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Abstract. Recovering matrices from compressive and grossly corrupted observations is a funda-
mental problem in robust statistics, with rich applications in computer vision and machine learning.
In theory, under certain conditions, this problem can be solved in polynomial time via a natural
convex relaxation, known as Compressive Principal Component Pursuit (CPCP). However, many
existing provably convergent algorithms for CPCP su↵er from superlinear per-iteration cost, which
severely limits their applicability to large scale problems. In this paper, we propose provably con-
vergent, scalable and e�cient methods to solve CPCP with (essentially) linear per-iteration cost.
Our method combines classical ideas from Frank-Wolfe and proximal methods. In each iteration, we
mainly exploit Frank-Wolfe to update the low-rank component with rank-one SVD and exploit the
proximal step for the sparse term. Convergence results and implementation details are discussed.
We demonstrate the practicability and scalability of our approach with numerical experiments on
visual data.
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1. Introduction. Suppose that a matrix M0 2 Rm⇥n is of the form M0 =
L0 +S0 +N0, where L0 is a low-rank matrix, S0 is a sparse error matrix, and N0 is
a dense noise matrix. Linear measurements

(1.1) b = A[M0] =
�
hA1,M0i , hA2,M0i , . . . , hAp,M0i

�> 2 Rp

are collected, where A : Rm⇥n ! Rp is the sensing operator, Ak is the sensing matrix
for the k-th measurement and hAk,M0i

.
= Tr(M>

0 Ak). Can we, in a tractable way,

recover L0 and S0 from b, given A?

One natural approach is to solve the optimization

(1.2) min
L,S

1

2
kb�A[L+ S]k22 + �Lrank(L) + �S kSk0 .

Here, �L and �S are regularization parameters, and kSk0 denotes the number of
nonzero entries in S.

Unfortunately, problem (1.2) is nonconvex, and hence is not directly tractable.
However, by replacing the `0 norm kSk0 with the `1 norm kSk1

.
=
Pm

i=1

Pn
j=1 |Sij |,

and replacing the rank rank(L) with the nuclear norm kLk
⇤

(i.e., the sum of the
singular values of L), we obtain a natural, tractable, convex relaxation of (1.2),

(1.3) min
L,S

1

2
kb�A[L+ S]k22 + �L kLk

⇤

+ �S kSk1 .

This optimization is sometimes referred to as compressive principal component pursuit

(CPCP) [1]. Equivalently, since
�
M 2 Rm⇥n | b = A[M ]

 
=

�
M 2 Rm⇥n | PQ[M ] = PQ[M0]

 
,
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where Q ✓ Rm⇥n is a linear subspace spanned by {Ai}pi=1, and PQ denotes the
projection operator onto that subspace, we can rewrite problem (1.3) in the (possibly)
more compact form⇤

(1.4) min
L,S

f(L,S)
.
=

1

2
kPQ[L+ S �M0]k2F + �L kLk

⇤

+ �S kSk1 .

Recently, CPCP and close variants of it have been studied for di↵erent sensing
operators A (or equivalently di↵erent subspaces Q). Specifically, [2, 3, 4, 5, 6] consider
the case where a subset ⌦ ✓ {1, 2, . . . ,m} ⇥ {1, 2, . . . , n} of the entries of M0 is
observed. Then CPCP can be reduced to

(1.5) min
L,S

1

2
kP⌦[L+ S �M0]k2F + �L kLk

⇤

+ �S kSk1 ,

where P⌦[·] denotes the orthogonal projection onto the linear space of matrices sup-
ported on ⌦, i.e., P⌦[M0](i, j) = (M0)ij if (i, j) 2 ⌦ and P⌦[M0](i, j) = 0 otherwise.
[1] studies the case where each Ak is a iid N (0, 1) matrix, which is equivalent (in dis-
tribution) to saying that we choose a linear subspace Q uniformly at random from the
set of all p-dimensional subspaces of Rm⇥n and observe PQ[M0]. Consentaneously,
all the above works manage to provide theoretical guarantees for CPCP, under fairly
mild conditions, to produce accurate estimates of L0 and P⌦[S0] (or S0), even when
the number of measurements p is much less than mn.

Inspired by these theoretical results, researchers from di↵erent fields have lever-
aged CPCP to solve many practical problems, including video background modeling
[3], batch image alignment [7], face verification [8], photometric stereo [9], dynamic
MRI [10], topic modeling [11], latent variable graphical model learning [12] and outlier
detection and robust Principal Component Analysis [3], just to name a few.

Living in the era of big data, most of these applications involve large datasets and
high dimensional data spaces. Therefore, to fully realize the benefit of the theory,
we need provably convergent and scalable algorithms for CPCP. This has motivated
much research into the development of first-order methods for problem (1.4) and
its variants; e.g see [13, 14, 15, 16, 17, 18]. These methods all exploit a closed-
form expression for the proximal operator of the nuclear norm, which involves the
singular value decompsition (SVD). Hence, the dominant cost in each iteration is
computing an SVD of the same size as the input data. This is substantially more
scalable than o↵-the-shelf interior point solvers such as SDPT3 [19]. Nevertheless,
the superlinear cost of each iteration has limited the practical applicability of these
first-order methods to problems involving several thousands of data points and several
thousands of dimensions. The need to compute a sequence of full or partial SVD’s is
a serious bottleneck for truly large scale applications.

As a remedy, in this paper, we design more scalable algorithms to solve CPCP that
compute only a rank-one SVD in each iteration. Our approach leverages two classical
and widely studied ideas – Frank-Wolfe iterations to handle the nuclear norm, and
proximal steps to handle the `1 norm. This turns out to be an ideal combination of
techniques to solve large scale CPCP problems. In particular, it yields algorithms that

⇤To transform problem (1.3) into problem (1.4), simple procedures like Gram-Schmidt might be
invoked. Despite being equivalent, one formulation might be preferred over the other in practice,
depending on the specifications of the sensing operator A[·]. In this paper, we will mainly focus on
solving problem (1.4) and its variants. Our methods, however, are not restrictive to (1.4) and can
be easily extended to problem (1.3).
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are substantially more scalable than prox-based first-order methods such as ISTA and
FISTA [20], and converge much faster in practice than a straightforward application
of Frank-Wolfe.

The remainder of this paper is organized as follows. Section 2 reviews the general
properties of the Frank-Wolfe algorithm, and describes several basic building blocks
that we will use in our algorithms. Section 3 and Section 4 respectively describe how
to modify the Frank-Wolfe algorithm to solve CPCP’s norm constrained version

(1.6) min
L,S

l(L,S)
.
=

1

2
kPQ[L+ S �M0]k2F s.t. kLk

⇤

 ⌧L, kSk1  ⌧S ,

and the penalized version, i.e. problem (1.4), by incorporating proximal regularization
to more e↵ectively handle the `1 norm. Convergence results and our implementation
details are also discussed. Section 5 presents numerical experiments on large datasets
that demonstrate the scalability of our proposed algorithms. After briefly discussing
contributions in Section 6, we present proofs of all theorems and lemmas involved in
the paper in the Appendix.

2. Preliminaries.

2.1. Frank-Wolfe method. The Frank-Wolfe (FW) method [21], also known
as the conditional gradient method [22], applies to the general problem of minimizing
a di↵erentiable convex function h over a compact, convex domain D ✓ Rn:

(2.1) minimize h(x) subject to x 2 D ✓ Rn.

Here, rh is assumed to be L-Lipschitz:

(2.2) 8x, y 2 D, krh(x)�rh(y)k  L kx� yk .

Throughout, we let D = max
x,y2D

kx� yk denote the diameter of the feasible set D.
In its simplest form, the Frank-Wolfe algorithm proceeds as follows. At each

iteration k, we linearize the objective function h about the current point xk:

(2.3) h(v) ⇡ h(xk) +
⌦
rh(xk),v � x

k
↵
.

Weminimize the linearization over the feasible setD to obtain v

k 2 argmin
v2D

⌦
rh(xk),v

↵

and then take a step in the feasible descent direction v

k � x

k:

(2.4) x

k+1 = x

k +
2

k + 2
(vk � x

k).

This yields a very simple procedure, which we summarize as Algorithm 1. The par-
ticular step size, 2

k+2 , comes from the convergence analysis of the algorithm, which
we discuss in more detail below.

