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Abstract

This paper studies the problem of simultaneously aligningaech of linearly correlated images
despite gross corruption (such as occlusion). Our methetssan optimal set of image domain
transformations such that the matrix of transformed imagasbe decomposed as the sum of a sparse
matrix of errors and a low-rank matrix of recovered alignedges. We reduce this extremely challenging
optimization problem to a sequence of convex programs ttaihmize the sum of'-norm and nuclear
norm of the two component matrices, which can be efficientlyedd by scalable convex optimization
techniques. We verify the efficacy of the proposed robughatient algorithm with extensive experiments
on both controlled and uncontrolled real data, demonsgdtigher accuracy and efficiency than existing

methods over a wide range of realistic misalignments ancuptons.
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. INTRODUCTION

In recent years, the increasing popularity of image andosglearing sites such as Facebook,
Flickr, and YouTube has led to a dramatic increase in the anoiuvisual data available online.
Within the computer vision community, this has inspired aewged interest in large, uncon-
strained datasets [1]. Such data pose steep challengesstm@wision algorithms: significant
illumination variation, partial occlusion, as well as pawreven no alignment (see Figure 1(a)
for example). This last difficulty is especially challengjrsince domain transformations make it
difficult to measure image similarity for recognition or s&fication. Intelligently harnessing the
information encoded in these large sets of images seemgjtireemore efficient and effective
solutions to the long-standing batch image alignment gmbf2], [3]: Given many images of

an object or objects of interest, align them to a fixed canainiemplate

(a) Original images (b) Aligned images

(d) Recovered errors (e) Average of (a), (b), (c), respectively

Fig. 1. Batch Image Alignment. (a) 40 face images of a person with different illuminationgclosions, poses,
and expressions. Our algorithm automatically finds a setamisformations such that the transformed images in (b)
can be decomposed as the sum of images from a low-rank appaban in (c) and sparse large errors in (d). The

much sharpened average face images shown in (e) indicaeffitacy of our alignment algorithm.
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To a large extent, progress in batch image alignment has dgeen by the introduction
of increasingly sophisticated measures of image simyig4if. Learned-Miller’s influentialcon-
gealing algorithm seeks an alignment that minimizes the sum of pre@soof pixel values at
each pixel location in the batch of aligned images [5], [6]wk stack the aligned images as
the columns of a large matrix, this criterion demands thaheaw of this matrix be nearly
constant. Conversely, tHeast squares congealingrocedure of [7], [8] seeks an alignment that
minimizes the sum of squared distances between pairs ofeéspand hence demands that the
columns be nearly constant. In both cases, if the criterosatisfied exactly, the matrix of
aligned images will havdow rank ideally rank one. However, if there is large illumination
variation in the images (such as those in Figure 1), the mafraligned images might have an
unknownrank higher than one. In this case, it is more appropriatectoch for an alignment
that minimizes the rank of the aligned images. So in [9], \det. al. choose to minimize a
log-determinant measure that can be viewed as a smoothgatgrfor the rank function [10].
The low-rank objective can also be directly enforced, agransformed Component Analysis
(TCA) [11], [12], which uses an EM algorithm to fit a low-dimemsal linear model, subject to
domain transformations drawn from a known group.

A major drawback of the above approaches is that they do nuil&ineously handle large
illumination variations and gross pixel corruptions ortgdrocclusions that often occur in real
images (e.g., shadows, hats, glasses in Figure 1)Rbheist Parameterized Component Analysis
(RPCA) algorithm of [13] also fits a low-rank model, and useslaust fitting function to reduce
the influence of corruption and occlusion. Unfortunatehjs tleads to a difficult, nonconvex
optimization problem, with no theoretical guarantees diuginess or convergence rate. This
somewhat unsatisfactory status quo is mainly due to thesmty difficult nature of the core
problem of fitting a low-rank model to highly corrupted dafal], a problem that until recently
lacked a polynomial-time algorithm with strong performanguarantees. Recent advances in
rank minimization [15], [16] have shown that it is indeed gibte to efficiently and exactly
recover low-rank matrices despite significant corruptasing tools from convex programming.
These developments prompt us to revisit the problem of tbbasigning batches of linearly
correlated images.

Contributions. In this paper, we introduce a new algorithm, named RASL, foustly aligning

linearly correlated images (or signals), despite largdusoans and corruptions. Our solution
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builds on recent advances in rank minimization and forneglahe batch alignment problem as
the solution to a sequence of convex programs. We show hotv @éfathese convex programs
can be solved efficiently using modern first-order optimaattechniques, leading to a fast,
scalable algorithm that succeeds under very broad condit@ur algorithm can handle batches
of over one hundred images in a few minutes on a standard PCeAsilwerify with extensive

experiments on real image data, the algorithm achievesdwise accuracy over a wide range of
misalignments. A MATLAB implementation of our algorithm duthe data used in this paper is

publicly available on our website:
http://perception.csl.uiuc.edu/ matrix-rank/rasl.htn.

