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Abstract—In this paper, based on ideas from lossy data coding and compression, we present a simple but effective technique for

segmenting multivariate mixed data that are drawn from a mixture of Gaussian distributions, which are allowed to be almost degenerate.

The goal is to find the optimal segmentation that minimizes the overall coding length of the segmented data, subject to a given distortion.

By analyzing the coding length/rate of mixed data, we formally establish some strong connections of data segmentation to many

fundamental concepts in lossy data compression and rate-distortion theory. We show that a deterministic segmentation is approximately

the (asymptotically) optimal solution for compressing mixed data. We propose a very simple and effective algorithm that depends on a

single parameter, the allowable distortion. At any given distortion, the algorithm automatically determines the corresponding number and

dimension of the groups and does not involve any parameter estimation. Simulation results reveal intriguing phase-transition-like

behaviors of the number of segments when changing the level of distortion or the amount of outliers. Finally, we demonstrate how this

technique can be readily applied to segment real imagery and bioinformatic data.

Index Terms—Multivariate mixed data, data segmentation, data clustering, rate distortion, lossy coding, lossy compression, image

segmentation, microarray data clustering.

Ç

1 INTRODUCTION

DATA that arise from practical problems in such diverse
fields as image/signal processing, pattern recognition,

computer vision, and bioinformatics are often characterized
by complicated multimodal multivariate distributions. Seg-
mentation (or clustering) is widely recognized as an
important step in representing, analyzing, interpreting, or
compressing such mixed data.

Now, the intriguing questions are listed as follows: What
does “segmentation” really mean and how do we define it
mathematically? What should the proper criterion for
segmentation be and what do the segmentation results
depend on? How should we measure the “gain” or “loss” of
the segmentation? Last, but not the least, why is segmenta-
tion the right thing to do? Answers to these questions, to
some extent, have been complicated by the many ap-
proaches and solutions for segmenting or modeling various
types of mixed data proposed in the literature (see [1], [2],
and the references therein for a review).

A somewhat traditional way of defining segmentation is to
first choose a simple class of models that each subset is
supposed to fit. Some of the popular models are either

probabilistic distributions (for example, Gaussian distribu-
tions) or geometric/algebraic sets (for example, linear
subspaces). Then, the whole mixed data are assumed to be
samples drawn from a mixture of such probabilistic distribu-
tions [3], [4] or geometric/algebraic sets [5]. The typical
approach to segmenting the data then entails estimating the
mixture of all the models and then assigning each data point
to the model with the highest likelihood.1

This way, data segmentation is essentially identified
with a (mixture) model estimation problem. Segmenting the
data and estimating the model are therefore strongly
coupled together. Various approaches to resolve the
coupling have been proposed in the literature:

. Iterate between the data segmentation and model
estimation. Representative methods include the
K-means algorithm [6], [7], [8], [9] (or its variants
[10], [11], [12]) and the Expectation-Maximization
(EM) algorithm [13], [14], which is essentially a greedy
descent algorithm, to find the maximum likelihood
(ML) estimate of a mixture of probabilistic distribu-
tions [3], [4], [15].

. Resolve the coupling between data segmentation
and model estimation by first estimating a mixture
model that does not depend on the segmentation of
the data and then decomposing the mixture into
individual components. Representative methods
include the Generalized Principal Component Ana-
lysis (GPCA), in which the mixture model is
assumed to be an arrangement of subspaces [5].

A common assumption behind all these approaches is that
a good estimate of the underlying mixture model(s) is
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1. Notice that there is another spectrum of clustering algorithms such as
the classical agglomerative methods [25] that follow a different set of
principles and do not explicitly cast the segmentation problem as density
estimation.
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necessary for the segmentation of the data. In a sense, the
correctness of the segmentation relies on how good the
estimate is. For instance, the given dataW ¼ ðw1; w2; . . . ; wmÞ
are commonly assumed to be drawn from a mixture of
distributions pðxj�; �Þ¼:

Pk
j¼1 �jpjðxj�jÞ. When trying to ob-

tain the optimal estimate of the mixture model, one usually
chooses any of the model estimation criteria, for example, the
ML estimate

ð�̂; �̂ÞML ¼ arg max
�;�

Xm
i¼1

log pðwij�; �Þ; ð1Þ

where � is the parameter of a certain class of (mixture)
distributions of interest. The EM algorithm [13] (or its variants
[16]) is often used to optimize the likelihood function of such a
mixture model. The ML criterion is equivalent to minimizing
the negated log-likelihood

P
i� log pðwij�; �Þ, which is

approximately the expected coding length LengthðW j�̂; �̂Þ
required to store the data by using the optimal coding scheme
for the distribution pðxj�̂; �̂Þ [17].

When the number of component models k is not given
a priori, we must estimate it from the data—a difficult task
that is further complicated when the data are corrupted by a
significant amount of outliers. To some extent, almost all
model selection criteria used to determine the number of
component models are equivalent to minimizing the coding
length needed to describe both the data and the model, that
is, the minimum description length (MDL) criterion [4], [18],
[19], [20]

ð�̂; �̂ÞMDL ¼ arg min
�;�

LðW; �; �Þ ¼ LðW j�; �Þ þ Lð�; �Þ; ð2Þ

where the parameters �, � are assumed to have a certain
distribution pð�; �Þ. In general, the length function Lð�Þ is
chosen according to the optimal Shannon coding [17]:
� log pðW j�; �Þ for W and � log pð�; �Þ for �, �. Incidentally,
this objective function coincides with the maximum
a posteriori (MAP) estimate, and the EM algorithm again
becomes the method of choice [4].

However, ML and MDL only truly correspond to
minimum coding lengths when the random variables to
be encoded are discrete.2 For (multivariate) real-valued
data, a finite coding length can only be obtained if we
encode the data and the model parameters, subject to a
certain distortion " > 0. To this end, Madiman et al. [21] have
studied the properties of lossy ML (LML) and lossy MDL
(LMDL) criteria

ð�̂; �̂ÞLML ¼ arg min
�;�

Rðp̂ðW Þ; �; �; "Þ; ð3Þ

ð�̂; �̂ÞLMDL ¼ arg min
�;�

Rðp̂ðWÞ; �; �; "Þ þ Lð�; �Þ; ð4Þ

where p̂ðWÞ is the empirical estimate of the probabilistic
distribution from the dataW . In [21], it is shown that (to first
order, asymptotically) minimizing the coding rate of the data
subject to the distortion " is equivalent to computing the LML
or LMDL estimate, with desirable properties such as (strong)
consistency as an estimator. In our context, the coding rate
(subject to a distortion) provides a natural measure of the
goodness of segmentation for real-valued mixed data. In fact,

the goal of modeling and segmentation of mixed data should
indeed be consistent with that of data coding/compression: If
the data can be fitted with better models after segmentation,
then the data should be represented or encoded more
efficiently with respect to such models.

1.1 Contributions of This Paper

In this paper, we do not consider modeling and segmenting
data that have arbitrary mixture distributions. We are only
interested in data that consist of multiple Gaussian-like
groups, which may have significantly different and aniso-
tropic covariances. The covariances of the groups may even
be nearly degenerate, in which case we essentially want to fit
the data with multiple subspaces, possibly of different dimensions.
In this context, vector quantization (VQ) can be viewed as the
special case of fitting the data with zero-dimensional (affine)
subspaces [10].

Our approach to segmenting such mixed data follows the
spirit of LML and LMDL. Our goal is to find the optimal
segmentation of the mixed data, which results in the shortest coding
length subject to a given distortion of the data. Our method,
however, offers the following improvements over existing
methods:

1. All of the estimates discussed above (ML, MDL,
LML, and LMDL) are optimal only in an asymptotic
sense, that is, for an infinite sequence of independent
and identically distributed (i.i.d.) samples from the
class of distributions of interest. In practice, how-
ever, we can only deal with finite (and often small)
sets of samples. Thus, we introduce a measure of the
coding length for each group, which not only closely
approximates the optimal rate-distortion function
for a Gaussian source [17], but also gives a tight
upper bound for any finite number of samples.

2. We will prove that, with this choice of coding
length/rate, deterministic segmentation is approxi-
mately asymptotically optimal, suggesting that
probabilistic segmentation will not significantly
reduce the overall coding length. This provides a
theoretical justification that segmentation not only is
useful for pragmatic purposes, but also well approx-
imates the optimal solution for compressing data
that are a mixture of Gaussians or subspaces.

