That is however beyond the scope of this paféfined to bé,

and we leave it for future research. However, as we will ) ) €2

contend later that the merit of the proposed image repre- PSNR= —10 log €; = —10 log e ®3)
sentation scheme is not limited only to image represemtatio
and compression. Potentially, it can also be very useful fgr

segmentation of image and other types of data, as Sections
VI suggest. If we assume that the vectors are drawn from an

anisotropic Gaussian distribution or a linear subspace as
Il. LINEAR MODELS illustrated in Figure 1, the optimal model subject to a given
PSNR can be inferred by Principal Component Analysis

|- IJ? = () = ke @)

Estimation of A Linear Model

A. Imagery Data Vectors in Spatial Domain

An ima_geI with width I, heightH, andc color channels  4conventionally one choosésto be a common divisor of” and H.
can be viewed as an array of totdl x H x ¢ numbers.  5The peak value of the imagery data is normalized to 1.
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Fig. 1. In a linear model, the imagery data vectdts;} reside in an

(affine) subspace.

(PCA) [31]-[33] or equivalently the Karhunen-Loéve Trans

form (KLT) [13]. We review below briefly a solution to PCA

based on singular value decomposition (SVD), also known

as the Erkart and Young decomposition [34], [35].
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{gbj};?:l and the second term is the number of Grassmannian
coordinate% needed for representing the bagisand the
mean vectorz. The second term is often callenverhead
Notice that the original set of vectorse;} contain M K
coordinate entries. If) <« MK, the new representation,
although lossy, is much more compact. The search for such
a compact representation is at the heart of any (lossy) image
compression method. When the imadieis large and the
block sizeb is small, M will be much larger thank so

that the overhead will be much smaller than the first term.
However, in order to compare fairly with other methods, in
the subsequent discussions and experiments, we always coun
the total number of coefficients needed for the represemtati
including the overhead.

1. HYBRID LINEAR MODELS
In this section we introduce and examine the hybrid linear

Typically, the principal subspace is an affine subspaoeodel. The relationship between hybrid linear models acros
which does not necessarily pass through the origin, we cdifferent scale levels will be discussed in Section IV.
move the affine subspace into a linear subspace by subtyactin

the mean of the samples from each sample vector.
M

& = 4> ;—, x; be the mean of the imagery data vectors,

and X = [iL‘l — X,y — L,..., TN — i‘] = UZVT be
the SVD of the mean-subtracted data matXx Then all

the vectorse; can be represented as a linear superpositio{l:Contéllns

T; = §:+Z§(:1 a{gbj,z' =1,..., M, Where{gzsj}f(:1 are just
the columns of the matrix/.

The matrixX = diag(o1, 09, . ..,0k) contains the ordered
singular valuesr; > o9 > -+ > og. It is well known that
the optimal linear representation af subject to the MSE
€2 is obtained by keeping the firgt (principal) components

k
Ti=x+ Y alg;, i=1,...,M, (4)
j=1
wherek is chosen to be
1 K
_ : 2 2
k = min(n), s.t. i Z o; <€ (5)

1=n—+1
Symbolically, the process is represented by the followi
diagram:
PCA

{x;} c RE =2 {2/} c RE.

C. Model Complexity of A Linear Model
The model complexity of a linear model, denotedgds

Let

Hybrid Linear Models

The linear model is very efficient when the target manifold
or distribution function is unimodal. However, if the image
several heterogeneous regiohs}V_,, the data

vectorsx; can be viewed as samples from a collection of
(affine) subspaces of possibly different dimensions or from
a mixture of multiple (Gaussian) distributions as shown in

Figure 2. Figure 3 shows the first three principal components

I

H

B

n
Igg. 2. In hybrid linear models, the imagery data vectfas } reside in

multiple (affine) subspaces which may have different direers

of the data vectors:; (as dots inR?) of the baboon image.
Note the clear multi-modal characteristic in the distribot
of the data.

SNotice that to represent A dimensional subspace in& dimensional

the total number of coefficients needed for representing thgice, we only need to specify a basiscdinearly independent vectors for
model {Oéf, d)j, 53} and subsequently a lossy approximatiothe subspace. We may stack these vectors as rowscof & matrix. Any

I of the imagel. It is given by

Q(M, k) = Mk + k(K — k + 1), (6)

where the first term is the number of coefficierfts’}
to represent{z; — z}M, with respect to the basi® =

nonsingular linear transformation of these vectors spanstime subspace.
Thus, without loss of generality, we may assume that theixatrof the
normal form (I ., G] whereG is ak x (K — k) matrix consisting of the
so-called Grassmannian coordinates.

"Notice that if one uses a pre-chosen basis such as discrefgefro
transform, discrete cosine transform (JPEG), and wavélREG-2000),
there is no such overhead.
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subspace arrangements are extremely rich and deep, only a
few special classes of subspace arrangements have been full
characterized.

B. Identifying A Hybrid Linear Model

Here we are interested in only how to estimate such an
arrangement of subspaces from the un-segmented imagery
vectors{x; }. Notice that the subspacég do not necessarily
Fig. 3. Left: The baboon image. Right: The coordinates ohetut are the Pass through the origin. Such a subspace is called an affine
first three principal components of the vectaes. There is a clear multi- subspace. Technically affine subspaces are slightly less co
modal structure in the data. venient to deal with than linear subspaces that pass through
the origin. Notice that all vectors in an affine subspace of

. S . )
Thus, it is probably more reasonable to assume that_dgnensmnk in R span alinear subspace of dimensionl

K+1 i ifvi int inRXE int inRX+1
natural imagel can be segmented inty disjoint regions n R by identifying a point ink as a point inR
I =UN_ I, with I, N I,w = 0 for n # n’. In each region V2 the so-called homogeneous coordindtes,

I,,, a linear model (4) is approximately valid for the subset 1
of vectors{a,, ;} 1 in I, il Ty
2
kn T = . eRE — 5 ¢ = _ € RE+1L,
in,i:jn"l‘zag(bn,ja izl,...,Mn. (7) ’ TK
j=1 K 1