Organization. The remainder of this paper is organized as follows: In $acti, we introduce
matrix rank as a measure of image similarity and recast tleg@ralignment problem as one
of matrix rank minimization. In Section Ill, we propose arfi@ént algorithm to solve the
rank minimization problem by iterative convex optimizatidVe provide experimental results in
Section IV to showcase the efficacy of our method on real ima8ection V provides concluding

remarks and proposes potential extensions to our algarithm

I[l. IMAGE ALIGNMENT BY MATRIX RANK MINIMIZATION

In this section, we formulate batch image alignment as theckefor a set of transformations
that minimizes the rank of the transformed images, viewedhascolumns of a matrix. We
discuss why rank is a natural measure of image similaritgl, lzow this conceptual framework

can be made robust to gross errors due to corruption or acnolus

A. Matrix Rank as a Measure of Image Similarity

Measuring the amount of similarity within a set of images iguadamental problem in
computer vision and image processing. Suppose we are giveell-aligned grayscale images
19,..., 19 ¢ R of some object or scene. In many situations of interest,ethesll-aligned
images ardinearly correlated More precisely, if we letrec : R¥** — R™ denote the operator
that selects amn-pixel region of interest (typicallyn > n) from an image and stacks it as a
vector, then as a matrix

A= [vee(I) | -+ | vec(I))] € R™*" (1)
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should be approximateljow-rank This assumption holds quite generally. For example, if the
I?,i=1,...,n are images of some convex Lambertian object under varyimgiihation, then a
rank9 approximation suffices [17]. Being able to correctly identtiis low-dimensional structure

is crucial for many vision tasks such as face recognition.

B. Modeling Misalignments as Domain Deformations

Misalignment poses a serious problem to many different agerprision applications. It is an
inherent problem in most image acquisition processes simeeaelative position of the camera
with respect to the object is seldom fixed across multiplegiesa Images of the same object
or scene can appear drastically different even under mtaleheange in the object’s position or
pose with respect to the camera. The above model (low-ramixnad correlated images) breaks
down if the images are even slightly misaligned with resgeatach other.

In this work, since the 3-D structure of the object of intéiesunknown, we assume that the
misalignment is restricted to the image plan€hen, we can model misalignments as domain
deformations. More precisely, I, and I, represent two misaligned images, then there exists an

invertible transformation : R2 — R? such that

]2(I,y) = ([1 © T)([E,y) = ]1(T(I7y))' (2)

In most practical scenarios, we can model misalignmentsrassformations from a finite-
dimensional grougis that has a parametric representation, such as the sipitaoup SFE(2) x
R,, the 2-D affine group Aff2), and the planar homography groafi.(3) (see [18] for more
details on transformation groups).

Consolidating the above two models, we formulate the imagmmlent problem as follows.
Suppose that, I, ..., I, representn input images of the same object but misaligned with
respect to each other. Then, there exist domain transf@nsat;, 7»,..., 7, such that the
transformed images$, oy, I, o1, ..., I, o7, are well-aligned at the pixel level, or equivalently
the matrix

Dot = [vec(I)) | --- | vec(I})] € R™"

IWe will see in Section IV that the proposed algorithm is robust to small asaimg3-D pose as well.
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has low rank, wheré) = I o7; for j = 1,2,...,n, D = [vec(I)) | - - - | vec([,)], andr represents
the set ofn transformations, r, ..., 7,,. Therefore, the batch image alignment problem can be

reduced to the following optimization problem:

min rank(A4) st. Dot =A. 3)

\T

C. Modeling Corruption and Occlusion as Large, Sparse Errors

In practice, the low-rank structure of the aligned images ba easily violated, due to the
presence of partial occlusions or corruptions in the ima&esce these errors typically affect
only a small fraction of all pixels in an image, we can moda&nthas sparse errors whose non-
zero entries can have arbitrarily large magnitude. This ehdés been successfully employed
in face recognition [19].

In addition to occlusions, real images typically contaimgonoise of small magnitude in each
pixel. To keep our discussion simple, we assume here thatrsoise is negligible in magnitude
as compared to the error due to occlusions. We will see in@etit-B that it is straightforward
to incorporate this small-magnitude noise into our aldonit

Let e; represent the error corresponding to imdgeuch that the image§/; o 7; —¢;}7_, are
well-aligned to each other, and free of any corruptions a@iusions. Therefore, the formulation

(3) can be modified as follows:

Ignén rank(A) st. Dor=A+E, ||El <k, 4)

where E = [vec(e;) | - -+ | vec(e,)]. Here, the/’-“norm”

- |lo counts the number of nonzero
entries in the error matrixy, and k is a constant that represents the maximum number of
corrupted pixels expected across all images. As we will s&ection IlI-A, it is more convenient

to consider the Lagrangian form of this problem:

E‘nEin rank(A) + || Ello st. Dor=A+E, (5)

where~y > 0 is a parameter that trades off the rank of the solution vetisessparsity of the
error. We refer to this problem aRobust Alignment by Sparse and Low-rank decomposition
(RASL).

To summarize our approach (5) to solving the image alignmesitlem, we know that if the

images are well-aligned, they should exhibit good low-ratrkicture, up to some sparse errors
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(say due to occlusions). We therefore search for a set o$foemationsr = {r;,...,7,} such
that the rank of the transformed images becomes as smallsssbfy when the sparse errors

are subtracted.

[11. PRACTICAL SOLUTION VIA ITERATIVE CONVEX PROGRAMMING

In this section, we present a practical solution to the RASabfam (5), that works quite
effectively as long as the misalignments are not too large.fvgt relax the highly nonconvex
objective function in (5) to its convex surrogate (SectidrAl). We then linearize the nonlinear
equality constraint in (5) (Section IlI-B), yielding a semnce of convex programs whose solutions
converge quadratically to the correct alignment (Sectlti€C). These convex programs can be
solved efficiently via modern first-order optimization tagfues (Section 111-D). In Section IV we

will verify the practical convergence behavior of this sefgewith numerous real-data examples.