First proposed in [21], FW-type methods have been frequently revisited in di↵er-
ent fields. Recently, they have experienced a resurgence in statistics, machine learning
and signal processing, due to their ability to yield highly scalable algorithms for op-
timization with structure-encouraging norms such as the `1 norm and nuclear norm.
In particular, if x is a matrix and D = {x | kxk

⇤

 �} is a nuclear norm ball, the
subproblem

(2.5) min
v2D

hv,rh(x)i
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Algorithm 1 Frank-Wolfe method for problem (2.1)

1: Initialization: x

0 2 D;
2: for k = 0, 1, 2, · · · do
3: v

k 2 argmin
v2D

⌦
v,rh(xk)

↵
;

4: � = 2
k+2 ;

5: x

k+1 = x

k + �(vk � x

k);
6: end for

can be solved using only the singular vector pair corresponding to the single leading
singular value of the matrix rh(x). Thus, at each iteration, we only have to compute
a rank-one partial SVD. This is substantially cheaper than the full/partial SVD ex-
ploited in proximal methods [23, 24]. We recommend [25] as a comprehensive survey
of the latest developments in FW-type methods.

Algorithm 2 Frank-Wolfe method for problem (2.1) with general updating scheme

1: Initialization: x

0 2 D;
2: for k = 0, 1, 2, · · · do
3: v

k 2 argmin
v2D

⌦
v,rh(xk)

↵
;

4: � = 2
k+2 ;

5: Update x

k+1 to some point in D such that h(xk+1)  h(xk + �(vk � x

k));
6: end for

In the past five decades, numerous variants of Algorithm 1 have been proposed
and implemented. Many modify Algorithm 1 by replacing the simple updating rule
(2.4) with more sophisticated schemes, e.g.,

(2.6) x

k+1 2 argmin
x

h(x) s.t. x 2 conv{xk, vk}

or

(2.7) x

k+1 2 argmin
x

h(x) s.t. x 2 conv{xk, vk, vk�1, . . . , vk�j}.

The convergence of these schemes can be analyzed simultaneously, using the fact that
they produce iterates xk+1 whose objective is no greater than that produced by the
original Frank-Wolfe update scheme:

h(xk+1)  h(xk + �(vk � x

k)).

Algorithm 2 states a general version of Frank-Wolfe, whose update is only required
to satisfy this relationship. It includes as special cases the updating rules (2.4), (2.6)
and (2.7). This flexibility will be crucial for e↵ectively handling the sparse structure
in the CPCP problems (1.4) and (1.6).

The convergence of Algorithm 2 can be proved using well-established techniques
[24, 25, 26, 27, 28, 29, 30, 31]. Using these ideas, we can show that it converges at a
rate of O(1/k) in function value:

Theorem 2.1. Let x

?
be an optimal solution to (2.1). For {xk} generated by

Algorithm 2, we have for k = 0, 1, 2, . . . ,

(2.8) h(xk)� h(x?)  2LD2

k + 2
.
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Note that the constant on the rate of convergence depends on the Lipschitz constant
L of h and the diameter D. This result was perhaps first derived by [26]. For
completeness, we provide a proof of Theorem 2.1 in the Appendix.

While Theorem 2.1 guarantees that Algorithm 2 converges at a rate of O(1/k),
in practice it is useful to have a more precise bound on the suboptimality at iterate
k. The surrogate duality gap

(2.9) d(xk) =
⌦
x

k � v

k,rh(xk)
↵
,

provides a useful upper bound on the suboptimality h(xk)� h(x?) :

h(xk)� h(x?)  �
⌦
x

? � x

k,rh(xk)
↵

 �min
v

⌦
v � x

k,rh(xk)
↵
=
⌦
x

k � v

k,rh(xk)
↵
= d(xk).(2.10)

This was first proposed in [21] and later [25] shows that d(xk) = O(1/k). In the
Appendix, we prove the following refinement of this result, using ideas from [25, 30]:

Theorem 2.2. Let {xk} be the sequence generated by Algorithm 2. Then for any

K � 1, there exists 1  k̃  K such that

(2.11) d(xk̃)  6LD2

K + 2
.

Since this matches the worst case convergence rate for h(xk) � h(x?) (see (2.8)), it
suggests that the upper bound d(xk) provides a valid stopping criterion in practice.

For our problem, the main computational burden in Algorithms 1 and 2 will be
solving the linear subproblem min

v2D

⌦
v,rh(xk)

↵
, † i.e. minimizing linear functions

over the unit balls for k·k
⇤

and k·k1. Fortunately, both of these operations have simple
closed-form solutions, which we will describe in the next section.

2.2. Optimization oracles. We now describe several optimization oracles in-
volving the `1 norm and the nuclear norm, which serve as the main building blocks
for our methods. These oracles have computational costs that are (essentially) linear
in the size of the input.

Minimizing a linear function over the nuclear norm ball. Since the dual
norm of the nuclear norm is the operator norm, i.e., kY k = max

kXk⇤1 hY ,Xi, the
optimization problem

(2.12) minimize
X

hY ,Xi subject to kXk
⇤

 1

has optimal value �kY k. One minimizer is the rank-one matrix X

? = �uv

>, where
u and v are the left- and right- singular vectors corresponding to the leading singular
value of Y , and can be e�ciently computed (e.g. using power method).

Minimizing a linear function over the `1 ball. Since the dual norm of
the `1 norm is the `

1

norm, i.e., kY k
1

:= max(i,j) |Yij | = max
kXk11 hY ,Xi, the

optimization problem

(2.13) minimize
X

hY ,Xi subject to kXk1  1

has optimal value �kY k
1

. One minimizer is the one-sparse matrix X

? = �ei?e
>
j? ,

where (i?, j?) 2 argmax(i,j) |Yij |; i.e. X? has exactly one nonzero element.

†In some situations, we can significantly reduce this cost by solving this problem inexactly [27, 25].
Our algorithms and results can also tolerate inexact step calculations; we omit the discussion here
for simplicity.
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Projection onto the `1-ball. To e↵ectively handle the sparse term in the norm
constrained problem (1.6), we will need to modify the Frank-Wolfe algorithm by in-
corporating additional projection steps. For any Y 2 Rm⇥n and � > 0, the projection
onto the `1-ball:

(2.14) P
k·k1� [Y ] = arg min

kXk1�

1

2
kX � Y k2F ,

can be easily solved with O (mn(logm+ log n)) cost [32]. Moreover, a divide and
conquer algorithm, achieving linear cost in expectation to solve (2.14), has also been
proposed in [32].

Proximal mapping of `1 norm. To e↵ectively handle the sparse term arising
in problem (1.4), we will need to modify the Frank-Wolfe algorithm by incorporating
additional proximal steps. For any Y 2 Rm⇥n and � > 0, the proximal mapping of
`1 norm has the following closed-form expression

(2.15) T�[Y ] = arg min
X2Rm⇥n

1

2
kX � Y k2F + � kXk1 ,

where T� : R ! R denotes the soft-thresholding operator T�(x) = sgn(x)max{|x| �
�, 0}, and extension to matrices is obtained by applying the scalar operator T�(·) to
each element.

3. FW-P Method for Norm Constrained Problem. In this section, we de-
velop scalable algorithms for the norm-constrained compressive principal component
pursuit problem,

(3.1) min
L,S

l(L,S) =
1

2
kPQ[L+ S �M ]k2F s.t. kLk

⇤

 ⌧L, kSk1  ⌧S .

We first describe a straightforward application of the Frank-Wolfe method to this
problem. We will see that although it has relatively cheap iterations, it converges very
slowly on typical numerical examples, because it only makes a one-sparse update to the
sparse term S at a time. We will show how to remedy this problem by augmenting the
FW iteration with an additional proximal step (essentially a projected gradient step)
in each iteration, yielding a new algorithm which updates S much more e�ciently.
Because it combines Frank-Wolfe and projection steps, we will call this new algorithm
Frank-Wolfe-Projection(FW-P).

