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Abstract

This paper studies the problem of simultaneously aligning abatch of linearly correlated images

despite gross corruption (such as occlusion). Our method seeks an optimal set of image domain

transformations such that the matrix of transformed imagescan be decomposed as the sum of a sparse

matrix of errors and a low-rank matrix of recovered aligned images. We reduce this extremely challenging

optimization problem to a sequence of convex programs that minimize the sum ofℓ1-norm and nuclear

norm of the two component matrices, which can be efficiently solved by scalable convex optimization

techniques. We verify the efficacy of the proposed robust alignment algorithm with extensive experiments

on both controlled and uncontrolled real data, demonstrating higher accuracy and efficiency than existing

methods over a wide range of realistic misalignments and corruptions.
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I. I NTRODUCTION

In recent years, the increasing popularity of image and video sharing sites such as Facebook,

Flickr, and YouTube has led to a dramatic increase in the amount of visual data available online.

Within the computer vision community, this has inspired a renewed interest in large, uncon-

strained datasets [1]. Such data pose steep challenges to existing vision algorithms: significant

illumination variation, partial occlusion, as well as pooror even no alignment (see Figure 1(a)

for example). This last difficulty is especially challenging, since domain transformations make it

difficult to measure image similarity for recognition or classification. Intelligently harnessing the

information encoded in these large sets of images seems to require more efficient and effective

solutions to the long-standing batch image alignment problem [2], [3]: Given many images of

an object or objects of interest, align them to a fixed canonical template.

(a) Original images (b) Aligned images (c) Low-rank component

(d) Recovered errors (e) Average of (a), (b), (c), respectively

Fig. 1. Batch Image Alignment. (a) 40 face images of a person with different illumination, occlusions, poses,

and expressions. Our algorithm automatically finds a set of transformations such that the transformed images in (b)

can be decomposed as the sum of images from a low-rank approximation in (c) and sparse large errors in (d). The

much sharpened average face images shown in (e) indicate theefficacy of our alignment algorithm.
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To a large extent, progress in batch image alignment has beendriven by the introduction

of increasingly sophisticated measures of image similarity [4]. Learned-Miller’s influentialcon-

gealing algorithm seeks an alignment that minimizes the sum of entropies of pixel values at

each pixel location in the batch of aligned images [5], [6]. If we stack the aligned images as

the columns of a large matrix, this criterion demands that each row of this matrix be nearly

constant. Conversely, theleast squares congealingprocedure of [7], [8] seeks an alignment that

minimizes the sum of squared distances between pairs of images, and hence demands that the

columns be nearly constant. In both cases, if the criterion is satisfied exactly, the matrix of

aligned images will havelow rank, ideally rank one. However, if there is large illumination

variation in the images (such as those in Figure 1), the matrix of aligned images might have an

unknownrank higher than one. In this case, it is more appropriate to search for an alignment

that minimizes the rank of the aligned images. So in [9], Vedaldi et. al. choose to minimize a

log-determinant measure that can be viewed as a smooth surrogate for the rank function [10].

The low-rank objective can also be directly enforced, as inTransformed Component Analysis

(TCA) [11], [12], which uses an EM algorithm to fit a low-dimensional linear model, subject to

domain transformations drawn from a known group.

A major drawback of the above approaches is that they do not simultaneously handle large

illumination variations and gross pixel corruptions or partial occlusions that often occur in real

images (e.g., shadows, hats, glasses in Figure 1). TheRobust Parameterized Component Analysis

(RPCA) algorithm of [13] also fits a low-rank model, and uses a robust fitting function to reduce

the influence of corruption and occlusion. Unfortunately, this leads to a difficult, nonconvex

optimization problem, with no theoretical guarantees of robustness or convergence rate. This

somewhat unsatisfactory status quo is mainly due to the extremely difficult nature of the core

problem of fitting a low-rank model to highly corrupted data [14], a problem that until recently

lacked a polynomial-time algorithm with strong performance guarantees. Recent advances in

rank minimization [15], [16] have shown that it is indeed possible to efficiently and exactly

recover low-rank matrices despite significant corruption,using tools from convex programming.

These developments prompt us to revisit the problem of robustly aligning batches of linearly

correlated images.

Contributions. In this paper, we introduce a new algorithm, named RASL, for robustly aligning

linearly correlated images (or signals), despite large occlusions and corruptions. Our solution

April 14, 2011 DRAFT



REVISED MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, APRIL 2011. 4

builds on recent advances in rank minimization and formulates the batch alignment problem as

the solution to a sequence of convex programs. We show how each of these convex programs

can be solved efficiently using modern first-order optimization techniques, leading to a fast,

scalable algorithm that succeeds under very broad conditions. Our algorithm can handle batches

of over one hundred images in a few minutes on a standard PC. As we will verify with extensive

experiments on real image data, the algorithm achieves pixelwise accuracy over a wide range of

misalignments. A MATLAB implementation of our algorithm and the data used in this paper is

publicly available on our website:

http://perception.csl.uiuc.edu/matrix-rank/rasl.html.

Organization. The remainder of this paper is organized as follows: In Section II, we introduce

matrix rank as a measure of image similarity and recast the image alignment problem as one

of matrix rank minimization. In Section III, we propose an efficient algorithm to solve the

rank minimization problem by iterative convex optimization. We provide experimental results in

Section IV to showcase the efficacy of our method on real images. Section V provides concluding

remarks and proposes potential extensions to our algorithm.

II. I MAGE ALIGNMENT BY MATRIX RANK M INIMIZATION

In this section, we formulate batch image alignment as the search for a set of transformations

that minimizes the rank of the transformed images, viewed asthe columns of a matrix. We

discuss why rank is a natural measure of image similarity, and how this conceptual framework

can be made robust to gross errors due to corruption or occlusion.