As in the linear m_odel, the dimensidy, of _each subspgce Using the homogeneous coordinates, identifying an ar-
should be determined by a common desired MSEas in  yangement of affine spacesit is converted to identifying
equation (5). We call the resufty,, ;, @, ;} a hybrid linear  an arrangement of linear subspaces, also known as a central
model for the image. In essence, the hybrid linear mOd@rrangement, iRE+1. However, identifying multiple linear
assumes that the imagery ddte;} belong to a collection of gypgpaces is still a very difficult problem in its full gerlitya
subspace$ S, },_1: If the segmentation of the vectorge;} were known, the
I,={z,;} €S, CRX VYn=1,...,N. (8) op_timal subspace for each §ubset could be easily found
' using PCA; and conversely, if the subspaces were known,
A collection of subspace& = UJ_, S, is formally known the vectors{z;} (and hence the image) could be easily
in algebraic geometry as subspace arrangement segmented into their closest subspaces. It seems that this
We emphasize that here the subspaggsare allowed to is a “chicken-and-egg” problem if we do not know either
intersect with each other and can have different dimensiotie segmentation or the subspaces. Traditionally, thid &
(as different textures in the image can have different corproblem is approached with one of many clustering methods
plexities). Thus, a subspace arrangemenhas a smooth developed in statistics or machine learning (e.g. Expiectat
manifold or a mixture of (non-degenerate) Gaussians.tBtricMaximization [23], [38], K-means [39] or its variation K-
speaking, a subspace arrangement is an algebraft Iset. subspaces [40]). Some of the methods have been applied
this paper, we contend that subspace arrangements ar@ froblems in image processing [19], [20]. However, these
more flexible, relevant, and efficient class of models faechniques are iterative and incremental in nature ana:ther
representing images than nonlinear smooth manifolds f@fe prone to converge to local minima if the initializatien
mixtures of Gaussian distributions. far off. Moreover, these methods cannot be extended sg/easil
Subspace arrangements constitute of a very special but im-hybrid models whose components may halifferent
portant class of algebraic sets that have been studied im-matnd unknowndimensions. In [24], [25], it is shown that a
ematics for centuries (see [36], [37] and references thireimore pertinent method for estimating a hybrid linear model
The importance as well as the difficulty of studying subspagée the so-called Generalized Principal Component Analysis
arrangements can hardly be exaggerated. Different aspiect§GPCA). This method does not require prior knowledge
their properties have been and are still being investigatetd of the number and dimension of the subspaces and can
exploited in many mathematical fields, including algebraisimultaneously estimate multiple subspaces and segment th
geometry & topology, combinatorics and complexity theoryata into them, well suited for our purpose here.
and graph and lattice theory, etc. Interested readers may general solution to GPCA can be found in [25]. In this
see [37] for a general review. Although the results aboptper, since the true nature of natural images is unknown and

8An algebraic set is defined as a set of points that are the pérest of 9This process is formally known in algebraic geometry as jgrivitiza-
polynomial equations. tion.”
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we only adopt an arrangement of subspaces to approximatectually the Veronese map of degr&ewhich is defined
the imagery data, we need to solve a special case of GP&# follows.

that can identify a hybrid linear structure for an image eubj pefinition (Veronese Map).Given N and D, the Veronese
to a given MSE thresholé?. That is, unlike the algorithm map of degreeN, vy : R — RG~(D) s defined asvy

given in [25], the special algorithm needs to automaticddy [, . )7 [... 2N, ... |7, wherez is a monomial
termine the smallest number of subspaces of lowest possigfehe form aNigle N with N = (N1, Ny, ..., Np).

dimensions for a given image subject to the MSE thresholflye monomialsz™ in vn(z) are ordered in the degree-
We describe in the next few sections the development of S%Qicographic order.

a customized GPCA algorithm for the image representation . . : )
. . The number of linearly independent monomialsds =
problem. But for the sake of completeness, we first give g, y_; i
C . . ) > ), hencecy andvy(x) are vectors iR,
brief introduction to the basic ideas of GPCA via a simplifie Siﬁce the given set of sampldss:}, all satisfy the
case that will also be used later in the customized GPCA 9 PIGST: i1

algorithm (see Algorithm 2) as well as in the extended mult?_quat!on (11), we obtain the f_o_llowm.g system of linear
N . equations on the vector of coefficienty:
scale version (see Algorithm 3 and 4).

For simplicity, we will assume for now tha¥, the number vn ()T
of subspaces, is known. We will discuss how it can be vn ()T
determined later in the Section III-E. We also assume thatal ~Vw~eny = : en=0 eRY. 12)
the subspaces are hyperplanes in the ambient SR&ce. '
That is, all subspaces have the same dimensios - - = vn ()
kn = k = (K +1) —1 = K. Such a model may Because the number of hyperplan&swas known, we

initially over-fit the data as the dimensions of some of theould immediately recovaty as the eigenvector & & V v
subspaces could be strictly smaller thanh Nevertheless, associated with its smallest eigenvalue.
the grouping of the data points will in general be correct Now let us consider the derivative pfy(x) evaluated at
because it is a zero-measure event that any over-estimasgghxz. Supposer € S;, we have:
hyperplane simultaneously contains more than one subspace ' N
Once the grouping is obtained, we can easily determine the (@) = Opn(x) 0 H(bT )
true dimension of each subspace by applying PCA to data PN\T) = =527 T oz - n®
points that belong to each group. N "=
We start by noticing that everi(-dimensional hyperplane _ b bTa) = b, bl x 13
S c RE+L can be defined in terms of a nonzemormal ;( n)g( ¢ @) Jg( @), (19
vectorb € RX+! as follows: .,
becausd],., (b; ) = 0 for j # n.! Thus, one can obtain
- N A _ L#£n\"l
S={m:b @ =bwr+bowat+ - +brprris =0} (9) a normal véctor for each subspace,
Therefore, a point € R+ lying on one of the hyperplanes Vpn ()
— 1 (] bn frng —_— 7,
Sn,n=1,..., N must satisfy the formul&’ Von(@))]
T T T
(bye=0) VvV (byz=0) V---V (b,z=0). (10)  After obtaining the normals of all the subspaces, all the
In other words, the product of the linear terms must be data vectors{z;} can be segmented into the subspaces to

V€S8, (14)

zero regardless which subspacés in, i.e. which they are the closest. Subsequently, for each group of
. , . data vectors, a linear model is identified using the method
pn(x) = (byz)(byx)- -~ (byx) = 0. (11) described in Section II-B. The correct dimension of each

subspace is determined according to equatiort45).

We summarize in pseudocode the GPCA algorithm that
e are using in this paper as Algorithm'3.

Example 1 (Simulation of One Plane and Two Lines).
Figure 4 shows an example of 5,000 points sampled from
one plane and two lines iR?: 3,000 points from the plane

The basic idea of GPCA is to find the polynomialfs) and
then retrieve information about the individual subspaces QN
hyperplanes) frompy .