Properties of the objective and constraints.. To apply Frank-Wolfe to (3.1), we
first note that the objective l(L,S) in (3.1) is di↵erentiable, with

r
L

l(L,S) = PQ[L+ S �M ](3.2)

r
S

l(L,S) = PQ[L+ S �M ].(3.3)

Moreover, the following lemma shows that the gradient map rl(L,S) = (r
L

l,r
S

l)
is 2-Lipschitz:

Lemma 3.1. For all (L,S) and (L0,S0), we have krl(L,S)�rl(L0,S0)kF 
2 k(L,S)� (L0,S0)kF .
The feasible set in (3.1) is compact. The following lemma bounds its diameter D:

Lemma 3.2. The feasible set D = {(L,S) | kLk
⇤

 ⌧L, kSk1  ⌧S} has diameter

D  2
p
⌧2L + ⌧2S.
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3.1. Frank-Wolfe for problem (3.1). Since (3.1) asks us to minimize a convex,
di↵erentiable function with Lipschitz gradient over a compact convex domain, the
Frank-Wolfe method in Algorithm 1 applies. It generates a sequence of iterates xk =
(Lk,Sk). Using the expression for the gradient in (3.2)-(3.3), at each iteration, the
step direction v

k = (V k
L ,V k

S ) is generated by solving the linearized subproblem
✓

V

k
L

V

k
S

◆
2 argmin

⌧✓
PQ[Lk + S

k �M ]
PQ[Lk + S

k �M ]

◆
,

✓
VL

VS

◆�
(3.4)

s.t. kVLk
⇤

 ⌧L, kVSk1  ⌧S ,

which decouples into two independent subproblems:

V

k
L 2 arg min

kVLk⇤⌧L
hPQ[L

k + S

k �M ], VLi,

V

k
S 2 arg min

kVSk1⌧S
hPQ[L

k + S

k �M ], VSi.

These subproblems can be easily solved by exploiting the linear optimization oracles
introduced in Section 2.2. In particular,

V

k
L = �⌧Lu

k(vk)>,(3.5)

V

k
S = �⌧Se

k
i?(e

k
j?)

>,(3.6)

where uk and v

k are leading left- and right- singular vectors of PQ[Lk+S

k�M ] and
(i?, j?) is the of the largest element of PQ[Lk +S

k �M ] in magnitude. Algorithm 3
gives the Frank-Wolfe method specialized to problem (3.1).

Algorithm 3 Frank-Wolfe method for problem (3.1)

1: Initialization: L

0 = S

0 = 0;
2: for k = 0, 1, 2, · · · do
3: D

k
L 2 argmin

kDLk⇤1hPQ[Lk + S

k �M ], DLi; V k
L = ⌧LD

k
L;

4: D

k
S 2 argmin

kDSk11hPQ[Lk + S

k �M ], DSi; V k
S = ⌧SD

k
S ;

5: � = 2
k+2 ;

6: L

k+1 = L

k + �(V k
L �L

k);
7: S

k+1 = S

k + �(V k
S � S

k);
8: end for

The major advantage of Algorithm 3 derives from the simplicity of the update
rules (3.5)-(3.6). Both have closed form, and both can be computed in time (essen-
tially) linear in the size of the input. Because V

k
L is rank-one, the algorithm can be

viewed as performing a sequence of rank one updates.
The major disadvantage of Algorithm 3 is that S has only a one-sparse update

at each iteration, since V

k
S = �⌧Se

k
i?(e

k
j?)

> has only one nonzero entry. This is
a significant disadvantage in practice, as the optimal S? may have a relatively large
number of nonzero entries. Indeed, in theory, the CPCP relaxation works even when a
constant fraction of the entries in S0 are nonzero. In applications such as foreground-
background separation, the number of nonzero entries in the target sparse term can
be quite large. The red curves in Figure 1 show the e↵ect of this on the practical
convergence of the algorithm, on a simulated example of size 1, 000⇥ 1, 000, in which
about 1% of the entries in the target sparse matrix S0 are nonzero. As shown, the
progress is quite slow.
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Fig. 1. Comparisons between Algorithms 3 and 4 for problem (3.1) on synthetic data.

The data are generated in Matlab as m = 1000; n = 1000; r = 5; L0 = randn(m, r) ⇤ randn(r, n);
Omega = ones(m, n); S0 = 100 ⇤ randn(m, n). ⇤ (rand(m, n) < 0.01); M = L0 + S0 + randn(m, n);
⌧L = norm nuc(L0); ⌧S = norm(vec(S0), 1); The left figure plots log10(

��
L

k �L0
��
F
/ kL0kF )

versus the iteration number k. The right figure plots log10(
��
S

k � S0
��
F
/ kS0kF ) versus k. The

FW-P method is clearly more e�cient than the straightforward FW method in recovering L0 and
S0.

3.2. FW-P algorithm: combining Frank-Wolfe and projected gradient.
To overcome the drawback of the naive Frank-Wolfe algorithm described above, we
propose incorporating an additional gradient projection step after each Frank-Wolfe
update. This additional step updates the sparse term S only, with the goal of ac-
celerating convergence in these variables. At iteration k, let (Lk+1/2,Sk+1/2) be the
result produced by Frank-Wolfe. To produce the next iterate, we retain the low rank
term L

k+1/2, but set

S

k+1 = P
k·k1⌧S

h
S

k+ 1
2 �r

S

l(Lk+ 1
2 ,Sk+ 1

2 )
i

(3.7)

= P
k·k1⌧S

h
S

k+ 1
2 � PQ[L

k+ 1
2 + S

k+ 1
2 �M ]

i
;(3.8)

i.e. we simply take an additional projected gradient step in the sparse term S. The
resulting algorithm is presented as Algorithm 4 below. We call this method the FW-P
algorithm, as it combines Frank-Wolfe steps and projections. In Figure 1, we compare
Algorithms 3 and 4 on synthetic data. In this example, the FW-P method is clearly
more e�cient in recovering L0 and S0.

The convergence of Algorithm 4 can be analyzed by recognizing it as a specific
instance of the generalized Frank-Wolfe iteration in Algorithm 2. This projection step
(3.8) can be regarded as a proximal step to set Sk+1 as

arg min
kSk1⌧S

l̂k+
1
2 (S) := l(Lk+ 1

2 ,Sk+ 1
2 )+hr

S

l(Lk+ 1
2 ,Sk+ 1

2 ),S�S

k+ 1
2 i+1

2

���S � S

k+ 1
2

���
2

F
.

It can then be easily verified that

(3.9) l̂k+
1
2 (Sk+ 1

2 ) = l(Lk+ 1
2 ,Sk+ 1

2 ), and l̂k+
1
2 (S) � l(Lk+ 1

2 ,S) for any S,

since r
S

l(L,S) is 1-Lipschitz. This implies that the FW-P algorithm chooses a next
iterate whose objective is no worse than that produced by the Frank-Wolfe step:

l(Lk+1,Sk+1) = l(Lk+ 1
2 ,Sk+1)  l̂k+

1
2 (Sk+1)  l̂k+

1
2 (Sk+ 1

2 ) = l(Lk+ 1
2 ,Sk+ 1

2 ).
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Algorithm 4 FW-P method for problem (3.1)

1: Initialization: L

0 = S

0 = 0;
2: for k = 0, 1, 2, · · · do
3: D

k
L 2 argmin

kDLk⇤1hPQ[Lk + S

k �M ], DLi; V k
L = ⌧LD

k
L;

4: D

k
S 2 argmin

kDSk11hPQ[Lk + S

k �M ], DSi; V k
S = ⌧SD

k
S ;

5: � = 2
k+2 ;

6: L

k+ 1
2 = L

k + �(V k
L �L

k);

7: S

k+ 1
2 = S

k + �(V k
S � S

k);

8: S

k+1 = P
k·k1⌧S

⇥
S

k+ 1
2 � PQ[Lk+ 1

2 + S

k+ 1
2 �M ]

⇤
;

9: L

k+1 = L

k+ 1
2 ;

10: end for

This is precisely the property that is required to invoke Algorithm 2 and Theorems
2.1 and 2.2. Using Lemmas 4.1 and 4.2 to estimate the Lipschitz constant of rl and
the diameter of D, we obtain the following result, which shows that FW-P retains the
O(1/k) convergence rate of the original FW method:

Theorem 3.3. Let l? be the optimal value to problem (3.1), xk = (Lk,Sk) and

v

k = (V k
L ,V k

S ) be the sequence produced by Algorithm 4. Then we have

(3.10) l(Lk,Sk)� l?  16(⌧2L + ⌧2S)

k + 2
.