A. Matrix Rank as a Measure of Image Similarity

Measuring the amount of similarity within a set of images is afundamental problem in

computer vision and image processing. Suppose we are givenn well-aligned grayscale images

I0
1 , . . . , I

0
n ∈ R

w×h of some object or scene. In many situations of interest, these well-aligned

images arelinearly correlated. More precisely, if we letvec : R
w×h → R

m denote the operator

that selects anm-pixel region of interest (typicallym ≫ n) from an image and stacks it as a

vector, then as a matrix

A
.
=

[

vec(I0
1 ) | · · · | vec(I0

n)
]

∈ R
m×n (1)
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should be approximatelylow-rank. This assumption holds quite generally. For example, if the

I0
i , i = 1, . . . , n are images of some convex Lambertian object under varying illumination, then a

rank-9 approximation suffices [17]. Being able to correctly identify this low-dimensional structure

is crucial for many vision tasks such as face recognition.

B. Modeling Misalignments as Domain Deformations

Misalignment poses a serious problem to many different computer vision applications. It is an

inherent problem in most image acquisition processes sincethe relative position of the camera

with respect to the object is seldom fixed across multiple images. Images of the same object

or scene can appear drastically different even under moderate change in the object’s position or

pose with respect to the camera. The above model (low-rank matrix of correlated images) breaks

down if the images are even slightly misaligned with respectto each other.

In this work, since the 3-D structure of the object of interest is unknown, we assume that the

misalignment is restricted to the image plane.1 Then, we can model misalignments as domain

deformations. More precisely, ifI1 andI2 represent two misaligned images, then there exists an

invertible transformationτ : R
2 → R

2 such that

I2(x, y) = (I1 ◦ τ)(x, y)
.
= I1(τ(x, y)). (2)

In most practical scenarios, we can model misalignments as transformations from a finite-

dimensional groupG that has a parametric representation, such as the similarity groupSE(2)×
R+, the 2-D affine group Aff(2), and the planar homography groupGL(3) (see [18] for more

details on transformation groups).

Consolidating the above two models, we formulate the image alignment problem as follows.

Suppose thatI1, I2, . . . , In representn input images of the same object but misaligned with

respect to each other. Then, there exist domain transformations τ1, τ2, . . . , τn such that the

transformed imagesI1 ◦ τ1, I2 ◦ τ2, . . . , In ◦ τn are well-aligned at the pixel level, or equivalently

the matrix

D ◦ τ
.
=

[

vec(I0
1 ) | · · · | vec(I0

n)
]

∈ R
m×n

1We will see in Section IV that the proposed algorithm is robust to small changes in 3-D pose as well.
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has low rank, whereI0
j = Ij◦τj for j = 1, 2, . . . , n, D = [vec(I1) | · · · | vec(In)], andτ represents

the set ofn transformationsτ1, τ2, . . . , τn. Therefore, the batch image alignment problem can be

reduced to the following optimization problem:

min
A,τ

rank(A) s.t. D ◦ τ = A. (3)

C. Modeling Corruption and Occlusion as Large, Sparse Errors

In practice, the low-rank structure of the aligned images can be easily violated, due to the

presence of partial occlusions or corruptions in the images. Since these errors typically affect

only a small fraction of all pixels in an image, we can model them as sparse errors whose non-

zero entries can have arbitrarily large magnitude. This model has been successfully employed

in face recognition [19].

In addition to occlusions, real images typically contain some noise of small magnitude in each

pixel. To keep our discussion simple, we assume here that such noise is negligible in magnitude

as compared to the error due to occlusions. We will see in Section III-B that it is straightforward

to incorporate this small-magnitude noise into our algorithm.

Let ej represent the error corresponding to imageIj such that the images{Ij ◦ τj − ej}n

j=1 are

well-aligned to each other, and free of any corruptions or occlusions. Therefore, the formulation

(3) can be modified as follows:

min
A,E,τ

rank(A) s.t. D ◦ τ = A + E, ‖E‖0 ≤ k, (4)

whereE = [vec(e1) | · · · | vec(en)]. Here, theℓ0-“norm” ‖ · ‖0 counts the number of nonzero

entries in the error matrixE, and k is a constant that represents the maximum number of

corrupted pixels expected across all images. As we will see in Section III-A, it is more convenient

to consider the Lagrangian form of this problem:

min
A,E,τ

rank(A) + γ‖E‖0 s.t. D ◦ τ = A + E, (5)

whereγ > 0 is a parameter that trades off the rank of the solution versusthe sparsity of the

error. We refer to this problem asRobust Alignment by Sparse and Low-rank decomposition

(RASL).

To summarize our approach (5) to solving the image alignmentproblem, we know that if the

images are well-aligned, they should exhibit good low-rankstructure, up to some sparse errors
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(say due to occlusions). We therefore search for a set of transformationsτ = {τ1, . . . , τn} such

that the rank of the transformed images becomes as small as possible, when the sparse errors

are subtracted.

III. PRACTICAL SOLUTION VIA ITERATIVE CONVEX PROGRAMMING

In this section, we present a practical solution to the RASL problem (5), that works quite

effectively as long as the misalignments are not too large. We first relax the highly nonconvex

objective function in (5) to its convex surrogate (Section III-A). We then linearize the nonlinear

equality constraint in (5) (Section III-B), yielding a sequence of convex programs whose solutions

converge quadratically to the correct alignment (Section III-C). These convex programs can be

solved efficiently via modern first-order optimization techniques (Section III-D). In Section IV we

will verify the practical convergence behavior of this scheme with numerous real-data examples.