Note thatpy is a homogeneous polynomial of degree
in « with real coefficients:

o N Ngi1 T
PN(@) =) eny N1yt e =vn (@) e, _ o , o
11For noisy data, it is not exactly O but can be ignored becatse i

where ¢y, N, Nrs1 € R represents the coefficient ofinsignificant relative to the term with = n.
. ’ . . 12 . e . .
monomlale’lxévz .“x%KJrl’ c is the vector of all coeffi- In identifying the Ilne_ar model for each group, we do not ne«_ad
. . +1 ) ) use homogeneous coordinate anymore because the mean afdioesvis
cients, and/y () is the stack of all possible monomialsy  subtracted first in PCA.
13Be aware that the derivation and summary of the GPCA alguritiven
10since the subspaces;, are all different from each other, the normalin this paper is a gross simplification of the more completesioa. The
vectors{bn}f}’:1 are pairwise linearly independent. interested reader may refer to [24] for a more rigorous déon and proofs.
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Algorithm 1 (Subspace Segmentation — GPCA). isl4
1: function {¢, ;,xn»,} = SubspaceSegmentatidex;}, N)
2: ConstructV y from {x;} in homogeneous coordinates; Q = QM ki) +- -+ UM, kn)
3: Solve forenx from V yen = 0; N
4: Setpy(z) = chvn(z); = > (Mpkn + kn(K —kn +1)).  (15)
5: Deter(mi)ne the normal vectors of each subsp&geas b, = n—1
Vpn(z; . . . . . . . .
\VPZ(ZJ-)\’ Va; € Sn; Notice that(2 is similar to the effective dimension (ED) of

@

: QSSilgngé';O the grﬁurm which minirréize§||lgfcc;-‘||2.d_ _the hybrid linear representation defined in [41]. Thus, figdi
7: Apply PCA to each groug(x,.;} and obtain the dimension , oo resentation that minimiz€sis the same as minimizing
and a basig ¢, ;} for each subspac8,,. . : . .
the effective dimension of the imagery data Set.
Instead, if we model the union of all the vectors
UN_ {x,:} 2 with a single subspace (subject to the same

. . . MSE), the dimension of the subspace in general needs to
and 1,000 points from each of the line. Each sample point IS k — min{ky + - + kn, K}. It is easy to verify from

C op . .
corrupte_d with 5A>_|ndependent Gaussian noise. Th_e "eSURR definition (6) that under reasonable conditions (eNg.,
of Algorithm 1 applied to the data set are shown in Figure 4. :

: . bounded from being too large), we have
The sample points are segmented correctly according to the

three subspaces. QM k) > QM k1) + -+ QUMpy, kn). (16)

Thus, if a hybrid linear model can be identified for an image,

the resulting representation will in general be much more
: compressed than that with a single linear or affine subspace.
This will also be verified by experiments on real images in
subsequent sections.

D. Dimension Reduction via Projection.

The application of hybrid linear model to image repre-
sentation has previously been explored in [28]. However, it
+ misses two critical factors that prevent the final perforogan
from being comparable to other competitive methods such
as wavelets. The first factor is how to further reduce the
Fig. 4. An example of the subspace segmentation. Left: Theplapoints. negative effect of overhead by incorporating a pre-praject
Righ_t: The sample points are segmented into 3 groups whiefdenoted of the data; the second factor is to how to implement the
by different colors. - . . . A
hybrid linear model in a multi-scale fashion. We will dissus
the first factor in the remainder of this section and leave the
. issues with multi-scale implementation to the next section
As the above example shows, although Algorithm 1 is In the complexity of thFe)z hybrid linear model (15), the

purely algebraic, each of its steps mvol_ves iny numelycalﬁrst term is always smaller than that of the linear model (6)
stable procedures and hence the algorithm is able to telerB&causek: < & for all n and ZN M. — M. The second

. . A n < ne1 Mn = M. :
moderate amount of noise. In general, large noise and OYlerhead term however can be larger than in that of the linear

liers pose significant challe_nges to GPCA." quever, N Oyl odel (6) because the bases of multiple subspaces now must
context, since we are seeking an approximation of the d 18 stored. We here propose a method to further reduce the
set subject to a hard MSE threshold, we cannot simply thr

) ; verhead by separating the estimation of the hybrid model
away any subset of data as outliers and instead we nee i two steps

_either increase the number o_f sups_paces or their dimension§n the first step, we may project the data vectprs} onto

in order to_ reduce the resu_ltlng f|t_t|ng error. How 1o do 52 lower-dimensional subspace (e.g., via PCA) so as to reduce

properly will be addressed in Section C-E. the dimension of the ambient space frafh to K’, with
K’ chosen to achieve an MS%Q. The data vectors in the
lower ambient spacB”" are denoted aéx/}. In the second
step, we identify a hybrid linear model fofx/} within

C. Model Complexity of A Hybrid Linear Model

14We also needs a very small number of binary bits to store the
membership of the vectors. But those extra bits are ins@mti comparing
L . . to 2 and often can be ignored.
The model complexny, i.e., the total number of coefficients 15|n fact, the minimal(2 is closely related to the Kolmogorov complexity

needed for representing the hybrid linear moftg} ;, &, ;} or to the minimum description length (MDL) of the imagery al§¢1].
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the lower-dimension ambient spaB&<’. In each subspace,Algorithm 2 (Hybrid Linear Model Estimation).
we determine the dimensioh, subject to the MSE}e®. 1. function T = HybridLinearMode{I, €?)
Symbolically, the process is represented by the following: {:vf} = StackimagelntoVecto(f); L
diagram: 3: {i}, {#;}, {a]} = PCA({z: — &}, 3¢7);
4: for each possibleN do
5 {z,.} =SubspaceSegmentatide;}, N);
_ _ 6 {z'ni} {dn} e, i} = PCA({z], ; — 20}, 3€°);
where K’ < K. The two steps combined achieve an overall7:  computeQy;
MSE ¢2, but they can actually reduce the total model com-8: end for
plexity to 9: Qopt = min(§ln); .
10: I = UnstackVectorsintolmadéx’,,:} with Qop:);
N 11: output {e;}, {¢;}, @, {7, ; }, {dnj}, {@0} with Qope;
Q :Z (Mnkn + kn(K—kn + 1)) + K(K/-l-l). (17) 12: return 1.
n=1
)
;”‘ N tf
7% '

{z:i} cRE PCA, oy crE SPCA o N s

This Q will be smaller than the? in equation (15) because j‘l; '
K’ is smaller thanK. The reduction of the ambient space w4 &
will also make the identification of the hybrid linear model
(say by GPCA) much more efficient.

Fig. 5. The segmentation of the 4,096 image blocks from theb&a

E. Determining the Number of Subspaces image. The image (left) is segmented into three groupst(tighe). Roughly
. . . . speaking, the first subspace contains mostly image blogkshsmogeneous
If the number of subspaces/, is given, algorithms like textures; the second and third subspaces contain blocks testures of

GPCA or EM can always find a segmentation. The bagiferent spatial orientations and frequencies.