A. Convex Relaxation

The optimization problem (5), although intuitive, is noteditly tractable. A major difficulty is
the nonconvexity of the matrix rank arf-norm: minimization of these functions is extremely
difficult (NP-hard and hard to approximate) in the worst cddereover, since matrix rank and
the (°-norm are discrete-valued functions, the solution given(®yis likely to be unstable if
the errors in the images are nexactly sparseRecently, however, it was shown that for the
problem of recovering low-rank matrices from sparse errasslong as the rank of the matrix
A to be recovered is not too high and the number of non-zeraesniin £ is not too large,
minimizing the natural convex surrogate feink(A) + A||E||o can exactly recover A [16].2
This convex relaxation replacesnk(-) with the nuclear normor sum of the singular values:
1Al = S0 ,(A), and replaces thé@-norm || ||, with the ¢!-norm: 3°, | E;;|. Applying
the same relaxation to the RASL problem (5) yields a new ogation problem:

min Al + A|E|1 st. Dor=A+E. (6)

2Convex programming exactly recovers low-rank matrideswhose singular vectors are not themselves sparse or spiky. More
precisely, it succeeds with high probability (assuming that the suppdttisfrandom) providedank(A) < Ciu~'n/log?(m)
and||E||o < Camn, whereC,, C> are numerical constants apds anincoherenceparameter that is small if the singular spaces
of A are not aligned with the standard basis [16]. Similar guarantees carobedpior the linearized convex optimization to

be introduced in Section 1lI-D, but are not the main focus of this paper.

April 14, 2011 DRAFT



REVISED MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, APRIL 201 8

Theoretical considerations in [16] suggest that the weighparameten should be of the form
C/y/m whereC'is a constant, typically set to unity. The new objective fiortis non-smooth,

but now continuous and convex.

B. lterative Linearization

The main remaining difficulty in solving (6) is the nonlinggrof the constraintDor = A+ F,
which arises due to the complicated dependenceDaf 7 on the transformations € G".
When the change in is small, we can approximate this constraint by linearizaigut the
current estimate of-. Here, and below, we assume th@tis somep-parameter group and
identify 7 = [ry | -+ | 7] € RP*™ with the parameterizations of all of the transformations.
For A7 = [Ar | -+ | Ar,] € R, write Do (1 + A7) & Dot + Y. J/Anel, where
Ji = a%vec(fiog)\czn € R™*? is the Jacobian of theth image with respect to the transformation
parameters; and {¢;} denotes the standard basis #&*. This leads to a convex optimization
problem in unknownsA, £/, Ar:

A{%%RT |All« + Al[E]]: st. Dot + 2”1: JiATeiel = A+ E. (7
Because the linearization only holds locally, we should ngieet the solutionr + A7 from
(7) to exactly solve (6). To find the (local) minimum of (6), wepeatedly linearize about our
current estimate of and solve a sequence of convex programs of the forni (9.we will
see in Section 1V, as long as the initial misalignment is oat karge, this iteration effectively
recovers the correct transformationand separates the low-rank structure of the batch of images
from any sparse errors or occlusions. This complete opétina procedure is summarized as
Algorithm 1. The iterative procedure in Algorithm 1 is st@gpwhen the relative change in the
value of the cost function between two consecutive itenatis smaller than a pre-determined
threshold. Notice that Algorithm 1 operates on the nornealimmagesiec(;o7;)/||vec(I;07;)||2,
in order to rule out trivial solutions such as zooming in onragke dark pixel or a dark region

in the images.

3This kind of iterative linearization has a long history in gradient algorithmsbfich image alignment (see, e.g., [9], [20]
and references therein). More recently a similar iterative convexranaging approach was proposed for single-to-batch image

alignment in face recognition [21].
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Algorithm 1 (Outer loop of RASL)
INPUT: Images],, ..., I, € R“*" initial transformationsr,,..., 7, in a certain parametric

group G, weight A > 0.
WHILE not convergedO

Step 1. compute Jacobian matrices w.r.t. transformation:
Ji<—g<M)‘ o r=1,...,m;
9¢ \[lvec(Zi o Q|2 ) le=n
Step 2: warp and normalize the images:
vec(ly o) vec(l,om,) |
lvec(I; o 71)]|2 ‘ ' } ’

Dot « ..
{ [vec(L, o ) |2

Step 3 (inner loop): solve the linearized convex optimization:
(A4, B*, A7) —argmin || A]l. + A B

st. Dot + Z JZ'ATEZ'QT =A+ FE;
=1
Step 4: update transformations: < 7 + A7*,

END WHILE
OUTPUT: solution A*, E*, 7* to problem (6).

In this work, we have considered only sparse, large-madeitrrors in images arising from
occlusions or other forms of corruption. However, in preetimages also contain some noise of
small magnitude in each pixel. This can be easily augmemiadaur model by adding aoise
matrix Z of bounded magnitude to the equality constraint in (7). & haen shown in [22] that
sparse and low-rank matrix decomposition (without trarmeftions) by convex optimization is
stable to additive Gaussian noise of small magnitude, intiaddto sparse errors. It may be
possible to establish similar stability guarantees for lthearized convex program in (7). We

defer this to future work since it is beyond the scope of tlapep.

C. Convergence and Optimality

Replacing a difficult optimization problem with a sequencenabre tractable, linearized
problems is a standard technique in optimization, and ha® ltiee subject of intensive study

in the optimization literature. As we will see, the RASL aligom can be viewed as a Gauss-
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Newton method for minimizing the composition of a nonsmamthvex function with a smooth,
nonlinear mapping. The convergence behavior of such dlgos was extensively studied in the
late 1970’s and early 1980's, and they continue to draw attertoday [23]. We draw upon
this body of work, in particular results of Jittorntrum angl@rne [24] (building on work of
Cromme [25]) to understand the local convergence of RASL.

The result of [24] concerns the problem of minimizing the gasition of a norm|| - ||, :
R" — R with a C? mappingf : R? — R":

min || f(z)]lo, (8)

zERP

The authors of [25], [24] have studied the iterative aldomit

: of
oy = arg min flxy) + a—x(xk)é o 9)
Tpy1 = Tp + O, (10)

and have shown that if* € R? is a strictly uniqueoptimum to (8), in the sense thatx > 0

such that
V4§ eRP fz™) + %(x*)é
’ ox

> [|f(@)]lo + alld]l, (11)

then within some neighborhood af, the sequence of iterates (9)-(10) converges quadraticall
to z*.