Moreover, for any K � 1, there exists 1  k̃  K such that the surrogate duality gap

(defined in (2.9)) satisfies

(3.11) d(xk̃) =
D
x

k̃ � v

k̃,rl(xk̃)
E
 48(⌧2L + ⌧2S)

K + 2
.

4. FW-T Method for Penalized Problem. In this section, we develop a
scalable algorithm for the penalized version of the CPCP problem,

min
L,S

f(L,S)
.
=

1

2
kPQ[L+ S �M ]k2F + �L kLk

⇤

+ �S kSk1 .(4.1)

In Section 4.1, we reformulate problem (4.1) into the form of (2.1) so that the Frank-
Wolfe method can be applied. In Section 4.2, we apply the Frank-Wolfe method
directly to the reformulated problem, achieving linear per-iteration cost and O(1/k)
convergence in function value. However, because it updates the sparse term one
element at a time, it converges very slowly on typical numerical examples. In Section
4, we introduce our FW-T method, which resolves this issue. Our FW-T method
essentially exploits the Frank-Wolfe step to handle the nuclear norm and a proximal
gradient step to handle the `1-norm, while keeping iteration cost low and retaining
convergence guarantees.

4.1. Reformulation as smooth, constrained optimization. Note that prob-
lem (4.1) has a non-di↵erentiable objective function and an unbounded feasible set.
To apply the Frank-Wolfe method, we exploit a two-step reformulation to transform
(4.1) into the form of (2.1). First, we borrow ideas from [24] and work with the
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epigraph reformulation of (4.1),

min g(L,S, tL, tS)
.
=

1

2
kPQ[L+ S �M ]k2F + �LtL + �StS

s.t. kLk
⇤

 tL, kSk1  tS ,(4.2)

obtained by introducing auxiliary variables tL and tS . Now the objective function
g(L,S, tL, tS) is di↵erentiable, with

rLg(L,S, tL, tS) = rSg(L,S, tL, tS) = PQ[L+ S �M ],(4.3)

rtLg(L,S, tL, tS) = �L, rtSg(L,S, tL, tS) = �S .(4.4)

A calculation, which we summarize in the following lemma, shows that the gradient
rg(L,S, tL, tS) = (rLg,rSg,rtLg,rtSg) is 2-Lipschitz:

Lemma 4.1. For all (L,S, tL, tS) and (L0,S0, t0L, t
0

S) feasible to (4.2),
(4.5)

krg(L,S, tL, tS)�rg(L0,S0, t0L, t
0

S)kF  2 k(L,S, tL, tS)� (L0,S0, t0L, t
0

S)kF .

However, the Frank-Wolfe method still cannot deal with (4.2), since its feasible
region is unbounded. If we could somehow obtain upper bounds on the optimal values
of tL and tS : UL � t?L and US � t?S , then we could solve the equivalent problem

min
1

2
kPQ[L+ S �M ]k2F + �LtL + �StS(4.6)

s.t. kLk
⇤

 tL  UL, kSk1  tS  US ,

which now has a compact and convex feasible set. One simple way to obtain such
UL, US is as follows. One trivial feasible solution to problem (4.2) is L = 0, S = 0,
tL = 0, tS = 0. This solution has objective value 1

2 kPQ[M ]k2F . Hence, the optimal
objective value is no larger than this. This implies that for any optimal t?L, t

?
S ,

t?L  1

2�L
kPQ[M ]k2F , t?S  1

2�S
kPQ[M ]k2F .(4.7)

Hence, we can always choose

(4.8) UL =
1

2�L
kPQ[M ]k2F , US =

1

2�S
kPQ[M ]k2F

to produce a valid, bounded feasible region. The following lemma bounds its diameter
D:

Lemma 4.2. The feasible set D = {(L,S, tL, tS) | kLk
⇤

 tL  UL, kSk1  tS  US}
has diameter D 

p
5 ·

p
U2
L + U2

S.

With these modifications, we can apply Frank-Wolfe directly to obtain a solution
(bL, bS, btL, btS) to (4.6), and hence to produce a solution (bL, bS) to the original problem
(4.1). In subsection 4.2, we describe how to do this. Unfortunately, this straightfor-
ward solution has two main disadvantages. First, as in the norm constrained case, it
produces only one-sparse updates to S, which results in slow convergence. Second,
the exact primal convergence rate in Theorem 2.1 depends on the diameter of the
feasible set, which in turn depends on the accuracy of our (crude) upper bounds UL

and US . In subsection 4.3, we show how to remedy both issues, yielding a Frank-
Wolfe-Thresholding method that performs significantly better in practice.
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4.2. Frank-Wolfe for problem (4.6). Applying the Frank-Wolfe method in
Algorithm 1 generates a sequence of iterates xk = (Lk,Sk, tkL, t

k
S). Using the expres-

sions for the gradient in (4.3) and (4.4), at each iteration, vk = (V k
L ,V k

S , V k
tL , V

k
tS ) is

generated by solving the linearized subproblem

v

k 2 argmin
v2D

⌦
PQ[L

k + S

k �M ],VL + VS

↵
+ �LVtL + �SVtS ,(4.9)

which can be decoupled into two independent subproblems,

(V k
L , V k

tL) 2 arg min
kVLk⇤VtL

UL

gL(VL, VtL)
.
=
⌦
PQ[L

k + S

k �M ],VL

↵
+ �LVtL(4.10)

(V k
S , V k

tS ) 2 arg min
kVSk1VtS

US

gS(VS , VtS )
.
=
⌦
PQ[L

k + S

k �M ],VS

↵
+ �SVtS .(4.11)

Let us consider problem (4.10) first. Set

(4.12) D

k
L 2 arg min

kDLk⇤1
ĝL(DL)

.
=
⌦
PQ[L

k + S

k �M ],DL

↵
+ �L.

Because gL(VL, VtL) is a homogeneous function, i.e., gL(↵VL,↵VtL) = ↵gL(VL, VtL),
for any ↵ 2 R, its optimal value g(V k

L , V k
tL) = V k

tL ĝL(D
k
L). Hence V k

tL = UL if
ĝL(Dk

L) < 0, and V k
tL = 0 if ĝL(Dk

L) > 0. From this observation, it can be easily
verified (see also [24, Lemma 1] for a more general result) that

(4.13) (V k
L , V k

tL) 2

8
><

>:

{(0, 0)} if ĝL(Dk
L) > 0

conv{(0, 0), UL(Dk
L, 1)} if ĝL(Dk

L) = 0�
UL(Dk

L, 1)
 

if ĝL(Dk
L) < 0.

In a similar manner, we can update (V k
S , V k

tS ). This leads fairly directly to the im-
plementation of the Frank-Wolfe method for problem (4.6), described in Algorithm
5. As a direct corollary of Theorem 2.1, using parameters calculated in Lemmas 4.1
and 4.2, we have

Corollary 4.3. Let x

? = (L?,S?, t?L, t
?
S) be an optimal solution to (4.6). For

{xk} generated by Algorithm 5, we have

‡

for k = 0, 1, 2, . . . ,

(4.14) g(xk)� g(x?)  20(U2
L + U2

S)

k + 2
.

In addition to the above convergence result, another major advantage of Algorithm 5
is the simplicity of the update rules (lines 3-4 in Algorithm 5). Both have closed-form
solutions that can be computed in time (essentially) linearly dependent on the size of
the input.

However, two clear limitations substantially hinder Algorithm 5’s e�ciency. First,
as in the norm constrained case, V k

S has only one nonzero entry, so S has a one-sparse
update in each iteration. Second, the exact rate of convergence relies on our (crude)
guesses of UL and US (Corollary 4.3). In the next subsection, we present remedies to
resolve both issues.

4.3. FW-T algorithm: combining Frank-Wolfe and proximal methods.
To alleviate the di�culties faced by Algorithm 5, we propose a new algorithm called
Frank-Wolfe-Thresholding (FW-T) (Algorithm 6), that combines a modified FW step
with a proximal gradient step. Below we highlight the key features of FW-T.