A. Convex Relaxation

The optimization problem (5), although intuitive, is not directly tractable. A major difficulty is

the nonconvexity of the matrix rank andℓ0-norm: minimization of these functions is extremely

difficult (NP-hard and hard to approximate) in the worst case. Moreover, since matrix rank and

the ℓ0-norm are discrete-valued functions, the solution given by(5) is likely to be unstable if

the errors in the images are notexactly sparse. Recently, however, it was shown that for the

problem of recovering low-rank matrices from sparse errors, as long as the rank of the matrix

A to be recovered is not too high and the number of non-zero entries in E is not too large,

minimizing the natural convex surrogate forrank(A) + λ‖E‖0 can exactly recoverA [16].2

This convex relaxation replacesrank(·) with the nuclear normor sum of the singular values:

‖A‖∗ .
=

∑min{m,n}
i=1 σi(A), and replaces theℓ0-norm‖E‖0 with the ℓ1-norm:

∑

ij |Eij|. Applying

the same relaxation to the RASL problem (5) yields a new optimization problem:

min
A,E,τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ = A + E. (6)

2Convex programming exactly recovers low-rank matricesA whose singular vectors are not themselves sparse or spiky. More

precisely, it succeeds with high probability (assuming that the support ofE is random) providedrank(A) < C1µ
−1n/ log2(m)

and‖E‖0 < C2mn, whereC1, C2 are numerical constants andµ is anincoherenceparameter that is small if the singular spaces

of A are not aligned with the standard basis [16]. Similar guarantees can be proved for the linearized convex optimization to

be introduced in Section III-D, but are not the main focus of this paper.
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Theoretical considerations in [16] suggest that the weighting parameterλ should be of the form

C/
√

m whereC is a constant, typically set to unity. The new objective function is non-smooth,

but now continuous and convex.

B. Iterative Linearization

The main remaining difficulty in solving (6) is the nonlinearity of the constraintD◦τ = A+E,

which arises due to the complicated dependence ofD ◦ τ on the transformationsτ ∈ G
n.

When the change inτ is small, we can approximate this constraint by linearizingabout the

current estimate ofτ . Here, and below, we assume thatG is somep-parameter group and

identify τ = [τ1 | · · · | τn] ∈ R
p×n with the parameterizations of all of the transformations.

For ∆τ = [∆τ1 | · · · | ∆τn] ∈ R
p×n, write D ◦ (τ + ∆τ) ≈ D ◦ τ +

∑n

i=1 Ji∆τiǫ
T
i , where

Ji
.
= ∂

∂ζ
vec(Ii◦ζ)|ζ=τi

∈ R
m×p is the Jacobian of thei-th image with respect to the transformation

parametersτi and {ǫi} denotes the standard basis forR
n. This leads to a convex optimization

problem in unknownsA,E, ∆τ :

min
A,E,∆τ

‖A‖∗ + λ‖E‖1 s.t. D ◦ τ +
n

∑

i=1

Ji∆τǫiǫ
T
i = A + E. (7)

Because the linearization only holds locally, we should not expect the solutionτ + ∆τ from

(7) to exactly solve (6). To find the (local) minimum of (6), werepeatedly linearize about our

current estimate ofτ and solve a sequence of convex programs of the form (7).3 As we will

see in Section IV, as long as the initial misalignment is not too large, this iteration effectively

recovers the correct transformationsτ and separates the low-rank structure of the batch of images

from any sparse errors or occlusions. This complete optimization procedure is summarized as

Algorithm 1. The iterative procedure in Algorithm 1 is stopped when the relative change in the

value of the cost function between two consecutive iterations is smaller than a pre-determined

threshold. Notice that Algorithm 1 operates on the normalized imagesvec(Ii◦τi)/‖vec(Ii◦τi)‖2,

in order to rule out trivial solutions such as zooming in on a single dark pixel or a dark region

in the images.

3This kind of iterative linearization has a long history in gradient algorithms for batch image alignment (see, e.g., [9], [20]

and references therein). More recently a similar iterative convex programming approach was proposed for single-to-batch image

alignment in face recognition [21].
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Algorithm 1 (Outer loop of RASL)
INPUT: ImagesI1, . . . , In ∈ R

w×h, initial transformationsτ1, . . . , τn in a certain parametric

groupG, weight λ > 0.

WHILE not convergedDO

Step 1: compute Jacobian matrices w.r.t. transformation:

Ji ←
∂

∂ζ

(

vec(Ii ◦ ζ)

‖vec(Ii ◦ ζ)‖2

)

∣

∣

∣

ζ=τi

, i = 1, . . . , n;

Step 2: warp and normalize the images:

D ◦ τ ←
[

vec(I1 ◦ τ1)

‖vec(I1 ◦ τ1)‖2

∣

∣

∣
. . .

∣

∣

∣

vec(In ◦ τn)

‖vec(In ◦ τn)‖2

]

;

Step 3 (inner loop): solve the linearized convex optimization:

(A∗, E∗, ∆τ ∗) ← argmin
A,E,∆τ

‖A‖∗ + λ‖E‖1

s.t. D ◦ τ +
n

∑

i=1

Ji∆τǫiǫ
T
i = A + E;

Step 4: update transformations:τ ← τ + ∆τ ∗;

END WHILE

OUTPUT: solutionA∗, E∗, τ ∗ to problem (6).

In this work, we have considered only sparse, large-magnitude errors in images arising from

occlusions or other forms of corruption. However, in practice, images also contain some noise of

small magnitude in each pixel. This can be easily augmented into our model by adding anoise

matrix Z of bounded magnitude to the equality constraint in (7). It has been shown in [22] that

sparse and low-rank matrix decomposition (without transformations) by convex optimization is

stable to additive Gaussian noise of small magnitude, in addition to sparse errors. It may be

possible to establish similar stability guarantees for thelinearized convex program in (7). We

defer this to future work since it is beyond the scope of this paper.

C. Convergence and Optimality

Replacing a difficult optimization problem with a sequence ofmore tractable, linearized

problems is a standard technique in optimization, and has been the subject of intensive study

in the optimization literature. As we will see, the RASL algorithm can be viewed as a Gauss-

April 14, 2011 DRAFT



REVISED MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, APRIL 2011. 10

Newton method for minimizing the composition of a nonsmoothconvex function with a smooth,

nonlinear mapping. The convergence behavior of such algorithms was extensively studied in the

late 1970’s and early 1980’s, and they continue to draw attention today [23]. We draw upon

this body of work, in particular results of Jittorntrum and Osborne [24] (building on work of

Cromme [25]) to understand the local convergence of RASL.