To clarify the connection to RASL, we define a functipn|, : R™*"* — R via

[M]le = min [[A[l. + A £ (12)

+E=M
It is easy to verify that]- |, is indeed a north— it is a quotient norm on translates ff- X, X) |
X € Rmmp ¢ R™" x R™ ™, Let the transformations = {7, ...7,} be parameterized by
parameters = {{;...&,} € (RP)". Then, we can writeD o 7 = f(z), and view the RASL

optimization as a local procedure for solving the problem

min || f(z)]lo, (13)

ze(RP)™
via the iteration (9)-(10). Hence, provided the map- f(z) is C?, the result of [24] implies

that RASL converges quadratically in the neighborhood of stngngly unique local minimum.

“It is easy to check thatM ||, > 0 with equality iff M = 0, and that||tM ||, = |t|||M]|.. The triangle inequality follows
from the convexity of the functiof{ A||. + || E|:.
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This quadratic convergence is observed in our experimeas Section V), in which only a
few iterations, typically less than 20, are required for #tgorithm to converge.

It is important to realize that, in general, manifolds fodr®y transformed images may not be
C? (or not evenC''), due to the presence of sharp edges [26]. However, in o&; @ascan view
the digital imaged; o 7; as resampling transformations of an ideal bandlimited nstraction/;
obtained from the digital imagé&, in which case the mapping — f(z) is indeed smooth.

A complete convergence theory would then verify, based @ ptoperties of the desired
solutionz*, that the strong uniqueness property (11) holds. It is niicdit to give quantitative
bounds on the region of convergence and convergence ratbeoflgorithm based on the
coefficienta in (11) and the curvature of the s¢ff(z) | * € (R?)*} C R™ ™. However,
estimatinga: or characterizing the curvature are themselves nontrivialhematical problems,
which we delay to future work. The interested reader may wbfiz2], where a form of strong
uniqueness is (implicitly) used to show the stability of rggeand low-rank decomposition, albeit

without transformations.

D. Efficient Solution by Augmented Lagrange Multiplier Meth

The main computational cost in Algorithm 1 at each iteratisrstep 3, which solves the
linearized convex optimization problem (7). This is a se#fiitite program in thousands or
millions of variables, so scalable solutions are esseftrats practical use. Fortunately, a recent
flurry of work on high-dimensional nuclear norm minimizatibas shown that such problems
are well within the capabilities of a standard PC [27], [22B]. In this section, we show how
one such fast first-order method, the Augmented Lagrangdipiat (ALM) algorithm [29],
[30], [16], can be adapted to efficiently solve (7).

The basic idea of the ALM method is to search for a saddle mfitite augmented Lagrangian
function instead of directly solving the original constradl optimization problem. Let us define
h(A,E,A71) = Dor+Y " | JiATe;ef — A— E. For our problem (7), the augmented Lagrangian

function is given by
Lu(A B, ATY) = ||Alls + A Ell + (Y, h(A, E, AT)) + g\lh(A, E.AT)E, (14)

whereY € R™*" is a Lagrange multiplier matrix, is a positive scalar.,-) denotes the matrix
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inner producP, and || - || » denotes the Frobenius norm. For appropriate choice of tigeabae
multiplier matrix Y and sufficiently large constant, it can be shown that the augmented La-
grangian function has the same minimizer as the originasttaimed optimization problem [30].
The ALM algorithm iteratively estimates both the Lagrangeltiplier and the optimal solution
by iteratively minimizing the augmented Lagrangian fuoati
(Apg1, Bpg1, ATpy1) = argming par £y, (A, E, AT, Y}),
Yier = Y+ e h(Aksr, Br, ATiga).

(15)

It has been shown that whem } is @ monotonically increasing positive sequence, thetitera
indeed converges to the optimal solution of the problem 80).[

However, the first step in the above iteration (15) is diffidol solve directly. So typically,
people choose to to minimize the Lagrangian functmproximatelyby adopting an alternating
strategy: minimize the function against the three unknowng&', A7 one at a time:

Apr = argming £, (A, By, A1y, Yy),
Epyn = argming L, (Ak1, B, A1, Yy), (16)
AT = argmina, Ly, (Apy1, Brr, AT, Y:).
Although each step of the above iteration involves solvirgpavex program, each has a simple
closed-form solution, and hence, can be solved efficienylyalsingle step. To spell out the

solutions, let us define theoft-thresholdingor shrinkageoperator for scalars as follows:
S, x| = sign(z) - max{|z| — a, 0}, (17)

wherea > 0. When applied to vectors and matrices, the shrinkage opesats elementwise.

Using the shrinkage operator, we can write the solution thesep of (16) as

(U,%,V) = svd (D oT+ > JiATkeEel + l%kYk — Ek> ,

A = USL[DVT,

" (18)
Ek+1 = Sﬁ [D oT + Z?:l JiATkEiGlT + l%kyk — Ak+1],
ATk+1 = Z?:l JJ <Ak+1 + Ek+1 — Dot — M_llcYk> GZ'EZT,

wheresvd(-) denotes the Singular Value Decomposition operator, ﬁ}ndenotes the Moore-
Penrose pseudoinverse Hf For completeness, the entire algorithm to solve the linedrinner

loop (7) has been summarized as Algorithm 2.
5(X,Y) = trace(XY).
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Algorithm 2 (Inner Loop of RASL)
INPUT: (A% E° A7%) € R™*" x R™™ x RPX", \ > (.