‡A more careful calculation would lead us to g(xk)� g(x?)  16(U2
L+U2

S)
k+2 , which we also include

in the appendix.
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Algorithm 5 Frank-Wolfe method for problem (4.6)

1: Initialization: L

0 = S

0 = 0; t0L = t0S = 0;
2: for k = 0, 1, 2, · · · do
3: D

k
L 2 argmin

kDLk⇤1hPQ[Lk + S

k �M ], DLi;
4: D

k
S 2 argmin

kDSk11hPQ[Lk + S

k �M ], DSi;
5: if �L � �hPQ[Lk + S

k �M ], Dk
Li then

6: V

k
L = 0; V k

tL = 0
7: else
8: V

k
L = ULD

k
L, V

k
tL = UL;

9: end if
10: if �S � �hPQ[Lk + S

k �M ], Dk
Si then

11: V

k
S = 0; V k

tS = 0;
12: else
13: V

k
S = USD

k
S , V

k
tS = US ;

14: end if
15: � = 2

k+2 ;

16: L

k+1 = (1� �)Lk + �V k
L , tk+1

L = (1� �)tkL + �V k
tL ;

17: S

k+1 = (1� �)Sk + �V k
S , tk+1

S = (1� �)tkS + �V k
tS ;

18: end for

Proximal gradient step for S. To update S in a more e�cient way, we incor-
porate an additional proximal gradient step for S. At iteration k, let (Lk+ 1

2 ,Sk+ 1
2 )

be the result produced by Frank-Wolfe step. To produce the next iterate, we re-
tain the low-rank term L

k+ 1
2 , but execute a proximal gradient step for the function

f(Lk+ 1
2 ,S) at the point Sk+ 1

2 , i.e.

S

k+1 2 argmin
S

D
r

S

f(Lk+ 1
2 ,Sk+ 1

2 ), S � S

k+ 1
2

E
+

1

2

���S � S

k+ 1
2

���
2

F
+ �S kSk1

=argmin
S

D
PQ[L

k+ 1
2 + S

k+ 1
2 �M ],S � S

k+ 1
2

E
+

1

2

���S � S

k+ 1
2

���
2

F
+ �S kSk1

(4.15)

which can be easily computed using the soft-thresholding operator:

(4.16) S

k+1 = T
h
S

k+ 1
2 � PQ[L

k+ 1
2 + S

k+ 1
2 �M ],�S

i
.

Exact line search. For the Frank-Wolfe step, instead of choosing the fixed step
length 2

k+2 , we implement an exact line search by solving a two-dimensional quadratic
problem (4.18), as in [24]. This modification turns out to be crucial to achieve a primal
convergence result that only weakly depends on the tightness of our guesses UL and
US .

Adaptive updates of UL and US. We initialize UL and US using the crude
bound (4.8). Then, at the end of the k-iteration, we respectively update
(4.17)

Uk+1
L = g(Lk+1,Sk+1, tk+1

L , tk+1
S )/�L, Uk+1

S = g(Lk+1,Sk+1, tk+1
L , tk+1

S )/�S .

This scheme maintains the property that Uk+1
L � t?L and Uk+1

S � t?S . Moreover, we
prove (Lemma 4.4) that g is non-increasing through our algorithm, and so this scheme
produces a sequence of tighter upper bounds for U?

L and U?
S . Although this dynamic
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Algorithm 6 FW-T method for problem (4.1)

1: Input: data matrix M 2 Rm⇥n; weights �L, �S > 0; max iteration number T ;
2: Initialization: L

0 = S

0 = 0; t0L = t0S = 0; U0
L = g(L0,S0, t0L, t

0
S)/�L; U0

S =
g(L0,S0, t0L, t

0
S)/�S ;

3: for k = 0, 1, 2, · · · , T do
4: same as lines 3-14 in Algorithm 5;

5:

✓
L

k+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

K+ 1
2

S

◆
is computed as an optimizer to

min
1

2
kPQ[L+ S �M ]k2F + �LtL + �StS(4.18)

s.t.

✓
L

tL

◆
2 conv

⇢✓
L

k

tkL

◆
,

✓
V

k
L

V k
tL

◆�

✓
S

tS

◆
2 conv

⇢✓
S

k

tkS

◆
,

✓
V

k
S

V k
tS

◆�
;

6: S

k+1 = T
⇥
S

k+ 1
2 � PQ[Lk+ 1

2 + S

k+ 1
2 �M ],�S

⇤
;

7: L

k+1 = L

k+ 1
2 , tk+1

L = t
k+ 1

2
L ; tk+1

S =
��
S

k+1
��
1
;

8: Uk+1
L = g(Lk+1,Sk+1, tk+1

L , tk+1
S )/�L;

9: Uk+1
S = g(Lk+1,Sk+1, tk+1

L , tk+1
S )/�S ;

10: end for

scheme does not improve the theoretical convergence result, some acceleration is em-
pirically exhibited.

Convergence analysis. Since both the FW step and the proximal gradient step
do not increase the objective value, we can easily recognize FW-T method as a descent
algorithm:

Lemma 4.4. Let {(Lk,Sk, tkL, t
k
S)} be the sequence of iterates produced by the

FW-T algorithm. For each k = 0, 1, 2 · · · ,

(4.19) g(Lk+1,Sk+1, tk+1
L , tk+1

S )  g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S )  g(Lk,Sk, tkL, t
k
S).

Moreover, we can establish primal convergence (almost) independent of U0
L and U0

S :
Theorem 4.5. Let r?L and r?S be the smallest radii such that

(4.20)

⇢
(L,S)

���� f(L,S)  g(L0,S0, t0L, t
0
S) =

1

2
kPQ[M ]k2F

�
✓ B(r?L)⇥B(r?S),

where B(r)
.
= {X 2 Rm⇥n| kXkF  r} for any r � 0.§ Then for the sequence

{(Lk,Sk, tkL, t
k
S)} generated by Algorithm 6, we have

(4.21)

g(Lk,Sk, tkL, t
k
S)�g(L?,S?, t?L, t

?
S) 

min{4(t?L + r?L)
2 + 4(t?S + r?S)

2, 16(U0
L)

2 + 16(U0
S)

2}
k + 2

.

§Since the objective function in problem (4.1) is coercive, i.e. limk!+1

f(Lk,Sk) = +1 for
any sequence (Lk,Sk) such that limk!+1

��(Lk,Sk)
��
F

= +1, clearly r?L � 0 and r?S � 0 exist.
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Since U0
L and U0

S are quite crude upper bounds for t?L and t?S , 16(U
0
L)

2 +16(U0
S)

2

could be much larger than 4(t?L+r?L)
2+4(t?S+r?S)

2. Therefore, this primal convergence
results depend on U0

L and U0
S in a very weak manner.

However, the convergence result of the surrogate duality gap d(xk) still hinges
upon the upper bounds:

Theorem 4.6. Let x

k
denote (Lk,Sk, tkL, t

k
S) generated by Algorithm 6. Then

for any K � 1, there exists 1  k̃  K such that

(4.22) g(xk̃)� g(x?)  d(xk̃) 
48

�
(U0

L)
2 + (U0

S)
2
�

K + 2
.

Stopping criterion. Compared to the convergence of g(xk) (Theorem 4.5), the
convergence result for d(xk) can be much slower (Theorem 4.6). Therefore, here
the surrogate duality gap d(·) is not that suitable to serve as a stopping criterion.
Consequently, in our implementation, we terminate Algorithm 6 if

(4.23)
�
g(xk+1)� g(xk)

�
/g(xk)  ",

for five consecutive iterations.

5. Numerical Experiments. In this section, we report numerical results ob-
tained by applying our FW-T method (Algorithm 6) to problem (1.5) with real data
arising from applications considered in [3]: foreground/background separation from
surveillance videos, and shadow and specularity removal from face images.

Given observations {M0(i, j) | (i, j) 2 ⌦} where ⌦ ✓ {1, . . . ,m} ⇥ {1, . . . , n} is
the index set of the observable entries in M0 2 Rm⇥n, we assigned weights

�L = �⇢ kP⌦[M0]kF and �S = �
p
⇢ kP⌦[M0]kF /

p
max(m,n)

to problem (1.5),¶ where ⇢ = |⌦|/mn and � is chosen as 0.01 for most of our experi-
ments. We compared our FW-T method with the popular first-order methods ISTA
and FISTA [20], both of which were implemented with partial SVD (see Appendix
E). We set " = 10�3 in FW-T’s stopping criterion, and terminated ISTA and FISTA
whenever they reached the objective value returned by the FW-T method. All the
experiments were conducted with Intel Xeon E5-2630 Processor (12 cores at 2.4 GHz),
and 64GB RAM running MATLAB R2012b (64 bits).