{¢n,;} and dimensiork,, of each subspace are determined

by the desired MSE?. As N increases, the dimension of the

subspaces may decrease, but the overhead required to stdfeM ULTI-SCALE HYBRID LINEAR MODELS IN SPATIAL
the bases increases. The optinfél is then the one that DOMAIN

minimizes ). From our experiments, we found that* is

typically in the range from 2 to 6, especially in a multi-sal . . . X
implementation that we will introduce next. Thereforé: linear model needs further improvement. Firstly, the hybri

b ilv identified b lving the alaorith f'near model treats low frequency/entropy regions of the
fc?giffgriii\)f/’sl eninec by applying fhe aigorthm repeg{tedlmage in the same way as the high frequency/entropy regions,

which is inefficient. Secondly, by treating all blocks thensa
the hybrid linear model fails to exploit stronger corredats
F. Algorithm for Estimating A Hybrid Linear Model that typically exist among adjacent image bloéks=inally,
Algorithm 2 below describes in pseudocode how to eststimating the hybrid linear model is computationally expe
mate the hybrid linear model of an imade in which the sive when the image is large. For example, we use 2 by 2
SubspaceSegmentatiimction is implemented in this paperblocks, a 512 by 512 image will havé/ = 65,536 data
using the GPCA Algorithm 1. But it can also be implementedectors. Estimating a hybrid linear model for such a huge
using some variations of EM or other subspace segmentatf@#mber of vectors is impossible for a PC. In this section, we
methodsi® introduce a multi-scale hybrid linear representation \Whi
Example 2 (A Hybrid Linear Model for the Gray-Scale able to resolve the above issues.
Barbara Image). Figure 5 and Figure 6 show intuitively
a hybrid linear model identified for th8 x 8 blocks of 1?For_ instance, if we _take all thé by b blocks and scramble th(_em
the standard12 x 512 gray-scale Barbara image. The totafrr]t:;rra%dtglefgfrﬁ?%ﬁggﬁﬁﬁ;’égf’Id be fit equally wellthg same hybrid
number of blocks isN = 4,096. The GPCA subspace
segmentation algorithm identifies three subspaces forethes

There are at least several reasons why the above hybrid

blocks (for a given error tolerance), as shown in Figure -
5. Figure 6 displays the three sets of bases for the three . ' r i ‘ 'i
subspaces identified, respectively. It is worth noting these — - |

bases are very consistent with the textures of the image

_ | 5K O N
blocks in the respective groups. Ell_l.I :Il_;ﬁ EI"JIIJI '.Ij r-h m Ir

18However, by the time this paper is written, we are not awarehef
existence of any such variation that provides a principletiiton to the Fig. 6. The three sets of bases for the three subspaces @Kshlshown

subspace segmentation problem while using as little priomkedge on the in Figure 5, respectively. Each row is for one subspace aechtimber of
subspaces as GPCA. base vectors (blocks) is the dimension of the subspace.
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Qo coefficients

A. Laplacian Pyramid of Hybrid Linear Models

The basic ideas of multi-scale representations such as EI.
the Laplacian pyramid [30] have been exploited for image
compression for decades (e.g., wavelets, subband coding).
multi-scale method will give a more compact representation
because it encodes low frequency/entropy parts and high fre
guency/entropy parts separately. The low frequency/pwtro
parts are invariant after low-pass filtering and down-samgp|
and can therefore be extracted from the much smaller down-
sampled image. Only the high frequency/entropy parts ne
to be represented at a level of higher resolution. Furthegmo avor ey
the stronger correlations among adjacent image blocks will I I
,be captured in the down—sampled Images becguse every fpuld.rl Laplacian pyramid of the multi-scale hybrid linear model.
images blocks are merged into one block in the down-
sampled image. At each level, the number of imagery data

vectors IS oné fourth of that at one level above. Thus, ﬂ)% respectively, are needed for the final representation of the
computational cost can also be reduced.

. . : _ image. Figure 8 shows thé&,, I, and I, for the baboon
We now introduce a multi-scale implementation of th

hybrid linear model. We use the subscripto indicate the age.
level in the pyramid of down-sampled imagésThe finest
level (the original image) is indicated by= 0. The larger i
is I, the coarser is the down-sampled image. We denote %
highest level to bé = L. =

Pyramid of Down-Sampled ImagesFirst, the levelt image
I, passes a low-pass filter, Kaveraging or Gaussian filter
etc) and is down-sampled by 2 to get a coarser version im
I,

. Hybrid Linear. '

Model Estimatiol

Qq coefficients

)

I =FI) ]2 1=0,..L—1. (18)

The coarsest level-imageI, is approximated byl ;, using
a hybrid linear model with the MSE?. The number of
coefficients needed for the approximatiorfig.

Pyram'd of Residual Images. At all other leveld, | = Fig. 8. Multi-scale representation of the Baboon imaget:LHfie coarsest

0,...,L — 1, we donot need to approximate the down-level imageI,. Middle: The residual imagd . Right: The residual image
sampled imagdl because it has been roughly approximateﬁ)- The data at e;ach level are modeled as the hybr_|d linear modak

. contrast of the middle and right images has been adjustetiaddhey are
by the image at leveft + 1) upsampled by 2. We only need,;gjpje.

to approximate the residual of this level, denotedlas

I =1, —F(I41) 12 1=0,...,L—1, (19 The total number of coefficients needed for the represen-
tation will be
where the k is an interpolation filter. Each of these residual L
imagesI), | = 0,...,L — 1 is approximated byl; using Q=> . (21)
a hybrid linear model with the MSE?. The number of 1=0

coefficients needed for the approximation (s, for each
l=0,...,L—1.

Pyramid of Approximated Images. The approximated im-
age at the level-is denoted ad;:

B. Constraints at Different Levels

MSE Threshold at Different Scale Levels. The MSE
thresholds at different levels should be different but tezla
I = j; 4 FQ(LH) 12, 1=0,...,L—1. (20) because the up-sampling Rywill enlarge 1 pixel at level-
i (I4+1) into 4 pixels at levelt. If the MSE of the leveld +1)

The Figure 7 shows the structure of a three-level=£ 2) is 6l2+1’ the MSE of the level-after the up-sampling will

appfoxifrlwation 9f the imagé. Only th? hy?’”d linear /models becomede?, ;. So the MSE thresholds of levél—+ 1) and
for I, I,, andI, which are approximation fof,, I, and |gyeld are related as

18This is not to be confused with the subscriptised to indicate different 2
segments of an image. €1 = 14 l=0,...,L—1. (22)
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Usually, the user will only give the desired MSE for théhlgorithm 3 (Multi-Scale Hybrid Linear Model: Spatial Do-

approximation of original image which i€. So we have ~ Main). _
1 1: function I = MultiscaleMode(I, level, €?)
& =—€, 1=0,...,L. (23) 2 if level < MAXLEVEL then
4 31 Liown = DownsampléF: (I));
Vector Energy Constraint at Each Level. At each level- 4 Incsticver = MultiscaleMode( aown, level + 1, 3€);
I,1 = 0,....L — 1, not all the vectors of the residual > €nd if

. . 6. if level = MAXLEVEL th
need to be approximated. We only need to approximate thg ! Ifw:e I en

(block) vectors{z;} of the residual imagd; that satisfy the g else

following constraint: 9. I, = Fa(Upsamplél ,coiicver));
9 o 100 I' =1 — Iy
| * > €. (24) 11: endif

. ) 12: I' = HybridLinearMode{I’, €*);
In practice, the energy of most of the residual vectors igs: return 1., + I'.

close to zero. Only a small portion of the vectors at each
leveld need to be modeled (e.g. Figure 9). This property

Fig. 10. Testing images: the hill imagé80 x 320) and the baboon image
(512 x 512).

