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Abstract

Short-and-sparse deconvolution (SaSD) is the problem of extracting localized, recurring motifs in signals
with spatial or temporal structure. Variants of this problem arise in applications such as image deblurring,
microscopy, neural spike sorting, and more. The problem is challenging in both theory and practice, as nat-
ural optimization formulations are nonconvex. Moreover, practical deconvolution problems involve smooth
motifs (kernels) whose spectra decay rapidly, resulting in poor conditioning and numerical challenges. This
paper is motivated by recent theoretical advances [ZLK`17, KZLW19], which characterize the optimization
landscape of a particular nonconvex formulation of SaSD. This is used to derive a provable algorithm which
exactly solves certain non-practical instances of the SaSD problem. We leverage the key ideas from this theory
(sphere constraints, data-driven initialization) to develop a practical algorithm, which performs well on data
arising froma range of application areas. Wehighlight key additional challenges posed by the ill-conditioning
of real SaSD problems, and suggest heuristics (acceleration, continuation, reweighting) to mitigate them. Ex-
periments demonstrate both the performance and generality of the proposed method.

Index terms— sparse blinddeconvolution, convolutional dictionary learning, computational imaging, non-
convex optimization, alternating descent methods.

∗These authors contributed equally to this work.
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1 Introduction
Signals in medical/scientific/natural imaging can often be modeled as superpositions of basic, recurring mo-
tifs (see Figure 1 for an illustration). For example, in calcium imaging [SGHK03, GK12], the excitation of neu-
rons produces short pulses of fluorescence, repeating at distinct firing times. In the material and biological
sciences, repeated motifs often encode crucial information about the subject of interest; e.g., in nanomaterials
these motifs correspond to defects in the crystal lattice due to doping [CSL`18]. In all of these applications,
the motifs of interest are short, and they are sparsely distributed within the sample of interest. Signals with
this short-and-sparse structure also arise in natural image processing: when a blurry image is taken due to
the resolution limit or malfunction of imaging procedure, it can be modeled as a short blur pattern applied to
a visually plausible sharp image [CW98, RBZ06a, LWDF11a].
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Figure 1: Natural signals with short-and-sparse structure. In calcium imaging (top), each neuronal spike
induces a fluoresence pattern measuring a transient increase in calcium concentration. In photography
(middle), photos with sharp edges (sparse in the gradient domain) are often obfuscated by blurring due
to shaking the camera. In scanning tunneling microscopy (bottom), dopants embedded in some base
material produce individual electronic signatures. For each of these cases, the observed signal can be
modeled as a convolution between a short kernel and a sparse activation map.

Mathematically, an observed signal y with this short-and-sparse (SaS) structure can be modeled as a convo-
lution1 of a short signal a0 P Rn0 and a much longer sparse signal x0 P Rm pm " n0q:

y “ a0 f x0. (1.1)

In all of the above applications, the signalsa0 andx0 are not known ahead of time. The short-and-sparse deconvo-
lution (SaSD) problem asks us to recover these two signals from the observation y. This is a challenging inverse
problem: natural optimization formulations are nonconvex and have many equivalent solutions. The kernel
a0 is often smooth, and hence attenuates high frequencies. Although study of the SaSD problem stretches
back several decades and across several disciplines [Hay94, LB95, KH96], the need for efficient, reliable, and
general purpose optimization methods remains.

One major challenge associated with developing methods for SaSD arises from our relatively limited un-
derstanding of the global geometric structure of nonconvex optimization problems. Our goal is to recover this
ground truth pa0,x0q (perhaps up to some trivial ambiguities), which typically requires us to obtain a globally
optimal solution to a nonconvex optimization problem. This is impossible in general. Fortunately, recent the-
oretical evidence [ZKW18, KZLW19] guarantees that the SaSD problem can solved efficiently under certain

1For simplicity we follow the convention of [KZLW19] and use cyclic convolution throughout this paper, unless otherwise specified.
The choice is superficial; any algorithms and results discussed here should also apply to linear convolution with minor modifications.
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idealized assumptions. Using an appropriate selection of optimization domain and a specific initialization
scheme, these results yield provable methods that solve certain instances of SaSD in polynomial time.

Unfortunately, practical SaSD problems raise additional challenges beyond the assumptions in theory,
causing the provable methods [ZKW18, KZLW19] to fail on real problem instances. While the emphasis
of [ZLK`17, KZLW19] is on theoretical guarantees, here we focus on practical computation. We show how to
combine ideas from this theory with heuristics that better address the properties of practical deconvolution
problems, to build a novel method that performs well on data arising in a range of application areas. Many of
our design choices are natural and have a strong precedent in the literature. We will show how these natural
choices help to cope with the (complicated!) geometry of practically occurring deconvolution problems. A
critical issue in moving from theory to practice is the poor conditioning of naturally-occurring deconvolution
problems: we show how to address this with a combination of ideas from sparse optimization, including mo-
mentum, continuation, and reweighting. The end result is a general purpose method, which we demonstrate
on data for spike recovery [FZP17] and neuronal localization [PSG`16] from calcium imaging data, as well
as fluorescence microscopy [RBZ06a].

Organization of the paper. The remainder of the paper is organized as follows. Section 2 introduces key
aspects of SaSD, and Section 3 shows how they play out in a theoretical analysis of SaSD, culminating in a
provable algorithm grounded in geometric intuition. In Section 4, we discuss how to combine this intuition
with additional heuristics to create practical methods. Section 5 revisits and demonstrates these ideas in a
simulated setting. Section 6 illustrates the performance of our method on data drawn from a number of
applications. Finally, Section 7 reviews the literature, and poses interesting future directions.

Reproducible research. The code for implementations of our algorithms can be found online:

https://github.com/qingqu06/sparse_deconvolution.

For more details of our work on SaSD, we refer interested readers to our project website

https://deconvlab.github.io/.

2 Two Key Intuitions for SaS Deconvolution
We begin by describing two basic intuitions for SaS deconvolution, which play an important role in the geom-
etry of optimization and the design of efficient methods.
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y “ αsℓra0s α´1s´ℓrx0sf

Figure 2: Scaling-shift symmetry. The SaS convolution model exhibits a scaled shift symmetry: αsℓra0s

and α´1s´ℓrx0s have the same convolution as a0 and x0. Therefore, the ground truth pa0,x0q can only by
identified up to some scale and shift ambiguity.
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(a) spiky (easiest) (b) generic (easy) (c) lowpass (difficult)

µs « 0 µs « n0
´1{2 µs « constant

θ « n0
´1{2 θ « n0

´3{4 θ « n0
´1

Figure 3: Sparsity-coherence tradeoff [KZLW19]: examples with varying coherence parameter µspa0q

and sparsity rate θ (i.e., probability a given entry is nonzero). Smaller shift-coherence µspa0q allows SaSD
to be solved with higher θ, and vice versa. In order of increasing difficulty: (a) when a0 is a Dirac delta
function, µspa0q “ 0; (b) when a0 is sampled from a uniform distribution on the sphere Sn0´1, its shift-
coherence is roughly µspa0q « n0

´1{2 ; (c) when a0 is low-pass, µspa0q Ñ const. as n0 grows.

Symmetry structure. The SaSmodel exhibits a basic scaled shift symmetry: for any nonzero scalarα and cyclic
shift sℓ r¨s

y “ a0 f x0 “ p˘αsℓ ra0sq f
`

˘α´1s´ℓ rx0s
˘

.

In other words, shifting a0 to the right by ℓ samples and shifting x0 to the left by the same amount leaves
the convolution a0 f x0 unchanged (see Figure 2). We can therefore only expect to recover the ground truth
pa0,x0q up to some scaling and some shift. As a result, natural optimization formulations for SaSD exhibit
multiple global minimizers, corresponding to these scaled shifts of the ground truth. Due to the existence of
multiple discrete global minimizers, natural formulations are nonconvex. Fortunately, this symmetry structure
often creates leads to benign objective landscapes for optimization; two such examples for SaSD are [ZKW18,
KZLW19].

Sparsity-coherence tradeoff. Clearly, not all SaSD problems are equally easy to solve. Problemswith denser
x0 are more challenging. Moreover, there is a basic tradeoff between the sparsity of the spike train x0 and the
properties of the kernel a0. If a0 is smooth (e.g., Gaussian), then each occurrence of a0 would, on average,
need to be relatively far apart to be distinguishable; i.e. x0 would have to be sparser. Conversely, denser
instances of x0 should be allowable if a0 is “spikier”.2 One way of formalizing this tradeoff is through the
shift-coherence of the kernel a0, which measures the “similarity” between a0 and its cyclic-shifts:

µspa0q
.
“ max

ℓ “0

ˇ

ˇ

ˇ

ˇ

B

a0

}a0}2
,
sℓ ra0s

}a0}2

Fˇ

ˇ

ˇ

ˇ

P r0, 1s . (2.1)

Asµspa0q increases, the shifts ofa0 becomemore correlated andhence closer together on the sphere. [KZLW19]
uses this quantity to study the behavior of a particular nonconvex formulation of SaSD. For generic choices
of x0, such as x0 „ BGpθq drawn from a Bernoulli-Gaussian distribution, the sparsity-coherence tradeoff of
[KZLW19] guarantees recoverability when the sparsity rate θ is sufficiently small relative to µspa0q. Intu-
itively speaking, this implies that SaSD problems with smaller µspa0q tend to be “easier” to solve (Figure 3).

2Similar tradeoffs occur in non-blind deconvolution where a0 is known (e.g. [CFG14]) and in other inverse problems.
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(a) a single shift sℓ1 ra0s (b) two shifts sℓ1 ra0s, sℓ2 ra0s (c) multiple shifts

Figure 4: Geometry of Approximate Bilinear Lasso loss φABLpaq near superpositions of shifts of a0

[KZLW19]. Top: function values of φABLpaq visualized as height. Bottom: heat maps of φABLpaq on the
sphere Sn´1. (a) the region near a single shift is strongly convex; (b) the region between two shifts con-
tains a saddle-point, with negative curvature pointing towards each shift and positive curvature pointing
away; (c) region near the span of several shifts of a0.

In the next section, we will use the idealized formulation of [KZLW19] to illustrate how these basic prop-
erties of the SaSD problem shape the landscape of optimization. In later sections, we will borrow these ideas
to develop practical, general purpose methods. The major challenge in moving from theory to practice is in
coping with highly coherent a0: in most practical applications, a0 is smooth and hence µspa0q is large.

3 Problem Formulation and Nonconvex Geometry
In this section, we summarize some recent algorithmic theory characterizing the optimization landscape of
an idealized nonconvex formulation for SaSD [ZLK`17, KZLW19], with the goal of applying the geometric
intuition from this theory towards designing practical optimization methods.

3.1 The Bilinear Lasso and its marginalization
A natural idea for solving SaSD is to minimize a reconstruction loss ψpa,xq between a f x and y, plus a
sparsity-promoting regularizer gpxq on x. This can be achieved, for instance, by minimizing the squared
reconstruction error in combination with an ℓ1-penalty on x,

min
a,x

ΨBLpa,xq
.
“ 1

2 }y ´ a f x}
2
2 ` λ }x}1 , s.t. a P Sn´1. (3.1)

This Bilinear Lasso problem (BL) resembles the Lasso estimator in statistics [Tib96], and is a nonconvex opti-
mization problem. The sparsity of the solution for x is controlled by the regularization penalty λ: a larger λ
leads to sparser x, and vice versa3. We constrain a onto the sphere Sn´1, which reduces the scaling ambiguity
into a sign ambiguity. We also increase the dimension of a to n “ 3n0 ´ 2; this creates an objective landscape
that allows various descent methods to recover a full shift of a0 and avoid any shift-truncation effects, upon
the application of a simple data initialization scheme.

In this paper, we will also frequently refer to the marginalized Bilinear Lasso cost

φBLpaq
.
“ min

x
ΨBLpa,xq “ min

x

1
2 }y ´ a f x}

2
2 ` λ }x}1 . (3.2)

It is clear that minimizing ΨBLpa,xq is equivalent to minimizing φBLpaq over a P Sn´1.
3[KZLW19] suggests a good choice λ P Op1{

?
θnq, where θ P p0, 1q denotes the sparsity level.
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3.2 Structured nonconvexity and geometric properties
To understand the nonconvex optimization landscape of the Bilinear Lasso, it is natural to study the marginal-
ized objective in Equation (3.2). The benefit of this approach is twofold: (i) for a fixed a, the Lasso problem in
Equation (3.2) is convex w.r.t. x, and (ii) the short kernel a lives on a low dimensional manifold — the space
a P Sn´1 is wheremeasure concentrates when x0 is generic random and has high dimension (m " n0). Unfor-
tunately, φBLpaq remains challenging for analysis; a major culprit is that the Lasso estimator in Equation (3.2)
does not usually admit closed-form solutions.

ApproximateBilinear Lasso. Whena is incoherent (µspaq « 0), however, we approximately have }a f x}
2
2 «

}x}
2
2. Carrying this approximation through to Equation (3.1) yields an Approximate Bilinear Lasso (ABL) ob-

jective4 φABLpa,xq “ minx ΨABLpa,xq, which satisfies φABLpaq « φBLpaq whenever µspaq « 0 [KZLW19].
For the purposes of our discussion, this objective serves as a valid simplification of the Bilinear Lasso when
the true kernel is itself incoherent (µspa0q « 0). Although such incoherence assumptions are stringent and
impractical, φABLpaq admits a simple analytical form and is more amenable to analysis as a result.