Foreground-background separation from surveillance video. In surveil-
lance videos, due to the strong correlation between frames, it is natural to model
the background as low rank, while foreground objects, such as cars or pedestrians,
normally occupy only a fraction of the video, can be treated as sparse. So, if we
stack each frame as a column in the data matrix M0, it is reasonable to assume
M0 ⇡ L0 +S0, where L0 captures the background and S0 represents the foreground
movements. Here, we solved problem (1.5) for videos introduced in [33] and [34]. The
observed entries were sampled uniformly with ratio ⇢.

Table 5 summarizes the numerical performances of FW-T, ISTA and FISTA. Our
FW-T method takes less time than ISTA and FISTA, and the advantage becomes more
pronounced as the size of data grows. In Figure 2, we present frames of the original

¶The ratio �L/�S =
p

⇢max(m,n) follows the suggestion in [3]. For applications in computer
vision at least, our choices in �L and �S seem to be quite robust, although it is possible to improve
the performance by making slight adjustments these choices.
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P⌦[M0] L̂ Ŝ

P⌦[M0] L̂ Ŝ

Fig. 2. Surveillance videos. Visually, the low-rank component recovers the background and
the sparse one captures the movements in the foreground.

videos, the backgrounds and the foregrounds produced by the FW-T method, which
appear to be quite visually accurate.

Our FW-T method requires more iterations for large-scale videos (Airport, Square)
than for medium-scale ones. This seems quite reasonable: as the number of frames
grows, the background contains more variations, due to illumination changes, camera
rotations, weather, etc., and so the rank increasesk. Since our FW-T method only
conducts a rank-one update on the low-rank component in each iteration, it requires
more iterations to reach an accurate solution. However, because each iteration is sig-
nificantly cheaper, the overall cost is still much less than that of ISTA and FISTA. To
illustrate this more clearly, in Figure 3, we plot the per-iteration cost of these three
methods on the Airport and Square videos with increasing number of frames. The
computational cost of FW-T scales linearly with the size of the data, whereas the cost
of the other methods increases superlinearly.

Table 1

Comparisons of FW-T, ISTA and FISTA on surveillance video problems.

FW-T ISTA FISTA
m n ⇢ � iter. cpu(s) iter. cpu(s) iter. cpu(s)

Lobby 20480 1000 0.5 0.01 9 21.04 54 280.5 21 196.6
Escalator 20800 3417 0.5 0.01 9 75.48 26 1518 16 1224
Mall 81920 1286 1.0 0.01 12 103.8 14 279.4 12 271.8
Penguin 786432 750 1.0 0.01 19 1047 25 3312 14 2383
Airport 25344 15730 1.0 0.001 122 4823 29 29641 14 16794
Square 19200 28181 1.0 0.001 175 9325 29 38182 13 18133

Shadow and specularity removal from face images. Images taken under
varying illumination can also be modeled as the superposition of low-rank and sparse
components. Here, the data matrix M0 is again formed by stacking each image as a
column. The low-rank term L0 captures the smooth variations [35], while the sparse
term S0 represents cast shadows and specularities [36, 8]. CPCP can be used to

kThat is also the reason why in these three videos we set � smaller to reduce the weight for the
nuclear norm and raise the weight for the data fidelity term.
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Fig. 3. Per-iteration cost vs. the number of frames in Airport and Square videos.

The per-iteration cost of our FW-T method grows linearly with the size of data, makes it more
advantageous for large problems.

Table 2

Comparisons of FW-T, ISTA and FISTA on face image problems.

FW-T ISTA FISTA
m n � iter. cpu(s) iter. cpu(s) iter. cpu(s)

YaleB01 32256 65 0.01 61 19.34 48 16.58 17 6.053
YaleB02 32256 65 0.01 62 20.66 51 17.18 18 6.036
Bosphorus000 40000 10000 0.001 166 5840 48 14328 21 6324
Bosphorus001 40000 10000 0.001 157 5601 55 16308 20 6384

remove the shadows and specularities [3, 8]. Here, we solved problem (1.4) for Yale
B face images [37], and images rendered from 3D triangulated face models from [38].
Full observations (i.e. ⇢ = 1) were assumed in this experiment. Table 2 summarizes
the numerical performances of FW-T, ISTA and FISTA. Our FW-T method seems
to be more favorable for large-scale problems.

M0 L̂ Ŝ

M0 L̂ Ŝ

Fig. 4. Face images. Visually, the recovered low-rank component is smoother and better
conditioned for face recognition than the original image, while the sparse component corresponds to
shadows and specularities.
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6. Discussion. In this paper, we have proposed scalable algorithms called Frank-
Wolfe-Projection (FW-P) and Frank-Wolfe-Thresholding (FW-T) for norm constrained
and penalized versions of CPCP. Essentially, they combine classical ideas in Frank-
Wolfe and Proximal methods to achieve linear per-iteration cost, O(1/k) convergence
in function value and practical e�ciency in updating the sparse component. Promis-
ing numerical experiments were conducted on computer vision related applications of
CPCP, which demonstrated the great potential of our methods for dealing with prob-
lems of very large scale. Moreover, the general idea of leveraging di↵erent methods
to deal with di↵erent functions may be valuable for other demixing problems.

We are also aware that though our algorithms are extremely e�cient in the begin-
ning iterations and quickly arrive at an approximate solution of practical significance,
they become less competitive in reaching solutions of high accuracy, due to the na-
ture of Frank-Wolfe. That suggests further hybridization under our framework (e.g.
using nonconvex approaches to handle the nuclear norm) might be utilized in certain
applications (see [39] for research in that direction).

Appendix A. A Useful Recurrence.
We first present an elementary but useful fact about a real sequence, that has

been often exploited in the convergence proofs for FW-type algorithms.
Lemma A.1. Consider a real sequence {ak}. Suppose {ak} satisfies the following

recursive relation:

(A.1) ak+1  k

k + 2
ak +

✓
2

k + 2

◆2

C, for k = 0, 1, 2 . . . ,

where C is a constant. Then for any k = 1, 2, 3, · · · , we have ak  4C
k+2 , and hence

limk!1

ak = 0.
Proof. The proof is by induction. Clearly, from (A.1), we have a1  C  4C

1+2 as

the base case. For any fixed k � 1, assume that ak  4C
k+2 . Then by (A.1),

ak+1  k

k + 2
ak + (

2

k + 2
)2C  k

k + 2
· 4C

k + 2
+

4C

(k + 2)2
(A.2)

 4C(k + 1)

(k + 2)2
 4C(k + 2)

(k + 2)(k + 3)
=

4C

k + 3
.(A.3)

Therefore, by induction, we have proved the claim.

Appendix B. Proofs from Section 2.

B.1. Proof of Theorem 2.1. Proof. For k = 0, 1, 2, . . . , we have

h(xk+1)  h(xk + �(vk � x

k))

 h(xk) + �
⌦
rh(xk),vk � x

k
↵
+

L�2

2

��
v

k � x

k
��2

 h(xk) + �
⌦
rh(xk),vk � x

k
↵
+

�2LD2

2
(B.1)

 h(xk) + �
⌦
rh(xk),x? � x

k
↵
+

�2LD2

2

 h(xk) + �(h(x?)� h(xk)) +
�2LD2

2
,(B.2)
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where the second inequality holds since rh(·) is L-Lipschitz continuous; the third line
follows because D is the diameter for the feasible set D; the fourth inequality follows
from v

k 2 argmin
v2D

⌦
v,rh(xk)

↵
and x

? 2 D; the last one holds since h(·) is convex.
Rearranging terms in (B.2), one obtains that for k = 0, 1, 2, . . . ,

(B.3) h(xk+1)� h(x?)  (1� �)
�
h(xk)� h(x?)

�
+

�2LD2

2
.

Therefore, by Lemma A.1,

h(xk)� h(x?)  2LD2

k + 2
, for k = 1, 2, 3, . . . .

B.2. Proof of Theorem 2.2. Proof. For notational convenience, we denote
hk .

= h(xk), �k .
= h(xk)� h(x?), dk

.
= d(xk), C

.
= 2LD2, B

.
= K + 2, k̂

.
= d 1

2Be � 1,
µ

.
= d 1

2Be/B.
Suppose on the contrary that

(B.4) dk >
3C

B
, for all k 2

⇢
d1
2
Be � 1, d1

2
Be, . . . , K

�
.