Fig. 9. The segmentation of (residual) vectors at the theeeld—different
subspaces are denoted by different colors. The black regiorrespond to hill image and thes12 x 512 baboon image shown in Figure

data vectors whose energy is below the MSE threshﬁlm equation (24). 10. We choose these two images because they are representa-

of the multi-scale scheme not only significantly reduces trf'é’e of two different types of images. The hill image contain

. : arge low frequency/entropy regions and the baboon image
overall representation complexitf2 but also reduces the . . . :
. contains mostly high frenquency/entropy regions (seei@ect
overall computational cost as the number of data vect ; . .
) . _IV-E for more images). The size of the blockss chosen to
processed at each level is much less than those of the drigina

: o . - be 2 and the level of the pyramid is 3 — we will test the effect
image. In addition, for a single hybrid linear model, whea th . ; .
of changing these parameters in subsequent experiments. In

image size increases, the computational cost will incréase_. .
) X . . "Figure 11, the results of our method are compared with
proportion to the square of the image size. In the multiescal

. ; . . several other commonly used image representations imgjudi
model, if the image size increases, we can correspondin

. L T, PCA/KLT, single-scale hybrid linear model and Level-
increase the number of levels and the complexity iNCreases. '+ onal 4.4 wavelets (JPEG 2000). Thaxis of the
only linearly in proportion to the image size. 9 . ;

figures is the ratio of coefficients (including the overhead)
kept for the representation, which is defined as,

C. Algorithm of Estimating A Multi-scale Hybrid Linear Q

Model = .
. . . T WhHe
The overall process of estimating the multi-scale hybrid

linear model can be written as the recursive pseudocode?riﬁe y—a>§is is the PSNR ,Of the apprgximated image de_fined
Algorithm 3. in equation (3). The multi-scale hybrid linear model ackgv

the best PSNR among all the methods for both images. Figure

_ _ 12 shows the two recovered images using the same amount
D. Experiments and Comparisons of coefficients for the hybrid linear model and the wavelets.
Comparison of Different Lossy RepresentationsThe first Notice that in the area around the whiskers of the baboon,
experiment is conducted on two standard images commotite hybrid linear model preserves the detail of the textures
used to compare image compression schemest&he 320 better than the wavelets. However, the multi-scale hybrid

(25)
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38 T

—— DCT

—&— PCAKLT

36| —= Level-3 Bior-4.4 Wavelets

—&— Hybrid Linear Model

—&— Level-3 i Hybrid Linear Model

Fig. 12. Left: The baboon image recovered from level-3 biogbnal

4.4 wavelets using.5% coefficients of the original image (PSNR=23.73).

Right: The baboon image recovered from the level-3 mubkiecybrid

s . s s - - - S linear model in spatial domain using the same amount of ciefs.
Ratio of Coefficients Kept (%) (PSNR=2418)

20 L I L
0

27 T T T T T T
—— DCT

—&— PCAKLT

26 || = Level-3 Bior-4.4 Wavelets

—&— Hybrid Linear Model

—&— Level-3 i Hybrid Linear Model

! hybrid linear models with different block sizes frobnx 2

] to 16 x 16. The dimension of the ambient space of the
data vectorsz ranges from 12 to 192 accordingly. The

i testing image is the baboon image and the number of down-
sampling levels is 3. For large blocks, the number of data
vectors is small but the dimension of the subspaces is large.
1 So the overhead would be large and seriously degrade the
performance. Also the block effect will be more obvious
when the block size is large. This experiment shows that 2 is
the optimal block size, which also happens to be compatible
with the simplest down-sampling scheme.

251

211

19 ‘ ‘ ‘ . . . ‘ E. Limitations
0 2 4 6 8 10 12 14 16 18
Ratio of Coefficients Kept (%)

We have tested the multi-scale hybrid linear model on a
wide range of images, with some representative ones shown
_Fig. 11. Top: Compar_ison of several imag_e representationsthie hi‘II in Figure 15.
inear model achieves the best PSNR among all e methotformages, O OUr experiments and experience, we observe that the

multi-scale hybrid linear model is more suitable than watse|
for representing images with multiple high frequency/epyr
{ﬁgions, such as those with sharp 2-D edges and rich of
textures. Wavelets are prone to blur sharp 2-D edges but

better at representing low frequency/entropy regionss Thi
Effect of the Number of Scale LevelsThe second exper- probably explains why our model performs slightly worse

iment shown in Figure 13 compares the multi-scale hybriffan \vavelets for the Lena and the monarch — the back-

linear representation with wavelets for different number @,ounds of those two images are out of focus so that they do
levels. It is conducted on the hill and baboon image with &+ ~ontain much high frequency/entropy content.

by 2 blocks. The performance increases while the numberanqther limitation of our model is that it does not perform
of levels is increased from 3 to 4. But if we keep increasinge|| on grayscale images. For a gray level image, the dimen-
the number of levels to 5, the level-5 curves of both wavelelsn i of a 2 by 2 block is only 4. Such a low dimension
and our method (which are not shown in the figures) coinCige ot adequate for any further dimension reduction. If we

with the level-4 curves. The performance cannot improve agye g larger block size, the block effect will also degrade th
more because the down-sampled images in the fifth level Y&rformance.

so small that they cannot be further compressed. Only whenpjike pre-fixed transformations such as wavelets, our
the image is large, can we use more levels of down-sampliggsthod involves identifying the subspaces and their bases.
to achieve a more compressed representation. Computationally, it is more costly. With unoptimized MAT-

Effect of the Window Size of the Blocks. The third LAB codes, the overall model estimation takes 30 seconds
experiment shown in Figure 14 compares the multi-scale 3 minutes on a Pentium 4 1.8GHz PC depending on the

linear model produces a slight block effect in the smoo
regions.
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38 251

—— block size 2x2
—<— block size 4x4
—&— block size 8x8
24| —=— block size 16x16

36

34+ 23+

PSNR (dB)

28 20+

/ £~ Level-3 Bior-4.4 Wavelets
/ ~&- Level-4 Bior-4.4 Wavelets
261 / —&— Level-3 Multiscale Hybrid Linear Model 4 19+

/ —— Level-4 Multiscale Hybrid Linear Model

24 I L 18 L L L I L I L |
0 5 10 15 1 2 3 4 5 6 7 8 9

Ratio of Coefficients Kept (%) Ratio of Coefficients Kept (%)

26

Fig. 14. Comparison of the multi-scale hybrid linear modéhvdifferent
block sizes: 16, 8, 4, 2. The performance increases whilsitteeof blocks

250 decreases.