Geometry ofφABL in the span of a few shifts. Under the assumptions that a0 is incoherent andx0 is generic,
φABLpaq enjoys a number of nice properties on the sphere Sn´1. In particular, Kuo et al. [KZLW19] provides
a geometrical characterization of the optimization landscape φABLpaq near the span of several shifts5 of a0:

1. Near a single shift of a0. Within a local neighborhood of each shift sℓra0s, the optimization landscape of
φABLpaq exhibits strong convexity (Figure 4a), with a unique minimizer corresponding to a shift sℓra0s.

2. In the vicinity of two shifts. Near the span of two shifts,

Stℓ1,ℓ2u “
␣

α1sℓ1ra0s ` α2sℓ2ra0s : α1, α2 P R
(

č

Sn´1,

the only local minimizers are approximately sℓ1ra0s and sℓ2ra0s. A saddle point as exists at the symmetric
superposition of the shifts (i.e. as “ α1sℓ1ra0s ` α2sℓ2ra0s with α1 « α2), but can be escaped by taking
advantage of the large negative curvature present6 (Figure 4b).

3. In the vicinity of multiple shifts. The geometric properties for two shifts carry over to those of multiple shifts
of a0. Any local minimizers over

SI
.
“

␣
ř

ℓPI αℓsℓ ra0s : αℓ P R
(
Ş

Sn´1 (3.3)

are again close to signed shifts (Figure 4c). Any saddle-points present sit at symmetric superpositions
of two or more shifts, and exhibit strong negative curvature in directions towards the participating shifts.
Additionally, the function value of φABLpaq increases when moving away from SI .

[KZLW19] proves that these geometric properties ofφABL hold for sufficiently small7 |I|whenever the sparsity-
coherence tradeoff n0θ Æ µ

´1{2
s pa0q is satisfied. This bound is stringent, however, and shows that the ABL

formulation is unsuited for practical applications where µspa0q often approaches one as n0 grows.

The benign optimization landscape of φABLpaq provides strong implications for optimization. Indeed, if
we could initialize a near SI , iterates of many local descent methods such as [Gol80, CGT00, BAC18, NP06]
can exploit gradient and negative curvature to remain near SI , and eventually converge to the target solution

4As our focus here is on solving the Bilinear Lasso, we intentionally omit the concrete form of ΨABLpaq and φABLpaq. Readers may
refer to Section 2 of [KZLW19] for more details.

5When optimizing over Sn´1, n “ 3n0 ´ 2, we denote ℓ-th (full) shift with the abuse of notation sℓra0s “ r0ℓ;a0;0n´ℓ´n0
s P Sn´1

, for ℓ P t0, . . . , n ´ n0u. Each shift is a length-m cyclic shift of a0, truncated to a length-n window without removing any entries from
a0.

6Here, negative curvature means that the Hessian exhibits negative eigenvalues, such that the function can be decreased by following
the negative eigenvector direction.

7It is sufficient for |I| “ Opθn0q, where θ is the probability that any entry of x0 is nonzero [KZLW19].
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– a signed-shift of a0. Finding a good initialization is also deceptively simple: since x0 is sparse, any length-n0
truncation of the observation y is itself approximately a superposition of a few shifts of a0,

y “
ÿ

ℓPsupppx0q

px0qℓ ¨ sℓ ra0s . (3.4)

Therefore, if we simply chose n0 consecutive entries of y, (e.g. ryi, yi`1, . . . , yi`n0´1s, i P rm´ n0s) randomly
from the observation y and initialize a0 by setting

ap0q “ PSn´1

`“

0n0´1 ; yi, yi`1, . . . , yi`n0´1 ; 0n0´1

‰˘

, (3.5)

then ap0q P Rn is close to a subsphere SI spanned by roughlyOpn0θq shifts of a0. Moreover, any truncation ef-
fects are absorbed by the zero-padding in Equation (3.5). In [KZLW19], this initialization scheme is improved
and made rigorous, and interested readers may refer to Appendix B.3 for details.

(a) Approximate Bilinear Lasso φABLpaq (b) Bilinear Lasso φBLpaq

Figure 5: Approximate Bilinear Lasso vs. Bilinear Lasso: Given an incoherent truth kernel a0 „

U
`

Sn0´1
˘

, we plot the heat maps of objective landscapes of (a) the Approximate Bilinear Lasso and (b)
Bilinear Lasso losses, restricted to the subsphere spanned by a0, s1 ra0s, and s2 ra0s, shown as red dots on
the heatmap. The curvature properties of both objective landscapes are empirically similar at key locations,
e.g., near and between shifts.

Optimization over the sphere. For both the Bilinear Lasso and ABL, a unit-norm constraint on a is enforced
to break the scaling symmetry between a0 and x0. Choosing the ℓ2-norm, however, has surprisingly strong
implications for optimization. The ABL objective, for example, is piecewise concave whenever a is sufficiently
far away from any shift of a0, but the sphere induces positive curvature near individual shifts to create strong
convexity. These two properties combine to ensure recoverability of a0. In contrast, enforcing ℓ1-norm con-
straints often leads to spurious minimizers for deconvolution problems [LWDF11b, BVG13, ZLK`17].

Implications for the Bilinear Lasso. The ABL is an example of a formulation for SaSD posessing a (region-
ally) benign optimization landscape, which guarantees that efficient recovery is possible when a0 is incoher-
ent. Applications of sparse deconvolution, however, are often motivated by sharpening or resolution tasks
[HBZ09, CFG14, CE16] where the motif a0 is smooth and coherent (µspa0q is large). The ABL objective is a
poor approximation of the Bilinear Lasso in such cases and therefore fails to yield practical algorithms.

In such cases, the Bilinear Lasso should be optimized directly, and Figure 5 shows that its loss surface does
indeed share similar symmetry breaking properties with the ABL objective. In the next section, we apply
the geometric intuition gained from the ABL formulation, in combination with a number of computational
heuristics, to create an optimization method for SaSD that performs well in general problem instances.

4 Designing Practical Nonconvex Optimization Algorithms
Several algorithms for SaSD type problems have been developed for specific applications, such as image
deblurring [LWDF11b, BDH`13, CE16], neuroscience [RPQ15, FZP17, SFB18], and image super-resolution
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[BK02, SGG`09, YWHM10]. In this section, however, we will instead leverage the intuition from Section 3
and build optimization methods for the Bilinear Lasso

min
a, x

ΨBLpa,xq
.
“ 1

2 }y ´ a f x}
2
2

loooooooomoooooooon

smooth ψpa,xq

` λ ¨ }x}1
loomoon

nonsmooth gpxq

, s.t. a P Sn´1, (4.1)

that perform well in general settings for SaSD, as the Bilinear Lasso more accurately accounts for interactions
between a f x when a0 is shift-coherent. In such situations, optmization of ΨBL will also suffer from slow
convergence and poor resolution of x0, whichwewill address in this sectionwith a number of heuristics. This
leads to an efficient and practical algorithms for solving sparse deconvolution problems.

4.1 Solving the Bilinear Lasso via alternating descent method
Efficient global optimization of the nonconvex objective in Equation (4.1) is a nontrivial task, largely due
to the existence of spurious local minima and saddle points. In the following, we introduce a simple first-
order method dealing with these issues. As suggested by our discussion of the geometry of the Dropped
Quadratic in Section 3, we avoid such spurious minimizers using a data-driven initialization scheme intro-
duced in Section 3.2. On the other hand, our study in Section 3 implies that all saddle points exhibit large
negative curvature and can hence be effectively escaped by first-order methods8 [LPP`17, JGN`17, GBW18].

Starting from the data-driven initialization, we optimize the Bilinear Lasso using a first-order alternating
descent method (ADM). The basic idea of our ADM algorithm is to alternate between taking first-order descent
steps on Ψpa,xq w.r.t. one variable while the other is fixed:

Fix a and take a descent step on x. At each iteration k, with fixed apkq, ADM first descends the objective
ΨBLpa,xq by taking a proximal gradient step w.r.t. xwith an appropriate stepsize tk

xpk`1q Ð proxλtkg

´

xpkq ´ tk ¨ ∇xψ
´

apkq,xpkq
¯¯

, (4.2)

where proxgp¨q denotes the proximal operator of gp¨q [Nes13a]. Since the subproblem ofminimizingΨBLpa,xq

only w.r.t. x is the Lasso problem, the proximal step taken in Equation (4.2) here is classical9 [BT09, PB`14].

Fix x and take a descent step on a. Next, we fix the iterate xpk`1q and we take a Riemannian gradient step
[AMS09] w.r.t. a over the sphere Sn´1, with stepsize τk ą 0,

apk`1q Ð PSn´1

´

apkq ´ τk ¨ grada ψ
´

apkq,xpk`1q
¯¯

, (4.3)

where grada ψpa,xq denotes the Riemannian gradient of ψpa,xq w.r.t. a, and PSn´1 p¨q is a projection operator
onto the sphere Sn´1. The Riemannian gradient grada ψpa,xq can be interpreted as the standard gradient
projected to the (Euclidean) tangent space10 of Sn´1 at point a, and the projection operator PSn´1 p¨q ensures
that our iterate stays on the sphere11.

ADM simply alternates between steps of Equation (4.2) and Equation (4.3) until convergence, and can
seamlessly incorporate other acceleration techniques that we will discuss in the later part of this section. We
refer readers to Appendix B.1 for more implementation details.

The geometric intuition gained in Section 3 is based on the marginalized objective φBLpaq over the sphere
Sn´1, whereas here we simply a descent step onΨBLpa,xq w.r.t. x rather than minimize x explicitly to reduce

8In [ZLK`17] and [KZLW19], they employed second-order trust-region [CGT00, BAC18] and curvilinear search [Gol80, GMWZ17]
methods for solving SaSD. Although second-order methods can also escape strict saddle points by directly exploiting the Hessian, they
are much more expensive computationally and hence not practical for large datasets.

9The Equation (4.2) can also be rewritten and interpreted as xpk`1q “ xpkq ´ tkGtk

`

xpkq
˘

with the composite gradient mapping Gtk
[Nes13a]. Gtk behaves like the “gradient” on the smooth Moreau envelope of ΨBLpa,xq, as a function of x.

10The tangent space is a n´ 1 dimensional Euclidean linear space, containing all the tangent vectors at a P Sn´1. We refer the readers
to [AMS09, Section 3] for more concrete definitions.

11The Riemannian gradient step is a specific manifold retraction operator on the sphere, which takes a point from the tangent space at
some point a and pushes it to a new point on the manifold. We refer interested readers to Section 3 of [AMS09] for more details.
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computational complexity per iteration. Nonetheless, the sequence of gradients ∇aΨBLpapkq,xpkqq on a ap-
proximates ∇φBLpapkqq as k Ñ 8, since ADM is guaranteed to converge to some stationary point [BST14,
PS16]. Therefore, ADM on ΨBLpa,xq eventually becomes equivalent to Riemannian gradient descent on
φBLpaq.

4.2 Heuristics for improving the geometry of Bilinear Lasso
Although the Bilinear Lasso is able to account for the interactions between a0 and x0 under high coherence,
the smooth term }a f x ´ y}

2
2 nonetheless becomes ill-conditioned as µpa0q increases, leading to slow conver-

gence for practical problem instances. Here we will discuss a number of heuristics which will help to obtain
faster algorithmic convergence and produce better solutions in such settings.

(a) Standard gradient descent (b) With momentum acceleration

Figure 6: Momentum acceleration. The left figure shows the behavior of standard gradient descent which
oscillates on functions of ill-conditionedHessian; the right figure shows that by incorporating the previous
steps the momentum acceleration alleviates the oscillation effects and achieves faster convergence.

4.2.1 Accelerating first-order descent under high coherence

When µspa0q is large, the Hessian ofΨBL becomes ill-conditioned as a converges to single shifts. the objective
landscape contains “narrow valleys” in which first-order methods tend to exhibit severe oscillations (Fig-
ure 6a) [Nes13b]. For a nonconvex problem such as the Bilinear Lasso, iterates of first-order methods could
encounter many narrow and flat valleys along the descent trajectory, resulting in slow convergence.

One remedy here is to add momentum [Pol64, BT09] to standard first-order iterations. For example, when
updating x, we could modify the iterate in Equation (4.2) by

wpkq “ xpkq ` β ¨

´

xpkq ´ xpk´1q
¯

looooooooomooooooooon

inertial term

, (4.4)

xpk`1q “ prox tkg

´

wpkq ´ tk∇xψ
´

apkq,wpkq
¯¯

. (4.5)

Here, the inertial term incorporates the momentum from previous iterations, and β P p0, 1q controls the iner-
tia12. In a similar fashion, we can modify the iterate [AMS09] for updating13 a in Equation (4.3). We term
the new algorithm inertial alternating descent method (iADM), and we refer readers to Appendix B.1.2 for more
details.

As illustrated in Figure 6b, the additional inertial term improves convergence by substantially reducing
oscillation effects for ill-conditioned problems. The acceleration of momentummethods for convex problems
are well-known in practice14. Recently, momentummethods has also been proven to improve convergence for
nonconvex and nonsmooth problems [PS16, JNJ18].

12Setting β “ 0 here removes momentum and reverts to standard proximal gradient descent.
13It modifies iPALM [PS16] to perform updates on a via retraction on the sphere.
14In the setting of strongly convex and smooth function fpzq, the momentum method improves the iteration complexity from

O pκ logp1{εqq to O p
?
κ logp1{εqq with κ being the condition number, while leaving the computational complexity approximately un-

changed [B`15].
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(a) λ “ 5 ˆ 10´1 (b) λ “ 5 ˆ 10´2 (c) λ “ 5 ˆ 10´3

Figure 7: Low-dimensional functional landscape of Bilinear Lassowith varyingλ. Each subfigure shows
the objective φBLpaq, with a restricted to the subsphere St0,1,2u defined in Equation (3.3), with varying
choices of λ ą 0. The kernel a0 is incoherent and drawn uniformly from the sphere. The red dots denote
the location of the kernel and its shifts.