From (B.1), we know that for any k � 1

(B.5) �k+1  �k + �
⌦
rh(xk),vk � x

k
↵
+

�2LD2

2
= �k � 2dk

k + 2
+

C

(k + 2)2
.

Therefore, by using (B.5) repeatedly, one has

�K+1  �k̂ �
KX

k=k̂

2dk

k + 2
+

KX

k=k̂

C

(k + 2)2

< �k̂ � 6C

B

KX

k=k̂

1

k + 2
+ C

KX

k=k̂

1

(k + 2)2

= �k̂ � 6C

B

BX

k=k̂+2

1

k
+ C

BX

k=k̂+2

1

k2

 C

µB
� 6C

B
· B � k̂ � 1

B
+ C · B � k̂ � 1

B(k̂ + 1)

=
C

µB
� 6C

B
(1� µ) +

C

B

1� µ

µ

=
C

µB
(2� 6µ(1� µ)� µ)(B.6)

where the second line is due to our assumption (B.4); the fourth line holds since

�k̂  C
k̂+2

by Theorem 1, and
Pb

k=a
1
k2  b�a+1

b(a�1) for any b � a > 1.

Now define �(x) = 2�6x(1�x)�x. Clearly �(·) is convex. Since �( 12 ) = �( 23 ) = 0,
we have �(x)  0 for any x 2 [ 12 ,

2
3 ]. As µ = d 1

2Be/B 2 [ 12 ,
2
3 ], from (B.6), we have

�K+1 = h(xK+1)� h(x?) <
C

µB
�(µ)  0,

which is a contradiction.

Appendix C. Proofs from Section 3.
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C.1. Proof of Lemma 3.1. Proof. From (3.2) and (3.3), we have

krl(L,S)�rl(L0,S0)k2F = 2 kPQ[L+ S �M ]� PQ[L
0 + S

0 �M ]k2F
= 2 kPQ[L+ S]� PQ[L

0 + S

0]k2F
 2 kL+ S �L

0 � S

0k2F
 4 kL�L

0k2F + 4 kS � S

0k2F
= 4 k(L,S)� (L0,S0)k2F ,

which implies the result.

C.2. Proof of Lemma 3.2. Proof. For any Z = (L,S) and Z

0 = (L0,S0) 2 D,

kZ �Z

0k2F = kL�L

0k2F + kS � S

0k2F  (kLkF + kL0kF )
2 + (kSkF + kS0kF )

2

 (kLk
⇤

+ kL0k
⇤

)2 + (kSk1 + kS0k1)
2  4⌧2L + 4⌧2S .(C.1)

C.3. Proof of Theorem 3.3. Proof. Substituting L = 2 (Lemma 3.1) and
D  2

p
⌧2L + ⌧2S (Lemma 3.2) into Theorems 2.1 and 2.2, we can easily obtain the

results.

Appendix D. Proofs from Section 4.

D.1. Proof of Lemma 4.1. Proof. From (4.3) and (4.4), it follows as in C.1
that

krg(L,S, tL, tS)�rg(L0,S0, t0L, t
0

S)k
2
F  4 kL�L

0k2F + 4 kS � S

0k2F
 4 k(L,S, tL, tS)� (L0,S0, t0L, t

0

S)k
2
F ,

which implies the result.

D.2. Proof of Lemma 4.2. Proof. Since for any Z = (L,S, tL, tS), Z

0 =
(L0,S0, t0L, t

0

S) 2 D, we have

kZ �Z

0k2F = kL�L

0k2F + kS � S

0k2F + (tL � t0L)
2 + (tS � t0S)

2

 (kLkF + kL0kF )
2 + (kSkF + kS0kF )

2 + (tL � t0L)
2 + (tS � t0S)

2

 (kLk
⇤

+ kL0k
⇤

)2 + (kSk1 + kS0k1)
2 + (tL � t0L)

2 + (tS � t0S)
2

 (UL + UL)
2 + (US + US)

2 + U2
L + U2

S

= 5(U2
L + U2

S),

which implies the result.

D.3. Proof of Corollary 4.3. Proof. Applying Theorem 2.1 with parameters
calculated in Lemmas 4.1 and 4.2, we directly have

(D.1) g(xk)� g(x?) 
2 · 2 ·

⇣p
5(U2

L + U2
S)
⌘2

k + 2
=

20(U2
L + U2

S)

k + 2
.

A more careful calculation below slightly improves the constant in (D.1).

g(xk+1) = g(xk + �(vk � x

k))

 g(xk) + �
⌦
rg(xk),vk � x

k
↵
+ �2

��
V

k
L �L

k
��2
F
+ �2

��
V

k
S � S

k
��2
F

 g(xk) + �
⌦
rg(xk),vk � x

k
↵
+ 4�2(U2

L + U2
S),(D.2)
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where the second line holds by noting that g is only linear in tL and tS ; the last line
holds as

��
V

k
L �L

k
��2
F
 (

��
V

k
L

��
F
+
��
L

k
��
F
)2  (UL + UL)

2 = 4U2
L, and

��
V

k
S � S

k
��2
F
 (

��
V

k
S

��
F
+
��
S

k
��
F
)2  (US + US)

2 = 4U2
S .

Following the arguments in the proof of Theorem 1 with (B.1) replaced by (D.2), we
can easily obtain that

g(xk)� g(x?)  16(U2
L + U2

S)

k + 2
.

D.4. Proof of Lemma 4.4. Proof. Since (Lk,Sk, tkL, t
k
S) is always feasible to

the quadratic program (4.18),

(D.3) g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S )  g(Lk,Sk, tkL, t
k
S).

Based on (4.15), the threshold step (line 6 in Algorithm 3) can be written as

S

k+1 = argmin
S

ĝk+
1
2 (S)

.
=
1

2

���PQ[L
k+ 1

2 + S

k+ 1
2 �M ]

���
2

F
+ �Lt

k+ 1
2

L + �S kSk1 +

hPQ[L
k+ 1

2 + S

k+ 1
2 �M ], S � S

k+ 1
2 i+ 1

2

���S � S

k+ 1
2

���
2

F
.

The following properties of ĝk+
1
2 (·) can be easily verified

ĝk+
1
2 (Sk+ 1

2 ) = g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , kSk+ 1

2 k1)  g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S );

ĝk+
1
2 (S) � g(Lk+ 1

2 ,S, t
k+ 1

2
L , kSk1), for any S.

Therefore, we have

g(Lk+1,Sk+1, tk+1
L , tk+1

S ) = g(Lk+ 1
2 ,Sk+1, t

k+ 1
2

L , tk+1
S )  ĝk+

1
2 (Sk+1)

 ĝk+
1
2 (Sk+ 1

2 )  g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S )(D.4)

Combining (D.3) and (D.4), we obtain

g(Lk+1,Sk+1, tk+1
L , tk+1

S )  g(Lk+ 1
2 ,Sk+ 1

2 , t
k+ 1

2
L , t

k+ 1
2

S )  g(Lk,Sk, tkL, t
k
S).

D.5. Proof of Theorem 4.5. For notational convenience, we denote

x

k = (Lk,Sk, tkL, t
k
S), x

? = (L?,S?, t?L, t
?
S) and v

k = (V k
L ,V k

S ,V k
tL ,V

k
tS ).

For any point x = (L,S, tL, tS) 2 Rm⇥n⇥Rm⇥n⇥R⇥R, we adopt the notation that
L[x] = L, S[x] = S, tL[x] = tL and tS [x] = tS .

Since g(xk)�g(x?)  16(U0
L)2+16(U0

S)2

k+2 can be easily established following the proof

of Corollary 4.3, below we will focus on the proof of g(xk)�g(x?)  4(t?L+r?L)2+4(t?S+r?S)2

k+2 .
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Proof. Let us first make two simple observations.
Since f(L?,S?)  g(Lk,Sk, tkL, t

k
S), we have

(D.5) Uk
L = g(Lk,Sk, tkL, t

k
S)/�L � t?L and Uk

S = g(Lk,Sk, tkL, t
k
S)/�S � t?S .

Therefore, our Uk
L and Uk

S always bound t?L and t?S from above.
From Lemma 4.4, g(Lk,Sk, tkL, t

k
S) is non-increasing,

f(Lk,Sk)  g(Lk,Sk, tkL, t
k
S)  g(L0,S0, t0L, t

0
S),

which implies that (Lk,Sk) ✓ B(r?L)⇥B(r?S), i.e.
��
L

k
��
F
 r?L and

��
S

k
��
F
 r?S .