24

/ —&— Level-3 Bior-4.4 Wavelets

—4— Level-4 Bior-4.4 Wavelets
201 / —&— Level-3 Multiscale Hybrid Linear Model A
—6— Level-4 Multiscale Hybrid Linear Model

19 L I I L I
0 8 10 12

4 6
Ratio of Coefficients Kept (%)

Fig. 13. Top: Comparison of the multi-scale hybrid linear delowith
wavelets for level-3 and level-4 for the hill image. Bottorfihe same
comparison for the baboon image. The performance increabdes the
number of levels increases from 3 to 4. Fig. 15. A few standard testing images we used. From theetfipgd the
bottom-right: monarch768 x 512), sail (768 x 512), canyon {52 x 512),

tiger (480 x 320), street {80 x 320), tree 612 x 768), tissue (microscopic)
3“ 08 x 1664), Lena 612 x 512), earth (satellite) {12 x 512), urban

image size and the desired PSNR. The smaller the PS
the shorter the running time because the number of blo
needed to be coded in higher levels will be less.

ial) 612 x 512), bricks (96 x 648). The multi-scale hybrid linear
8del outperforms wavelets except for the Lena and monaneyeés.

V. MULTI-SCALE HYBRID LINEAR MODEL IN WAVELET  each level, the LH, HL, HH subbands contain the information
DOMAIN about high frequency edges and the LL subband is further

From the discussion in the previous section, we ha\gi@composed into subbands at the next level. Figure 16 shows

noticed that wavelets can achieve a better representation '€ OCtave tree structure of a level-2 wavelet decompasitio

smooth regions and avoid the block artifacts. Therefore, A Shown in the Figure 17, the vectofsr; € R*}}1,
this section, we will combine the hybrid linear model witleth &€ constructed by stacking the corresponding wavelet co-
wavelet approach to build multi-scale hybrid linear modeffficients in the LH, HL, HH subbands. The dimension of
in the wavelet domain. the vectors isk = 3¢ because there are color channels.
One of the reasons for this choice of vectors is because
) ) for edges along the same direction, these coefficients are
A. Imagery Data Vectors in Wavelet Domain linearly related and reside in a lower dimensional subspace
In the wavelet domain, an image is decomposed into do see this, let us first assume that the color along an edge

octave tree of subbands by certain separable wavelets.ig\tconstant. If the edge is along the horizontal, vertical or
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For example, Figure 18 shows the octave three structure of a
LLLL LLLH

LH

LL HL LLHH

HL HH

Fig. 16. The subbands of a level-2 wavelet decomposition.

I Sy

Fig. 18. The subbands of level-3 bior-4.4 wavelet decontjoosiof the
baboon image.

/

level-3 bior-4.4 wavelet decomposition of the baboon image
At each level, we may construct the imagery data vectors
in the wavelet domain according to the previous section. A
hybrid linear model will be identified for the so-obtained
vectors at each level. Figure 19 shows the segmentation

results using the hybrid linear model at three scale levels
Fig. 17. The construction of imagery data vectors in the Yev@omain. for the baboon image.
These data vectors are assumed to reside in multiple (affiepaces which . .
may have different dimensions. Vector Energy Constraint at Each Level. In the nonlinear

wavelet approximation, the coefficients which are below an

error threshold will be ignored. Similarly in our model, not
diagonal direction, there will be an edge in the coefficientg) the vectors of the imagery data vectors need to be modeled
in the LH, HL, or HH subband, respectively. The other tWw@ng approximated. We only need to approximate the (coeffi-

subbands will be zero. So the dimension of the imagery daf@nt) vectors{x;} that satisfy the following constraint:
vectors associated with such an edge will be 1. If the edge

is not exactly in one of these three directions, there will be s ]|* > €. (26)

an edgie |fn r‘:hed_coef.'nmer;ti of da” t_heb three Suhbbﬁnd;" I:l%tice that here we do not need to scale the error tolerance
example, It the direction of the edge Is between the hor Omat different levels because the wavelet basis is orthonlorma

223 Ic-jlll?lgsoL?t?ll’a::jz aﬁpg;u?;r ?: Elt]r?e C:oegfflﬁccuieenr:tss Ii?l ttrr]:a Il:l y construction. In practice, the energy of most of the vecto
) oo ge. 1] - _Is close to zero. Only a small portion of the vectors at each
subband will be insignificant relative to the coefficients ilbvel need to be modeled (e.g. Figure 19)

the other two subbands. So the dimension of the data vectors
associated with this edge is approximately 2 (subject t
small errore?). If the color along an edge is changin
the dimension the subspace will be higher but gener
lower than the ordinal dimensioBr. Notice that the above
scheme is only one of many possible ways in which o
may construct the imagery data vector in the wavelet doms
For instance, one may construct the vector using coeffieie
across different scales. It remains an open question whe
such new constructions may lead to even more efficit
representations than the one presented in this paper. We
leave this for future research.

B. Estimating A Multi-scale Hybrid Linear Model in Wavelet
Domain Fig. 19. The segmentation of data vectors constructed frloenthree

. . . subbands at each level—different subspaces are denoteiffdrgmt colors.
In the wavelet domain, there is no need to build a downhe black regions correspond to data vectors whose enerbelisv the

sampling pyramid. The multi-level wavelet decompositioMSE thresholde* in equation (26).
already gives a multi-scale structure in the wavelet domain



14 IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006

C. Algorithm for Identifying A Multi-scale Hybrid Linear
Model in Wavelet Domain

@
&

23
]

The overall process of estimating the multi-scale hybi
linear model in the wavelet domain can be summarized
the pseudocode in Algorithm 4.

[
*

[
R
T

w
=]
T

Algorithm 4 (Multi-Scale Hybrid Linear Model: Wavelet
Domain).

1: function I = MultiscaleModel I, level, €?)

PSNR (dB)
)
>3
T

2: I = WaveletTransforrl, level); 2
3. for_each level do e
. = . ) = 2y. r -
4:  Ijepe = HybridLinearMode(l cyer, €°); /*/* I
5. end for 2l - —&— Level-3 Bior-4.4 Wavelets
~ 2 ¢ —&— Hybrid Li Model
6. I= InVerseWaVeletTl'anSfOrM level) ; / ﬁt Leyv:I-?: l:;l‘:lﬁrsca?e :ybrld Linear Model in Spatial Domain
a ’ ! 20 k/ . —— Level-3 Multi-scale Hybrid Linear Model in Wavelet Domain
7: return I. 2 4 8 10 12 14 16

6
Ratio of Coefficients Kept (%)

27

D. Comparison with Other Lossy Representations
In this section, in order to obtain a fair comparison, tt

experimental setting is the same as that of the spatial don 50
in the previous section. The experiment is conducted on
same two standard images — th&0) x 320 hill image and Hr

the 512 x 512 baboon image shown in Figure 10.