3. An explicit formula for the coding length/rate
function3 allows one to directly evaluate the good-
ness of the segmentation. The tightness of the
formula for small data sets leads to an efficient4

“bottom-up” algorithm that minimizes the overall
coding length by repeatedly merging small subsets,
starting from individual data points. As we will
show with extensive simulations and experiments,
this approach resolves the difficult model selection
issue [4] in an effective way, especially when the
number of groups is unknown, or there is a
significant amount of outliers.
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2. Or, for continuous random variables, in the limit as the quantization
error goes to 0.

3. This is the case for Gaussian sources. In general, computing the rate-
distortion function for an arbitrary distribution is a difficult problem
although many numerical methods exist in the literature (see [22] and the
references therein).

4. The complexity of the proposed algorithm is polynomial in both size
and dimension of the data.



4. When the level of distortion (or the density of outliers)
varies continuously, the number of groups typically
exhibits a phase-transition behavior similar to that in
statistical physics, with the “correct” segmentation
corresponding to one of the stable phases. Our
simulations show that the number of segments need
not be a monotonic function of the distortion.5

1.2 Organization of This Paper

We provide a summary of the basic ideas and the resulting
algorithm of our approach in Section 2. In Section 3, based on
the ideas from the rate-distortion theory in information
theory, we introduce a formula for the coding rate/length
needed to encode a set of vectors subject to a given distortion.
An alternative verification of the formula is given in
Appendix A and Appendix B shows how the formula should
be modified when the data is nonzero mean. In Section 4, we
study properties of the overall coding rate/length of mixed
data after being segmented into multiple groups. Extensive
simulation and experimental results of the proposed algo-
rithm on synthetic and real data are given in Section 5.

2 BASIC IDEAS AND ALGORITHM

In this section, we give a self-contained summary of the
main ideas and algorithm of this paper and leave the more
detailed mathematical analysis and justification to Sections 3
and 4. (Readers who are interested only in the algorithm
and experiments may bypass these two sections and skip
from Sections 2-5 without any loss of continuity.)

2.1 Lossy Coding of Multivariate Data

A lossy coding scheme maps a set of vectors V ¼
ðv1; v2; . . . ; vmÞ 2 IRn�m to a sequence of binary bits such
that the original vectors can be recovered up to an allowable
distortion IE½kvi � v̂ik2� � "2. The length of the encoded
sequence is denoted as the function LðV Þ : IRn�m ! ZZþ.

In general, the coding scheme and the associated Lð�Þ
function can be chosen to be optimal for any family of
distributions of interest. In the case where the data are i.i.d.
samples from a zero-mean6 multivariate Gaussian distribu-
tion Nð0;�Þ, the function R ¼ 1

2 log2 detðI þ n
"2 �Þ provides a

good approximation to the optimal rate-distortion function
[17].7 As �̂ ¼ 1

mV V
T is an estimate of the covariance �, the

average number of bits needed per vector is

RðV Þ¼: 1

2
log2 det I þ n

"2m
V V T

� �
: ð5Þ

For readers who are less familiar with the rate-distortion
theory, we will give an intuitive explanation of this formula
in Section 3.

Representing the m vectors of V therefore requires
mRðV Þ bits. Since the optimal codebook is adaptive to the
data V , we must also represent it with additional nRðV Þ bits,8

yielding an overall coding length of

LðV Þ¼: ðmþ nÞRðV Þ ¼ mþ n
2

log2 det I þ n

"2m
V V T

� �
: ð6Þ

We will study the properties of this function in Section 3.
For purposes of segmentation, it suffices to note that, in
addition to being (approximately) asymptotically optimal
for Gaussian data, LðV Þ also provides a tight bound on the
number of bits needed to code a finite number of vectors
when the underlying distribution is a degenerate or
nondegenerate Gaussian (see Appendix A for the proof).

2.2 Segmentation via Data Compression

Given a set of samplesW ¼ ðw1; w2; . . . ; wmÞ 2 IRn�m, one can
always view them as drawn from a single Gaussian source
and code W subject to distortion "2 by using LðWÞ bits.
However, if the samples are drawn from a mixture of
Gaussian distributions or subspaces, it may be more efficient
to code W as the union of multiple (disjoint) groups
W ¼W1 [W2 [ . . . [Wk. If each group is coded separately,
then the total number of bits needed is

LsðW1;W2; . . . ;WkÞ¼:
Xk
i¼1

LðWiÞ þ jWij � log2ðjWij=mÞð Þ; ð7Þ

where jWij indicates the cardinality (that is, the number of
vectors) of the group Wi. In the above expression, the termPk

i¼1 jWijð� log2ðjWij=mÞÞ is the number of bits needed to
code (losslessly) the membership of the m samples in the k
groups (for example, by using the Huffman coding [17]).9

Then, given a fixed coding scheme with its associated
coding length function Lð�Þ, an optimal segmentation is one
that minimizes the segmented coding length Lsð�Þ over all
possible partitions ofW . Moreover, we will see that, due to the
properties of the rate-distortion function (5) for Gaussian
data, softening the objective function (7) by allowing
probabilistic (or fuzzy) segmentation does not further reduce
the (expected) overall coding length (see Theorem 3 in
Section 4).

Notice that the above objective (7) is a function of the
distortion ". In principle, one may add a “penalty” term such
asmn log " to the overall coding length10Ls so as to determine
the optimal distortion "�. The resulting objective min" L

s þ
mn log " will then correspond to an optimal coding length
that only depends on the data. Nevertheless, very often, we
leave " as a free parameter to be set by the user. In practice,
this allows the user to potentially obtain a hierarchical
segmentation of the data at different scales of quantization.
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5. A different phase transition has been noticed in vector quantization
using deterministic annealing, where the number of clusters increases
monotonically when the annealing temperature decreases [10].

6. For simplicity, in the main text, we will derive and present our main
results with the zero-mean assumption. However, all the formulas, results,
and algorithms can be readily extended to the nonzero-mean case, as shown
in Appendix B.

7. Strictly speaking, the rate-distortion function for the Gaussian source
Nð0;�Þ is R ¼ 1

2 log2 detðn
"2 �Þ when "2

n is smaller than the smallest
eigenvalue of �. Thus, the approximation is good only when the distortion
" is relatively small. However, when "2

n is larger than some eigenvalues of �,
the rate-distortion function becomes more complicated [17]. Nevertheless,
the approximate formula R ¼ 1

2 log2 detðI þ n
"2 �Þ can be viewed as the rate

distortion of the “regularized” source that works for all ranges of ".
Furthermore, as we will show in Appendix A, the same formula gives a
tight upper bound of the coding rate for any finite number of samples.

8. This can be viewed as the cost of coding the n principal axes of the
data covariance 1

mV V T . A more detailed explanation of LðV Þ is given in
Section 3.

9. Here, we assume that the ordering of the samples is random and
entropy coding is the best we can do to code the membership. However, if
the samples are ordered such that nearby samples more likely belong to the
same group (e.g., in segmenting pixels of an image), the second term can
and should be replaced by a tighter estimate.

10. This particular penalty term is justified by noticing that mn log " is
(within an additive constant) the number of bits required to code the
residual w� ŵ upto (very small) distortion �� ".



We will thoroughly examine how the value of " affects the
final segmentation through experiments in Section 5.

2.3 Minimizing the Coding Length

Finding the global minimum of the overall coding length Ls

over all partitions of the data set is a daunting combinatorial
optimization problem, intractable for large data sets. Never-
theless, the coding length can be effectively minimized in the
steepest descent fashion, as outlined in Algorithm 1. The
minimization proceeds in a “bottom-up” fashion. Initially,
every sample is treated as its own group. At each iteration,
two groups S1 and S2 are chosen so that merging them
results in the greatest decrease in the coding length. The
algorithm terminates when the coding length cannot be
further reduced by merging any pair of groups.11 A simple
implementation that maintains a table containing LsðSi [ SjÞ
for all i and j requires Oðm3 þm2n3Þ time, where m is the
number of samples, and n is the dimension of the space.

Algorithm 1 (Pairwise Steepest Descent of Coding Length).

1: input: the data W ¼ ðw1; w2; . . . ; wmÞ 2 IRn�m and a
distortion "2 > 0.

2: initialize S :¼ fS ¼ fwgjw 2Wg.
3: while jSj > 1 do

4: choose distinct sets S1; S2 2 S such that

LsðS1 [ S2Þ � LsðS1; S2Þ is minimal.

5: if LsðS1 [ S2Þ � LsðS1; S2Þ 	 0 then break;

6: else S :¼ ðS n fS1; S2gÞ [ fS1 [ S2g.
7: end

8: output: S
Extensive simulations and experiments demonstrate that

this algorithm is consistently and remarkably effective in

segmenting data that are a mixture of Gaussians or subspaces
(see Section 5). It tolerates significant amounts of outliers and
automatically determines the corresponding number of
groups at any given distortion. As a greedy descent scheme,
the algorithm does not guarantee to always find the globally
optimal segmentation for any given ðW; "Þ.12 Based on our
experience, we found that the main factor affecting the global
convergence of the algorithm seems to be the density of the
samples relative to the distortion "2. In Section 5, we will give
strong empirical evidence for the convergence of the
algorithm over a wide range of ".