The result of [24] concerns the problem of minimizing the composition of a norm‖ · ‖⋄ :

R
n → R with a C2 mappingf : R

p → R
n:

min
x∈Rp

‖f(x)‖⋄, (8)

The authors of [25], [24] have studied the iterative algorithm

δk = arg min
δ∈Rp

∥

∥

∥

∥

f(xk) +
∂f

∂x
(xk)δ

∥

∥

∥

∥

⋄

, (9)

xk+1 = xk + δk, (10)

and have shown that ifx⋆ ∈ R
p is a strictly uniqueoptimum to (8), in the sense that∃α > 0

such that

∀ δ ∈ R
p,

∥

∥

∥

∥

f(x⋆) +
∂f

∂x
(x⋆)δ

∥

∥

∥

∥

⋄

≥ ‖f(x⋆)‖⋄ + α‖δ‖, (11)

then within some neighborhood ofx⋆, the sequence of iterates (9)-(10) converges quadratically

to x⋆.

To clarify the connection to RASL, we define a function‖ · ‖⋄ : R
m×n → R via

‖M‖⋄ .
= min

A+E=M
‖A‖∗ + λ‖E‖1. (12)

It is easy to verify that‖·‖⋄ is indeed a norm4 – it is a quotient norm on translates of{(−X,X) |
X ∈ R

m×n} ⊂ R
m×n × R

m×n. Let the transformationsτ = {τ1 . . . τn} be parameterized by

parametersx = {ξ1 . . . ξn} ∈ (Rp)n. Then, we can writeD ◦ τ = f(x), and view the RASL

optimization as a local procedure for solving the problem

min
x∈(Rp)n

‖f(x)‖⋄, (13)

via the iteration (9)-(10). Hence, provided the mapx 7→ f(x) is C2, the result of [24] implies

that RASL converges quadratically in the neighborhood of anystrongly unique local minimum.

4It is easy to check that‖M‖⋄ ≥ 0 with equality iff M = 0, and that‖tM‖⋄ = |t|‖M‖⋄. The triangle inequality follows

from the convexity of the function‖A‖∗ + λ‖E‖1.
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This quadratic convergence is observed in our experiments (see Section IV), in which only a

few iterations, typically less than 20, are required for thealgorithm to converge.

It is important to realize that, in general, manifolds formed by transformed images may not be

C2 (or not evenC1), due to the presence of sharp edges [26]. However, in our case, we can view

the digital imagesIi ◦ τi as resampling transformations of an ideal bandlimited reconstructionÎi

obtained from the digital imageIi, in which case the mappingx 7→ f(x) is indeed smooth.

A complete convergence theory would then verify, based on the properties of the desired

solutionx⋆, that the strong uniqueness property (11) holds. It is not difficult to give quantitative

bounds on the region of convergence and convergence rate of the algorithm based on the

coefficient α in (11) and the curvature of the set{f(x) | x ∈ (Rp)n} ⊂ R
m×n. However,

estimatingα or characterizing the curvature are themselves nontrivialmathematical problems,

which we delay to future work. The interested reader may consult [22], where a form of strong

uniqueness is (implicitly) used to show the stability of sparse and low-rank decomposition, albeit

without transformations.

D. Efficient Solution by Augmented Lagrange Multiplier Methods

The main computational cost in Algorithm 1 at each iterationis step 3, which solves the

linearized convex optimization problem (7). This is a semidefinite program in thousands or

millions of variables, so scalable solutions are essentialfor its practical use. Fortunately, a recent

flurry of work on high-dimensional nuclear norm minimization has shown that such problems

are well within the capabilities of a standard PC [27], [28],[29]. In this section, we show how

one such fast first-order method, the Augmented Lagrange Multiplier (ALM) algorithm [29],

[30], [16], can be adapted to efficiently solve (7).

The basic idea of the ALM method is to search for a saddle pointof the augmented Lagrangian

function instead of directly solving the original constrained optimization problem. Let us define

h(A,E, ∆τ) = D◦τ +
∑n

i=1 Ji∆τǫiǫ
T
i −A−E. For our problem (7), the augmented Lagrangian

function is given by

Lµ(A,E, ∆τ, Y ) = ‖A‖∗ + λ‖E‖1 + 〈Y, h(A,E, ∆τ)〉 +
µ

2
‖h(A,E, ∆τ)‖2

F , (14)

whereY ∈ R
m×n is a Lagrange multiplier matrix,µ is a positive scalar,〈·, ·〉 denotes the matrix
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inner product,5 and‖ · ‖F denotes the Frobenius norm. For appropriate choice of the Lagrange

multiplier matrix Y and sufficiently large constantµ, it can be shown that the augmented La-

grangian function has the same minimizer as the original constrained optimization problem [30].

The ALM algorithm iteratively estimates both the Lagrange multiplier and the optimal solution

by iteratively minimizing the augmented Lagrangian function

(Ak+1, Ek+1, ∆τk+1) = arg minA,E,∆τ Lµk
(A,E, ∆τ, Yk),

Yk+1 = Yk + µk h(Ak+1, Ek+1, ∆τk+1).
(15)

It has been shown that when{µk} is a monotonically increasing positive sequence, the iteration

indeed converges to the optimal solution of the problem (7) [30].

However, the first step in the above iteration (15) is difficult to solve directly. So typically,

people choose to to minimize the Lagrangian functionapproximatelyby adopting an alternating

strategy: minimize the function against the three unknownsA,E, ∆τ one at a time:

Ak+1 = arg minA Lµk
(A,Ek, ∆τk, Yk),

Ek+1 = arg minE Lµk
(Ak+1, E, ∆τk, Yk),

∆τk+1 = arg min∆τ Lµk
(Ak+1, Ek+1, ∆τ, Yk).

(16)

Although each step of the above iteration involves solving aconvex program, each has a simple

closed-form solution, and hence, can be solved efficiently by a single step. To spell out the

solutions, let us define thesoft-thresholdingor shrinkageoperator for scalars as follows:

Sα[x] = sign(x) · max{|x| − α, 0}, (17)

whereα ≥ 0. When applied to vectors and matrices, the shrinkage operator acts elementwise.

