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Abstract

Finding the sparsest vector (direction) in a low dimensional subspace can be considered a homogeneous
variant of the sparse recovery problem, which finds applications in robust subspace recovery, dictionary
learning, sparse blind deconvolution, and many other problems in signal processing and machine learning.
However, in contrast to the classical sparse recovery problem, the most natural formulation for finding the
sparsest vector in a subspace is usually nonconvex. In this tutorial, we provide a comprehensive review of
recent advances on global nonconvex optimization theory for solving this problem, ranging from geometric
analysis of the optimization landscapes, efficient nonconvex optimization algorithms, to applications in
representation learning and imaging sciences. In particular, we show how can we design efficient optimization
methods to solve the nonconvex problem to target solutions from a geometric perspective. Finally, we
conclude this review by pointing out several interesting open problems for future research.

I. INTRODUCTION

Nonconvex optimization problems are ubiquitous in signal processing and machine learning [1, 2]. However,
for general nonconvex problems, even finding a local minimizer is a NP-hard [3] problem – nevermind the
global optimal solutions. While one may consider convex relaxations [4–7] and resort to the rich literature
of convex optimization [8, 9], it usually scales poorly with respect to the dimension of the data, and often
provably fails for problems with nonlinear models. Nonetheless, recent advances reveal that optimization
landscapes of nonconvex problems in practice often have benign geometric properties. These examples
include phase retrieval [10–13], phase synchronization [14, 15], blind deconvolution [16, 17], dictionary
learning [18, 19], matrix factorization [20–28], and tensor decomposition [29], and more. The underlying
benign geometric structure ensures fast convergence of iterative algorithms to target solutions:

1) Benign Local Geometry. In many cases, there often exists a sufficiently large basin of attraction around
the target solutions, within which a local-descent algorithm converges rapidly to the solution;

2) Benign Global Geometry. Problem specific symmetry structures induce benign global optimization
landscape, that there are no flat saddle points or spurious local minima (see figures above), ensures global
convergence of iterative algorithms with even arbitary initializations [29–33].

Under this framework, we provide a comprehensive review of recent advances on nonconvex optimization
methods for finding the sparsest vectors in a subspace [34–37]. Namely, given data Y ∈ Rn×p whose rows
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(a) Flat saddle points (b) Spurious local minimizers

Fig. 1: Worst case scenarios in nonconvex optimization.

form a n-dimensional subspace S ⊆ Rp (n� p), can we efficiently find the sparsest nonzero vector in S
(up to scaling)? Mathematically speaking, can we efficiently solve

min
q

∥∥∥Y >q∥∥∥
0
, s.t. q 6= 0, (I.1)

so that Y >q is the sparsest vector1 in S = row(Y )? Here, the nonzero constraint q 6= 0 is to avoid the
trivial sparse solution q = 0 simply because a subspace S passes through the origin 0. In the meanwhile,
it should be noted that the problem can also be considered as a homogeneous variant of sparse recovery
problem [4, 38], in the sense that the problem (I.1) can be equivalently formulated as

min
x
‖x‖0 , s.t. Ax = 0, x 6= 0, (I.2)

where rows of A ∈ R(p−n)×p form a basis of the orthogonal complement of S so that (I.2) can be reviewed
as a dual formulation of (I.1). However, in contrast to the classical sparse recovery problem which finds
the sparsest vector with Ax = b and b 6= 0 [4, 38–41], solving (I.2) has caught less attention and has not
been well-studied albeit its importance in many applications in signal processing and machine learning as we
discuss in Section II. One major reason is due to our limited understandings on the computational properties
of solving the nonconvex problem (I.2). Different from classical sparse recovery problems, where convex
relaxations perform near optimally for broad classes of designs of A [42, 43], it has been known for decades
that the basic problem (I.2) is NP-hard for an arbitrary subspace S [44, 45]. Even we relax the `0 objective
with its convex surrogates, the nonzero constraint x 6= 0 still makes the problem inherently nonconvex. It
is only very recently that efficient computational surrogates with nontrivial recovery guarantees have been
discovered and studied for specific instances [34, 46–52]. In this paper, we survey several important aspects
of recent advances on nonconvex optimization methods for solving the problem of finding the sparsest vector
in a subspace, ranging from landscape analysis, efficient optimization methods, to applications.