4.2.2 A practical method for SaSD based on homotopy continuation

It is also possible to improve optimization bymodifying the objectiveΨBL directly through the sparsity penalty
λ. Variations of this idea appear in both [ZLK`17] and [KZLW19], and can also help to mitigate the effects
of large shift-coherence in practical problems.

When solving (3.1) in the noise-free case, it is clear that larger choices of λ encourage sparser solutions for
x. Conversely, smaller choices of λ place local minimizers of the marginal objective φBLpaq

.
“ minx ΨBLpa,xq

closer to signed-shifts of a0 by emphasizing reconstruction quality. When µpa0q is large, however, φBL be-
comes ill-conditioned as λ Ñ 0 due to the poor spectral conditioning of a0, leading to severe flatness near
local minimizers (Figure 7) and the creation spurious local minimizers when noise is present. At the expense
of precision, larger values of λ limit x to a small set of support patterns and simplify the landscape ofφBL. It
is therefore important both for fast convergence and accurate recovery for λ to be chosen appropriately.

When problem parameters – such as the severity of noise, or p0 and θ – are not known a priori, a homotopy
continuation method [HYZ08, WNF09, XZ13] can be used to obtain a range of solutions for SaSD. Using the ini-
tialization (3.5), a rough estimate ppap1q, pxp1qq is first obtained by solving (3.1) with iADM using a large choice
for λp1q; this estimate is refined by gradually decreasing λpnq to produce the solution path

␣

ppapnq, pxpnq;λpnqq
(

.
By ensuring that x remains sparse along the solution path, homotopy provides the objective ΨBL with (re-
stricted) strong convexity w.r.t. both a and x throughout optimization [ANW10]. As a result, homotopy
achieves linear convergence for SaSD where sublinear convergence is expected otherwise (Figures 13 and 14).

Algorithm for SaSD. We summarize our discussion by presenting a practical algorithm for solving SaSD
(Algorithm 1), which initializes a using Equation (3.5) and subsequently find a local minimizer of the Bilin-
ear Lasso using homotopy continuation, combined with the accelerated first-order iADM method, with an
appropriate choice of λ. However, we note should be possible to substitute iADM with any first or second-
order descent method (e.g. the Riemannian trust-region method [ABG07, CSL`18]). We compare some of
these different choices in Section 5.2.

For Algorithm 1, we usually set β “ 0.9 to incorporate sufficient momentum for iADM; setting β too
large, however, can cause iADM to diverge. The stepsizes tk and τk in iADM are obtained by backtracking
(linesearch) [NW06, PS16]. We often set the initial penalty λ0 “

›

›

›
C˚

ιnÑmpap0qy
›

›

›

8
large enough to ensure sparse

x, and choose λ‹ based on problem dimension and noise level (often λ‹ “ 0.1{
?
n is good choice). Typically,

a good choice is to set the decaying parameter η “ 0.9 and the precision factor δ “ 0.1. We refer readers to
Appendices for more implementation details.

4.3 Extension for convolutional dictionary learning
The optimization methods we introduced for SaSD here can be naturally extended to tackle sparse blind
deconvolution problems with multiple unknown kernels/motifs (a.k.a. convolutional dictionary learning
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Algorithm 1 Solving SaSD with homotopy continuation
Input: Measurement y P Rm; momentum parameter β P r0, 1q; initial and final sparse penalties λ0, λ‹

(λ0 ą λ‹); decay penalty parameter η P p0, 1q; precision factor δ P p0, 1q and tolerance ε‹.
Output: final solution pa‹,x‹q.
Set iteration numberK Ð

X

logpλ‹{λ0q { log η
\

.
Initialize pap0q P Rn using Equation (3.5), pxp0q “ 0m, and λp0q “ λ0, εp0q “ δλp0q;
for k “ 1, . . . ,K do

Solve
min

aPSn´1,x
Ψλpk´1q pa,xq

.
“

1

2
}y ´ a f x}

2
2 ` λpk´1q }x}1

to precision εpk´1q “ δλpk´1q via iADM, using
`

papk´1q, pxpk´1q
˘

as warm start
´

papkq, pxpkq
¯

Ð iADM
´

papk´1q, pxpk´1q;y, λpk´1q, β
¯

.

Update λpkq Ð ηλpk´1q.
end for
Final round: starting from

`

papKq, pxpKq
˘

, optimize Ψλ‹ pa,xq with penalty λ‹ to precision ε‹ via

ppa‹, px‹q Ð iADM
´

papKq, pxpKq;y, λ‹, β
¯

.

“ f ` f

“ f ` fy a01 x01 a02 x02

Figure 8: Convolutional dictionary learning. Simultaneous recovery for multiple unknown kernels
ta0ku

N
k“1 and sparse activation maps tx0ku

N
k“1 from y “

řN
k“1 a0k f x0k.

[CF17, GCW18]), which have broad applications in microscopy data analysis [YHV17, ZCB`14, CSL`18]
and neural spike sorting [ETS11, RPQ15, SFB18]. As illustrated in Figure 8, the new observation y in this task
is the sum of N convolutions between short kernels ta0ku

N
k“1 and sparse maps tx0ku

N
k“1,

y “

N
ÿ

k“1

a0k f x0k, a0k P Rn0 , x0k P Rm, p1 ď k ď Nq.

The natural extension of SaSD, then, is to recover ta0ku
N
k“1 and tx0ku

N
k“1 up to signed, shift, and permutation

ambiguities, leading to the SaS convolutional dictionary learning (SaS-CDL) problem. The SaSD problem can
be seen as a special case of SaS-CDLwithN “ 1. Based on the Bilinear Lasso formulation in Equation (4.1) for
solving SaSD, we constrain all kernels a0k over the sphere, and consider the following nonconvex objective:

min
takuNk“1, txkuNk“1

1

2

›

›

›

›

›

y ´

N
ÿ

k“1

ak f xk

›

›

›

›

›

2

2

` λ
N
ÿ

k“1

}xk}1 , s.t. ak P Sn´1 p1 ď k ď Nq. (4.6)

When the kernels ta0ku
N
k“1 are incoherent enough to each other, we anticipate that all local minima are near

signed shifts of the ground truth. Similar to the idea of solving the Bilinear Lasso in Equation (4.1), we
optimize Equation (4.6) via ADMand its variants, by taking alternating descent steps on taku

N
k“1 and txku

N
k“1

with one fixed. We refer readers to Appendix B and Appendix C for more technical details.
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4.4 Additional modifications for practical settings
Here briefly summarize some prevalent issues that appear in with real datasets and how the our SaS model
and associated deconvolution method can be adjusted to deal with these additional challenges.

• Linear vs. cyclic convolution. In this work, we follow the convention of [KZLW19] and mainly discuss
SaSD in the context of cyclic convolution. The linear convolution, however, is a better model for many prac-
tical SaSD tasks (e.g. involving natural images or time series). Despite this, there is no loss of generality as
any statements about cyclic convolution can easily be carried over to linear convolution; by zero-padding
x appropriately, one can always rewrite a linear convolution as a cyclic convolution. This is also conve-
nient practically as convolution operations should be implemented using Fast Fourier transform techniques
(which map directly to cyclic convolution) to reduce computational complexity for each iteration.

• Resolution of x0 under noise. We introduce a reweighting technique [CWB08] to deal with noisy datasets.
The method adaptively sets large penalty on small entries of x to suppress noisy small entries, and set
small penalty on large entries to promote sparse solutions of x. We refer readers to Appendix B.3 for more
algorithmic details.

• Dealing with extra data structure. In many problems such as calcium imaging [PSG`16] and spike sort-
ing [SFB18], the sparse spike train x0 is usually nonnegative. As we shall see in Section 5, by enforcing
nonnegative constraint on x for ADM, it often enables recovery of denser x0. Additionally, measurement
in practice often contains unknown low frequency DC component b, such that y “ a0 fx0 ` b. We add an
extra minimization in ADM to deal with b. We refer readers to Appendix B.3 for more technical details.

5 Synthetic Experiments
In this section, we experimentally demonstrate several core ideas presented in this work on both incoher-
ent and coherent kernels. Incoherent kernels are randomly drawn by a0 „ UniformpSn0´1q, which leads to
µspa0q P O

´
b

logn0

n0

¯

diminishing w.r.t. dimension n0. Coherent kernels are descretized from the Gaussian

window function a0 “ gn0,0.5, where gn0,σ
.
“ PSn0´1

`“

exp
`

´
p2i´n0´1q2

σ2pn0´1q2

˘‰n0

i“1

˘

; in this case µspa0q Ñ 1 as n0
grows. This allows us to illustrate some of the difficulties of optimization encountered by the Bilinear Lasso
under high coherence, as well as the effectiveness of heuristics proposed in Section 4 for alleviating these
difficulties.

5.1 Recovery of true kernel under coherence

(a) incoherent kernel (b) coherent kernel

Figure 9: Incoherent vs. coherent kernels. The subfigures from left to right present the optimization
landscape of φBLpaq w.r.t. a P Sn´1 defined in (3.2), restricted to a subspace spanned by three shifts of a0.
The left figure shows the landscape of incoherent kernel, and the right one presents that of the coherent
kernel. The red dots denote the location of the shifts of ground truth a0.
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Low-dimensional plots of function landscapes. As µspa0q increases, the shifts of a0 lie closer together on
the sphere. We show how this affects the optimization landscape of the Bilinear Lasso φBLpaq over a P Sn´1

by plotting the objective restricted in the subsphere spanned by three shifts15 of a0 P Sn0´1 with n0 “ 20,
m “ 2 ˆ 103, θ “ n0

´3{4, and λ “ 0.5. From Figure 9, we see that φBL exhibits clear symmetry breaking
structure between the shifts of a0 in the incoherent case. As µspa0q increases, however, adjacent shifts of a0

lie close together and symmetry breaking becomes more difficult. Practically speaking, recovering a precise
shift of a0 becomes less important when recovering smooth, highly coherent kernels. Nonetheless Figure 9
suggests that the target minimizers of φBL become non-discretized in these cases.

Recovery performance. Next, we corroborate our observation of sparsity-coherence tradeoff by comparing
recovery performance for incoherent vs. coherent kernels. We fix m “ 100n0, and plot the probability for
successful recovery, which occurs if

min
ℓPr2n0s

␣

1 ´
ˇ

ˇ

@

a0, ι
˚
n0Ñnsℓ ra‹s

Dˇ

ˇ

(

ď 10´2,

w.r.t. dimension n0 and sparsity level θ. For each pn0, θq, we randomly generate ten independent instances of
the data y “ a0fx0. Here a‹ denotes the optimal solution produced byminimizingΨBL with λ “ 10´2{

?
θn0.

From Figure 10, we see that successful recovery is likely when sparsity θ is sufficiently small compared to
n0 in general. Furthermore, recoveringa0 in the coherent setting is noticablymore difficult than the incoherent
setting, and typically requires lower sparsity rates θ. Finally, enforcing extra structure such as nonnegativity
in appropriate settings enables recovery with denser of x0 (Figures 10a and 10c).

5.2 Demonstration of data-driven initialization and homotopy acceleration
Our next experiments study the effectiveness of the data-driven (DD) initialization from Equation (3.5) and
the heuristics introduced in Section 4, namely momentum acceleration and homotopy. Throughout this sub-
section, we set the kernel length n0 “ 100 and the number of samples m “ 104. We generate the data
y “ a0 fx0 `b1m with both coherent and incoherent a0, x0 „ BRpθq with sparsity level θ “ n0

´3{4, and b is a
constant unkown bias. No noise is added. We stop each algorithm either when the preset maximum iteration
is reached, or when differences between two consecutive iterates (in ℓ2 norm) is smaller than threshold 10´6.

Effectiveness of data-driven initialization. We compare the ADM and iADM methods using the data-
driven initialization Equation (3.5) vs. uniform random initializations for a. From Figures 11 and 12, we
see that both methods converge faster to solutions of higher quality with data-driven initialization, as a result
of ap0q being initialized near the superposition of a few shifts of a0.

Convergencewith acceleration and homotopy. Nextwe compare the convergence speeds of the ADM,with
and without momentum (iADM) and homotopy continuation. We use Equation (3.5) to initialize a, and x is
initialized as zero. From Figures 13 and 14, we see applying acceleration and homotopy leads to in significant
improvements over vanilla ADM in terms of convergence rate, especially when a0 is coherent.

5.3 Comparison with existing methods
Finally, we compare iADM, and iADMwith homotopy, against a number of existing methods for minimizing
φBL. The first is alternating minimization [KZLW19], which at each iteration k minimizes apkq with xpkq fixed
using accelerated (Riemannian) gradient descent with backtracking, and vice versa. The next method is the
popular alternating direction method of multipliers (ADMM) [BPC`11]. Finally, we compare against iPALM
[PS16] with backtracking, using the unit ball constraint on a0 instead of the unit sphere.