Notice that the greedy merging process in Algorithm 1 is

similar in spirit to classical agglomerative clustering meth-
ods, especially Ward’s method [24]. However, whereas
Ward’s method assumes isotropic Gaussians, our coding-
based approach is capable of segmenting Gaussians with
arbitrary covariances, including nearly degenerate distribu-
tions. Classical agglomerative approaches have been shown
to be inappropriate for such situations [25]. In this sense, the
change in coding length provides a principled means of

measuring the similarity among arbitrary Gaussians. Our
approach also demonstrates significant robustness to uni-
form outliers, another situation in which linkage algorithms
[2] fail.

3 LOSSY CODING OF MULTIVARIATE DATA

In this section, we give a more detailed justification of the
coding rate/length functions introduced in Section 2. In
Section 4, we provide a more thorough analysis of the
compression-based approach to data segmentation. (Readers
who are less concerned with technical details may skip these
two sections at first reading without much loss of continuity.)

If the given data wi 2 IRn are i.i.d. samples of a random

vector w with a probabilistic distribution pðwÞ, then the

optimal coding scheme and the optimal coding rate of such a

random vectorw have been well studied in information theory

(see [17] and references therein). However, here, we are

dealing with a finite set of vectorsW ¼ ðw1; w2; . . . ; wmÞ. Such

a data set can be viewed as a nonparametric distribution itself:

Each vectorwi inW occurs with an equal probability 1=m. The

optimal coding scheme for the distribution pðwÞ is no longer

optimal for W and the formula for the coding length is no

longer accurate. Nevertheless, some of the basic ideas of

deriving the optimal coding rate can still be extended to the

nonparametric setting. In this section, by borrowing ideas

from the information theory, we derive a tight bound of the

coding length/rate for the given data W . In Appendix A, we

give an alternative derivation of the bound. Although both

approaches essentially arrive at the same estimate, they both

reveal that the derived coding length/rate function holds

under different conditions:

1. The derivation in this section shows that, for a small ",
the formula for RðWÞ gives a good approximation to
the (asymptotically) optimal rate-distortion function
of a Gaussian source.

2. The derivation in Appendix A shows that the same
coding length/rate formula works for any finite set
of vectors W that span a subspace.

3.1 The Rate-Distortion Function

For simplicity, we here assume that the given data are zero

mean; that is, �¼: 1
m

P
i wi ¼ 0 (refer to Appendix B for the

case in which the mean is not zero). Let "2 be the squared

error allowable for encoding every vector wi. That is, if ŵi is

an approximation of wi, then we allow IE½kwi � ŵik2� � "2.

In other words, on the average, the allowable squared error

for each entry of wi is "2=n.
The solution to coding the vectors inW , subject to the mean

squared error "2, can be explained by sphere packing, which is
normally adopted in information theory [17]. Here, we are
allowed to perturb each vector wi 2W within a sphere of
radius " in IRn. In other words, we are allowed to distort each
entry of wi with an (independent) random variable of
variance "2=n. Without loss of generality, we may model the
error as an independent additive Gaussian noise:

ŵi ¼ wi þ zi; with zi 
 N 0;
"2

n
I

� �
: ð8Þ
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11. In the supplementary material (which can be found at http://
computer.org/tpami/archives.htm), we have included a video showing the
convergence of this algorithm on data drawn from mixtures of subspaces in
IR3.

12. However, it may be possible to improve the convergence by using
more complicated split-and-merge strategies [16]. In addition, due to
Theorem 1 of Section 4, the globally (asymptotically) optimal segmentation
can also be computed via concave optimization [23], at the cost of
potentially exponential computation time.



Then, the covariance matrix of the vectors ŵi is

�̂ ¼: IE
1

m

Xm
i¼1

ŵiŵ
T
i

" #
¼ "

2

n
I þ 1

m
WWT 2 IRn�n: ð9Þ

The volume of the region spanned by these vectors is
proportional to the square root of the determinant of the
covariance matrix

volðŴÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

"2

n
I þ 1

m
WWT

� �s
:

Similarly, the volume spanned by each random vector zi is
proportional to

volðzÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

"2

n
I

� �s
:

In order to encode each vector, we can partition the
region spanned by all the vectors into nonoverlapping
spheres of radius ". When the volume of the region volðŴÞ
is significantly larger than the volume of the sphere, the
total number of spheres that we can pack into the region is
approximately equal to

# of spheres ¼ volðŴ Þ=volðzÞ: ð10Þ

Thus, to know each vector wi with an accuracy up to "2, we
only need to specify which sphere wi it is in (see Fig. 1). If
we use binary numbers to label all the spheres in the region
of interest, the number of bits needed is

RðWÞ¼: log2ð# of spheresÞ

¼ log2ðvolðŴÞ=volðzÞÞ ¼ 1

2
log2 det I þ n

m"2
WWT

� �
;

ð11Þ

where the last equality uses the fact that

detðAÞ=detðBÞ ¼ detðB�1AÞ:

If the samples wi are drawn from a Gaussian source
Nð0;�Þ, then 1

mWWT converges to the covariance � of the
Gaussian source. Thus, we have RðW Þ ! 1

2 log2 detðI þ n
"2 �Þ

as m!1. When "2

n � �minð�Þ, the optimal rate distortion
for a parallel i.i.d. Nð0;�Þ source is 1

2 log2 detðn
"2 �Þ, to which

(11) provides a good approximation. In general, the optimal
rate distortion is a complicated formula given by a reverse

waterfilling on the eigenvalues of � (see Theorem 13.3.3 in

[17]). The approximation (11) provides an upper bound that

holds for all " and is tight when " is small relative to the

eigenvalues of the covariance.
The formula for RðW Þ can also be viewed as the rate

distortion of the sourceW regularized by a noise of variance "
2

n

as in (8). The covariance �̂ of the perturbed vectors ŵi always

satisfies "2

n � �minð�̂Þ, allowing for a simple analytic expres-

sion for the rate distortion for all range of ". This regularized

rate distortion has the further advantage of agreeing with the

bound for the coding length of finitely many vectors that span

a subspace, derived in Appendix A. In addition, this formula

resembles the channel capacity of a multiple-input multiple-

output (MIMO) Gaussian channel (refer to Appendix C).
Notice that the formula for RðW Þ is accurate only in the

asymptotic sense, that is, when we are dealing with a large

number of samples and the error " is small (relative to the

magnitude of the data W ). We want to emphasize that the

above derivation of the coding rate does not give an actual

coding scheme. The construction of efficient coding schemes,

which achieve the optimal rate-distortion bound, is itself a

difficult problem (see, for example, [26] and references

therein). However, for the purpose of measuring the quality

of segmentation and compression, all that matters is that, in

principle, a scheme attaining the optimal rate RðWÞ exists.

3.2 The Coding Length Function

Given the coding rate RðW Þ, the total number of bits needed

to encode the m vectors in W is

mRðWÞ ¼ m
2

log2 det I þ n

m"2
WWT

� �
: ð12Þ

Based on the communication point of view, mRðWÞ bits are

already sufficient, as both the transmitter and the receiver

share the same codebook; that is, they both know the region

spanned by W in IRn. However, based on the data

representation or the compression point of view, we need

more bits to represent the codebook itself. This is equivalent

to specifying all the principal axes of the region spanned by

the data, that is, the singular values/vectors of W (see

Fig. 1). As the number of principal axes is n, we need

nRðWÞ additional bits to encode them. Therefore, the total

number of bits needed to encode the m vectors in W � IRn

subject to the squared error "2 is13

LðW Þ¼: ðmþ nÞRðWÞ ¼ mþ n
2

log2 det I þ n

m"2
WWT

� �
:

ð13Þ

Appendix A provides an alternative derivation of the

same coding length function LðWÞ as an upper bound for a

finite number of samples. If the data W have a nonzero

mean, then we need more bits to encode the mean, too. (See

in Appendix B how the coding length function should be

properly modified in that case.)
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13. Compared to the MDL criterion (2), if the term mRðWÞ corresponds
to the coding length for the data, the term nRðWÞ then corresponds to the
coding length for the model parameter �.

Fig. 1. Coding of a set of vectors in a region in IRn with an accuracy up to

"2. To know the vector wi, we only need to know the label of the

corresponding sphere. e1 and e2 represent the singular vectors of the

matrix Ŵ , and �1 and �2 represent the singular values.