Using the shrinkage operator, we can write the solution to each step of (16) as

(U, Σ, V ) = svd
(

D ◦ τ +
∑n

i=1 Ji∆τkǫiǫ
T
i + 1

µk
Yk − Ek

)

,

Ak+1 = US 1

µk

[Σ]V T ,

Ek+1 = S λ
µk

[

D ◦ τ +
∑n

i=1 Ji∆τkǫiǫ
T
i + 1

µk
Yk − Ak+1

]

,

∆τk+1 =
∑n

i=1 J†
i

(

Ak+1 + Ek+1 − D ◦ τ − 1
µk

Yk

)

ǫiǫ
T
i ,

(18)

where svd(·) denotes the Singular Value Decomposition operator, andJ†
i denotes the Moore-

Penrose pseudoinverse ofJi. For completeness, the entire algorithm to solve the linearized inner

loop (7) has been summarized as Algorithm 2.

5〈X, Y 〉 .
= trace(XT Y ).
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Algorithm 2 (Inner Loop of RASL)
INPUT: (A0, E0, ∆τ 0) ∈ R

m×n × R
m×n × R

p×n, λ > 0.

WHILE not convergedDO

(U, Σ, V ) = svd
(

D ◦ τ +
∑n

i=1 Ji∆τkǫiǫ
T
i + 1

µk
Yk − Ek

)

;

Ak+1 = US 1

µk

[Σ]V T ;

Ek+1 = S λ
µk

[

D ◦ τ +
∑n

i=1 Ji∆τkǫiǫ
T
i + 1

µk
Yk − Ak+1

]

;

∆τk+1 =
∑n

i=1 J†
i

(

Ak+1 + Ek+1 − D ◦ τ − 1
µk

Yk

)

ǫiǫ
T
i ;

Yk+1 = Yk + µk h(Ak+1, Ek+1, ∆τk+1).

END WHILE

OUTPUT: solution (A∗, E∗, ∆τ ∗) to problem (7).

In our experience, the algorithm always converges to the optimal solution to (7), and does so

significantly faster than other alternative convex optimization methods. In particular, it is about

5-10 times faster than the accelerated proximal gradient (APG) method originally proposed in

the conference version of this work [31]. Although the convergence of the ALM method (15)

has been well established in the optimization literature, we currently know of no proof that

its approximation (16) converges too. The main difficulty comes from the fact that there are

three terms in the alternating minimization. The case with alternating between two terms has

been studied extensively as thealternating direction method of multipliersin the optimization

literature and its convergence has been well established for various cases [32], [33], [34]. In

particular, the convergence for the Principal Component Pursuit problem – essentially problem

(7) without the term associated with∆τ – has been established in [29]. Recently, [35] obtained

a convergence result for certain three-term alternation applied to the noisy principal component

pursuit problem (see also [36]). However, [35] reflects a very similar theory-practice gap – the

three-term alternation for which convergence has been established is slower in practice than an

alternation in the form of algorithm (18), for which a rigorous proof of convergence remains

elusive.
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E. Implementation details

In this section, we provide some details of our implementation of Algorithm 2 that could of be

of help to practitioners in similar fields. For our experiments, we chooseµk = ρkµ0, whereρ and

µ0 are set to1.25 and1.25/‖D‖, respectively.6 The algorithm is terminated when the difference

in the value of the cost function is sufficiently small between two consecutive iterations.

A minor practical issue with our algorithm is that poorly conditioned Jacobian matrices

Ji’s could lead to problems with numerical precision. Hence, we do not use them directly in

Algorithm 2. Instead, we compute the QR factorization of theJi’s asJi = QiR
T
i , and use the

orthogonalQi’s in Algorithm 2 in the place of the correspondingJi’s. This, in turn, implies that

the output of the algorithm would be∆τ ′
i = Ri∆τi. Since theRi’s are invertible, the change

in the original deformation parameters∆τi’s can be easily computed. Although this does not

affect the theoretical convergence of the algorithm, we observe that it leads to a more stable

implementation in practice.

IV. EXPERIMENTAL VERIFICATION

In this section, we demonstrate the efficacy of RASL on a variety of image alignment tasks.

We always setλ = 1/
√

m in the RASL algorithm, wherem is the number of pixels in the

region of interest in each image.7 We first quantitatively verify the correctness of our algorithm

on controlled data sets, and show that it outperforms state-of-the-art methods in aligning batches

of images despite lighting variation and occlusion. We thentest our algorithm on more realistic

and challenging face images taken from the Labeled Faces in the Wild (LFW) database [1].

Experiments on video data, microscopic iris images, and handwritten digits further demonstrate

the generality and broad applicability of our method. Finally, we provide an example of aligning

perspective images of a planar surface that demonstrates its ability to cope with more complicated

deformations such as planar homographies.

A. Quantitative Validation with Controlled Images

We verify the correctness of the algorithm using 100 images of a dummy head taken under

varying illumination. Because the relative position between the camera and the dummy is fixed,

6‖ · ‖ denotes the matrix spectral norm.

7The only exception in this paper is Figure 1, where we setλ = 1.1/
√

m.
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(a) Dummy head

(b) Multi-PIE database

Fig. 2. Sample input images. Representative input images taken under controlled conditions artificially perturbed and occluded.

the ground truth alignment is known. We also test our algorithm on the CMU Multi-PIE face

database [37] to illustrate its performance on more naturalface images taken under controlled

conditions. Figure 2 shows some representative sample input images used for our experiments.

1) Large region of attraction for RASL:We examine RASL’s ability to cope with varying

levels of misalignment. The task is to align the images to an80 × 60 pixel canonical frame, in

which the distance between the outer eye corners is normalized to 50 pixels.8 We synthetically

perturb each of the input images by Euclidean transformations (G = SE(2)) whose angles of

rotation are uniformly distributed in the range[−θ0/2, θ0/2], and whosex- andy-translations are

uniformly distributed in the range[−x0/2, x0/2] pixels and[−y0/2, y0/2] pixels, respectively.