For each method, we deconvolve signals with n0 “ 50,m “ 100, and θ “ n
´3{4
0 for both coherent and

incoherent a0. For both iADM, iADM with homotopy, and iPALM we set α “ 0.3. For homotopy, we set
λp1q “ maxℓ|xsℓrap0qs,yy|, λ‹ “ 0.3?

n0λ
, and δ “ 0.5. Furthermore we set η “ 0.5 or η “ 0.8 and for ADMM,

15For incoherent kernel, we generate the kernel a0 with the last two entries zero, and consider the subspace spanned by
a0, s1 ra0s , s2 ra0s. For the coherent kernel, we consider the subspace spanned by a0, srn0{3s ra0s , sr2n0{3s ra0s.
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(a) incoherent a0 and x0 „i.i.d. BRpθq (b) coherent a0 and x0 „i.i.d. BRpθq

(c) incoherent a0 and x0 „i.i.d. Bpθq (d) coherent a0 and x0 „i.i.d. Bpθq

Figure 10: phase transitions for solving SaS-BD: (a) shows the case when a0 is incoherent, and x0 „i.i.d.

BRpθq; (b) shows the case when a0 is coherent, and x0 „i.i.d. BRpθq; (c) shows the case when a0 is
incoherent, and x0 „i.i.d. Bpθq; (d) shows the case when a0 is coherent, and x0 „i.i.d. Bpθq. For signal
x0 „i.i.d. Bpθq, positivity constraint is enforced. For each subfigure, brighter means higher probability of
successful recovery, while darker means higher probability of failure.

we set the slack parameter to ρ “ 0.7 or ρ “ 0.5 for incoherent and coherent a0 respectively. From Figure 15,
we can see that ADMM performs better than iADM in the incoherent case, but becomes less reliable in the
coherent case. In both cases, iADM with homotopy is the best performer. Finally, we observe roughly equal
performance between iPALM and iADM.

6 Experiments for Real Applications
In this section, we demonstrate experimentally the effectiveness of the proposed methods for both SaSD and
SaS-CDL on a wide variety of applications in computational imaging and neuroscience. Our goal here is not
necessarily to outperform state of the art methods, which are often tailored to specific applications. Rather, we
hope to provide evidence that the intuition and heuristics highlighted in Sections 3 and 4 arewidely applicable,
and can serve as a robust starting point for tackling SaS problems broadly in areas of imaging science.
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(a) function value convergence (b) iterate convergence

Figure 11: Comparison of initialization methods for solving SaS-BD on incoherent random kernel a0:
(a) shows the function value ΨBLpa,xq convergence; (b) shows the iterate convergence on a, where a‹

denotes a shift correction of each iterate a. Here, ADM-DD and iADM-DD denote the ADM and iADM
methods using data-driven initialization, and ADM-randn and iADM-randn denote the ADM and iADM
methods using initializations drawn uniformly random from the sphere Sn0´1.

(a) function value convergence (b) iterate convergence

Figure 12: Comparison of initialization methods for solving SaS-BD on coherent smooth Gaussian
kernel a0: (a) shows the function value ΨBLpa,xq convergence; (b) shows the iterate convergence on a,
where a‹ denotes a shift correction of each iterate a. Here, ADM-DD and iADM-DD denote the ADM and
iADMmethods using data-driven initialization, and ADM-randn and iADM-randn denote the ADM and
iADMmethods using initializations drawn uniformly random from the sphere Sn0´1.

6.1 Sparse deconvolution of time sequences in neuroscience
6.1.1 Sparse deconvolution of calcium imaging

It is well known that neurons process and transmit information via discrete spiking activity. Whenever a neu-
ron fires, it produces a transient change in chemical concentrations in the immediate environment. Transients
in calcium (Ca2`) concentration, for example, can be measured using calcium fluoresence imaging. The re-
sulting fluoresence signal can be modeled as the convolution between the short transient response a0 and the
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(a) function value convergence (b) iterate convergence

Figure 13: Comparison of algorithm convergence for solving SaS-BD on incoherent random kernel a0:
(a) shows the function value ΨBLpa,xq convergence; (b) shows the iterate convergence on a, where a‹

denotes a shift correction of each iterate a. The algorithms we compared here are ADM, iADM, and its
homotopy accelerations.

(a) function value convergence (b) iterate convergence

Figure 14: Comparison of algorithm convergence for solving SaS-BD on coherent smooth Gaussian
kernel a0: (a) shows the function value ΨBLpa,xq convergence; (b) shows the iterate convergence on a,
where a‹ denotes a shift correction of each iterate a. The algorithms we compared here are ADM, iADM,
and its homotopy accelerations.

spike train in the form of nonnegative, sparse map x0,

y
loomoon

raw fluorescence trace

“ a0
loomoon

transient response

f x0
loomoon

action potentials

` b1m
loomoon

bias

` n
loomoon

noise

, x0 ě 0. (6.1)

The task of recovering the spike train x0 from such SaS signals are frequently of interest in the neuroscience,
and can naturally be cast as a SaSD problem. An advantage of this approach is its ability to estimate transient
response (which is rarely known a priori) simultaneously. This is important when neurons exhibit dense
bursts of spiking activity, which is an especially challenging setting for deconvolution tasks.
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(a) Incoherent a0 (b) Coherent a0

Figure 15: Algorithmic comparison. (a) Convergence of various methods minimizing ΨBL with incoher-
ent a0 over FFT operations used (for computing convolutions). The y-axis denotes the log of the angle
between apkq and the nearest shift of a0, and each marker denotes five iterations. (b) Convergence for
coherent a0.

Simulated data. Recent work [VPM`10, PSG`16, FZP17] suggests that the calcium dynamics y can be well
approximated by using a autoregressive (AR) process of order r,

yptq “

r
ÿ

i“1

γiypt´ iq ` x0ptq ` b` nsptq,

where x0ptq is the number of spikes that the neuron fired at t-th timestep, nsptq is noise, and tγiu
r
i“1 are

autoregressive parameters. [PSG`16, FZP17] showed that the AR(r) model is equivalent to Equation (6.1)
with a parameterized kernel a0. The order r is chosen to be a small positive integer, usually r “ 1 or r “ 2.
When r “ 1, the AR(1) kernel is a one-sided exponential function

a0ptq “ exp p´t{τq , t ě 0, (6.2)

for some τ ą 0. TheAR(1)model serves as a good approximation of the calciumdynamicswhen the temporal
resolution of imaging sensors is low. In contrast, the AR(2) model serves as a more accurate model for high
temporal resolution calcium dynamics, with

a0ptq “ exp p´t{τ1q ´ exp p´t{τ2q , t ě 0, (6.3)

where τ1 and τ2 are some parameterswith τ1 ą τ2 ą 0. As illustrated in Figure 16, for high temporal resolution
calcium dynamics, the AR(2) model tends to be a better model which captures the short rise-time of calcium
transients by the difference of two exponential functions.

Here we demonstrate the effectiveness of the proposed methods on synthetic data for both AR(1) and
AR(2) models. We generate a sequence of simulated calcium dynamics y with length T “ 100psq and sam-
pling rate f “ 100Hz (i.e. m “ 104 samples in total). We generate the kernel a0 P Rn0 with length T “ 1psq
(i.e. n0 “ 100): for the AR(1) model, we set τ “ 0.25 in Equation (6.2); for AR(2) model, we set τ1 “ 0.2 and
τ2 “ 0.03 in Equation (6.3). Each kernel is normalized so they lie on the sphere. The sparse spike train x0 is
generated from Bernoulli distribution x0 „i.i.d. Bpθq with sparsity rate θ “ n0

´4{5. We set the bias b “ 1 and
noise n „ N

`

0, σ2I
˘

, σ “ 5 ˆ 10´2 in Equation (6.1).
We test and compare the proposed iADM and its reweighted variant (see Appendix B.2) for deconvolving

the data, with λ “ 10´1. Reweighting is especially effective under noise contamination (Section 4.4), as
demonstrated by Figure 16 where it provides more accurate predictions of the unknown neuron kernels for
both AR(1) andAR(2)models. From Figures 17 and 18, we can clearly see that deconvolution ismore difficult
under the AR(2) model. In such cases reweighting can significantly improve resolution of spiking activity,
allowing accurate estimation of firing times even in under dense bursts.
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(a) AR(1) model (b) AR(2) model

Figure 16: Recovery of transient response a0 for calcium imaging. The left figure denotes kernel a0 for
the AR(1) model, and the right figure shows the kernel a0 for AR(2) model.

(a) raw data vs. estimated calcium dynamics

(b) spike train, iADM algorithm, minℓ }x0 ´ sℓ rx‹s}2 “ 6.2541

(c) spike train, reweighted-iADM algorithm, minℓ }x0 ´ sℓ rx‹s}2 “ 2.7989

Figure 17: Estimation of spike train x0 for AR(1) model. The first figure shows the estimation of calcium
dynamics, the second figure shows the estimation of the spiking trainx0 by iADMalgorithm, and the third
figure demonstrates the reweighting variant of iADM. minℓ }x0 ´ sℓ rx‹s}2 denotes the distance between
the target x0 and estimated solution x‹. As we observe, the proposed methods can accurately predict the
spiking locations even when spikes overlap.

Real calcium imaging dataset. Finally, we demonstrate the effectiveness of proposed methods on the real
calcium imaging dataset16. The data has been resampled to sampling rate f “ 100Hz, and linear drifting
trends are removed from calcium traces using robust regression [TBF`16]. Since these measurements are
contaminated by large system noise, as is often the case in realistic settings, we choose a large sparsity penalty
λ “ 6ˆ10´1 for Equation (3.1). Figure 19 shows the recovered kernel by the proposed iADMand its reweight-
ing variant. Figure 20 shows the estimated spike train. By comparison, the reweighting method appears to
produce better estimation of spiking activity.

16The data is obtain from the spikefinder website, http://spikefinder.codeneuro.org/.
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(a) raw data vs. estimated calcium dynamics

(b) spike train, iADM algorithm, minℓ }x0 ´ sℓ rx‹s}2 “ 14.2118

(c) spike train, reweighted-iADM algorithm, minℓ }x0 ´ sℓ rx‹s}2 “ 15.6756

Figure 18: Estimation of spike train x0 for AR(2) model. The first figure shows the estimation of calcium
dynamics, the second figure shows the estimation of the spiking trainx0 by iADMalgorithm, and the third
figure demonstrates the reweighting variant of iADM. We use minℓ }x0 ´ sℓ rx‹s}2 to denote the distance
between the target x0 and estimated solution x‹. In comparison with the original iADM algorithm, the
reweighting method is very effective in suppressing noise.

(a) iADM (b) reweighted iADM

Figure 19: Recovery of transient response a0 for real dataset. Left figure shows the recovered kernel by
the iADM algorithm, right figure shows the recovered kernel by its reweighting variant.

6.1.2 Spike sorting by convolutional dictionary learning

Electrophysiological activity recorded by electrodes usually record superpositions of waveforms generated
from multiple neurons simultaneously [RPQ15]. The goal of spike sorting is to estimate the spiking times
from the measurement and decompose the spiking activities of the specific neurons. We refer interested
readers to [Lew98, RPQ15] for amore detailed overview of this problem. Traditional spike sorting approaches
[QNBS04, CMB`17, YSE`18, CRQ18] are often time consuming, lack standardization, and involving manual
intervention, which makes it difficult to maintain data provenance and assess the quality of scientific results.

In the following, we introduce a fully automated approach based on SaS-CDL andnonconvex optimization;
this is similar to the approach taken by [SFB18]. Mathematically, the measured waveform can be modeled
as a superposition of convolutions of individual neuron waveform templates and their corresponding spike
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(a) raw data vs. estimated calcium dynamics

(b) spike train, iADM algorithm

(c) spike train, reweighted-iADM algorithm

Figure 20: Estimation of spike train x0 for real calcium imaging dataset. The first figure shows the
estimation of calcium dynamics, the second figure shows the estimation of the spiking train x0 by iADM
algorithm, and the third figure demonstrates the reweighting variant of iADM.

trains,

y
loomoon

voltage signal

“

N
ÿ

k“1

a0k
loomoon

waveform template

f x0k
loomoon

sparse spike train

` b1m
loomoon

bias

` n
loomoon

noise

,

where each waveform templates ta0ku
N
k“1 P Rn0 correspond to different neurons, and therefore exhibit differ-

ent kernel shapes. Given the signal y, the task of spike sorting is to recover all ta0ku
N
k“1 and tx0ku

N
k“1; this is

a classic example of the SaS-CDL problem as discussed in Section 4.3.
The difficulty of spike sorting (or SaS-CDL) is not only captured by the shift-coherence of the individual

waveforms a0k individually, but also by the shift-coherence between different waveforms from ta0ku
N
k“1. The

problem increases with the cross-correlation of differing kernels. Let A0 “
“

a01 ¨ ¨ ¨ a0N

‰

. Quantitatively,
we can define mutual incoherence of A0 by

µm pA0q “ max
1ďiăjďN

›

›C˚
a0i

a0j

›

›

8
,

which is essentially the largest shift-correlation between all kernels. The SaS-CDL problem becomes easy
when µm pA0q is small, and vice versa. In the following, we demonstrate the effectiveness of the proposed
methods for spike sorting on one easy dataset (with small µm pA0q) and one difficult dataset (with large
µm pA0q).

Wedemonstrate the proposed reweighting variant of iADMalgorithmon a classical spike-sortingdataset17.
The signal is sampled at a frequency of f “ 24kHz, and each time sequence records spiking activities of 3
different types of neurons. The waveform templates are constructed using a database of 594 different average
spike shapes compiled from recordings in the neocortex and basal ganglia. A more detailed description of
dataset can be found in Section 4 of [QNBS04]. We test the proposed method on two signal sequences of
lengthm “ 105, each measures the spiking activities of three different types of neurons with length n0 “ 72:
one signal sequence is easy to deconvolve with lowmutual coherence µm pA0q, and another is relatively more

17It can be downloaded online at https://vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm.
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difficult with larger µm pA0q. The data is contaminated by random noise, with noise level 0.05 (i.e., the stan-
dard deviation relative to the amplitude of the spike classes). The recovered waveform and sparse spike train
for the “easy” case are shown in Figure 21 and Figure 22, respectively. And the results for the “difficult”
case are shown in Figure 21 and Figure 22. As we observe, the proposed method successfully recovers the
waveform templates and spiking locations for each type of neuron. As the latter “difficult” signal sequence
contains neuron waveform of similar shapes, we observe slightly more false alarms in spike detection.