Paper organization. The rest of the paper is organized as follows. In Section II, we show that several
fundamental problems in signal processing and machine learning can be reduced to the task of finding
the sparsest vector in a subspace. In Section III, we introduce natural nonconvex relaxations of (I.1) with
computational guarantees. In Section IV we provide a systematic overview of geometric analysis on nonconvex
optimization landscapes, based on which nonconvex algorithms have recently led to efficient solutions and new
performance guarantees that we discuss in Section V. We demonstrate the broad applications in Section VI.
Finally, we close this review by discussing several open problems in Section VII.

II. MOTIVATIONS

Variants of the task of finding the sparsest vector in a subspace take several forms in many applications of
modern signal processing and machine learning. In this section, we survey several fundamental problems to

1Here, row(Y ) denotes the row subspace of Y , i.e., the subspace row(Y ) is spanned by row vectors of Y .
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demonstrate its importance, where all the problems can be reduced to solving (I.1), with different structures
of the subspace S = row(Y ).

a) Robust subspace recovery [6, 53–56]. Fitting a linear subspace to dataset corrupted by outliers is a
fundamental problem in machine learning and statistics, primarily known as robust principal component
analysis (PCA) [57], or robust subspace recovery (RSR) [56]. Given the dataset Y of form the form

Y
data

=
[
X

inliers
O

outliers

]
Γ

permutation
∈ Rn×p, (II.1)

where the columns of X ∈ Rn×p1 form inlier points spanning a subspace SX , the columns of O ∈ Rn×p2

are outlier points with no linear structure, and Γ is an unknown permutation, the goal is to recover the inlier
subspace SX , or equivalently to cluster the points into inliers and outliers. It is well-known that the presence
of outliers can severely affect the quality of the solutions obtained by the classical PCA approach [57]. This
challenge can be conquered by finding the sparsest vector in2 S = row(Y ) via solving (I.1), which returns a
normal vector3 of the subspace SX [51], producing a hyperplane containing all columns of X . This approach
is called dual principal component pursuit (DPCP) [51, 52, 58], which can be reviewed as a dual method
of classical ways of solving robust subspace recovery problems [56]. The DPCP has led to new recovery
guarantees, which can deal with more number of outliers than traditional methods [51, 52, 58].

b) Learning sparsely-used dictionaries [39, 59–61]. Dictionary learning (DL) aims to learn the underlying
compact representation from the data Y , which finds many applications in signal/imaging processing, machine
learning, and computer vision [60–64]. Mathematically speaking, the problem is to factorize the data

Y
data

= A
dictionary

X
sparse code

. (II.2)

into a compact representation dictionary A and sparse coefficient matrix X . Such representations naturally
allow signal compression [60], and also facilitate efficient signal acquisition [65], denoising [62], and
classification [66] (see relevant discussion in [64]). In particular, when the dictionary A is complete4, the
authors [34, 46, 47] showed that the DL problem can be reduced to finding the sparsest vector in the subspace
S = row(Y ): by solving (I.1), presumably the solution Y >q returns one row of the sparse matrix X . Based
on this, the full matrices (A,X) can be recovered via extra techniques such as deflation [46]. For complete
DL, this approach has led to new theoretical and algorithmic advances [46, 47, 67–69].

c) Sparse blind deconvolution [70–74]. Sparse blind deconvolution is a classical inverse problem that
ubiquitously appears in various areas of digital communication [75], signal/image processing [76, 77],
neuroscience [78, 79], geophysics [80], and more. Given multiple measurements {yi}pi=1 in the form of the
circulant convolution

yi
measurements

= a0
kernel

~ xi
sparse signal

, 1 ≤ i ≤ m, (II.3)

the multichannel sparse blind deconvolution (MCS-BD) problem [48, 50, 74, 81] aims to simultaneously
recover the unknown kernel a0 and sparse signals {xi}pi=1. Notice that the circulant convolution (II.3) can
be rewritten in the matrix-vector form with5 Cyi

= CaCxi
. Thus, by concatenating all the measurements,

we can write the problem in a similar form of complete DL in the sense that[
Cy1

· · · Cyp

]︸ ︷︷ ︸
Y

= Ca0

[
Cx1

· · · Cxp

]︸ ︷︷ ︸
X

.