We consider an alignment successful if themaximumdifference in each individual coordinate

of the eye corners across all pairs of images is less than one pixel in the canonical frame. Figure

3(a) shows the fraction of successes over 10 independent trials, with θ0 = 0 fixed and varying

levels of translationx0, y0. Our algorithm always correctly aligns the images as long asx0 and

y0 are each smaller than 15 pixels, i.e.30% of the distance between the eyes. In Figure 3(b), we

fix x0 = 0 and plot the fraction of successful trials while varying both y0 and θ0. Here, RASL

successfully aligns the given images despite translationsof up to 15 pixels and simultaneous

in-plane rotation of up to40◦!

We repeat the above experiment with images of 100 subjects (users 001-100) chosen from

8The outer eye corners were manually chosen for one image, and the same set of coordinates were used for all images.
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(b) Translation iny direction and in-plane rotationθ

Fig. 3. Large region of attraction for RASL. Percentage of successful alignments for varying levels of misalignment.

Translations are given as a fraction of the distance between the eyes (here, 50 pixels), while rotations are in degrees. (a)

Translation inx and y directions. All images are correctly aligned despite simultaneousx and y translations up to30% of

the eye distance. (b) Translation iny direction and in-plane rotationθ (degrees). All images are correctly aligned for despite

simultaneousy translation of30% of the eye distance and rotation up to40◦.

Session 1 of the Multi-PIE database. The database contains 20 images of each subject taken

under different illumination conditions. We once again usemanually clicked outer eye corners to

crop the images. This set of images is much more challenging than in the previous experiment

since we have only 20 images per person. For each subject, we consider one instance of a

randomly chosen misalignment as described above, and record the percentage of successful

alignments across all subjects. The experimental results are shown in Figure 4. We notice that

RASL achieves a success rate of over90% even when there’s simultaneous misalignment in both

x andy directions of about 7 pixels.

2) Effect of number of images:It is clear that the region of attraction for the Multi-PIE images

(Figure 4) is smaller than that for the dummy head images (Figure 3). A primary reason for

this difference is the fact that the Multi-PIE database contains only 20 images per person, as

against 100 images of the dummy head. In this experiment, we study the effect of the number

of images on the region of attraction.

We use the 100 images of a dummy head described earlier. We choose subsets of images

from this dataset, and artificially perturb them in the same manner as was done for the region of

attraction experiment (see Figure 3). In this experiment, we perturb the images only along the
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(b) Translation iny direction and in-plane rotationθ

Fig. 4. Region of attraction for RASL with Multi-PIE images. Percentage of successful alignments for varying levels

of misalignment. Translations are given as a fraction of the distance between the eyes (here, 50 pixels), while rotations are in

degrees. (a) Translation inx andy directions. (b) Translation iny direction and in-plane rotationθ (degrees).
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Fig. 5. Effect of number of images on region of attraction. Percentage of successful alignments for varying levels of

misalignment and number of images. The misalignment is restricted to translation along thex-direction. The region of attraction

steadily increases as the number of images is increased.

x-direction, where each image is translated by an amount uniformly distributed in the interval

[−x0/2, x0/2] pixels. Figure 5 summarizes the results of this experiment where the success rate

has been measured over 10 independent trials. We observe that the region of attraction increases

as the number of images increases. This is because with more images, the redundancy in the

data is higher and hence, the low-rank model fits better.
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3) Handling occlusion:A major advantage of the formulation of RASL is that it can handle

large magnitude corruption, like occlusions, in the input images. For practical applications, it

is interesting to know beforehand the amount of occlusion that RASL can handle for a given

set of images. Unfortunately, this is very hard to characterize analytically since it depends on

many factors, including the number of images, the amount of misalignment, the extent of linear

correlation between the images, etc. In this experiment, weprovide an empirical characterization

of the amount of occlusion that RASL can handle for different levels of misalignments.
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Fig. 6. Effect of amount of occlusion coupled with misalignment. Fraction of successful alignments for varying levels of

misalignment. Translations are given as a fraction of the distance betweenthe eyes (here, 50 pixels), while the percentage of

occluded pixels reported is the average per image.

We once again use the 100 images of the dummy head for this experiment. We synthetically add

occlusion to each image in the form of a square black patch at arandomly chosen location. Figure

6 shows the percentage of successful alignments by RASL for different choices of misalignment

(translation along they direction) and average percentage of occluded pixels in each input image.

We observe that RASL can effectively align the images even when upto15% of the pixels are

occluded and the images are misaligned with respect to each other by upto 5 pixels along they

direction.

4) Multiple image denoising:We now demonstrate RASL as a tool to simultaneously align and

denoise multiple images of the same scene. Unlike occlusions that occur as contiguous blocks in

the images, here we consider corruptions that are distributed more evenly throughout the image.

In particular, we consider errors that are distributed according to the random signs and support
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model described in [16]. According to this model, each pixelis corrupted independently with

probability ρ ∈ (0, 1) and the sign of the non-zero error is uniformly distributed in {+1,−1}.

(a) misaligned and noisy input images

(b) aligned noisy images

(c) image denoising results

(d) errors

Fig. 7. Multiple images denoising. (a) misaligned original images with large sparse noise; (b) alignment results using RASL;

(c) denoising results; (d) magnitude of the recovered errors. The images are cropped to a size of80 × 60 pixels.

In this experiment, we use the 100 dummy head images described earlier. We corrupt approx-

imately 20% of the pixels in each image (i.e., ρ = 0.2). The results are shown in Figure 7. We

observe that the output images are well-aligned with respect to each other and free of corruptions.

Recently, [38] proposed an image denoising algorithm based on low-rank matrix completion. Our

method differs from that work in three main aspects. Firstly, we denoise the images globally

instead of in a patch-based fashion. Secondly, we do not require any information about the

locations of the corrupted pixels. Thirdly, RASL recovers the global domain transformation

while denoising the image simultaneously.
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5) Comparison with [9]: We next perform a qualitative and quantitative comparison with

the two methods proposed in [9].9 While that work also minimizes a rank surrogate, it lacks

robustness to corruption and occlusion. For compatibilitywith [9], we choose the canonical frame

to be49×49 pixels.10 To each image, we apply a random Euclidean transformation whose angle

of rotation is uniformly distributed in[−10◦, 10◦] and whosex- andy-translations are uniformly

distributed in[−3, 3] pixels. We also synthetically occlude a randomly chosen12× 12 patch on

30 of the 100 images, thereby corrupting roughly 6% of all pixels.