The number of levels of the model is also chosen to be 3
Figure 20, the results are compared with several other cc 2}
monly used image representations including DCT, PCA/KL
single-scale hybrid linear model and Level-3 biorthogor
4.4 wavelets (JPEG 2000) as well as the multi-scale hyt ol
linear model in the spatial domain. The multi-scale hybr
linear model in the wavelet domain achieves better PSI 19, 4 : s
than that in the spatial domain. Figure 21 shows the th
recovered images using the same amount of coefficients for
wavelets, the hybrid linear model in the spatial domain, arfiy. 20.  Top: Comparison of several image representationsthie hill
that in the wavelet domain, respecively. Figure 22 shos ({2, Seier Canbarion for e baoon e, The meme
visual comparison with the enlarged bottom-right corndrs gpatial domain.
the images in Figure 21.

Notice that in the area around the baboon’s whiskers, the
wavelets blur both the whiskers and the subtle details in theodel in the wavelet domain achieves better PSNR than the
background. The multi-scale hybrid linear model (in the-spavavelets for the monarch image. For the Lena image, the
tial domain) preserves the sharp edges around the whiskesmparison is mixed and merits further investigation.
but generates slight block artifacts in the relatively sthoo Figure 24 demonstrates the average performance curves of
background area. The multi-scale hybrid linear model in thee multi-scale hybrid linear models for all the images in
wavelet domain successfully eliminates the block artfactFigure 15 both in spatial and wavelet domairhe error
keeps the sharp edges around the whiskers, and presebars on each average curve show the standard deviations
more details than the wavelets in the background. Amorwgthe performance curves for all the images. The lengths
the three methods, the multi-scale hybrid linear model & tiof the bars are scaled down by 0.1 to fit into the figure.
wavelet domain achieves not only the highest PSNR, but al§be hybrid linear models in spatial and wavelet domain both
produces the best visual effect. outperform wavelets. One interesting observation is that t

As we know from the previous section, the multi-scalbybrid linear model in spatial domain even outperforms the
hybrid linear model in the spatial domain performs slightlpne in wavelet domain when the ratio of coefficients kept is
worse than the wavelets for the Lena and monarch imadggh. One reason is that the block artifacts are largelycedu
(Figure 15). Nevertheless, in the wavelet domain, the mulivhen the number of coefficients are large enough. Another
scale hybrid linear model can generate very competitiveason is that the dimension of the ambient space in wavelet
results, as shown in Figure 23. The multi-scale hybrid linedomain is lower than the one in spatial domain. So the room

e

—— DCT
—£— PCAKLT
—5- Level3 Bior-4.4 Wavelets
—&— Hybrid Linear Model
—o— Level3 Multiscale Hybrid Linear Model in Spatial Domain
—— Level-3 Multi-scale Hybrid Linear Model in Wavelet Domain

12 14 16 18

8 10
Ratio of Coefficients Kept (%)
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Fig. 21. Visual comparison of three representations forbihieoon image Fig. 22. Enlarged bottom-right corner of the images in Fég@d. Top-
approximated with7.5% coefficients. Top-left: The original image. Top- left: The original image. Top-right: The level-3 biorthowd 4.4 wavelets.
right: The level-3 biorthogonal 4.4 wavelets (PSNR=23.Bsjttom-left: The Bottom-left: The level-3 multi-scale hybrid linear modei the spatial
level-3 multi-scale hybrid linear model in the spatial dam@SNR=24.18). domain. Bottom-right: the level-3 multi-scale hybrid laremodel in the
Bottom-right: The level-3 multi-scale hybrid linear model the wavelet wavelet domain.

domain (PSNR=24.88).

VI. IMAGE SEGMENTATION
for dimension reduction will be very small in wavelet domain As we now know, the hybrid linear model uses dif-

if the the ratio of coefficients kept is high. Hence, for gerent subspaces to model different regions of an image.
particular image, whether spatial or wavelet domain wileof |t essentially gives a rough “segmentation” of the image.
better representation depends on the statistics of thigémapjxels with a similar color or texture profile are likely
and the required PSNR. grouped into the same subspace. It is well-known that image
segmentation is an important problem in computer vision
and image processing as it is the first step towards many
E. Limitations important high-level tasks such as image understanding and

object recognition. Many methods have been proposed in the

The above hybrid linear model (in the wavelet domainyerature for segmenting images based on different daiter
does not produce so competitive results for gray-scale@®agy technical tools. The concepts and techncial tools (thg.,

as the dimension of the vector is merely 3 and there ¢gpca Algorithm 1) introduced in this paper can potentially
little room for further reduction. For gray-scale imageseo pe ysed for image segmentation.

may have to choose a slightly larger window in the wavelet

domain or to construct the vector using wavelet coefficients S ]

across different scales. A thorough investigation of a# th®- Hybrid Linear Models for Image Segmentation

possible cases is beyond the scope of this paper. The purpoddotice that for image representation, we normally divide
of this paper is to demonstrate (using arguably the simplése image I into non-overlappingblocks in the spatial
cases) the vast potential of a new spectrum of image repd®main (see the Section 1I-A). The hybrid linear model fit
sentations suggested by combining subspace methods witithe block vectorx;} essentially gives some kind of a
conventional image representation/approximation sckemsegmentation of the image — pixels that belong to blocks in
The quest for the more efficient and more compact represe¢ine same subspace are grouped into one segment. However,
tations for natural images without doubt will continue as owsuch a segmentation has a few undesirable features. If we
understanding of different classes of mathematical modelsoose a very large block size, then there will be severe
improves while the nature of natural images remains largéefylock effect” in the resulting segmentation, as &l pixels

a mystery. in a block are assigned into the same segment (see Figure 5).



16 IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006

ERAGE

PSNR (dB)

PSR 8)

3 / /[~ Levekd Bior-4.4 Wavelets
—+— Level-4 Muli-scale Hybrid Lineer Model in Wavelet Domain

5 B 7 8 s 0 1
Ratio of Coefficients Kept (%)

Fig. 24. The average performance curves of the multi-scelteidh linear
models for all the images in Figure 15 both in spatial and \eavdomain.
The error bars on each average curve show the standard devians
(scaled by 0.1) of the performance curves for all the images.

PSNR (dB)

use. The hybrid linear model essentially chooses the linear
transformations (or filters) adaptively for different inesg

‘ ‘ ‘ ‘ and different image segments. Second, once the hybridlinea
L N S model is identified, there is no further need of introducing
a similarity measure for the features. Feature vectors (and

Fig. 23. Top: Comparison of multi-scale hybrid linear motethe wavelet hence pixels) that belong to the same subspace are naturally
domain with wavelets for the Lena image. Bottom: Comparisbmulti- grouped into the same image segment.

scale hybrid linear model in the wavelet domain with wawelér the

Monarch image. The multi-scale hybrid linear model in thevelet domain

achieves better PSNR than wavelets for a wide range of PSKNhése B. Dimension and Size Reduction

two images.