(a) Neuron 1 (b) Neuron 2 (c) Neuron 3

Figure 21: Recovered neuron waveform template of “easy” dataset. The data contains three neurons of
distinctwaveforms, with noise level 0.05. Each subfigure corresponds to the recovered waveform template
of one specific type of neuron.

6.2 Microscopy imaging and data analysis
Finally, we apply our proposedmethod towards applications in microscopy, and demonstrate its effectiveness
in image super-resolution and decomposition problem settings.

6.2.1 Sparse blind deconvolution for super-resolution fluorescence microscopy

Fluorescence microscopy is a widely used imaging method in biomedical research [Hel07, FST08], and has
enabled numerous breakthroughs in neuroscience [GK12], biology and biochemstry [LC11, NN14, BBM`16].
The spatial resolution of fluorescencemicroscopy is however limited by diffraction: thewavelength of the light
(i.e., several hundred nanometers) is often larger than the typical molecular length scales in cells, preventing
a detailed characterization of most subcellular structures.

A computational imaging technique recently developed to overcome this resolution limit is stochastic optical
reconstructionmicroscopy18 (STORM) [RBZ06b, HWBZ08, HBZ10]. Instead of activating all the fluorophores at
the same time, STORM randomly activates subsets of photoswitchable fluorescent probes to seperate the fluo-
rophores present intomultiple frames of sparsely activatedmolecules (see Figure 26 and Figure 27). From the
purspective of the sparsity-coherence tradeoff, this effectively reduces the sparsity of x0, making deconvolu-
tion easier to solve. Therefore, if the location of these molecules can be precisely determined computationally
for each frame, synthesizing all deconvolved frames produces a super-resolutionmicroscopy image with near
nanoscale resolutions.

For each frame, the localization task can be formulated as a sparse deconvolution problem, i.e.,

Y
loomoon

frame

“ A0
loomoon

point spread function

f X0
loomoon

sparse point sources

` N
loomoon

noise

,

where we want to recover X0 given Y . The classical approaches solve the problem by fitting the blurred
spots with Gaussian point-spread functions (PSFs) using either maximum-likelihood or Bayesian estimation

18Similar methods with different names have been developed at the same time by using different fluorophores and microscopes,
such as photoactivated localization microscopy (PALM) [BPS`06], and fluorescence photoactivation localization microscopy (fPALM)
[HGM06].
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(a) raw data vs. estimated sequence

(b) spike train for Neuron 1

(c) spike train for Neuron 2

(d) spike train for Neuron 3

Figure 22: Detected spike train of “easy” dataset. The data contains three neurons of distinct waveforms,
with noise level 0.05. The first subfigure shows the estimation of the raw data sequence. The second to
fourth subfigures show the predicted spike train for each neuron, respectively.

(a) Neuron 1 (b) Neuron 2 (c) Neuron 3

Figure 23: Recovered neuron waveform template of “difficult” dataset. The data contains three neu-
rons of similar waveforms, with noise level 0.05. Each subfigure corresponds to the recovered waveform
template of one specific type of neuron.

techniques [QLL`10, HUK11, ZZEH12]. These approaches suffer from several limitations: (i) estimation is
computationally expensive and poor in quality when dense clusters of fluorophores are activated; (ii) for 3D
imaging, the PSF exhibits aberration across the focus plane [SN06], making it almost impossible to directly
estimate it from the data.

To deal with these challenges, we solve the single-molecule localization problem using our proposed
method for SaSD to jointly estimate the PSF A0 and the point source map X0. Our frames come from the
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(a) raw data vs. estimated sequence

(b) spike train for Neuron 1

(c) spike train for Neuron 2

(d) spike train for Neuron 3

Figure 24: Detected spike train of “difficult” dataset. The data contains three neurons of similar wave-
forms, with noise level 0.05. The first subfigure shows the estimation of the raw data sequence. The second
to fourth subfigures show the predicted spike train for each neuron, respectively.

single-molecule localization microscopy (SMLM) benchmarking dataset19. We apply the reweighted iADM
algorithm on the 2D real video sequence ”Tubulin”, which contains 500 high density frames. The fluorescence
wavelength is 690 nanometer (nm), the imaging frequency is f “ 25Hz, and each frame is of size 128 ˆ 128.
The single-molecule localization problem is solved on the same 128 ˆ 128 pixel grid20, where each pixel is of
100 nm resolution. Figure 25 shows the recovered PSF, Figure 26 presents the recovered activation map for
each individual time frame, and Figure 27 presents the aggregated super-resolution image. These results show
that our approach can automatically predict the PSF and the activation map for each video frame, producing
higher resolution microscopy images without manual intervention.

(a) PSF in 2D (b) PSF in 3D

Figure 25: Estimated PSF for STORM imaging. The left hand side shows the estimated 8 ˆ 8 PSF in 2D,
the right hand side visualizes the PSF in 3D.

19All the data can be downloaded at http://bigwww.epfl.ch/smlm/datasets/index.html.
20Usually, the localization problem is solved on a finer grid (e.g., gridwith 4´10 times better resolution) so that the resulting resolution

can reach 20 ´ 30 nm. We will discuss potential methods to deal with this finer-grid SaSD problem in Section 7.2 as future work.
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(a) Frame 1, Time = 0s (b) Frame 100, Time = 4s

(c) Frame 200, Time = 8s (d) Frame 300, Time = 12s

(e) Frame 400, Time = 16s (f) Frame 500, Time = 20s

Figure 26: Predicted activation map for each individual frame. For each subfigure, the left hand side
shows the original video frame, and the right hand side presents the predicted activation map using our
SaSD solver.

(a) original image (b) reconstructed image

Figure 27: Aggregated result for STORM imaging. The left hand side shows the original microscopy
image, and the right hand side presents the super-resolution image obtained by our method. The pixel
resolution is 100 nm.
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6.2.2 Convolutional dictionary learning for microscopy data analytics

Recent advances in imaging and computational techniques have resulted in the ability to obtain microscopic
data in unprecedented detail and volume. SaSD and its extensions are found to be well-suited for extracting
motifs and location information from such datasets from neuroscience, material science and beyond, as we
have seen from Section 6.1.2. In certain settings for microscopy, the observed image can also be decomposed
as

Y
loomoon

microscopy image

“

K
ÿ

k“1

A0k
loomoon

motif k

f X0k
loomoon

activation map

` N
loomoon

noise

.

and useful information can be obtained by solving the resulting 2D SaS-CDL problem [PSG`16, CSL`18]. In
this section, we demonstrate our proposed method for SaS-CDL on two different imaging modalities.

(a) two-photon calcium image Y

(b) estimated kernel Ak pk “ 1, 2q

(c) predicted activation map Xk pk “ 1, 2q

(d) classified image Yk “ Ak f Xk pk “ 1, 2q

Figure 28: Localization and classification for calcium microscopy images. (a) shows the original image;
(b) shows the estimated kernel shape for the neuron (left) and dendrite (right); (c) presents the predicted
activation map for the neuron (left) and dendrite (right); (d) presents the reconstructed image Yk “

Ak f Xk pk “ 1, 2q for the neuron (left) and dendrite (right).

Neuronal localization for 2D calcium imaging. Tracking the spike locations of neurons in 2D calcium imag-
ing video sequences is a challenging task due to the presence of (non)rigid motion, overlapping sources, and
irregular background noise [PSG`16, GFK`17, GFG`19]. Herewe showhow the SaS-CDL problem can serve
as a basis for distinguishing between overlapping sources. Figure 28a shows a single 512 ˆ 512 frame from
the two-photon fluorescence calcium microscopy dataset obtained by Allen Institute for Brain Science21. The

21The data can be found at http://observatory.brain-map.org/visualcoding/search/overview.

25

http://observatory.brain-map.org/visualcoding/search/overview


frame shows the cross sections of two types of neuronal components, the somata and the denrdrites, whose
fluorophores that are activated at the given time frame. It is clear that these two components are primarily
distinguished by their size. We decompose the frame into the somatic and dendritic components by solving
SaS-CDL with the proposed method, giving us a rough estimate of the “average” somatic or dendritic motif
(Figure 28b), as well as the location of each component (Figure 28c). This allows the image to be decomposed
into images consisting of somata or dendrites exclusively (Figure 28d). Therefore SaS-CDL can either be the
basis for a preprocessing step to remove undesired components, such as the dendrites, from a microscopy
image. Furthermore, this deconvolution technique allows the individual activation map to be tracked for
each video frame, opening a new way for nonrigid motion to be corrected across frames by synthesizing all
activation maps. We left this as a promising future research direction.

(a) STM image Y

(b) estimated kernel Ak pk “ 1, 2q

(c) predicted activation map Xk pk “ 1, 2q

(d) classified image Yk “ Ak f Xk pk “ 1, 2q

Figure 29: Defect detection for STM images. (a) shows the original STM image; (b) shows the estimated
kernel shape for the defects; (c) presents the predicted activation map for the defects; (d) presents the
reconstructed image Yk “ Ak f Xk pk “ 1, 2q for the defect.

Defect detection in scan tunneling microscopy (STM) image. Modern high-resolution microscopes, such
as the scanning tunneling electron microscope, are commonly used to study specimens that have dense and
aperiodic spatial structure [CLE93, RCG`07, RSP`09]. Extracting meaningful information from images ob-
tained from such microscopes remains a formidable challenge [KBF`03]. For instance, Figure 29a presents a
STM NaFeAs sample image (with size 128 ˆ 128) of a Co-doped iron arsenide crystal lattice. A method for
automatically acquiring the signatures of the defects (motifs) and their locations is highly desirable [CSL`18].
Herewe apply our proposedmethod to solve SaS-CDL and extract both the defect signatures (Figure 29b) and
their locations (see Figure 29c), as well as decomposing the image into contributions based on the individual
defects (Figure 29d).
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7 Conclusion and Discussion
7.1 Relationship to the literature and conclusion
Nonconvex optimization. Unlike convex optimization problems, nonconvex functions usually have numer-
ous spurious local minima, and one may also encounter “flat” saddle points that are very difficult to escape
[SQW15]. In theory, even finding a local minimum of a general nonconvex function is NP-hard [MK87] –
nevermind the globalminimum. However, recent advancements in nonconvex optimization [SQW15,GHJY15]
showed that typical nonconvex problems in practice are often more structured, so that they often have much
more benign geometric landscapes than the worst case: (i) all saddle points can be efficiently escaped by
using negative curvature information; (ii) the equivalent “good” solutions (created by the intrinsic symme-
try) are often the global optimizers of the nonconvex objective. This type of benign geometric structure has
been discovered for many nonconvex problems in signal processing and machine learning, such as phase
retrieval [CLS15, SQW18, QZEW17], dictionary learning [QSW14, SQW16a, SQW16b], low rank matrix re-
covery [GLM16, Chi16] (orthogonal) tensor decomposition [GHJY15], and phase synchronization problems
[BAC18], etc. Inspired by similar benign geometric structure for a simplified nonconvex Dropped Quadratic
formulation, this work provides an efficient and practical nonconvex optimization method for solving blind
sparse deconvolution problems.

Blind deconvolution. The blind deconvolution problem is an ill-posed problem in its most general form.
Nonetheless, problems in practice often exhibits intrinsic low-dimensional structures, showing promises for
efficient optimization. Motivated by a variety of applications, many low-dimensional models for (blind) de-
convolution problems have been studied in the literature. [ARR14, Chi16, LS15, LLB16, KK17, AD18, Li18]
studied the problem when the unknown signals a0 and x0 either live in known low-dimensional subspaces,
or are sparse in some known dictionary. These results assumed that the subspace/dictionary are chosen at
random, such that the problem does not exhibit the signed shift ambiguity and can be provably solved via
convex relaxation22. However, the assumption of random subspace/dictionary model is often unrealistic in
practice. Recently, [WC16, LB18, QLZ19] consider sparse blind deconvolution with multiple measurements,
where they show the problem can be efficiently solved to global optimality when the kernel is invertible. In
contrast, the SaS model studied in this work exhibits much broader applications.

Because of the shift symmetry, the SaS model does not appear to be amenable for convexification, and
it exhibits a more complicated nonconvex geometry. To tackle this problem, Wipf et al. [WZ14] imposes
ℓ2 regularization on a0 and provides an empirically reliable algorithm. Zhang et al. [ZLK`17] studies the
geometry of a simplified nonconvex objective over the sphere, and proves that in the dilute limit in which
x0 is a single spike, all strict local minima are close to signed shift truncations of a0. Zhang et al. [ZKW18]
formulated the problem as an ℓ4 maximization problem over the sphere23. They proved that on a restricted
region of the sphere every local minimizer is near a truncated signed shift of a0, when a0 is well-conditioned
and x0 is sparse. Kuo et al. [KZLW19] studies a Dropped Quadratic simplification of the Bilinear Lasso
objective, which provably obtains exact recovery for an incoherent kernel a0 and sparsex0. However, both the
ℓ4 maximization and Dropped Quadratic objectives are still quite far from practical formulations for solving
SaSD. In contrast, as demonstrated in this work, optimizing the Bilinear Lasso formulation turns out to be
much more effective in practice.