2Here, row(·) denotes the row space.
3A normal vector of a subspace is a nonzero vector that is orthogonal to all points in the subspace.
4Complete means that the dictionary A is square and invertible. For a proper conditioned dictionary, the complete DL can be

approximately reduced to orthogonal DL via preconditioning or whitening of the data [47].
5Here, any vector v ∈ Rn, we use Cv ∈ Rn×n to denote corresponding circulant matrix generated from v.
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TABLE I: Summary of Convex Surrogates ϕ(·) for `0-norm

Name Objective ϕ(·) (Sub)gradient ∇ϕ(·) Smoothness
`1-norm [52, 69]

∑
k |zk| sign (z) nonsmooth

Huber loss7 [81] minv
1
2
‖z − v‖2 + µ ‖v‖1 z/µ1|z|<µ + sign(z)1|z|≥µ C1 smooth

pseudo-Huber [71] µ
∑
k

√
1 + (zk/µ)2 z/

√
z + µ2 C∞ smooth

Logcosh [47, 74]
∑
k µ log cosh(zk/µ) tanh (z/µ) C∞ smooth

When the kernel a0 is invertible6, per our discussion for complete DL, this implies that we can solve the
MCS-BD problem by finding the sparsest vector in S = row(Y ) as well. This discovery has recently led to
new guaranteed, efficient methods for solving MCS-BD under general settings [50, 74, 81].

d) Other problems. Variants and generalizations of finding the sparsest vectors in a subspace problem
also appear in orthogonal `1 regression [82], sparse PCA [83, 84], numerical linear algebra [45, 85, 86],
applications regarding control and optimization [87], nonrigid structure from motion [88], spectral estimation
and Prony’s method [89], blind source separation [90], graphical model learning [91], and sparse coding on
manifolds [92]. Nonetheless, we believe the potential of seeking sparse/structured element in a subspace
is still largely unexplored, in spite of the cases we discussed here. We hope this review will bring more
attention to this problem and inspire further application ideas of recent theoretical and algorithmic advances.

III. PROBLEM FORMULATION

Per our discussion in Section I, to find the sparsest vectors in S = row(Y ) the vanilla formulation (I.1)
(or equivalently (I.2)) is NP-hard to solve. Therefore, we need to resort to certain relaxations of the problem
such that the new problem is substantial easier to optimize and its global solutions are still close to the
expected target solutions. Similar to the idea of solving the sparse recovery problem [4, 42], one natural idea
is to replace `0-norm with any sparsity promoting convex surrogate ϕ(·) (see Table I for an illustration, we
will discuss the choices in Section V). However, the nonconvex constraint q 6= 0 still makes the problem
inherently difficult to optimize. Nonetheless, since we only hope to find the sparsest vector up a scaling, it is
natural to consider replacing q 6= 0 by certain unit norm constraints on q.

Limitation of convex relaxations. In the context of the dictionary learning problem, Spielman et al. [46]
considers `1-minimization constrained with ‖q‖∞ = 1, introducing a convex relaxation of (I.1) with a
sequence of linear programs:

`1/`∞ Relaxation: min
q

ϕ
(
Y >q

)
, s.t. q(i) = 1, 1 ≤ i ≤ n, (III.1)

where here ϕ(·) = ‖·‖1 as shown in Table I. When ϕ(·) = ‖·‖1, they showed that the solutions of (III.1) are
exactly the target sparse vectors up to a scaling when the subspace S is spanned by a set of random sparse
basis vectors. However, this result provably breaks down merely when the sparsity level of each base vector
is beyond8 θ ∈ O (1/

√
n), while convex relaxation for standard sparse approximation problem can handle

much higher sparsity levels θ ∈ O(1) [42, 43]. For the problem (III.1), the same sparsity threshold is also
observer for a simpler planted sparse vector (PSV) model, where there is a single sparse vector embedded in
an otherwise random subspace S [36]. Moreover, for both models the most natural semidefinite programming
(SDP) relaxation [34] also breaks down at exactly the same threshold9. Unfortunately, numerical simulations

6In other words, we assume that its circulant matrix Ca0 is invertible.