Let us now consider the k-th iteration. Similar to the proof in [24], we introduce

the auxiliary point vk
+ = ( t?L

Uk
L
V

k
L ,

t?S
Uk

S
V

k
S ,

t?L
Uk

L
V

k
tL ,

t?S
Uk

S
V

k
tS ). Then based on our argument

for (4.13), it can be easily verified that

(L[vk
+], tL[v

k
+]) 2 arg min

kVLk⇤VtL
t?L

gL(VL, VtL)(D.6)

(S[vk
+], tS [v

k
+]) 2 arg min

kVSk1VtS
t?S

gS(VS , VtS ).(D.7)

Recall � = 2
k+2 . We have

g(xk+ 1
2 )

 g(xk + �(vk
+ � x

k))

 g(xk) + �hrg(xk), v
k
+ � x

ki+ �2
⇣��

L[vk
+]�L[xk]

��2
F
+
��
S[vk

+]� S[xk]
��2
F

⌘

 g(xk) + �
�
gL(L[vk

+ � x

k], tL[v
k
+ � x

k]) + gS(S[v
k
+ � x

k], tS [v
k
+ � x

k])
�

+�2
�
(t?L + r?L)

2 + (t?S + r?S)
2
�

 g(xk) + �
�
gL(L[x? � x

k], tL[x
? � x

k]) + gS(S[x
? � x

k], tS [x
? � x

k])
�

+�2
�
(t?L + r?L)

2 + (t?S + r?S)
2
�

= g(xk) + �hrg(xk), x? � x

ki+ �2
�
(t?L + r?L)

2 + (t?S + r?S)
2
�

 g(xk) + �
�
g(x?)� g(xk)

�
+ �2

�
(t?L + r?L)

2 + (t?S + r?S)
2
�
,

where the first inequality holds since x

k + �(vk
+ � x

k) is feasible to the quadratic

program (4.18) while x

k+ 1
2 minimizes it; the third inequality is due to the facts that

��
L[vk

+]�L[xk]
��
F

��
L[vk

+]
��
F
+
��
L[xk]

��
F

��
L[vk

+]
��
⇤

+
��
L[xk]

��
F
 t?L + r?L��

S[vk
+]� S[xk]

��
F

��
S[vk

+]
��
F
+
��
S[xk]

��
F

��
S[vk

+]
��
1
+
��
S[xk]

��
F
 t?S + r?S ;

the fourth inequality holds as (L[x?], tL[x?]) and (S[x?], tS [x?]) are respectively feasi-
ble to (D.6) and (D.7) while (L[vk

+], tL[v
k
+]) and (S[vk

+], tS [v
k
+]) respectively minimize

(D.6) and (D.7);
Therefore, we obtain

g(xk+ 1
2 )� g(x?)  (1� �)

�
g(xk)� g(x?)

�
+ �2

�
(t?L + r?L)

2 + (t?S + r?S)
2
�
.

Moreover, by Lemma 4.4, we have

g(xk+1)  g(xk+ 1
2 ).
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Thus, we obtain the recurrence

g(xk+1)� g(x?)  (1� �)
�
g(xk)� g(x?)

�
+ �2

�
(t?L + r?L)

2 + (t?S + r?S)
2
�
,

Applying Lemma A.1 establishes that

g(Lk,Sk, tkL, t
k
S)� g(L?,S?, t?L, t

?
S) 

4
�
(t?L + r?L)

2 + (t?S + r?S)
2
�

k + 2
.

D.6. Proof of Theorem 4.6. Proof. Define �k = g(xk) � g(x?). Following
(D.2), we have

(D.8) �k+1  �k + �
⌦
rg(xk),vk � x

k
↵
+ 4�2

�
(U0

L)
2 + (U0

S)
2
�
.

Then following the arguments in the proof of Theorem 2 with (B.5) replaced by (D.8),
we can easily obtain the result.

Appendix E. ISTA & FISTA for problem (1.5). ISTA, a natural extension
of the gradient method, when applied to problem (1.5), updates (L,S) in the following
manner,

(Lk+1,Sk+1) = argmin
L,S

⌧✓
r

L

l(Lk,Sk)
r

S

l(Lk,Sk)

◆
,

✓
L�L

k

S � S

k

◆�
+
Lf

2

����

✓
L

S

◆
�
✓

L

k

S

k

◆����
2

F

(E.1)

+ �L kLk
⇤

+ �S kSk1

Here Lf = 2 denotes the Lipschitz constant of rl(L,S) with respect to (L,S), and
r

L

l(Lk,Sk) = r
S

l(Lk,Sk) = P⌦[Lk + S

k �M ]. Since L and S are decoupled in
(E.1), equivalently we have

L

k+1 = argmin
L

����L�
✓
L

k � 1

2
P⌦[L

k + S

k �M ]

◆����
2

F

+ �L kLk
⇤

,(E.2)

S

k+1 = argmin
S

����S �
✓
S

k � 1

2
P⌦[L

k + S

k �M ]

◆����
2

F

+ �S kSk1 .(E.3)

The solution to problem (E.3) can be given explicitly in terms of the proximal mapping
of k·k1 as introduced in Section 2.2, i.e.,

S

k+1 = T�S/2


S

k � 1

2
P⌦[L

k + S

k �M ]

�
.

For a matrix X and any ⌧ � 0, let D⌧ (X) denote the singular value thresholding op-
erator D⌧ (X) = UT⌧ (⌃)V >, where X = U⌃V

> is the singular value decomposition
of X. It is not di�cult to show [40, 41] that the solution to problem (E.2) can be
given explicitly by

L

k+1 = D�L/2


L

k � 1

2
P⌦[L

k + S

k �M ]

�
.

Algorithm 7 summarizes our ISTA implementation for problem (2).
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Algorithm 7 ISTA for problem (2)

1: Initialization: L

0 = 0, S0 = 0;
2: for k = 0, 1, 2, · · · do
3: L

k+1 = D�L/2

⇥
L

k � 1
2P⌦[Lk + S

k �M ]
⇤
;

4: S

k+1 = T�S/2

⇥
S

k � 1
2P⌦[Lk + S

k �M ]
⇤
;

5: end for

Regarding ISTA’s speed of convergence, it can be proved that f(Lk,Sk)� f? =
O(1/k), where f? denotes the optimal value of problem (2).

FISTA, introduced in [20], is an accelerated version of ISTA, which uses the idea
of Nesterov’s optimal gradient scheme [42]. For FISTA, a better convergence result,
f(Lk,Sk)�f? = O(1/k2), can be achieved with a cost per iteration that is comparable
to ISTA. Algorithm 8 summarizes our FISTA implementation for problem (2).

Algorithm 8 FISTA for problem (2)

1: Initialization: L̂

0 = L

0 = 0, Ŝ0 = S

0 = 0, t0 = 1;
2: for k = 0, 1, 2, · · · do

3: L

k+1 = D�L/2

h
L̂

k � 1
2P⌦[L̂k + Ŝ

k �M ]
i
;

4: S

k+1 = T�S/2

h
Ŝ

k � 1
2P⌦[L̂k + Ŝ

k �M ]
i
;

5: tk+1 =
1+

p
1+4(tk)2

2 ;

6: L̂

k+1 = L

k+1 + tk�1
tk+1 (Lk+1 �L

k);

7: Ŝ

k+1 = S

k+1 + tk�1
tk+1 (Sk+1 � S

k);
8: end for

Partial SVD. In each iteration of either ISTA or FISTA, we only need those
singular values that are larger than �S/2 and their corresponding singular vectors.
Therefore, a partial SVD can be utilized to reduce the computational burden of a full
SVD. Since most partial SVD software packages (e.g. PROPACK) require specifying
in advance the number of top singular values and singular vectors to compute, we
heuristically determine this number (denoted as svk at iteration k). Specifically, let
d = min{m,n}, and svpk denote the number of computed singular values that were
larger than �S/2 in the k-th iteration. Similar to [17], in our implementation, we
start with sv0 = d/10, and adjust svk dynamically as follows:

svk+1 =

(
min{svpk + 1, d} if svpk < svk

min{svpk + round(0.05 ⇤ d), d} otherwise.
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