WHILE not convergeddO
(U,%,V) = SVd(D oT 4+ Y. JiATheiEe]l + MikYk — Ek);
Apyr = U‘Sﬁ XV
Eiiq = Sﬁ [DoT+ Y0 JiATeeel + /%kyk — A ];
ATy =D 0, Jf (Ak+1 +FEy1— Dot — tYk)eieiT;
Yir = Y + p h(Ap1, Brgr, ATiya).

END WHILE

OUTPUT: solution (A*, E*, A7*) to problem (7).

In our experience, the algorithm always converges to thamaptsolution to (7), and does so
significantly faster than other alternative convex optetizn methods. In particular, it is about
5-10 times faster than the accelerated proximal gradie®QAmethod originally proposed in
the conference version of this work [31]. Although the cageace of the ALM method (15)
has been well established in the optimization literature, aurrently know of no proof that
its approximation (16) converges too. The main difficultynas from the fact that there are
three terms in the alternating minimization. The case withraating between two terms has
been studied extensively as th#ernating direction method of multipliens the optimization
literature and its convergence has been well establishedafioous cases [32], [33], [34]. In
particular, the convergence for the Principal Componensituproblem — essentially problem
(7) without the term associated withT — has been established in [29]. Recently, [35] obtained
a convergence result for certain three-term alternatigriegh to the noisy principal component
pursuit problem (see also [36]). However, [35] reflects ay\a@milar theory-practice gap — the
three-term alternation for which convergence has beerblesiad is slower in practice than an
alternation in the form of algorithm (18), for which a rigo proof of convergence remains

elusive.
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E. Implementation details

In this section, we provide some details of our implemeatatf Algorithm 2 that could of be
of help to practitioners in similar fields. For our experirtsgiwe choose, = p* 19, Wwherep and
Lo are set tol.25 and1.25/||D||, respectively. The algorithm is terminated when the difference
in the value of the cost function is sufficiently small betwdeo consecutive iterations.

A minor practical issue with our algorithm is that poorly ditoned Jacobian matrices
J;'s could lead to problems with numerical precision. Hence, do not use them directly in
Algorithm 2. Instead, we compute the QR factorization of the as J; = Q;R!, and use the
orthogonal®;’s in Algorithm 2 in the place of the correspondiggs. This, in turn, implies that
the output of the algorithm would bA7/ = R;Ar;. Since theR,’s are invertible, the change
in the original deformation parametersr;’s can be easily computed. Although this does not
affect the theoretical convergence of the algorithm, weeolss that it leads to a more stable

implementation in practice.

IV. EXPERIMENTAL VERIFICATION

In this section, we demonstrate the efficacy of RASL on a wamétimage alignment tasks.
We always set\ = 1/y/m in the RASL algorithm, wheren is the number of pixels in the
region of interest in each imadeéWe first quantitatively verify the correctness of our algfum
on controlled data sets, and show that it outperforms stitke-art methods in aligning batches
of images despite lighting variation and occlusion. We ttest our algorithm on more realistic
and challenging face images taken from the Labeled FaceleinAild (LFW) database [1].
Experiments on video data, microscopic iris images, andlatten digits further demonstrate
the generality and broad applicability of our method. Hipalie provide an example of aligning
perspective images of a planar surface that demonstratasiiity to cope with more complicated

deformations such as planar homographies.

A. Quantitative Validation with Controlled Images

We verify the correctness of the algorithm using 100 imagea dummy head taken under

varying illumination. Because the relative position betwéige camera and the dummy is fixed,

®|| - || denotes the matrix spectral norm.

"The only exception in this paper is Figure 1, where weJset 1.1/y/m.
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(@) Dummy head

(b) Multi-PIE database

Fig. 2. Sampleinput images. Representative input images taken under controlled conditions artificeftyrped and occluded.

the ground truth alignment is known. We also test our algoribn the CMU Multi-PIE face
database [37] to illustrate its performance on more natiaic@ images taken under controlled
conditions. Figure 2 shows some representative samplé in@ages used for our experiments.

1) Large region of attraction for RASLWe examine RASL's ability to cope with varying
levels of misalignment. The task is to align the images t®@wx 60 pixel canonical frame, in
which the distance between the outer eye corners is noredatiz 50 pixelé. We synthetically
perturb each of the input images by Euclidean transformati@ = SFE(2)) whose angles of
rotation are uniformly distributed in the rangef,/2, 6, /2|, and whose:- andy-translations are
uniformly distributed in the range-z(/2, z¢/2] pixels and[—yo/2, yo/2| pixels, respectively.

We consider an alignment successful if theximumdifference in each individual coordinate
of the eye corners across all pairs of images is less than igakip the canonical frame. Figure
3(a) shows the fraction of successes over 10 independait, twith 6, = 0 fixed and varying
levels of translationcg, yo. Our algorithm always correctly aligns the images as long@aand
yo are each smaller than 15 pixels, i38% of the distance between the eyes. In Figure 3(b), we
fix 2o = 0 and plot the fraction of successful trials while varyingbgt and6,. Here, RASL
successfully aligns the given images despite translatedngp to 15 pixels and simultaneous
in-plane rotation of up tel0°!

We repeat the above experiment with images of 100 subjesergl001-100) chosen from

8The outer eye corners were manually chosen for one image, andrtteess of coordinates were used for all images.
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X—translation Angle of rotation
(a) Translation inz andy directions (b) Translation iny direction and in-plane rotatio

Fig. 3. Large region of attraction for RASL. Percentage of successful alignments for varying levels of misalignmen
Translations are given as a fraction of the distance between the eyes Hiepixels), while rotations are in degrees. (a)
Translation inz and y directions. All images are correctly aligned despite simultaneowasd y translations up t#30% of

the eye distance. (b) Translation gndirection and in-plane rotatiofi (degrees). All images are correctly aligned for despite

simultaneougy translation of30% of the eye distance and rotation up40°.