Geometry inspired optimization method for SaSD. Inspired by the benign geometric structure of the non-
convex objective, we proposed efficient nonconvex optimization methods that directly optimizes the Bilinear
Lasso. The new approach exploits the geometry by (i) using data driven initializations to avoid spurious lo-
cal minimizers, (ii) adopting momentum accelerating for coherent kernels, and (iii) adaptively shrinking the
penalty parameter λ to achieve faster convergence and higher accuracy solutions. Our vanilla algorithm is a
simple alternating descent method, which is inspired by the recent PALMmethods [BST14, PS16]. In compar-
ison with classical alternatingminimizationmethods for sparse blind deconvolution [CW00, SM12, ZLK`17],
our approach does not require solving expensive Lasso subproblems, and the iterates make fast progress to-
wards the optimal solution. On the other hand, as ourmethod is first-order in nature, it is muchmore efficient

22Some recent work [LLSW18, MWCC17] show this problem can also be provably solved via nonconvex approaches.
23A similar objective is considered for the multichannel sparse blind deconvolution problem [LB18].
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than the second-order trust-region [CGT00, BAC18] and curvilinear search [Gol80] methods considered in
[ZLK`17, KZLW19].

Convolutional dictionary learning. Furthermore, our approach has natural extensions for tackling the SaS-
CDL problemwhenmultiple unknown kernels present. By consider a similar nonconvex objective analogous
to SaSD, our geometric inspired algorithm empirically solves the SaS-CDL problem to global optimality in a
very efficient manner. The newmethod joins recent algorithmic development for solving CDL [CPR13, HA15,
PRSE17, GCW18, LGCWY18, MCCM18, ZSE19]. Again, most24 of the previous approaches [GCW18] deploy
an alternating minimization strategy, which exactly solves the expensive Lasso subproblem for each iteration.
In contrast, our method is much more simple, efficient and effective, demonstrated by experiments on real
datasets.

7.2 Discussion and future work
Moving forward, we believe this work has opened up several future directions that could be of great empirical
and theoretical interests.

Geometric analysis of Bilinear Lasso. The Bilinear Lasso formulation is one of most natural formulations
for solving the SaSD problem. In light of our empirical success of solving the Bilinear Lasso, analyzing and
understanding its global nonconvex landscapes is of great importance. As discuss in Section 3, the Dropped
Quadratic formulation studied in [KZLW19] has commonalities with the Bilinear Lasso: both exhibit local
minima at signed shifts, and both exhibit negative curvature in symmetry breaking directions. However, a
major difference (and hence, major challenge) is that gradient methods for Bilinear Lasso do not retract to a
subspaces – they retract to amore complicated, nonlinear set. As the empirical success we possessed here, bet-
ter understandings of the geometric structure for the Bilinear Lasso in much needed. A better understanding
will also shed light on SaS-CDL with multiple unknown kernels.

Parameterized sparse blind deconvolution. In this work, we studied the blind deconvolution problemwith
no prior knowledge of the kernel/motif a0. However, in many application, one can often obtain some side
information, where the kernel is often determined by only a few parameters associated with the underlying
physical processes. For example, in the calcium imaging problem we studied in Section 6, an auto regression
(AR) model is often used to characterize the spiking and decaying process of the kernel, which is only de-
termined by one or two parameters [VPM`10, FZP17]. Thus, how to estimate these kernel parameters raises
a challenging but interesting question. Our preliminary investigation shows that nonconvex optimization
landscapes of this parameterized “semi-blind” sparse deconvolution problem also possess benign geometric
properties for certain types of kernels (see Figure 30 for an illustration).

SaSD meets super-resolution. In many imaging applications, it is often desirable to solve blind deconvo-
lution and super-resolution problems simultaneously. In other words, let D r¨s be a downsampling operator,
we want to recover the high-resolution kernel a0 and sparse activation map x0 from the low-resolution mea-
surement of the form y “ D ra0 f x0s. This type of problem appears often due to the resolution/hardware
limit of the imaging system, and therefore fine details of both a0 and x0 are missing due to downsampling.
For instance, in Section 6 we show that the spatial resolution of fluorescent microscopy is constraint by the
diffraction limit of the light [HBZ09]. If we can solve this super-resolution SaSD problem, we can obtainmuch
higher resolution image of living cells in vivo. However, our preliminary investigations show that optimizing
the natural nonconvex formulation

min
a,x

1

2
}y ´ D ra f xs}

2
2 ` λ }x}1 , s.t. a P Sn´1

tends to produce downsampled a0 and x0. How to solve this problem is largely open and remains a very
interesting question. One possibility is to enforce extra constraints on a0, such as penalizing TV -norm to
promote smoothness.

24The recent work [MCCM18] resembles some similarities to ours. However, the problem setting and formulation are still quite differ-
ent.
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Figure 30: Nonconvex landscape of parameterized SaSD, with AR(2) kernel and two unknown param-
eters. The kernel a0ptq “ exp p´t{τ‹

1 q ´ exp p´t{τ‹
2 q is parameterized by two parameters τ‹

1 “ 0.2 and
τ‹
2 “ 0.1. We generate the data y “ a0ptqfx0, where x0 „i.i.d. Bpθq with θ “ 10´2. We plot the marginal-
ized function landscape of Ψxpaq “ minx

1
2

}y ´ apτq f x}
2
2 ` λ }x}1 w.r.t. τ1 and τ2, where λ “ 10´3,

n0 “ 150 and m “ 104. The figures on the left and right hand sides are 3D and 2D plots of the function
landscape, respectively. As we can see, the ground truth pτ‹

1 , τ
‹
2 q is the global minimizer to the nonconvex

objective, but the landscape near region of the ground truth is very flat and therefore very difficult to make
progress on minimizing the nonconvex objective.

Dealing with structured data. Data in practice often possesses much richer structure than the basic SaS
model we studied here. For instance, in calcium imaging, the signal we obtained often has drifting/motion
issues across time frames, and it also exhibits low-rank background DC components [PSG`16, GFK`17]. In
STORM optical microscopy, there are rich spatial and temporal correlations within and between video frames
[SMSE18]. Moreover, in many microscopy imaging data analysis problems, the motif we want to locate often
exhibits unknown deformations and random rotations, and its shape is often asymmetric. How to deal with
these extra structures raises a variety of challenging problems for future research.
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Appendices
The appendix is organized as follows. In Appendix A, we introduce the basic notations and terms that are
used throughout the draft. In Appendix B, we describe the proposed algorithmic pipeline for solving sparse
deconvolution problems in very detail. Finally, Appendix C provides all the missing complementary details
of implementing the proposed algorithm for solving SaS-BD and SaS-CDL.

A Basic notations
Throughout this paper, all vectors/matrices are written in bold font a/A; indexed values are written as ai, Aij .
Vectors with all zero and all one entries are denoted as 0m and 1m, respectively, with m denoting its length.
The i-th canonical basis vector is denoted by ei. We use Sn´1 to denote an n-dimensional unit sphere in
the Euclidean space Rn. We use zpkq to denote the optimization variable z at kth iteration. We let rms “

t1, 2, ¨ ¨ ¨ ,mu. For a multivariate function Ψpa,xq, we use Ψapxq and Ψxpaq to denote marginal functions of
Ψpa,xq with one variable fixed, respectively. Next, we define several useful operators appear throughout the
paper and the appendices.

Some basic operators. We use ιnÑm to denote a zero-padding operator ιnÑmv “

„

v
0n´m

ȷ

, which zero-

pads a length n vector v P Rn to length m (n ď m). Correspondingly, its adjoint operator ι˚
nÑm denotes

the restriction of a vector of length-m to its first n coordinate (and ι˚
nÑm “ ιmÑn). Similarly, given a subset

I Ď rms and a vector v P R|I|, we use ιIÑm : R|I| ÞÑ Rm to denote an operator that maps v to a zero-padded
vector whose entries in I corresponding to those of v.

We use Pv and PvK to denote projections onto v and its orthogonal complement, respectively. We let
PSn´1p¨q to be the ℓ2-normalization operator. To sum up, for any two vectors v and u P Rn, we have

PvKu “ u ´
vvJ

}v}
2
2

u, Pvu “
vvJ

}v}
2
2

u, PSn´1u “
u

}u}2
.

Circular convolution and circulantmatrices. The convolution operatorf is circularwithmodulo-m: pa f xqi “
řm´1
j“0 ajxi´j , and we use f to specify the circular convolution in 2D. For a vector v P Rm, let sℓrvs denote the

cyclic shift of v with length ℓ. In addition, we use psℓ rvs to denote a 3m´ 2 length zero-pad shift, i.e.,

psℓ rvs “ sℓr

»

–

0m´1

v
0m´1

fi

fls.

We introduce the circulant matrix Cv P Rmˆm generated through v P Rm,

Cv “

»

—

—

—

—

—

—

–

v1 vm ¨ ¨ ¨ v3 v2
v2 v1 vm v3
... v2 v1

. . .
...

vm´1
. . .

. . . vm
vm vm´1 ¨ ¨ ¨ v2 v1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
“

s0 rvs s1 rvs ¨ ¨ ¨ sm´1 rvs
‰

.

Now the circulant convolution can also be written in a simpler matrix-vector product form. For instance, for
any u P Rm and v P Rn (n ď m),

u f v “ Cu ¨ ιnÑmv “ CιnÑmv ¨ u “ v f u.

In addition, the correlation between u and v can be also written in a similar form of convolution operator
which reverses one vector before convolution. Let qv denote a cyclic reversal ofv P Rm, i.e., qv “ rv1, vm, vm´1, ¨ ¨ ¨ , v2s

J,
and define two correlation matrices C˚

vej “ sjrvs and qCvej “ s´jrvs. The two operators satisfy

C˚
ιnÑmvu “ qv f u, qCιnÑmvu “ v f qu.
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Notation for several distributions. We use i.i.d. to denote identically and independently distributed random
variables. In addition, we introduce and denote several distributions as follows.

• We use N pµ, σ2q to denote the Gaussian distribution with mean µ and variance σ2, and use UpSn´1q to
denote a uniform distribution over the sphere Sn´1;

• we use Bpθq to denote the Bernoulli distribution with parameter θ controling the nonzero probability;

• we use BGpθq to denote Bernoulli-Gaussian distribution, i.e., if u „ BGpθq, then u “ b ¨ g with b „ Bpθq and
g „ N p0, 1q;

• we use BRpθq to denote Bernoulli-Rademacher distribution, i.e., if u „ BRpθq, then u “ b ¨ r with b „ Bpθq

and r follows Rademacher distribution.

B Algorithmic Pipeline
In this part of appendix, we introduce a general algorithmic pipeline for solving sparse deconvolution prob-
lems, including SaSD and SaS-CDL. We describe the optimization problem in a more general form here.
Namely, we consider the following problem

min
a,x

Ψpa,xq “ ψpa,xq ` λ ¨ gpxq, s.t. a P M, (B.1)

where ψpa,xq is a data fidelity term that we to be twice continuously differentiable, gpxq is a convex (possibly
nonsmooth) sparse promoting penalty, and M is a smooth Riemannian manifold. Again, the penalty λ ą 0
balances the weights of two terms ψpa,xq and gpxq. The objective in Equation (B.1) generalizes the Bilinear
Lasso formulation for SaSD and SaS-CDL problems:

• SaSD. Recall from Equation (3.1), we have

ψpa,xq “
1

2
}y ´ a f x}

2
2 , gpxq “ }x}1 , M “ Sn´1.

• SaS-CDL. Let A “
“

a1 ¨ ¨ ¨ aN
‰

andX “
“

x1 ¨ ¨ ¨ xN
‰

, by Equation (4.6),

ψpA,Xq “
1

2

›

›

›

›

›

y ´

N
ÿ

k“1

ak f xk

›

›

›

›

›

2

2

, gpXq “ }X}1 , M “
␣

A P RnˆN | ak P Sn´1, 1 ď k ď N
(

.

For the rest of this appendix, we introduce our algorithms based on the general formulation in Equation (B.1)
for the ease of exposition. We defer more implementation details for SaSD and SaS-CDL to Appendix C.

B.1 Alternating descent method
B.1.1 Vanilla ADM

We begin this part of appendix by introducing a vanilla first-order method for solving Equation (B.1) based
on alternating descent method (ADM). The method minimizes the objective by alternating between taking
descent steps on one variablewith the other fixed. The basic algorithmpipeline is summarized inAlgorithm 2.

Fix a and take a proximal gradient step on x. Given a being fixed, the marginal function of Ψpa,xq,

Ψapxq “ ψapxq ` λ ¨ gpxq,

is nonsmoothw.r.t. x. A classical way to deal with nonsmoothness is by considering its smooth envelope [STP17],
and take a proximal gradient step on the smooth variant [PB`14],

xpk`1q “ Ptpxpkqq “ xpkq ´ tGtpxpkqq, Gtpxq “ t´1 px ´ Ptpxqq , (B.2)
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Algorithm 2 Alternating Descent Method (ADM)
Input: Measurement y P Rm; stepsizes t0 and τ0; penalty λ ą 0.
Output: Final iterate a‹, x‹.
Initialize ap0q using Equation (3.5), xp0q Ð 0m, and k Ð 0.
while not converged do

Fix apkq and take a proximal gradient step on xwith stepsize tk

xpk`1q Ð xpkq ´ tkGtk
´

xpkq
¯

,

Fix xpk`1q and take a Riemannian gradient step on awith stepsize τk

apk`1q Ð RM
apkq

´

´τ ¨ gradψxpk`1q papkqq

¯

,

Update k Ð k ` 1.
end while

where Gtpxq is termed as composite gradient mapping, and Ptpxpkqq is a proximal mapping that we introduce in
the following. For any t ą 0, consider a quadratic approximation of Ψapxq at a given point x,

Qta px,xq “ ψa pxq ` xx ´ x,∇ψapxqy `
1

2t
}x ´ x}

2
2 ` λ ¨ gpxq.