Figure 8(a) shows 10 of the 100 perturbed and occluded images. Figure 8(b) shows the

alignment result using [9]. We note that eight of the 100 are flipped upside down; some of the

remaining images are still obviously misaligned. Figure 8(c) shows the more visually appealing

alignment produced by RASL (withG the similarity groupSE(2) × R+). We observe that

RASL correctly removes the occlusions (Figure 8(c), bottom), to produce a low-rank matrix

of well-aligned images (Figure 8(c), middle). The table in Figure 8(d) gives a quantitative

comparison between the two algorithms.11 Statistically, RASL produces alignments within half

a pixel accuracy, with standard deviations of less than quarter of a pixel in the recovered eye

corners. The performance of [9] suffers in the presence of occlusion: even with the eight flipped

images excluded, the mean error is nearly two pixels.

6) Speed and scalability of RASL:The RASL formulation consists of solving a sequence of

convex optimization problems. Recent advances in nuclear-norm minimization have enabled us

to develop scalable algorithms for RASL. We provide the running time for an example case to

give an idea of the efficiency of our algorithm. On a Macbook Pro laptop with a 2.8 GHz Intel

Core 2 Duo processor and 4 GB of memory, a MATLAB implementation of RASL can align

100 images, each of size80 × 60 pixels, in about 3 minutes. This is a huge improvement over

the APG algorithm proposed earlier in a conference version of this work [31], which takes about

20 minutes to align the same set of images.

9We have actively sought implementations of other alignment methods suchas TCA [12] and RPCA [13], but at the time of

preparation of this paper had only received code for [9].

10Due to memory limitations and running time, this is the largest image size that the code of [9] can handle; as we will see

in later experiments, RASL however has no problem scaling up to images ofmuch larger sizes.

11We calculate all 100 images’ eye corners for RASL but only the 92 un-flipped images for Vedaldi’s method [9].
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(a) Original perturbed and occluded images

(b) Alignment results by [9] (Top: direct; Bottom: gradient)

(c) Alignment results by RASL (Top: aligned input images;Middle: aligned images with occlusions

removed;Bottom: recovered errors)

Mean error Error std. Max error

Initial misalignment 2.5 1.03 4.87

[9] (direct/gradient) 1.97/1.66 1.11/0.85 5.71/4.02

RASL (this work) 0.48 0.23 1.07
(d) Statistics of errors in the locations of the eye corners, calculated as thedistances

(in pixels) from the estimated eye corners to their center.

Fig. 8. Comparison with controlled images. (a) 10 out of 100 images of a dummy head. (b) alignment by Vedaldi’s methods

[9]: direct searchof rotation and translation (top) andgradient descenton a full affine transformation (bottom). (c) alignment

by RASL: D ◦ τ (top), low-rank approximationA (middle), and sparse errorsE (bottom).

B. Qualitative Evaluation with Natural Images

1) Aligning natural face images:We next test our algorithm on more challenging images

taken from the Labeled Faces in the Wild (LFW) [1] dataset of celebrity images. Unlike the

controlled images in our previous example, these images exhibit significant variations in pose

and facial expression, in addition to changes in illumination and occlusion.
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(a) Average faces from face detector (b) Average faces after alignment

Fig. 9. Aligning natural face images. Average faces before and after alignment. (a) average of original images obtained using

a face detector; and (b) average of the reconstructed low-rank images.

We obtain an initial estimate of the transformation in each image using the Viola-Jones face

detector [39]. We again align the images to an80×60 canonical frame. For this experiment, we

use affine transformationsG = Aff (2) in RASL, to cope with the large pose variability in LFW.

Since there is no ground truth for this dataset, we verify thegood performance of RASL

visually by plotting the average face before and after alignment. Figure 9 shows results for some

celebrities from LFW, as well as for images of Barack Obama that were separately downloaded

from the Internet. We note that the average face after alignment is significantly sharper, indicating

the improved alignment achieved by RASL.

As an additional example, we selected some images of Bill Gates at random from the Internet,

and used RASL to align them together with a few more images fromthe LFW dataset. In Figure

10, we show the alignment results on all 48 images used for this experiment. The images are

initially cropped by applying the face detector, as shown inFigure 10(a). We downsample the

images to a80× 60 canonical frame and use the RASL algorithm with affine transformation to

align the images. The alignment results are shown in Figure 10(b)-(d). We observe that large

occlusions (like the Time magazine logo) and severe expression variations are effectively handled
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(a) Original imagesD (b) Aligned imagesD ◦ τ

(c) Low-rank componentA (d) Sparse large errorsE

Fig. 10. Aligning Bill Gates’ face images collected from the Internet. (a) original images obtained by face detector; (b)

alignment results using RASL; (c) recovered clean images; (d) recovered errors. The size of each cropped image is80 × 60

pixels.

as large magnitude errors by RASL. The reason large expression changes are considered as errors

is because they cannot be modeled effectively by a global transformation of the face image, as

implemented in this work. We also plot the average of the faceimages in Figure 11 for both

the input imagesD, the aligned imagesD ◦ τ , and the images represented by the low-rank
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(a) AverageD̄ (b) AverageD̄ ◦ τ (c) AverageĀ

Fig. 11. Qualitative evaluation from average images. The quality of the alignment results can be assessed from the average of

the 48 images of Bill Gates before and after alignment.Left: average input image;Middle: average input image after correcting

for alignment;Right: average image after alignment and error correction. The average images after applying the recovered

alignments are much sharper than the average input image.

matrix A for visual comparison. The much-sharpened average face images after alignment and

error correction indicate the efficiency of the RASL algorithm. This experiment suggests that

RASL could potentially be very useful for improving the performance of current face recognition

systems under less-controlled or uncontrolled conditions.