Session 1 of the Multi-PIE database. The database cont@inm&ges of each subject taken
under different illumination conditions. We once again osenually clicked outer eye corners to
crop the images. This set of images is much more challendpag in the previous experiment
since we have only 20 images per person. For each subjecton&der one instance of a
randomly chosen misalignment as described above, anddréber percentage of successful
alignments across all subjects. The experimental restdtslaown in Figure 4. We notice that
RASL achieves a success rate of o9e¥; even when there’s simultaneous misalignment in both
x andy directions of about 7 pixels.

2) Effect of number of imagedt is clear that the region of attraction for the Multi-PIEages
(Figure 4) is smaller than that for the dummy head imagesu(ei@). A primary reason for
this difference is the fact that the Multi-PIE database am# only 20 images per person, as
against 100 images of the dummy head. In this experiment,tudy ghe effect of the number
of images on the region of attraction.

We use the 100 images of a dummy head described earlier. Wasehsubsets of images
from this dataset, and artificially perturb them in the sananer as was done for the region of

attraction experiment (see Figure 3). In this experimer,p&rturb the images only along the
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Fig. 4. Region of attraction for RASL with Multi-PIE images. Percentage of successful alignments for varying levels
of misalignment. Translations are given as a fraction of the distance betthe eyes (here, 50 pixels), while rotations are in

degrees. (a) Translation in andy directions. (b) Translation i direction and in-plane rotatioé (degrees).

100
100
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60
60

40
40

20
20 0

0.3 0.45

0 0.15 3
x—translation

No. of images

Fig. 5. Effect of number of images on region of attraction. Percentage of successful alignments for varying levels of
misalignment and number of images. The misalignment is restricted tdatiansalong thec-direction. The region of attraction

steadily increases as the number of images is increased.

z-direction, where each image is translated by an amounbumiy distributed in the interval

[—x0/2,x0/2] pixels. Figure 5 summarizes the results of this experimdreres the success rate
has been measured over 10 independent trials. We obsetvheh@gion of attraction increases
as the number of images increases. This is because with mages, the redundancy in the

data is higher and hence, the low-rank model fits better.

April 14, 2011 DRAFT



REVISED MANUSCRIPT SUBMITTED TO IEEE TRANS. PAMI, APRIL 201 18

3) Handling occlusion:A major advantage of the formulation of RASL is that it can Hand
large magnitude corruption, like occlusions, in the inpuages. For practical applications, it
is interesting to know beforehand the amount of occlusi@at RASL can handle for a given
set of images. Unfortunately, this is very hard to char&geanalytically since it depends on
many factors, including the number of images, the amountisélignment, the extent of linear
correlation between the images, etc. In this experimenipreeide an empirical characterization

of the amount of occlusion that RASL can handle for differavels of misalignments.

100
0.6
80
&
E 0.4 60
%)
g
50.2 40
>
20
0
0 10 20 30

% of occluded pixels

Fig. 6. Effect of amount of occlusion coupled with misalignment. Fraction of successful alignments for varying levels of
misalignment. Translations are given as a fraction of the distance betiveezyes (here, 50 pixels), while the percentage of

occluded pixels reported is the average per image.

We once again use the 100 images of the dummy head for thisiexqrg. We synthetically add
occlusion to each image in the form of a square black patchiat@mly chosen location. Figure
6 shows the percentage of successful alignments by RASL fiereint choices of misalignment
(translation along the direction) and average percentage of occluded pixels ih gt image.
We observe that RASL can effectively align the images evennwipo 15% of the pixels are
occluded and the images are misaligned with respect to gaehn by upto 5 pixels along the
direction.

4) Multiple image denoisingiWe now demonstrate RASL as a tool to simultaneously align and
denoise multiple images of the same scene. Unlike occladimat occur as contiguous blocks in
the images, here we consider corruptions that are diséibortore evenly throughout the image.

In particular, we consider errors that are distributed ediog to the random signs and support
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model described in [16]. According to this model, each pisetorrupted independently with

probability p € (0,1) and the sign of the non-zero error is uniformly distributad{ i1, —1}.

(a) misaligned and noisy input images

(b) aligned noisy images

(c) image denoising results

(d) errors

Fig. 7. Multiple images denoising. (a) misaligned original images with large sparse noise; (b) alignmeultsasing RASL;

(c) denoising results; (d) magnitude of the recovered errors. Thgesmare cropped to a size 8 x 60 pixels.

In this experiment, we use the 100 dummy head images dedcedmdier. We corrupt approx-
imately 20% of the pixels in each imagee(, p = 0.2). The results are shown in Figure 7. We
observe that the output images are well-aligned with regpezach other and free of corruptions.
Recently, [38] proposed an image denoising algorithm basddve-rank matrix completion. Our
method differs from that work in three main aspects. Firstlg denoise the images globally
instead of in a patch-based fashion. Secondly, we do notireeguny information about the
locations of the corrupted pixels. Thirdly, RASL recover thlobal domain transformation

while denoising the image simultaneously.
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5) Comparison with [9]: We next perform a qualitative and quantitative comparisotih w
the two methods proposed in [9]while that work also minimizes a rank surrogate, it lacks
robustness to corruption and occlusion. For compatibilityr [9], we choose the canonical frame
to be49 x 49 pixels1® To each image, we apply a random Euclidean transformatiase/angle
of rotation is uniformly distributed in—10°, 10°] and whosez- andy-translations are uniformly
distributed in[—3, 3] pixels. We also synthetically occlude a randomly chos2x 12 patch on
30 of the 100 images, thereby corrupting roughly 6% of allefsx

Figure 8(a) shows 10 of the 100 perturbed and occluded imédeggsre 8(b) shows the
alignment result using [9]. We note that eight of the 100 appéd upside down; some of the
remaining images are still obviously misaligned. Figure) &hows the more visually appealing
alignment produced by RASL (witliz the similarity groupSE(2) x R,). We observe that
RASL correctly removes the occlusions (Figure 8(c), bottota)produce a low-rank matrix
of well-aligned images (Figure 8(c), middle). The table iigUfe 8(d) gives a quantitative
comparison between the two algorithisStatistically, RASL produces alignments within half
a pixel accuracy, with standard deviations of less thantquaf a pixel in the recovered eye
corners. The performance of [9] suffers in the presence diuson: even with the eight flipped
images excluded, the mean error is nearly two pixels.