3.3 Properties of the Coding Length Function

3.3.1 Commutative Property

Since WWT 2 IRn�n and WTW 2 IRm�m have the same
nonzero eigenvalues, the coding length function can also be
expressed as

LðW Þ ¼ mþ n
2

log2 det I þ n

m"2
WWT

� �
¼ mþ n

2
log2 det I þ n

m"2
WTW

� �
:

Thus, if n� m, then the second expression will be less
costly for computing the coding length. The matrix WTW ,
which depends only on the inner products between pairs of
data vectors, is known in the statistical learning literature as
the kernel matrix. This property suggests that the ideas and
the algorithm presented in Section 2 can be readily
extended to segment data sets that have nonlinear structures
by choosing a proper kernel function.

3.3.2 Invariant Property

Notice that, in the zero-mean case, the coding length
function LðWÞ is invariant under an orthogonal transforma-
tion of the data W . That is, for any orthogonal matrix U 2
OðnÞ or V 2 OðmÞ, we have

LðUWÞ ¼ LðWÞ ¼ LðWV Þ: ð14Þ

In other words, the length function depends only on the
singular values of W (or the eigenvalues of WWT ). This
equality suggests that one may choose any orthonormal
basis (for example, Fourier or wavelets) to represent and
encode the data, and the number of bits needed should
always be the same. This agrees with the fact that the chosen
coding length (or rate) is optimal for a Gaussian source.
However, if the data are non-Gaussian or nonlinear, a proper
transformation can still be useful for compressing the data.14

In this paper, we are essentially seeking a partition, rather
than a transformation, of the non-Gaussian (or nonlinear)
data set such that each subset is sufficiently Gaussian (or
subspacelike) and, hence, cannot be compressed any further
either by (orthogonal) transformation or by segmentation.

4 CODING LENGTH OF SEGMENTED DATA

Now, suppose we have partitioned the set of m vectors
W ¼ ðw1; w2; . . . ; wmÞ into k nonoverlapping groups
W ¼W1 [W2 [ � � � [Wk. Then, the total number of bits
needed to encode the segmented data is

LsðW1;W2; . . . ;WkÞ ¼
Xk
i¼1

LðWiÞ þ jWijð� log2ðjWij=mÞÞ:

Here, the superscript “s” is used to indicate the coding

length after segmentation.

4.1 Segmentation and Compression

To better understand under what conditions a set of data

should or should not be segmented so that the overall coding

length/rate becomes smaller, we here provide two represen-

tative examples. In the examples, we want to study whether a

data set should be partitioned into two subsets of an equal

number of vectors W1;W2 2 IRn�m. To simplify the analysis,

we assume that m� n so that we can ignore the asympto-

tically insignificant terms in the coding length/rate function.

Example 1 (Uncorrelated Subsets). Notice that, in general,

we have

LðW1Þ þ LðW2Þ ¼
m

2
log2 det I þ n

m"2
W1W

T
1

� �
þm

2
log2 det I þ n

m"2
W2W

T
2

� �
� 2m

2
log2 det I þ n

2m"2
W1W

T
1 þW2W

T
2

� �� �
¼ LðW1 [W2Þ;

where the inequality is from the concavity of the function

log2 detð�Þ (see Theorem 7.6.7 in [28]). Thus, if the

difference LðW1 [W2Þ � ðLðW1Þ þ LðW2ÞÞ is large, then

the overhead needed to encode the membership of the

segmented data (here, one bit per vector) becomes

insignificant. If we further assume that W2 is a rotated

version of W1, that is, W2 ¼ UW1 for some U 2 OðnÞ, then

one can show that the difference LðW1 [W2Þ � ðLðW1Þ þ
LðW2ÞÞ is (approximately) maximized when W2 becomes

orthogonal to W1. We call two groups W1 and W2

uncorrelated if WT
1 W2 ¼ 0. Thus, segmenting the data into

uncorrelated groups typically reduces the overall coding

length. From the viewpoint of sphere packing, Fig. 2

explains the reason.

Example 2 (Strongly Correlated Subsets). We say that two

groups W1 and W2 are strongly correlated if they span

the same subspace in IRn. Or, somewhat equivalently, we

may assume that W1 and W2 have approximately the

same covariance W2W
T
2 W1W

T
1 . Thus, we have
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14. For a more thorough discussion on why some transformations (such
as wavelets) are useful for data compression, the reader may refer to [27].

Fig. 2. The number of spheres (code words) of two different schemes for coding two orthogonal vectors. (a) Encoding the two vectors separately.

(b) Encoding the two vectors together.



LðW1Þ þ LðW2Þ ¼
m

2
log2 det I þ n

m"2
W1W

T
1

� �
þm

2
log2 det I þ n

m"2
W2W

T
2

� �
 2m

2
log2 det I þ n

2m"2
W1W

T
1 þW2W

T
2

� �� �
¼ LðW1 [W2Þ:

Since LsðW1;W2Þ ¼ LðW1Þ þ LðW2Þ þHðjW1j; jW2jÞ, the
overhead needed to encode the membership becomes
significant and the segmented data require more bits
than the unsegmented.

4.2 Optimality of Deterministic Segmentation

So far, we have only considered partitioning the data W into
k nonoverlapping groups. That is, each vector is assigned to
a group with a probability that is either 0 or 1. We call such
a segmentation “deterministic.” In this section, we examine
an important question: Is there a probabilistic segmentation of the
data that can achieve an even lower coding rate? That is, we
consider a more general class of segmentations in which we
assign each vectorwi to the group j according to a probability
�ij 2 ½0; 1�, with

Pk
j¼1 �ij ¼ 1 for all i ¼ 1; 2; . . . ;m.

To facilitate counting the expected coding length of such
(probabilistically) segmented data, we introduce a matrix �j

that collects the membership of the m vectors in group j:

�j¼:

�1j 0 � � � 0

0 �2j
. .

. ..
.

..

. . .
. . .

.
0

0 � � � 0 �mj

2
66664

3
77775 2 IRm�m: ð15Þ

These matrices satisfy the constraint
Pk

j¼1 �j ¼ Im�m, �j � 0.
Obviously, the jth group has an expected number of

trð�jÞ vectors, and the expected covariance is 1
trð�jÞW�jW

T .
If viewed as a Gaussian source, the coding rate of the jth
group is bounded by RðWjÞ¼: 1

2 log2 detðI þ n
trð�jÞ"2 W�jW

T Þ.
If, for each vector wi, we code it by using the coding scheme
for the jth group with probability �ij, then the expected
total number of bits required to encode the data W

according to the segmentation � ¼ f�jg is bounded15

LsðW;�Þ¼:
Xk
j¼1

trð�jÞ þ n
2

log2 det I þ n

trð�jÞ"2
W�jW

T

� �

þ trð�jÞ � log2

trð�jÞ
m

� �
:

ð16Þ

Similarly, the expected number of bits needed to encode
each vector is bounded

RsðW;�Þ¼: 1

m
LsðW;�Þ

¼
Xk
j¼1

trð�jÞ
m

RðWjÞ � log2

trð�jÞ
m

� �
þ n

m
RðWjÞ:

ð17Þ

Thus, one may consider that the optimal segmentation ��

is the global minimum of the expected overall coding
length LsðW;�Þ or, equivalently, the average coding
rate RsðW;�Þ. To some extent, one can view the minimum
value of RsðW;�Þ as a good approximation to the actual
entropy of the given data set W .16

Notice that n
mRðWjÞ, the second term in the expression of

RsðW;�Þ, is insignificant when the number of samples is
large m� n. Nevertheless, this term, as well as the term
that encodes the membership of the vectors, gives a tight
bound on the coding length even for small sets of samples.
This essentially allows us to find the optimal segmentation
in a bottom-up manner by merging small subsets of
samples, which is effectively harnessed by the greedy
algorithm introduced in Section 2. That said, for the rest of
this section, we examine more carefully the asymptotic
properties of the coding length/rate function.

The first term in the expression of RsðW;�Þ is the only
part that matters asymptotically (that is, when the number
of vectors in each group goes to infinity) and we denote it as

Rs;1ðW;�Þ¼:
Xk
j¼1

trð�jÞ
2m

log2 det I þ n

"2trð�jÞ
W�jW

T

� �

� trð�jÞ
m

log2

trð�jÞ
m

� �
:

Thus, the global minimum of Rs;1ðW;�Þ determines the
optimal segmentation when the sample size is large.

Theorem 3. The asymptotic part Rs;1ðW;�Þ of the rate-
distortion function RsðW;�Þ is a concave function of � in the
convex domain �¼: f� :

Pk
j¼1 �j ¼ I;�j � 0g.