/ —— Level4 Bior-4.4 Wavelets
o —&— Level-4 Multi-scale Hybrid Linear Model in Wavelet Domain

The problem of identifying a hybrid linear model for
image segmentation is mathematically equivalent to that fo

If we choose a smaller block size to reduce the block effeéfjage representation. However, two things have changed
then the block might not contain sufficient neighboring pixe from image representation and make image segmentation a
that allow us to reliably extract the local textfThus, the Ccomputationally much more challenging problem. First, the
resulting segmentation will be determined primarily by theumber of feature vectors (or blocks) is now always the same
color of the pixels (in each small block) but not the texturé@s the number of pixelst/ = W H, which is larger than that
One way to resolve the above problems is to choose(3 = WH/b?) in the case of image representation. For a
block of a reasonable size arouedchpixel and view the typical 512 x 512 image, we havell = 262, 144. Second,
block as a (vector-valued) “label” or “feature” attached t§he block sizeh now can be much larger that in the case of
the pixel. In many existing image segmentation methods, tHBage representation. Thus, the dimension of the bloclovect
feature (vector) is chosen instead to be the outputs of the= b’c is much higher. For instance, if we chodse- 10
block passing through a (pre-fixed) bank of filters (e.g., tid ¢ = 3, then K = 300. It is impossible to implement
Gabor filters). That is, the feature is the block transforméf€ GPCA algorithm on a regular PC fa62, 144 vectors
by a set of pre-fixed linear transformations. Subsequethity, N R3%, even if we are looking for up to only four or five
image is segmented by grouping pixels that have “similapubspace®’
features. Dimension Reduction via Projection.To reduce dimension
From the lessons that we have learned from image rep-the data, we rely on the assumption (or belief) that “the
resentation in the previous sections, we observe that tieature vectors lie on very low-dimensional subspaceseén th
hybrid linear model may be adopted to facilitate this apphoahigh-dimensional ambient spa&®X.” Then based on our
in several ways. First, we can directly fit a hybrid lineadiscussion in Section 1ll-D, we can project the data into a
model to the un-transformed and un-processed block vectdesver-dimensional space while still being able to preserve
without having to choose beforehand which filter bank tthe separation of the subspaces. Principal componentsgaly
(PCA) can be recruited for this purpose as the energy of the

19Notice that a smaller block size is ok for compression as laagt
can reduce the overhead and subsequently improve the lovenapression 20The dimension of the Veronese embedding of degree 5 will biaén
ratio. order of10%9.
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feature vectors is mostly preserved by their first few ppacti
components. From our experience, in practice it typicall
suffices to keep only the first ten principal component
Symbolically, the process is represented by the followi
diagram:

(@i} c RE PCA, oy c R
whereK' < K andi=1,...,M = WH.

Data Size Reduction via Down-SamplingNotice that the
number of feature vectord/ = W H might be too large for
all the data to be processed together since a regular PC |
trouble in performing singular value decomposition (SVD
for tens of thousands of vectotsThus, we have to down
sample the data set and identify a hybrid linear model foy on!
a subset of the data. The exact down-sampling scheme car
determined by the user. One can use periodic down-sampli
(e.g., every other pixel) or random down-sampling. From ot
experience, we found periodic down-sampling often give
visually better segmentation results. The size of the down-

sampled subset can be determined by the memory and spegs. Image segmentation results obtained from the yimear model.
of the computer the user has. Once the hybrid linear modék dimension of the subspace (in homogeneous coordinagssiciated
is obtained, we may assign the remaining vectors to th&ff" €ach segmentis given by the number to its right.

closest subspaces. Of course, in practice, one may run the
process on multiple subsets of the data and choose the one
which gives the smallest fitting error for all the data. This i
very much in the same spirit as the random sample consensuln this paper, we have introduced a simple but effective
(RANSAC) method. Symbolically, the process is representethss of mathematical models for representing and approxi-

GPCA (a1} c UYL, 5,

VIl. CONCLUSIONS ANDOPENISSUES

by the following diagram: mating natural images, namely the multi-scale hybrid linea
sample PCA ) , models. This class of models can be efficiently computed
{zi} —— {zs}CRF ——  {zj}CRX from the given imagery data. The resulting model obtained

mind(x;,S;
GPCA {zy} cUN_,1S, mind@i,55), {x:} c UY_1Sn,

where{x; } is a (down-sampled) subset ¢&;}.

for an image can effectively capture the heterogeneous and
hierarchical structures of the image as well as harnessthe ¢
relation among multiple color channels. Experiments show
that the performance of the proposed method is comparable
to or even better than most image representation schemes
Figure 25 shows the results of applying the above schemgsgciuding wavelets). In addition, this new method actyall
to the segmentation of some images from the Berkeley imag@mplements the existing schemes and together they achieve
database. The dimension of the subspace (in homogenegusn higher performance.
coordinates) associated with each segment is marked by thag the proposed method is adaptive in nature, it is com-
number to its right. £0x20x 3 “feature” vector is associated putationally more costly than methods that are based on
with each pixel that corresponds to the color values in ge-chosen (linear) transformations. We will investigate
20 x 20 block. We first apply PCA to project all the featurghe future how to reduce the complexity and develop more
vectors onto a 6-dimensional subspace. We then apply #cient implementations. We would also like to investagat
GPCA algorithm to further identify subspace-structures @fptimal quantization and entropy coding schemes for hybrid

the features in this 6-dimensional space and to segment fii@ar models so as to develop a full package for compressing
pixels to each subspace. The algorithm happens to find thiggural images.

segments for all the images shown below. Different choicesThere might be more efficient schemes to combine the

in the error tolerance, window size, and color space (HSV Aphyid linear models with wavelets and/or other x-lets. The
RGB) may affect the segmentation results. Empirically, Wecheme introduced in Section V is only one of the most
fir_1d that HSV gives vi_sgally better segments for most imag?sstraightforward options (that demonstrates the potenthl

Flgure 26 shows addmonal_ results of some more challengifghre systematic study of the approximation theory of vector
images from the Berkeley image database. valued functions may lead to a principled (and therefore

21with the increase of memory and speed of modern computersiope optlmal) solution for the cpmblngthn. .
this step will soon become unnecessary. The proposed method is not limited to only representing

C. Experiments
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[9]
Fig. 26. Additional results of some more challenging imafresn the [10]
Berkeley image database.
[11]

(color) images. It is a general method for modeling any
high-dimensional data that have heterogeneous intema-st [12]
tures. In this paper, we have demonstrated how the method
can be extended to image segmentation — an applicat'%]
that is closely related to the proposed image representatio
scheme. However, the segmentation algorithm in this paper
is only based on a single scale. More investigation ab E]
the consensus of segmentation results across differeleissc
will improve the segmentation performance. In addition, oy15]
ongoing work has also shown that one can apply the same
method to a collection of images that belongs to certa[gG]
category, rather than a single image, and learn a hybriddine
model for the entire image category. The so-obtained models
can potentially capture the essential statistical charestics [17]
of different image categories and hence be useful for p@pos
such as image classification and retrieval. In the future, we
will also investigate the potential of hybrid linear modéds
modeling other imagery data (e.g., MRI, DTI, hyper-spdctra
etc.), as well as other data types (e.g., audio, video, gene
expression data, etc.). [19]
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