6) Speed and scalability of RASThe RASL formulation consists of solving a sequence of
convex optimization problems. Recent advances in nuclearrmminimization have enabled us
to develop scalable algorithms for RASL. We provide the rognime for an example case to
give an idea of the efficiency of our algorithm. On a Macbook Rptop with a 2.8 GHz Intel
Core 2 Duo processor and 4 GB of memory, a MATLAB implementattb RASL can align
100 images, each of siz) x 60 pixels, in about 3 minutes. This is a huge improvement over
the APG algorithm proposed earlier in a conference versiahis work [31], which takes about

20 minutes to align the same set of images.

®We have actively sought implementations of other alighment methodsasugiCA [12] and RPCA [13], but at the time of
preparation of this paper had only received code for [9].
%Due to memory limitations and running time, this is the largest image size thabtteeaf [9] can handle; as we will see

in later experiments, RASL however has no problem scaling up to imagesict larger sizes.

\We calculate all 100 images’ eye corners for RASL but only the 92 updtipimages for Vedaldi’s method [9].
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(a) Original perturbed and occluded images

(b) Alignment results by [9] Top: direct; Bottom: gradient)

(c) Alignment results by RASLTop: aligned input imagesviddle: aligned images with occlusions

removed;Bottom: recovered errors)

Mean error| Error std.| Max error
Initial misalignment 2.5 1.03 4.87
[9] (direct/gradient)| 1.97/1.66 | 1.11/0.85| 5.71/4.02
RASL (this work) 0.48 0.23 1.07

(d) Statistics of errors in the locations of the eye corners, calculated aistaaces

(in pixels) from the estimated eye corners to their center.

Fig. 8. Comparison with controlled images. (a) 10 out of 100 images of a dummy head. (b) alignment by Vedaldithaus
[9]: direct searchof rotation and translation (top) argtadient descenbn a full affine transformation (bottom). (c) alignment

by RASL: D o 7 (top), low-rank approximatiom (middle), and sparse erro#s (bottom).

B. Qualitative Evaluation with Natural Images

1) Aligning natural face imagesWe next test our algorithm on more challenging images
taken from the Labeled Faces in the Wild (LFW) [1] dataset délméty images. Unlike the
controlled images in our previous example, these imagewbigxdignificant variations in pose

and facial expression, in addition to changes in illumioatand occlusion.
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Fig. 9. Aligning natural face images. Average faces before and after alignment. (a) average of origirsgé@sobtained using

a face detector; and (b) average of the reconstructed low-rank smage

We obtain an initial estimate of the transformation in eaolage using the Viola-Jones face
detector [39]. We again align the images to&nx 60 canonical frame. For this experiment, we
use affine transformatior’s = Aff (2) in RASL, to cope with the large pose variability in LFW.

Since there is no ground truth for this dataset, we verify dbed performance of RASL
visually by plotting the average face before and after atignt. Figure 9 shows results for some
celebrities from LFW, as well as for images of Barack Obama wexe separately downloaded
from the Internet. We note that the average face after al@nns significantly sharper, indicating
the improved alignment achieved by RASL.

As an additional example, we selected some images of Bill$Gatteandom from the Internet,
and used RASL to align them together with a few more images frenl.FW dataset. In Figure
10, we show the alignment results on all 48 images used ferekperiment. The images are
initially cropped by applying the face detector, as showrrigure 10(a). We downsample the
images to &80 x 60 canonical frame and use the RASL algorithm with affine tramségion to
align the images. The alignment results are shown in Fig0(®)4(d). We observe that large

occlusions (like the Time magazine logo) and severe exijpresariations are effectively handled
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(c) Low-rank componentd (d) Sparse large error®

Fig. 10. Aligning Bill Gates face images collected from the Internet. (a) original images obtained by face detector; (b)
alignment results using RASL; (c) recovered clean images; (d) ezedverrors. The size of each cropped imag80is< 60

pixels.

as large magnitude errors by RASL. The reason large expressanges are considered as errors
is because they cannot be modeled effectively by a globasfioamation of the face image, as
implemented in this work. We also plot the average of the fatages in Figure 11 for both

the input imagesD, the aligned image® o 7, and the images represented by the low-rank
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Fig. 11. Qualitative evaluation from aver age images. The quality of the alignment results can be assessed from the average of
the 48 images of Bill Gates before and after alignmemft: average input imagevliddle: average input image after correcting
for alignment;Right: average image after alignment and error correction. The averaggesrafter applying the recovered

alignments are much sharper than the average input image.

matrix A for visual comparison. The much-sharpened average facgesnafter alignment and

error correction indicate the efficiency of the RASL algamithThis experiment suggests that
RASL could potentially be very useful for improving the perfance of current face recognition
systems under less-controlled or uncontrolled conditions

2) Video stabilization:Video frames are another rich source of linearly correlategges. In
this example, we demonstrate the utility of RASL for jointlijgaing the frames of a video.
Figure 12 shows the first 15 frames of a 140-frame video of AleGialking, obtained by
applying a face detector to each frame independently. Duidanherent imprecision of the
detector, there is significant jitter from frame to frameeTdecond row shows alignment results
by RASL, using affine transformations. In the third row, wewhbe low-rank approximation
obtained after alignment, while the fourth row shows thersparror. We note that this error
compensates for localized motions such as mouth movemaeadtgye blinking that do not fit
the global motion model.