Proof. Let S be the set of all m�m nonnegative definite
symmetric matrices. We will show that Rs;1ðW;�Þ is
concave as a function from Sk ! IR and also when it is
restricted to the domain of interest � � Sk.

First, consider the second term of Rs;1ðW;�Þ.
Notice that

Pk
j¼1 trð�jÞ ¼ m is a constant. Thus, we

only need to show the concavity of the function
gðP Þ¼: � trðP Þ log2 trðP Þ for P 2 S. The function fðxÞ ¼
�x log2 x is concave, and gðP Þ ¼ fðtrðP ÞÞ. Therefore,
for � 2 ½0; 1�

gð�P1 þ ð1� �ÞP2Þ ¼ fð�trðP1Þ þ ð1� �ÞtrðP2ÞÞ
	 �fðtrðP1ÞÞ þ ð1� �ÞfðtrðP2ÞÞ ¼ �gðP1Þ þ ð1� �ÞgðP2Þ:

Thus, gðP Þ is concave in P .
Now, consider the first term of Rs;1ðW;�Þ. Let

hð�jÞ¼: trð�jÞ log2 det I þ n

"2trð�jÞ
W�jW

T

� �
:

It is well known in information theory that the function
qðP Þ¼: log2 detðP Þ is concave for P 2 S and P � 0 (see
Theorem 7.6.7 in [28]). Now, define r : S ! IR to be

rð�jÞ¼
:

log2 det I þ �W�jW
T

� �
¼ q I þ �W�jW

T
� �

:

Since r is just the concave function q composed with an
affine transformation �j 7!I þ �W�jW

T , r is concave
(see Section 3.2.3 of [29]). Let  : S � IRþ ! IR as
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15. Strictly speaking, the formula is an upper bound for the expected
coding length because LsðW;�Þ is essentially a concave function of the
group assignment � (see the proof of Theorem 3). Hence, LsðW; IE½��Þ 	
IE½LsðW;�Þ� (using that fðIE½x�Þ 	 IE½fðxÞ� for concave functions).

16. Especially when the data W indeed consist of a mixture of subsets
and each group is a typical set of samples from a (almost degenerate)
Gaussian distribution.



 ð�j; tÞ¼: t � log2 det I þ n

"2t
W�jW

T
� �

¼ t � r 1

t
�j

� �
:

According to Theorem 3.2.6 in [29],  is concave. Notice
that H¼: fð�j; tÞ : t ¼ trð�jÞg is a linear subspace in the
product space of IR and the space of all symmetric
matrices. Therefore, H \ ðS � IRþÞ is a convex set, and
the desired function hð�jÞ ¼  ð�j; trð�jÞÞ is just the
restriction of  to this convex set. Thus, h is concave.

Since Rs;1ðW;�Þ is a sum of the concave functions in
�j, it is concave as a function from Sk to IR and, so, is its
restriction to the convex set � in Sk. tu
Since Rs;1ðW;�Þ is concave, its global minimum �� is

always reached at the boundary or, more precisely, at a vertex
of the convex domain �, as shown in Fig. 3. At the vertex of �,
the entries �ij of �� are either 0s or 1s. It means that, even if we
allow soft assignment of each point to the k groups according
to any probabilistic distribution, the optimal solution with
the minimal coding length can always be approximately
achieved by assigning each point to one of the groups with a
probability of 1. This is the reason why Algorithm 1 does not
consider any probabilistic segmentation.

Another implication of the above theorem is that the
problem of minimizing the coding length is essentially a
concave optimization problem. Many effective concave
optimization algorithms can be adopted to find the globally
optimal segmentation, such as the simplex algorithm [23].
However, such generic concave optimization algorithms
typically have high (potentially exponential) complexity. In
Section 5, we will show with extensive simulations and
experiments that the greedy algorithm proposed in Section 2
is already effective in minimizing the coding length.

Interestingly, in multiple-channel communications, the
goal is instead to maximize the channel capacity, which has
very much the same formula as the coding rate function. (See
Appendix C for more detail.) The above theorem suggests
that a higher channel capacity may be achieved inside the
convex domain �, that is, by probabilistically assigning the
transmitters into a certain number of groups. As the coding
rate function is concave, the maximal channel capacity can be
very easily computed via convex optimization [29].

5 SIMULATION AND EXPERIMENTAL RESULTS

In this section, we conduct simulations on a variety of
challenging data sets to examine the effectiveness of the

proposed coding length function as well the performance of
the steepest descent algorithm. In the end, we will also
demonstrate some experimental results of applying the
algorithm to segment imagery and bioinformatic data.

5.1 Simulations

5.1.1 Segmentation of Linear Subspaces of Different

Dimensions

We first demonstrate the ability of the algorithm to segment
noisy samples drawn from a mixture of linear subspaces of
different dimensions. For every d-dimensional subspace,
d� 100 samples are drawn uniformly from a ball of
diameter 1 lying on the subspace. Each sample is corrupted
with independent Gaussian noise of standard deviation
"0 ¼ 0:04. For Algorithm 1, we set " ¼ "0. We compare the
results of Algorithm 1 with those of the EM algorithm for
mixture of factor analyzers [30], followed by an ML
classification step. We have modified the EM algorithm in
[30] slightly to allow it to work for a mixture of factor
analyzers with different dimensions. To avoid the model
selection issue, which we postpone to Section 5.1.6, we
provided the EM algorithm with the correct number and
dimensions of the subspaces. Fig. 4 summarizes the
comparison of results on several configurations tested.

In each case, the algorithm stops at the correct number of
groups, and the dimensions of the segments Wi match those
of the generating subspaces.17 The correctness of the
segmentation is further corroborated by the high percentage
of points correctly classified (by comparing the segments
with the a priori groups). For all five configurations, the
average percentage of samples assigned to the correct group
was at least 90 percent. The main cause of classification error
is points that lie near the intersection of multiple subspaces.
Due to noise, it may actually be more efficient to code such
points according to the optimal coding scheme for one of the
other subspaces. In all cases, Algorithm 1 dramatically
outperforms EM (for a mixture of factor analyzers), despite
requiring no knowledge of the subspace dimensions.

Since in practice "0 is not known, it is important to
investigate the sensitivity of the results to the choice of ".
For each of the examples in Fig. 4, Table 1 gives the range of
" for which Algorithm 1 converges to the a priori number
and dimension of subspaces. Notice that, for each of the
configurations considered, there exists a significant range of
" for which the greedy algorithm converges.

5.1.2 Global Convergence

Empirically, we find that Algorithm 1 does not suffer many
of the difficulties with local minima that plague iterative
clustering algorithms (for example, K-means) and parameter
estimation algorithms (for example, EM). The convergence
appears to depend mostly on the density of the samples
relative to the distortion ". For example, if the number of
samples is fixed at m ¼ 1200, and the data are drawn from
three dn2e-dimensional subspaces in IRn, then the algorithm
converges to the correct solution for n ¼ 2 up to n ¼ 56.
Here, we choose " ¼ "0 ¼ 0:008. Beyond n ¼ 56, the algo-
rithm fails to converge to the three a priori subspaces, as the
samples have become too sparse. For n > 56, the computed
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17. The dimension of each segment Wi is identified using principal
component analysis (PCA) by thresholding the singular values of Wi with
respect to ".

Fig. 3. The function Rs;1ðW;�Þ is a concave function of � over a convex

domain �, which is, in fact, a polytope in the space IRmk. The minimal

coding length is achieved at a vertex �� of the polytope.



segmentation gives a higher coding length than the a priori
segmentation.

The same observation occurs for subspaces with different
dimensions. For example, we randomly draw 800 noisy ð"0 ¼
0:14Þ samples from four subspaces of dimension 20, 15, 15, 10
in IR40. The results of the greedy algorithm at different
distortions " are shown in Fig. 5. As we see from the results,
when the distortion " is very small, the greedy algorithm does
not necessarily converge to the optimal coding length.
Nevertheless, the number of groups, which is 4, is still
identified correctly by the algorithm when " becomes
relatively large.

As described in Section 2, " can potentially be chosen
automatically by minimizing Ls þmn log ", where the
second term approximates (up to a constant) the number
of bits needed to code the residual. The green curve in Fig. 5
shows the value of this penalized coding length. Notice that
its minimum falls very near the true log ". We observe

similar results for other simulated examples: the penalty
term is generally effective in selecting a relevant ".

5.1.3 Robustness to Outliers

We test the robustness of Algorithm 1 to outliers on the
easily visualized example of two lines and a plane in IR3.
One hundred fifty-eight samples are drawn uniformly from
a 2D disc of diameter 1. One hundred samples are drawn
uniformly from each of the two line segments of length 1.
The additive noise level is "0 ¼ 0:03. The data set is
contaminated with mo outliers whose three coordinates
are uniformly distributed on ½�0:5; 0:5�.