2) Video stabilization:Video frames are another rich source of linearly correlatedimages. In

this example, we demonstrate the utility of RASL for jointly aligning the frames of a video.

Figure 12 shows the first 15 frames of a 140-frame video of Al Gore talking, obtained by

applying a face detector to each frame independently. Due tothe inherent imprecision of the

detector, there is significant jitter from frame to frame. The second row shows alignment results

by RASL, using affine transformations. In the third row, we show the low-rank approximation

obtained after alignment, while the fourth row shows the sparse error. We note that this error

compensates for localized motions such as mouth movements and eye blinking that do not fit

the global motion model.

We show another example of stabilizing image frames of a video, where a portion of an iris is

video-taped with a static microscopic camera. The image frames suffer from severe misalignment,

which are caused by head movements, eye jitters, or dilationand contraction of the pupil, etc. The

presence of noise in these images further complicates the problem. For this experiment, we use a

canonical image size of232×312 pixels. Due to the high-resolution of the images, we use a multi-

scale extension of RASL to speed up the algorithm. Here, the images are progressively aligned

from down-sampled versions, using the results of previous level to initialize the transformation
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Fig. 12. Stabilization of faces in the video. 1st row: frames 1-15 from a 140-frame video, cropped by applying a face

detector to each frame;2nd row: input images after alignmentD ◦ τ ; 3rd row: recovered low rank componentA; 4th row:

sparse errorsE.

parameters of the next. In Figure 13, we show the result of aligning this iris video sequence,

consisting of 25 frames, using RASL with an affine transformation model. We compare the

original video and the aligned video with three different frames. The frames show severe jitter,

blur, and intensity variation, which presents great challenges for image alignment. As can be

seen from the difference images in Figure 13, the errors between any two frames is significantly

reduced after alignment by RASL and become much more like random noise. Although RASL

is not designed to handle additive random noise, experimental results suggest that it is stable to

small amounts of noise in the image frames.

3) Aligning handwritten digits:While the previous examples concerned images and videos

of human faces, RASL is a general technique capable of aligning any set of images with strong

linear correlation. In this experiment, we demonstrate theapplicability of our algorithm to other

types of images by using it to align handwritten digits takenfrom the MNIST database. For this

experiment, we use 100 images of the handwritten “3”, of size29 × 29 pixels.

Figure 14 compares the performance of RASL (using Euclidean transformationG = E(2)) to

that of [5] and [9]. RASL obtains comparably good performanceon this example, despite the

fact that [5] explicitly targets binary image alignment.

4) Aligning planar surfaces despite occlusions:While the previous examples used simple

transformation groups such as similarity and affine, RASL canalso be used with more compli-
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(a) Original frame 1 (b) Original frame 10 (c) Original frame 20 (d) Difference (b) - (a) (e) Difference (c) - (a)

(f) Aligned frame 1 (g) Aligned frame 10 (h) Aligned frame 20 (i) Difference (g) - (f) (j) Difference (h) - (f)

Fig. 13. Microscopic iris video stabilization. The original image frames 1, 10, 20 are shown in (a), (b), (c) respectively with

the corresponding frames after alignment shown in (f), (g), (h); theabsolute intensity difference between the frames is used to

qualitatively assess the performance of RASL. The size of each cropped image is232 × 312 pixels.

cated deformation models. In this example, we demonstrate how RASL can be used to align

images that differ by planar homographies (i.e.G = GL(3)). Figure 15 shows 16 images of the

side of a building, taken from various viewpoints by a perspective camera, and with occlusions

caused by tree branches. We manually chose three points in each image to obtain an initial affine

transformation. We then used RASL, with the planar homography group of transformations, to

correctly align the images to a200 × 200 pixel canonical frame. As can be seen in Figure 15,

RASL correctly aligns the windows and removes the branches occluding them. This example

suggests that RASL could be very useful for practical tasks such as image matching, mosaicing,

and inpainting.

V. CONCLUSION AND FUTURE WORK

We have presented an image alignment method that can simultaneously align multiple images

by exploiting the low-rank property of aligned images. Our approach is based on recent advances

in efficient matrix rank minimization that come with theoretical guarantees. The proposed algo-

rithm consists of solving a sequence of convex optimizationproblems, and hence, both tractable

and scalable. This allows us to simultaneously align dozensor even hundreds of images on a

typical PC in matter of minutes. Furthermore, our method acts directly on the input images,

and does not require any pre-filtering or feature extractionand matching. We have shown the
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(a) Original (b) Congealing [5] (c) Direct [9] (d) Gradient [9]

(e) D ◦ τ (RASL) (f) A (RASL) (g) E (RASL)

Fig. 14. Comparison of aligning handwritten digits. (a) original digit images; (b) aligned images using Miller’s method

[5]; (c) aligned images using Vedaldi’s method [9] based on direct search of rotation and translation; (d) aligned images using

Vedaldi’s method [9]; refinement based on gradient descent on the full six parameters of the affine transformation; (e) RASL

alignment resultD ◦ τ (f) low-rank imagesA (of rank 30); (g) sparse errorE.

efficacy of our method with extensive experiments on images taken under laboratory conditions

and on natural images of various types taken under a wide range of real-world conditions. A

MATLAB implementation of our algorithm, along with sample data used in this paper, has been

made publicly available for the interested reader to evaluate or use.

Currently, our method can handle one global domain transformation per image, such as affine

or projective transformations. It would be useful to many practical applications if this work

can be extended to handle multiple transformations in each image, where the image sequence

consists of multiple independently moving objects or regions. It would also be interesting to

extend this approach to the case where each input image can bedeformed by wider classes of

nonlinear or non-parametric domain transformations.
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(a) Original imagesD (b) Aligned imagesD ◦ τ

(c) Reconstructed imagesA (d) Recovered occlusionsE

Fig. 15. Aligning planar homographies using RASL with (G = GL(3)). (a) original images from 16 views; (b) RASL

alignment resultD ◦ τ ; (c) recovered low-rank componentA; (d) sparse errorE.
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