We show another example of stabilizing image frames of aoyiddnere a portion of an iris is
video-taped with a static microscopic camera. The imagadsasuffer from severe misalignment,
which are caused by head movements, eye jitters, or dilamoincontraction of the pupil, etc. The
presence of noise in these images further complicates tidgm. For this experiment, we use a
canonical image size @B2x 312 pixels. Due to the high-resolution of the images, we use dimul
scale extension of RASL to speed up the algorithm. Here, tlag@® are progressively aligned

from down-sampled versions, using the results of previeusllto initialize the transformation
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Fig. 12. Stabilization of faces in the video. 1st row: frames 1-15 from a 140-frame video, cropped by applying a face
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detector to each frame&nd row: input images after alignmerd o 7; 3rd row: recovered low rank component; 4th row:

sparse errorgy.

parameters of the next. In Figure 13, we show the result ghalg this iris video sequence,
consisting of 25 frames, using RASL with an affine transforamatmodel. We compare the
original video and the aligned video with three differerdgnfres. The frames show severe |itter,
blur, and intensity variation, which presents great cimgjés for image alignment. As can be
seen from the difference images in Figure 13, the errorsdmtvany two frames is significantly
reduced after alignment by RASL and become much more likeaanadoise. Although RASL
is not designed to handle additive random noise, experamheasults suggest that it is stable to
small amounts of noise in the image frames.

3) Aligning handwritten digits:While the previous examples concerned images and videos
of human faces, RASL is a general technique capable of aligany set of images with strong
linear correlation. In this experiment, we demonstrateapplicability of our algorithm to other
types of images by using it to align handwritten digits takemm the MNIST database. For this
experiment, we use 100 images of the handwritten “3”, of 8ze 29 pixels.

Figure 14 compares the performance of RASL (using EuclidearstormationG = F(2)) to
that of [5] and [9]. RASL obtains comparably good performancethis example, despite the
fact that [5] explicitly targets binary image alignment.

4) Aligning planar surfaces despite occlusiongZhile the previous examples used simple

transformation groups such as similarity and affine, RASL also be used with more compli-
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(a) Original frame 1  (b) Original frame 10 (c) Original frame 20 (d) Difference (b) - (@) (e) Difference (c) - (a)

(f) Aligned frame 1 (g) Aligned frame 10 (h) Aligned frame 20 (i) Difference (g) - (f) (j) Difference (h) - (f)

Fig. 13. Microscopic iris video stabilization. The original image frames 1, 10, 20 are shown in (a), (b), (c) @ty with
the corresponding frames after alignment shown in (f), (g), (h);atb@olute intensity difference between the frames is used to

qualitatively assess the performance of RASL. The size of each edojppage i232 x 312 pixels.

cated deformation models. In this example, we demonstrate RASL can be used to align
images that differ by planar homographies (Ze= G L(3)). Figure 15 shows 16 images of the
side of a building, taken from various viewpoints by a pectipe camera, and with occlusions
caused by tree branches. We manually chose three pointshnmage to obtain an initial affine
transformation. We then used RASL, with the planar homograpbup of transformations, to
correctly align the images to 200 x 200 pixel canonical frame. As can be seen in Figure 15,
RASL correctly aligns the windows and removes the branchetuding them. This example
suggests that RASL could be very useful for practical tasks st image matching, mosaicing,

and inpainting.

V. CONCLUSION AND FUTURE WORK

We have presented an image alignment method that can simealialy align multiple images
by exploiting the low-rank property of aligned images. Oppw@ach is based on recent advances
in efficient matrix rank minimization that come with theacal guarantees. The proposed algo-
rithm consists of solving a sequence of convex optimizagimmblems, and hence, both tractable
and scalable. This allows us to simultaneously align dozgnsven hundreds of images on a
typical PC in matter of minutes. Furthermore, our method atitectly on the input images,

and does not require any pre-filtering or feature extracéind matching. We have shown the
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Fig. 14. Comparison of aligning handwritten digits. (a) original digit images; (b) aligned images using Miller's method
[5]; (c) aligned images using Vedaldi's method [9] based on direatcheaf rotation and translation; (d) aligned images using
Vedaldi’'s method [9]; refinement based on gradient descent onuthsix parameters of the affine transformation; (e) RASL

alignment resultD o 7 (f) low-rank imagesA (of rank 30); (g) sparse errat.

efficacy of our method with extensive experiments on imag&srt under laboratory conditions
and on natural images of various types taken under a wideerahgeal-world conditions. A
MATLAB implementation of our algorithm, along with samplatd used in this paper, has been
made publicly available for the interested reader to evaloa use.

Currently, our method can handle one global domain transfbom per image, such as affine
or projective transformations. It would be useful to manwgical applications if this work
can be extended to handle multiple transformations in eadye, where the image sequence
consists of multiple independently moving objects or ragiolt would also be interesting to
extend this approach to the case where each input image cdaftiened by wider classes of

nonlinear or non-parametric domain transformations.
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(c) Reconstructed image$ (d) Recovered occlusiong

Fig. 15. Aligning planar homographies using RASL with (G = GL(3)). (a) original images from 16 views; (b) RASL

alignment resultD o 7; (c) recovered low-rank componedt, (d) sparse errof.
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