As the number of outliers increases, the segmentation
exhibits several distinct phases. For mo � 300 (45.6 percent
outliers), the algorithm always finds the correct segmenta-
tion. The outliers are merged into a single (3D) group. From
mo ¼ 400 (52.8 percent outliers) up tomo ¼ 1100 (75.4 percent

MA ET AL.: SEGMENTATION OF MULTIVARIATE MIXED DATA VIA LOSSY DATA CODING AND COMPRESSION 9

Fig. 4. (a) Simulation results for data drawn from mixtures of noisy linear subspaces. Classification percentages are averaged over 25 trials. Our
algorithm correctly identifies the number and dimension of the subspaces in all 25 trials for all configurations. Far right column: results of using EM for
mixture of factor analyzers with different dimensions [30] with random initialization. (b) The computed segmentation for (2, 1, 1) in IR3 is displayed.

TABLE 1
The Size of the Range of log " for Which the Algorithm 1 Converges to the Correct Number and

Dimension of Groups for Each of the Arrangements Considered in Fig. 4

Fig. 5. (a) The coding length found by the greedy algorithm (the red curve) compared to the ground truth (the blue curve) for data drawn from four

linear subspaces of dimension 20, 15, 15, 10 in IR40. The green curve shows the penalized coding length Ls þmn log ". (b) The number of groups

found by the greedy algorithm. It converges to the correct number, which is 4, when the distortion is relatively large.



outliers), the two lines are correctly identified, but samples on
the plane are merged with the outliers. For mo ¼ 1; 200
(77.4 percent outliers) and above, all of the data samples are
merged into one group, as the distribution of data has become
essentially random in the ambient space. Fig. 6 shows the
results for mo ¼ 300; 400; 1; 100; and 1; 200. Notice that the
effect of adding the outliers (the lines and the plane)
resembles the effect of ice being melted by warm water. This
suggests a similarity between the artificial process of data
clustering and the physical process of phase transition.

5.1.4 Number of Segments versus Distortion Level

Fig. 7 shows how the number of segments changes as "
varies. m ¼ 358 points are drawn from two lines and a
plane, as in the previous experiment and then perturbed
with noise of standard deviation "0 ¼ 0:05. Notice that the
number of groups experiences distinct phases, with abrupt
transitions around several critical values of ". For suffi-
ciently small ", each data point is grouped by itself.
However, as " increases, the cost of coding the group
membership begins to dominate, and all the points are
grouped together in a single 3D subspace (the ambient
space). Around the true noise level, "0, there is another
stable phase, corresponding to the three a priori subspaces.
Finally, as " becomes large, the number of segments reverts
to 1, as it becomes most efficient to represent the points
using a single zero-dimensional subspace (the origin).

This behavior contrasts with the phase transition dis-
cussed in [10]. There, the number of segments increases
monotonically throughout the simulated annealing process.
Because our formulation allows the dimension of the
segments to vary, the number of segments does not

decrease monotonically with ". Notice, however, that the
phase corresponding to the “correct” (a priori) segmenta-
tion is stable over several orders of magnitude of the
parameter ". This is important since, in practice, the true
noise level "0 is usually unknown.

Another interesting thing to notice is that the coding rate
RsðW Þ in many regions is mostly a linear function of� log10 ":
RsðW Þ  �	 log10 "þ � for some constants �; 	 > 0, which is
a typical characteristic of the rate-distortion function of
Gaussians.

For this data set, the algorithm takes about 10 seconds to
run in Matlab on a 1.6-GHz personal computer.

5.1.5 Segmentation of Affine Subspaces

Appendix B shows how the coding length function should
be properly modified in the case when the data are not zero-
mean. Here, we show how the modified algorithm works
for affine subspaces. We drew 358 samples from three linear
subspaces in IR3, and their centers are translated to
½2:1; 2:2; 2�T , ½2:4; 1:9; 2:1�T , and ½1:9; 2:5; 1:9�T .

Fig. 8 shows the segmentation results at different noise
levels, with the distortion level chosen as " ¼ "0. For
10�7 < " < 0:1, the algorithm always identifies the correct
number of subspaces with " ¼ "0. When " � 10�7, the
density of the samples within the subspace becomes more
important than the distortion orthogonal to the subspace,
and the algorithm no longer converges with " ¼ "0.
However, for such small distortion, there always exists a
large stable phase (with respect to changing ") correspond-
ing to the correct number of subspaces k ¼ 3. When
"0 > 0:1, the algorithm starts to fail and merge the data
samples into one or two groups.
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Fig. 6. Segmentation results for data drawn from three linear subspaces, corrupted with various numbers of outliers mo. (a) mo ¼ 300 (45.6 percent

outliers). (b) mo ¼ 400 (52.8 percent outliers). (c) mo ¼ 1; 100 (75.4 percent outliers). (d) mo ¼ 1; 200 (77.0 percent outliers).

Fig. 7. The effect of varying ", with "0 ¼ 0:05. (a) The number of groups k versus logð"Þ. (b) Detail of k versus logð"Þ around logð"0Þ. (c) The coding

rate (bits per vector) versus logð"Þ.



We now fix the Gaussian noise at "0 ¼ 0:02 and add
mo outliers whose three coordinates are uniformly distrib-
uted in the range of [1.5, 2.5], which is the same as the range
of the inliers. When the number of outliers is � mo ¼ 200
(35.8 percent outliers), the algorithm finds the correct
segmentation, and all the outlying samples are segmented
into one group. From mo ¼ 300 (45.6 percent outliers) to
mo ¼ 700 (66.2 percent outliers), the algorithm still identifies
the two lines and one plane. However, the outliers above and
below the plane are clustered into two separate groups. For
more than mo ¼ 800 (69.1 percent outliers), the algorithm
identifies the two lines, but samples from the plane are
merged with the outliers into one group. Fig. 9 shows the
segmentation results mo ¼ 200; 300; 700; 800.

5.1.6 Model Selection for Affine Subspaces and

Nonzero-Mean Gaussians

We compare the performance of Algorithm 1 to that of [4]
and [31] on mixed data drawn from affine subspaces and
nonzero-mean Gaussians. We test the algorithm’s perfor-
mance over multiple trials for three different types of data
distribution. The first is three affine subspaces (two lines
and one plane), with noise of standard deviation "0 ¼ 0:01
and no outliers. Samples are drawn as in the previous
examples. The means of the three groups are fixed (as in the
previous examples), but the orientations of the two lines are
chosen randomly. The second distribution tested is three
affine subspaces (two planes and one line), with 158 points
drawn from each plane and 100 from the line, again with
"0 ¼ 0:01. The orientations of one plane and of the line are
chosen randomly. The final distribution tested is a mixture
of K ¼ 3 full-rank Gaussians in IR2, with means [2, 0], [0, 0],
and [0, 2] and covariance diag(2, 0.2; this is Fig. 3 of [4]).

Nine hundred points are sampled (with uniform prob-
ability) from the three Gaussians.

For the two subspace examples, we run Algorithm 1 with
" ¼ "0 ¼ 0:01. For the third example, we set " ¼ 0:2. We repeat
each trial 50 times. Fig. 10 shows a histogram of the number of
groups arrived at by the three algorithms. For all algorithms,
all of the segmentations with K ¼ 3 are essentially correct
(with the classification error being< 4 percent). However, for
degenerate or subspacelike data (Figs. 10a and 10b), Algo-
rithm 1 was the most likely to converge to the a priori group
number. For full-rank Gaussians (Fig. 10c), Algorithm 1
performs quite well but is outperformed by [4], which finds
the correct segmentation in all 50 trials. The failures of
Algorithm 1 occur because the greedy descent converges to a
local minimum of the coding length rather than the global
minimum.

Note that [4] was not explicitly designed for degenerate
distributions, whereas [31] was not designed for full-rank
distributions. Also, note that the samples in this experiment
were drawn from a uniform distribution. The performance of
each of the three algorithms improves when the generating
distribution is indeed Gaussian. The main implication of the
comparison is therefore that Algorithm 1 succeeds under a
wide range of conditions and requires one to make less
assumptions on the underlying data distribution.

5.2 Experiments on Real Data

In this section, we test the proposed segmentation method
and algorithm on real imagery and bioinformatic data. Our
goal here is to demonstrate that our method is capable of
finding visually appealing structures in real data. However,
we emphasize that it does not provide a complete solution
to any of these practical problems. Such a solution usually
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Fig. 8. The segmentation results for data drawn from three affine subspaces at different noise levels "0. The " in the algorithm is chosen to be " ¼ "0.
(a) "0 ¼ 0:01. (b) "0 ¼ 0:03. (c) "0 ¼ 0:05. (d) "0 ¼ 0:08.