For a convex gp¨q, Qta px,xq admits a unique minimizer via the proximal mapping

Pt pxq “ argmin
x
Qta px,xq “ proxλtg px ´ t∇ψapxqq ,

where we denote the proximal operator of gp¨q by

proxρgpxq
.
“ argmin

z

"

ρ ¨ gpzq `
1

2
}x ´ z}

2
2

*

.

By plugging Pt pxq back into Qta px,xq, it gives the so-called forward-backward envelope [STP17] of Ψapxq as

F tapxq “ min
x

␣

Qta px,xq
(

“ Qta pPt pxq ,xq ,

which serves as a smooth upper bound (envelope), i.e.,

F tapxq “ Qta pPt pxq ,xq ě ΨapPt pxqq (B.3)

for any t P p0, 1{Lψq, where Lψ is the Lipschitz constant of ∇ψapxq [Nes13b, Bec17]. Indeed, the compos-
ite gradient mapping Gtpxq in Equation (B.2) can be interpreted as the gradient on the smooth envelope
F tapxq, so that the proximal step in Equation (B.2) can be viewed as a gradient descent method. Additionally,
we can show that the function value produced by the proximal gradient in Equation (B.2) is nonincreasing
Ψapxpk`1qq ď Ψapxpkqq, when t P p0, 1{Lψaq [BT09, Bec17].

The parameter t is usually set to be 1{Lψa for fast convergence. However, computingLψu for each iteration
can be expensive. Instead, we use a backtracking rule (see Algorithm 3) to adaptively choose t based on the
inequality in Equation (B.3).

Fix x and take a Riemannian gradient step on a. As our optimization variable a in constraint over the
RiemannianmanifoldM, we consider the Riemannian derivative on ψxpaq [AMS09]. Starting from an iterate
apkq, we take a Riemannian gradient step on ψxpaq by

apk`1q “ RM
apkq

´

´τ ¨ gradψxpapkqq

¯

, (B.4)
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Algorithm 3 Backtracking rule for stepsize t
Input: a, x, t0, β P p0, 1q

Output: t, Ptpxq,
Set t Ð t0 and compute Ptpxq.
while Ψa pPtpxqq ě Qta pPtpxq,xq do

Set t Ð βt and update Ptpxq.
end while

Figure 31: An illustration of manifold optimization with M “ Sn´1. TaM denote the tangent space of
M at the point a, and RM

a pδq denote the retraction operator at the point a P M.

where τ is the stepsize, which can be adaptively chosen by the Riemannian linesearch based on Armijo condition
(see Algorithm 4). We use gradψxpaq to denote the Riemannian gradient of ψxpaq, which is defined over the
tangent space of M at the point a,

gradψxpaq “ PTaM∇ψxpaq,

where PTaM is the projection operator onto the tangent space TaM. On the other hand, RM
a pδq denotes the

retraction operator, which pulls a vector δ from the tangent space TaM to its closest point on the Riemannian
manifoldM. Figure 31 provides an illustration of the tangent space TaM and the retraction operatorRM

a pδq

whenM “ Sn´1, we refer readers to Chapter 3 and 4 of [AMS09] for more detailed definitions.

Algorithm 4 Riemannian linesearch for stepsize τ
Input: a, x, τ0, η P p0.5, 1q, β P p0, 1q,
Output: τ ,RM

a p´τPTM∇ψxpaqq

Initialize τ Ð τ0.
while ψxpRM

a p´τ ¨ gradψxpaqqq ě ψxpaq ´ τ ¨ η ¨ }gradψxpaq}
2
2 do

τ Ð βτ .
end while

B.1.2 Accelerated ADM via momentum method

As aforementioned in Section 4.2, problems in practice often raise additional challenges. The kernel a0 we
encounter in practice is often smooth, so that the underlying kernel a0 is of large incoherence µspa0q. This
results in ill-conditioned problems and slow convergence of first-order methods [Nes13b, B`15, Bec17]. As
we have discussed in Section 4.2.1, a natural idea to improve solution accuracy and convergence speed is
to employ a momentum acceleration strategy, which can be traced back to the heavy ball method of Polyak
[Pol64].

For our particular problem in Equation (B.1), we apply momentum acceleration to sub-iterations of ADM
on both a and x. When updating x with a fixed, recall from Equation (4.4) in Section 4.2.1, we modify the
original iteration by adding an inertial term wpkq, which incorporates information from previous updates.
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Algorithm 5 Inertial Alternating Descent Method (iADM)

Input: measurement y; initial values ap0q, xp0q; penalty λ ą 0; momentum parameter β P r0, 1q.
Output: Final iterate a‹, x‹.
Initialize k Ð 0, set ap´1q “ ap0q, xp´1q “ xp0q.
while not converged do

Fix apkq, and update x using proximal gradient descent with momentum

wpkq “ xpkq ` β ¨

´

xpkq ´ xpk´1q
¯

,

xpk`1q “ proxλtg

´

wpkq ´ tk ¨ ∇ψapkq

´

wpkq
¯¯

.

Fix xpk`1q, and update a by using the Riemannian gradient descent with momentum

zpkq “ RM
apkq

´

β ¨
`

RM
apk´1q

˘´1
´

apkq
¯¯

,

apk`1q “ RM
zpkq

´

´τk ¨ gradψxpk`1q

´

zpkq
¯¯

,

Set k Ð k ` 1.
end while

Similarly, when we update a with x fixed, we modify the Riemannian gradient step in Equation (B.4) by

zpkq “ RM
apkq

´

β ¨
`

RM
apk´1q

˘´1
´

apkq
¯

looooooooooomooooooooooon

inertial term

¯

, (B.5)

apk`1q “ RM
zpkq

´

´τk ¨ gradψxpk`1q

´

zpkq
¯¯

.

Here,
`

RM
a

˘´1
pbq : M Ñ TaM denotes the inverse retraction operator, i.e., RM

a

´

`

RM
a

˘´1
pbq

¯

” b. It maps
a point b P M to the tangent space TaM of a. Intuitively, when β is small, and apk´1q and apkq are close, we
approximately have

zpkq « apkq ` β ¨ δpkq, δpkq “
`

RM
apk´1q

˘´1
´

apkq
¯

« apkq ´ apk´1q,

which reduces to the standard update in the Euclidean space. The overall algorithmic pipeline is summarized
in Algorithm 5, and we term the algorithm inertial ADM (iADM). Similarly to the ADM, we can either set the
stepsizes tk and τk to be constants, or choose them via backtracking (linesearch) (Algorithms 3 and 4). The
parameter β P r0, 1q controls the weight of inertial term. Empirically, good choices for β lie somewhere be-
tween 0.8 to 0.9, and iADM reverts toADMwhen β is set to zero. An iteration-dependent schedule for β is also
discussed in [PS16]. Unlike the ADM algorithm which decreases the function value Ψpa,xq monotonically,
the iterates of iADM exhibit some oscillation effects and they can diverge when β is chosen too large.

B.2 Adaptive update of the penalty λ through the solution path
For sparse deconvolution problems, the parameter λ controls the sparsity of the solution x: the larger λ is,
the sparser x is produced, and vice versa. [KZLW19] suggests that a good choice could be λ “ O p1{ pθn0qq,
where θ is the parameter of Bernoulli distribution controlling the sparsity level. However, the sparsity level
θ is often not known ahead of time for many real applications, but the choice of λ is crucial for convergence
speed and recovery accuracy. In this subsection, we introduce two schemes to adaptively update λ.

(i) Homotopy continuation method, which improves both algorithmic convergence speed and recovery
accuracy by shrinking the λ through the solution path;

(ii) Reweightingmethod, which improves robustness against noise by adaptively enforcing different penal-
ties λ on different entries of x.
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Algorithm 6 Homotopy continuation method

Input: Measurement y P Rm; initial and final sparse penalties λ0, λ‹ (λ0 ą λ‹); initialization pap0q,xp0qq;
decay penalty parameter η P p0, 1q; precision factor δ P p0, 1q and tolerance ε‹.

Output: final solution pa‹,x‹q.
Initialize k Ð 0, λp0q Ð λ0, εp0q Ð δλp0q.
SetK Ð tlog pλ‹{λ0q { log pηqu.
while k ď K do

Solve Equation (B.1) with λpkq to
`

apk`1q,xpk`1q
˘

of precision εpkq, using
`

apkq,xpkq
˘

as warm restart.
Update the parameters: λpk`1q Ð ηλpkq, and εpk`1q Ð δλpk`1q.
Update k Ð k ` 1.

end while
Final round: from

`

apK`1q,xpK`1q
˘

, solve Equation (B.1) with penalty λ‹ to pa‹,x‹q of precision ε‹.

Homotopy continuation method. As discussed in Section 4.2.2, the geometric intuition (see Figure 7) sug-
gests a homotopy continuation approach [HYZ08,WNF09, XZ13], which chooses a solution path for pa,xq by
adaptively decreasing λ. The overall algorithmic pipeline is summarized in Algorithm 6. More concretely, we
start by solving Equation (B.1) with a large penalty λ0 (e.g., λ0 “

›

›

qap0q f y
›

›

8
), and correspondingly choose

a large solution tolerance ε “ δλ0. The problem in Equation (B.1) can be solved using any local descent meth-
ods (e.g., ADM and iADMdescribed in the previous section). Once Equation (B.1) is solvedwith given λ and
ε, we sequentially decrease the penalty λ by η and the solution tolerance ε. We use an approximate solution
for pa,xq at the end of each stage to warm restart the next stage, and repeatedly solves Equation (B.1) until
the target penalty λ‹ and precision ε‹ reached.

In practice, we usually set the parameters η “ 0.9 and δ “ 10´1. Aswe show in Section 5, we observe linear
convergence for the homotopy continuation method works for SaSD. For SaS-CDL problem, we observe that
the homotopy continuation method could occasionally produce duplicated kernels, because a large penalty
λ in the beginning stage could attract multiple different kernels to the same solution initially.

Algorithm 7 Reweighting method

Input: Measurement y P Rm; penalty λ ą 0; initialization pap0q,xp0qq.
Output: final solution pa‹, x‹q.
Initialize k Ð 0, wp0q “ 1m.
while not converged do

Solve a weighted subproblem

min
a,x

Ψwpkq
pa,xq “ ψpa,xq ` λ ¨ g

´

wpkq d x
¯

, a P M (B.6)

to a solution
`

apk`1q,xpk`1q
˘

, by using a warm restart
`

apkq,xpkq
˘

.
Update the weights: Compute εpkq using Equation (B.9). Update the weightwpk`1q by

w
pk`1q
i “

1
ˇ

ˇ

ˇ
x

pkq
i

ˇ

ˇ

ˇ
` εpkq

, 1 ď i ď m. (B.7)

Update k Ð k ` 1.
end while

Reweighting. Real data is often contaminated by noise, it is preferred to set large λ on zero entries of x0

to suppress the noise, and set small λ on nonzero entries of x0 to promote sparse solutions. This inspires us
to introduce the reweighing scheme [CWB08] (see Algorithm 7), the basic idea is to adaptively adjust the
penalty λ for each entry of x by considering a weighted variant of the problem (B.1),

min
a,x

Ψwpa,xq “ ψpa,xq ` λ ¨ g pw d xq , a P M. (B.8)

40



where w P Rm` is the weight and d denotes Hadamard products. Taking SaSD problem for instance, when
gp¨q “ }¨}1, the desired choice of the weight w is expected to be inversely proportional to the magnitude of
the true signal x0,

wi “

#

1
|x0,i|

, x0,i “ 0,

`8, x0,i “ 0,
(B.9)

which makes }w d x0}1 “ }x0}0 The large (actually infinite) entries in wi force the solution x to concentrate
on the indices wherewi is small (actually finite), and by construction these correspond precisely to the indices
where x0 is nonzero. This suggests more generally that large weights could be used to discourage nonzero
entries in the recovered signal, while small weights could be used to encourage nonzero entries. Although
it is impossible to construct the precise weights in Equation (B.9) without knowing the signal x0 itself, we
consider an iterative procedure (as shown in Algorithm 7) that alternates between estimating x0 and refining
the weights w.

In the following, we take gp¨q “ }¨}1 for an example, and provide more details of solving the weighted
subproblem in Equation (B.6) in Algorithm 7 with a givenw. This subproblem can be solved by either ADM
or iADM without much modification. The new objective does not affect the update for a when x is fixed.
When we update xwith a fixed. Notice that the ℓ1-penalty is separable, so that we have

Ψwpa,xq “ ψpa,xq ` λ ¨ }w d x}1 “ ψpa,xq `

m
ÿ

i“1

λwi
loomoon

λi

|xi| .

The separability of ℓ1-penalty implies that we can just update each entry xi with different penalty λi using
proximal gradient.

For weight refinement in Equation (B.7), we introduce a scalar ε ą 0 in order to provide algorithmic
stability, ensuring that a zero-valued component in x does not strictly prohibit a nonzero estimate in the next
step. Let

!

|x|piq

)

denote a descent reordering of t|xi|u, we empirically set

ε “ max
!

|x|pi0q , 10
´3

)

,

where i0 “ rn{ logpm{nqs. In general, the reweighing method tends to be reasonably robust to the choice of
small ε.