Fig. 9. The segmentation results for data drawn from three affine subspaces with different number of outliers mo. The " in the algorithm is
" ¼ "0 ¼ 0:02. (a) mo ¼ 200 (35.8 percent outliers). (b) mo ¼ 300 (45.6 percent outliers). (c) mo ¼ 700 (66.2 percent outliers). (d) mo ¼ 800
(69.1 percent outliers).



entails a significant amount of domain-specific knowledge

and engineering. Nevertheless, from these preliminary

results with images and microarray data, we believe that

the method presented in this paper provides a generic

solution for segmenting mixed data, which is simple and

effective enough to be easily customized for a broad range

of practical problems.18

5.2.1 Image Segmentation

Fig. 11 shows the segmentation of several images from the
Berkeley segmentation database via Algorithm 1 (using
Lð�Þ for nonzero-mean Gaussian data in Appendix B). The
size of all the images is 480� 320 pixels. We select an
8� 8 window around each pixel to use as a feature vector19

for segmentation. A random subset of 1,000 vectors are
selected. PCA is applied to these vectors, and they are
projected onto their first eight principal components. Sub-
sampling and projection are necessary due to the sheer
volume of data: For a 480� 320 color image, we are dealing
with 153,600 vectors in an 8� 8� 3 ¼ 192-dimensional space,
beyond the computational power and memory of a personal
computer. The subsampled and projected vectors are clus-
teredusingAlgorithm1,with" ¼ 1.Theremainingvectorsare
then grouped with the nearest segment. Fig. 11 displays the
results, without any further pre or postprocessing.

The segmentation can be further improved by first break-
ing the image into many small homogeneous regions via a
superpixel step. We compute the superpixel oversegmenta-
tion by using a publicly available code [34]. We use its
grouping to initialize the steepest descent procedure. To each
pixel, we associate an 8� 8 Gaussian-weighted window as a
feature vector. Spatially adjacent groups are then repeatedly
merged so as to achieve the greatest decrease in the coding
length at each step. Fig. 12 shows some representative results
from the Berkeley segmentation database. The results for the
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Fig. 11. Image segmentation (via the L formula for nonzero-mean Gaussian data), with " ¼ 1. Top row: original images. Bottom row: computed

segmentations. Each segment is painted with its mean color.

18. At the time this paper is being prepared, we have also tested our
algorithm on other mixed data such as speech and handwritten digits. The
results are equally encouraging.

19. Raw pixel values provide a simple and intuitive feature for testing
our approach on real data. More visually appealing segmentations might be
obtained with more sophisticated features (e.g., filterbanks [32], [33]). We
leave this to future work.

Fig. 10. Frequency of occurrence for various K in 50 trials. Top row: Algorithm 1. Middle row: [4]. Bottom row: [31]. (a) and (b) Results for randomly
generated arrangements of affine subspaces. (c) Results for data sets generated from three full-rank Gaussians, as in [4]. For all cases, the correct
number of groups is K ¼ 3.



entire database are available online at http://www.eecs.ber-
keley.edu/~yang/software/lossy_segmentation/. In quan-
titative terms, we find that our algorithm outperforms
standard methods such as Normalized Cuts and Mean-Shift
in terms of several common performance measures (for
example, Variation of Information and Global Consistency
Error). However, the performance in terms of the Boundary
Distance measure is somewhat worse, perhaps due to the
sensitivity of this measure to refinement (for more details, the
reader is referred to [35]).

5.2.2 Clustering of Microarray Data

Fig. 13 shows the result of applying Algorithm 1 to
gene expression data. The data set20 consists of
13,872 vectors in IR19, each of which describes the
expression level of a single gene at different time points
during an experiment on anthrax sporulation. A random

subset of 600 vectors is visualized in Fig. 13a. Here,
rows correspond to genes and columns to time points.
We cluster these vectors without any preprocessing by
using Algorithm 1, with " ¼ 1. The algorithm finds three
distinct clusters, which are displayed in Fig. 13b, by
reordering the rows.

Fig. 14 shows the clustering results from two additional
gene expression data sets.21 The first consists of 8,448 vectors
in IR5, describing the expression levels of yeast genes at five
different time points during a heat shock experiment. Fig. 14a
shows the expression levels for a randomly selected subset of
1,200 genes. We cluster these vectors by using Algorithm 1,
with " ¼ 0:1. Our algorithm discovers a number of visually
coherent clusters, shown in Fig. 14b. The second data set
consists of 45,101 vectors in IR10, each of which corresponds to
the expression level of a single gene under varying
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20. GDS930, available at http://www.ncbi.nlm.nih.gov/projects/geo.
21. GDS34 (left) and GDS1316 (right), also available at http://

www.ncbi.nlm.nih.gov/projects/geo.

Fig. 12. Segmentation results for greedily merging adjacent segments to decrease the coding length. Here, the merging process is initialized via a

superpixel oversegmentation. " ¼ 0:02 for all images. (a) Landscape. (b) Animals. (c) Portraits. (d) Urban. (e) Underwater. (f) Objects.

Fig. 13. Segmentation of microarray data. (a) Raw data. Each row represents the expression level of a single gene. (b) Three distinct clusters are

found, visualized by reordering the rows.



experimental conditions (this experiment investigated
Down-syndrome-related leukemia). We run Algorithm 1,
with " ¼ 1, on a subset of 800 vectors (shown in Fig. 14c).
Three large distinct clusters emerge, shown in Fig. 14d, by
reordering the rows of the data.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a new approach to segment
multivariate mixed data from a lossy data coding/compres-
sion viewpoint. Unlike most conventional model-based top-
down approaches to segmenting the data, our work leads to
a data-driven bottom-up approach to obtain the optimal
segmentation. In addition, this new approach allows us to
examine explicitly the effect of a varying distortion on the
segmentation result. We find that the lossy-data-compres-
sion-based approach and the proposed greedy algorithm
have the following attractive features:

1. The minimum coding length objective and the
proposed greedy algorithm together deal with diffi-
cult issues such as outliers and model selection. The
segmentation result is very stable with respect to
distortion and noise and is very robust with respect to
outliers.

2. The gain or loss of segmentation is measured by a
physically meaningful quantity (binary bits) and the
simulation results resemble the physical phenomen-
on of phase transition.

3. The greedy algorithm harnesses the tightness of the
proposed coding length function for small sets of
samples and takes a bottom-up approach that starts
from merging the data one at a time. Thus, it needs
no initialization and the optimal segmentation is
obtained without knowing anything about the
(underlying) subspace(s) or Gaussian model(s).

4. The greedy algorithm is scalable: Its complexity is
polynomial in both the number of samples and the
dimension of the data. The algorithm usually con-
verges to the optimal solution as long as the distortion
isreasonablewithrespect to thedensityof thesamples.

Our analysis has shown connections of data segmentation
with many fundamental concepts and results in information
theory. The simulations and experiments have suggested

potential connections with phase transition in statistical
physics. From a theoretical standpoint, it would be highly
desirable to obtain analytical conditions on the critical values
of the distortion and the outlier density that can explain and
predict the phase transition of the number of segments.

Moreover, we do not see any technical difficulty in
extending this approach to supervised learning for pur-
poses such as detection, classification, and recognition. It
may also be extended to segment other types of structures
such as non-Gaussian probabilistic distributions and non-
linear manifolds. As we mentioned earlier in the paper,
there are many possible ways to improve the efficiency or
convergence of the greedy algorithm or even develop new
algorithms to minimize the coding length function. We will
investigate such possibilities in the future.

APPENDIX A

LOSSY CODING OF SUBSPACE-LIKE DATA

In Section 3, we have shown that, in principle, one can
construct a coding scheme for a given set of data W 2 IRn�m

such that the average number of bits needed to encode each
vector is bounded

RðWÞ ¼ 1

2
log2 det I þ n

m
2
WWT

� �
ð18Þ

if W is drawn from a multivariate Gaussian distribution of
covariance � ¼ 1

mWWT . However, we do not know in the
nonparametric setting (that is, with finite number of samples)
whether the above coding length is still of any good. In this
appendix, we provide a constructive proof that LðW Þ ¼
ðmþ nÞRðWÞ indeed gives a tight upper bound for the
number of bits needed to encodeW . One interesting feature of
the construction is that the coding scheme apparently relies
on coding the subspace spanned by the vectors (that is, the
singular vectors) and the coordinates of the vectors with
respect to the subspace. Thus, geometrically minimizing the
coding length (via segmentation) is essentially equivalent to
reducing the “dimension” (of each subset) of the data.

Consider the singular value decomposition (SVD) of the
data matrix W ¼ U�V T . Let B ¼ ðbijÞ ¼ �V T . The column
vectors of U ¼ ðuijÞ form a basis for the subspace spanned
by the vectors in W , and the column vectors of B are the
coordinates of the vectors with respect to this basis.
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Fig. 14. Results from two microarray data sets. (a) Raw yeast data. (b) Segmentation, visualized by reordering rows. The algorithm discovers a

number of distinct clusters of varying size. (c) Raw leukemia data. (d) Segmentation. Three clusters are found.



For coding purposes, we store the approximated
matrices U þ �U and Bþ �B. The matrix W can be
recovered as

W þ �W¼: ðU þ �UÞðBþ �BÞ ¼ UBþ �UBþ U�Bþ �U�B:
ð19Þ

Then, �W  �UBþ U�B, as entries of �U�B are negligible
when " is small (relative to the data W ). The squared error
introduced to the entries of W areX

i;j

�w2
ij ¼ tr �W�WT

� �
 tr

�
U�B�BTUT þ �UBBT�UT

þ �UB�BTUT þ U�BBT�UT
�
:

We may further assume that the coding errors �U and �B are
zero-mean independent random variables. Using the fact that
trðABÞ ¼ trðBAÞ, the expected squared error becomes

IE tr �W�WT
� �� �

¼ IE tr �B�BT
� �� �

þ IE tr �2�UT�U
� �� �

:

Now, let us encode each entry bij with a precision

"0 ¼ "ffiffiffi
n
p

and uij with a precision

"00j ¼
"
ffiffiffiffiffi
m
pffiffiffiffiffi
�j

p
n
;

where �j is the jth eigenvalue ofWWT .22 This is equivalent to
assuming that the error �bij is uniformly distributed in the
interval

� "ffiffiffi
n
p ;

"ffiffiffi
n
p

	 


and �uij is uniformly distributed in the interval

� "
ffiffiffiffiffi
m
pffiffiffiffiffi
�j

p
n
;
"
ffiffiffiffiffi
m
pffiffiffiffiffi
�j

p
n

" #
:

Under such a coding precision, it is easy to verify that

IE tr �W�WT
� �� �

� 2"2m

3
< "2m: ð20Þ

Then, the mean squared error per vector in W is

1

m
IE tr �W�WT

� �� �
< "2: ð21Þ

The number of bits needed to store the coordinates bij,
with precision "0 ¼ "ffiffi

n
p , is

Xn
i¼1

Xm
j¼1

1

2
log2 1þ bij

"0

� �2
 !

¼ 1

2

Xn
i¼1

Xm
j¼1

log2 1þ
b2
ijn

"2

 !

� m
2

Xn
i¼1

log2 1þ
n
Pm

j¼1 b
2
ij

m"2

 !
¼ m

2

Xn
i¼1

log2 1þ n�i
m"2

� �
:

In the above inequality, we have applied the following
inequality:

logð1þ a1Þ þ logð1þ a2Þ þ � � � þ logð1þ anÞ
n

� log 1þ a1 þ a2 þ � � � þ an
n

� � ð22Þ

for nonnegative real numbers a1; a2; . . . ; an 	 0.
Similarly, the number of bits needed to store the entries

of the singular vectors uij, with precision "00 ¼ "
ffiffiffi
m
pffiffiffiffi
�i
p

n
, is

Xn
i¼1

Xn
j¼1

1

2
log2 1þ uij

"00

� �2
� �

¼ 1

2

Xn
i¼1

Xn
j¼1

log2 1þ
u2
ijn

2�j

m"2

 !

� n
2

Xn
j¼1

log2 1þ
n2�j

Pn
i¼1 u

2
ij

m"2

 !
¼ n

2

Xn
j¼1

log2 1þ n�j
m"2

� �
:

Thus, for U and B together, we need a total of

LðWÞ ¼ mþ n
2

Xn
i¼1

log2 1þ n�i
m"2

� �

¼ mþ n
2

log2 det I þ n

m"2
WWT

� �
:

ð23Þ

We thus have proven the statement given in the beginning
of this section: LðW Þ ¼ ðmþ nÞRðWÞ gives a good upper
bound on the number of bits needed to encode W .

APPENDIX B

NONZERO-MEAN DISTRIBUTION

In the above analysis, we have assumed that the given

vectors W ¼ ðw1; w2; . . . ; wmÞ are zero mean. In general,

these vectors may have a nonzero mean. In other words, the

points represented by these vectors may lie in an affine

subspace instead of a linear subspace.
In case W is not zero mean, let �¼: 1

m

Pm
i¼1 wi 2 IRn and

define the matrix

V¼: � � 11�m ¼ ð�; �; . . . ; �Þ 2 IRn�m: ð24Þ

Then, �W¼: W � V is a matrix whose column vectors have

zero mean. We may apply the same coding scheme in

Appendix A to �W .
Let �W ¼ U�V T¼: UB be the SVD of �W . Let �U , �B, and ��

be the error in coding U , B, and �, respectively. Then, the
error induced on the matrix W is

�W ¼ �� � 11�m þ U�Bþ �UB: ð25Þ

Assuming that �U , �B, and �� are zero-mean independent

random variables, the expected total squared error is

IE tr �W�WT
� �� �

¼ mIE ��T ��
� �

þ IE tr �B�BT
� �� �

þ IE tr ��UT�U
� �� �

:
ð26Þ

We encode entries of B and U with the same precision as
before. We encode each entry �i of the mean vector �, with
the precision "0 ¼ "ffiffi

n
p , and assume that the error ��i is a

uniform distribution in the interval ½� "ffiffi
n
p ; "ffiffi

n
p �. Then, we have

mIEð��T ��Þ ¼ m"2

3 . By using (20) for the zero-mean case, the
total squared error satisfies

IE tr �W�WT
� �� �

� m"
2

3
þ 2m"2

3
¼ m"2: ð27Þ
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22. Notice that "00j normally does not increase with the number of vectors
m, because �j increases proportionally to m.



Then, the mean squared error per vector in W is still
bounded by "2

1

m
IE tr �W�WT

� �� �
� "2: ð28Þ

Now, in addition to theLð �WÞ bits needed to encodeU and
B, the number of bits needed to encode the mean vector �,
with precision "0 ¼ "ffiffi

n
p , is

Xn
i¼1

1

2
log2 1þ �i

"0

� �2
� �

¼ 1

2

Xn
i¼1

log2 1þ n�
2
i

"2

� �

� n
2

log2 1þ �
T�

"2

� �
;

ð29Þ

where the last inequality is from (22).
Thus, the total number bits needed to store W is

LðW Þ ¼ mþ n
2

log2 det I þ n

m"2
�W �WT

� �
þ n

2
log2 1þ �

T�

"2

� �
:

ð30Þ

Notice that, if W is actually zero mean, then we have � ¼ 0,
�W ¼W , and the above expression for LðWÞ is exactly the

same as before.

APPENDIX C

RELATION TO MULTIPLE-CHANNEL CAPACITY

In wireless communication, the relationship between
m transmitters and n receivers is often modeled as a
fading MIMO channel

y ¼Wxþ z; ð31Þ

where y; z 2 IRn andx 2 IRm. z is a random vector that models
the (additive) channel noise. It is often assumed that z has a
Gaussian distributionNð0; �2IÞ. Then, the model is known as
the additive white Gaussian noise (AWGN) channel.

It is known in multiple-channel communications [36]
that, in the high signal-to-noise ratio (SNR) regime, the
channel capacity is given as

CðWÞ¼: 1

2
log2 det I þ P

m�2
WWT

� �
; ð32Þ

whereP is the total transmission power of them transmitters
[36]. The ratio P=�2 is the common SNR at each receiving
antenna.

We could not help but notice a striking resemblance
between the coding rate RðWÞ in (11) and the wireless
channel capacity CðWÞ in (32). Notice that the noise
variance �2 corresponds to the (entrywise) mean squared
error "2=n. The power P is often assumed to be a constant
and we may normalize it to be 1. Then, the capacity
becomes exactly the coding rate of W

CðWÞ ¼ RðWÞ ¼ 1

2
log2 det I þ n

m"2
WWT

� �
:

Thus, the concavity of the coding rate functionRs;1ðW;�Þ
(Theorem 3 in Section 4) suggests that an even higher channel
capacity may be achieved by probabilistically assigning the
transmitters into multiple groups. The capacity of such a
probabilistic transmitting channel is a concave function in �

CðW;�Þ¼:
Xk
j¼1

trð�jÞ
2m

log2 det I þ n

"2trð�jÞ
W�jW

T

� �

which has a unique maximum (for any given k).
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