B.3 Miscellaneous
For the remaining of this part of the appendix, we discuss about various aspects of practical issues in solving
Equation (B.1). We first discuss about the initialization strategy for SaSD and SaS-CDL. Second, problems in
practice often possess extra structures beyond the general formwe considered here (e.g., nonnegativity, bias),
and our solutions often require post-processing. We discuss about these issues in more technical details.

Data-driven initialization. For the SaSD problem, we usually initialize x by xp0q “ 0, so that our initializa-
tion is sparse. For the optimization variable a P Rn, recall from Section 3.2 that it is desirable to obtain an
initialization ap0q which is close to SI spanned by a few shifts of a0 (as described in Equation (3.3)). When x0

is sparse, Equation (3.4) implies that our measurement y is a linear combination of a few shifts of a0. There-
fore, intuitively an arbitrary consecutive length-n0 truncation py of the data y should be not far away from
such a subsphere SI . As illustrated in Figure 32, one step of the generalized power method [KZLW19]

ap0q “ PSn´1∇

¨

˝´∇φDQ

¨

˝

»

–

0n´1

py
0n´1

fi

fl

˛

‚

˛

‚ (B.10)

produces a refined initialization that is very close to SI with |I| ď Opθn0q. Moreover, in practice, we find that
even a simpler initialization ap0q (without the power iteration) in Equation (3.5) works stably well for solving
SaSD.

When dealing with multiple kernel SaS-CDL problems, we take several independent random truncations
of y, and repeat the procedure Equation (3.5) to initialize different kernels.
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Data y Kernel a0 Sparse x0

Truncation ap´1q Initialization ap0q

“ ˚

«

αisira0s ` αjsjra0s

Figure 32: Illustration of data-driven initialization for a: using a piece of the observed data y to generate
a good initial point ap0q. Top: data y “ a0 f x0 is a superposition of shifts of the true kernel a0. Bot-
tom: a length-n0 window contains pieces of just a few shifts. Bottom middle: one step of the generalized
power method approximately fills in the missing pieces, yielding an initialization that is close to a linear
combination of shifts of a0 (right).

Nonnegativity constraint. When the signal x0 is nonnegative, we add an extra nonnegativity constraint to
the original problem

min
a,x

Ψpa,xq “ ψpa,xq ` λ ¨ gpxq, s.t. a P M, x ě 0. (B.11)

To enforce the nonnegativity constraint on x in ADM or iADM, we simply modify the proximal gradient step
for updating x in Algorithms 2 and 5 by

xpk`1q “ max
!

proxλtg

´

xpkq ´ t∇ψapxpkqq

¯

, 0
)

,

which projects the solution to the nonnegative orthant.

Removing bias components. In practice, the measurement y often contains a constant direct current (DC)
component. Taking SaSD as an example, we often have the measurement

y “ a0 f x0 ` b01m,

where b0 describes the magnitude of the DC component. To deal with this issue, it is natural to reformulate
the Bilinear Lasso problem in Equation (3.1) as

min
a, x,b

Ψpa,x, bq “
1

2
}y ´ a f x ´ b1m}

2
2 ` λ }x}1 , s.t. a P Sn´1,

and modify the optimization methods accordingly. For ADM and iADM in Algorithms 2 and 5, we initialize
b as the mean value of the sequence y, and update a and x in the original way with b fixed. For optimizing
variable b, we simply add an extra step after updating a and x by

bpkq “
1

m

A

1m,y ´ apkq f xpkq
E

.

Shift correction. The shift symmetry implies that we can only solve sparse deconvolution problems up to a
shift ambiguity. However, as predicting the precise activation locations x0 could be mission critical in many
applications, post-processing is often needed to correct the shift ambiguity by exploiting the structure of the
data y.

As aforementioned in Section 3, our optimization space n “ 3n0 ´ 2 for the kernel a0 is larger the original
dimension of a0, due to shift truncations. We need to truncation the solution a produced by our algorithm to
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obtain an approximation of the original kernel. A natural idea is to find a length-n0 subvector (submatrix) of
the produced solution a‹ that maximizes the Frobenius norm across all length-n0 subvectors. Therefore, we
simply shift a‹ so that the chosen length-n0 window is in the top left, and remove other zero-padding entries
if needed. Correspondingly, the solution x‹ can be corrected by shifting the same amount of length in the
opposite direction. However, using Frobenius norm could be unstablewhen large noise presents. Algorithm 8
presents an alternative approach based on the reconstruction error, which turns out to bemore reliable in some
cases.

Algorithm 8 Shift correction
Input: observation y, optimal solution pa‹,x‹q P Rn ˆ Rm.
Output: Solution pa, xq P Rn0 ˆ Rm after shift correction.
for i “ 1 : 2n0 ` 1 do

Set pa “ ιnÑn0
s´i`1 ra‹s, px “ si´1 rx‹s;

Compute pyi “ pa f px;
end for
Find i‹ “ argmini t}pyi ´ y}2u;
Set a “ ιnÑn0s´i‹`1 ra‹s, x “ si‹´1 rx‹s.

C Implementation details for SaSD and SaS-CDL
Finally, weprovidemissing implementationdetails of the proposedADMand iADMalgorithms for both SaSD
and SaS-CDL. We show how to solve these problems for both cases when the observation is 1-dimensional
(1D) and 2-dimensional (2D).

C.1 Technical details for solving 1D problems
C.1.1 Implementations details for SaSD

We optimize Equation (B.1) in Appendix B for the SaSD problem,

min
a,x

Ψpa,xq “
1

2
}y ´ a f x}

2
2

loooooooomoooooooon

ψpa,xq

` λ ¨ }x}1
loomoon

gpxq

, s.t. a P Sn´1
loomoon

M

,

where ψpa,xq “ 1
2 }y ´ a f x}

2
2, gpxq “ }x}1, and M “ Sn´1. Next, we provide missing implementation

details (e.g., exact forms of the gradients) of SaSD for ADM and iADM in Algorithm 2 and Algorithm 5.

Update x with a fixed. For the proximal gradient step on x in Equation (B.2), the proximal operator of
gp¨q “ }¨}1 is the soft thresholding operator

proxλt}¨}1
pzq “ Sλtpzq, Sλtpzq “ signpzq ¨ max t|z| ´ λt, 0u .

The gradient of ψapxq is

∇ψapxq “ qa f pa f x ´ yq .

Updateawithx fixed. For the RiemannianmanifoldM “ Sn´1, its tangent space TaSn´1 and the projection
onto TaSn´1 are

TaSn´1 “
␣

z P Rn | aJz “ 0
(

, PTaSn´1 “ PaK “ In ´
1

}a}
2
2

aaJ.
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For the Riemannian gradient step on a presented in Equation (B.4), the Riemannian gradient of ψxpaq over
Sn´1 is

gradψxpaq “ PaK∇ψxpaq, ∇ψxpaq “ ι˚
nÑmqx f pa f x ´ yq .

In addition, for M “ Sn´1, the retraction operator RSn´1

a pδq for δ P TaSn´1, and its inversion
´

RSn´1

a

¯´1

pbq

for b P Sn´1, can be specified as

RSn´1

a pδq “ a ¨ cos p}δ}2q `
δ

}δ}2
sin p}δ}2q ,

´

RSn´1

a

¯´1

pδq “
α

sinα
PaKδ, (C.1)

where α “ arccos
`

aJδ
˘

.

C.1.2 Implementations details for SaS-CDL

Since the SaSD problem can be considered a special case of SaS-CDLwithN “ 1, the derivations we obtained
for SaSD can be easily extended to SaS-CDL. Recall fromEquation (4.6), the general objective in Equation (B.1)
can specified as

min
A, X

ΨpA,Xq “
1

2

›

›

›

›

›

y ´

N
ÿ

k“1

ak f xk

›

›

›

›

›

2

2
loooooooooooomoooooooooooon

ψpA,Xq

` λ }X}1
loomoon

gpXq

, s.t. A P OBpn,Nq
loooomoooon

M

,

where OBpn,Nq is called the oblique manifold with

OBpn,Nq “
␣

Z P RnˆN | Z “
“

z1 ¨ ¨ ¨ zN
‰

, zi P Sn´1, 1 ď i ď N
(

“ Sn´1 ˆ ¨ ¨ ¨ ˆ Sn´1
loooooooooomoooooooooon

N

,

which is essentially a product of N spheres. Next, we provide missing implementation details of solving
SaS-CDL by ADM and iADM in Algorithm 2 and Algorithm 5.

Update X with A fixed. First, for the proximal gradient step on X presented in Equation (B.2), similarly
we have proxλt

}¨}1
pzq “ Sλtpzq and

∇ψA pXq “
“

∇x1ψApXq ∇x2ψApXq ¨ ¨ ¨ ∇xN
ψApXq

‰

,

∇xi
ψApXq “ qai f

˜

N
ÿ

j“1

aj f xj ´ y

¸

, 1 ď i ď N.

Second, for the Riemannian manifold M “ OBpn,Nq, its tangent space TAOBpn,Nq and the projection onto
TAOBpn,Nq are

TAOBpn,Nq “ Ta1Sn´1 ˆ ¨ ¨ ¨ ˆ TaN
Sn´1, PTAOBpZq “

“

PaK
1
z1 PaK

2
z1 ¨ ¨ ¨ PaK

N
zN

‰

.

Update A with X fixed. For the Riemannian gradient step on A presented in Equation (B.4), we have the
Riemannian gradient of ψXpAq over OBpn,Nq as

gradψXpAq “
“

grada1
ψXpAq, grada2

ψXpAq, ¨ ¨ ¨ , gradaN
ψXpAq

‰

,

gradai
ψXpAq “ PaK

i
∇ai

ψXpAq “ PaK
i
ι˚
nÑmqxi f

˜

N
ÿ

j“1

aj f xj ´ y

¸

, 1 ď i ď N,

and the retraction operator ROBpn,Nq

A p∆q for∆ “
“

δ1 δ2 ¨ ¨ ¨ δN
‰

P TAOBpn,Nq can be specified as

ROBpn,Nq

A p∆q “

”

RSn´1

a1
pδ1q RSn´1

a2
pδ2q ¨ ¨ ¨ RSn´1

aN
pδN q

ı

,

where RSn´1

a pδq is the retractor operator over the sphere as introduced in Equation (C.1). The inverse retrac-
tion

´

ROBpn,Nq

A

¯´1

pBq forB P OBpn,Nq can be constructed similarly by using Equation (C.1).
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C.2 Brief technical details of solving 2D problems
The derivative of 2D problems is slightly different from the 1D case, which we briefly introduce below.

Implementations details for SaSD. Let Y “ A0 f X 0 P Rm1ˆm2 be a 2D circular convolution of a kernel
A0 P Rn1ˆn2 and activation map X 0 P Rm1ˆm2 , where f denotes the 2D circular convolution. For the 2D
SaSD problem, we consider

min
A,X

Ψ pA,X q “
1

2
}Y ´ A f X }

2
F

loooooooooomoooooooooon

ψpA,X q

` λ }X }1
loomoon

gpX q

, s.t. }A}F “ 1
loooomoooon

M

,

where }¨}F denotes the Frobenius norm. Similarly, we have the gradients

∇XψA pX q “ rA f pA f X ´ Yq ,

∇AψX pAq “ ι˚
n1Ñm1

rX f pA f X ´ Yq ιn2Ñm2 ,

where rZ denotes a flip operator that flips a matrix Z both vertically and horizontally, i.e.,

rZpi, jq “ Zpm1 ´ i` 1,m2 ´ j ` 1q.

Note that rZ f V is essentially 2D auto-correlation of Z and V , so that we can rewrite

∇XψA pX q “ F´1 rF˚ pAq d F pA f X ´ Yqs

∇AψX pAq “ ι˚
n1Ñm1

F´1 rF˚ pX q d F pA f X ´ Yqs ιn2Ñm2 ,

where F denotes the 2D Fourier transform operator, and F˚ is its adjoint operator. Finally, we have the Rie-
mannian gradient

gradψX pAq “ PAK∇AψX pAq , PAKZ “ Z ´
A

}A}
2
F

xA,Zy .

The retraction operator and its inversion remain the same as Equation (C.1).

Implementations details for SaS-CDL. For the multiple kernel deconvolution problem Y “
řN
k“1 A0k f

X 0k, let the optimization variableA P Rn1ˆn2ˆN and X P Rm1ˆm2ˆN be 3-way tensors, with

Ap:, :, kq “ Ak, X p:, :, kq “ X k, 1 ď k ď N.

Similar to the 1D case in Equation (4.6), we optimize the following problem

min
A, X

Ψ
`

A,X
˘ 1

2

›

›

›

›

›

Y ´

N
ÿ

k“1

Ak f X k

›

›

›

›

›

2

F
loooooooooooooomoooooooooooooon

ψpA,Xq

`λ
›

›X
›

›

1
loomoon

gpX q

, s.t. }Ak}F “ 1 p1 ď k ď Nq
looooooooooooooooomooooooooooooooooon

M

.

The gradient ofψA
`

X
˘

andψX
`

A
˘

can be computed in a similarmanner as SaSD. Let∇ψA
`

X
˘

and∇ψX
`

A
˘

denote the gradient of ψA
`

X
˘

and ψX
`

A
˘

, then we have

∇ψA
`

X
˘

p:, :, iq “ rAi f

˜

N
ÿ

j“1

Aj f X j ´ Y

¸

, 1 ď i ď N

∇ψX
`

A
˘

p:, :, iq “ ι˚
n1Ñm1

rX i f

˜

N
ÿ

j“1

Aj f X j ´ Y

¸

ιn2Ñm2 , 1 ď i ď N.

The Riemannian gradient gradψX
`

A
˘

, and the retraction operator can be generalized from 1D case in a very
similar fashion. We omit the details here.
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