7The Huber loss can also be written in the form ϕ(z) =
∑
kHµ(zk) with Hµ (z) =

{
|z| |z| ≥ µ
z2

2µ
+ µ

2
|z| < µ

.

8Here, θ denotes the probability of one entry being nonzero.
9This breakdown behavior is again in sharp contrast to the standard sparse approximation problem (with b 6= 0), in which it is

possible to handle very large fractions of nonzeros (say, θ = Ω(1/ logn), or even θ = Ω(1)) using a very simple `1 relaxation [42, 43]
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(a) PSV (b) DPCP (c) CDL (d) MCS-BD

Fig. 2: Plots of optimization landscapes of (III.2) over the sphere for different problems in 3D.
From the left to right: (a) planted sparse vector [34], (b) robust subspace recovery [51], (c)
orthognal DL [47], and (d) sparse blind deconvolution [50, 81]. The colder color value means
smaller function value, and vice versa. The red dots correspond to the target solutions.

confirm that these results are essentially sharp, so that one might naturally question: is θ ∈ O (1/
√
n) simply

the best we can do with efficient, guaranteed algorithms?
Remarkably, this is not the case. Recently, Barak et al. introduced a new rounding technique for sum-

of-squares (SoS) relaxations, showing that the sparsest vector can be recovered even when θ = Ω(1) [93].
Unfortunately, the runtime of this approach is a high-degree polynomial in data dimension so that the result
is mostly of theoretical interest. Therefore, the legitimate question still remains: Is there a practical algorithm
that provably recovers a sparse vector with θ = Ω(1) portion of nonzeros from a generic subspace S?

Efficient solutions via nonconvex optimization. This question is addressed by recent advances on nonconvex
optimization, where Qu et al. [34] first considered a nonconvex relaxation of (I.1),

`1/`2 Relaxation: min
q

f(q) := ϕ
(
Y >q

)
, s.t. ‖q‖ = 1, (III.2)

which relaxes q 6= 0 by a nonconvex spherical constraint q ∈ Sn−1. Intuitively, the sphere Sn−1 is a
homogeneous manifold so that it could potentially handle higher sparsity levels. Indeed, for an idealized PSV
model, Qu et al. showed that there is a simple, efficient nonconvex optimization method that provably recovers
the sparsest vector even with θ = Ω(1), breaking the θ ∈ O (1/

√
n) sparsity barrier [34]. Subsequently, Sun

et al. showed that the same sparsity level can also be achieved with efficient methods for complete DL
[47, 67]. Inspired by these results, optimizing variants of the nonconvex formulation (III.2) has led to new
performance guarantees in robust subspace recovery [51, 52] and sparse blind deconvolution [50, 74, 81].
Nonetheless, as the problem formulation in (III.2) is nonconvex, it naturally raises the following question:
what are the underlying principles for efficiently solving these nonconvex problems to target solutions?

IV. GEOMETRY AND OPTIMIZATION LANDSCAPES

In the following, we demystify the recent success of nonconvex approaches, by reviewing recent advances
on geometric studies of the nonconvex optimization landscapes, towards providing a unified view for solving
a broader class of nonconvex optimization problems. Correspondingly, in the next section (Section V) we
show how to exploit these benign geometric properties plus extra ingredients to develop efficient nonconvex
optimization methods, efficiently solving (III.2) to target (global) solutions.

A. Some Basic Facts

Basic notations. First, we introduce some basic notations for studying the global optimization properties.
Let Q? ⊂ Sn−1 be the set of target solutions. To measure the distance between a vector q ∈ Sn−1 and the
set Q?, we introduce the following metric defined in the Eucildean space

dist(q,Q?) := inf
a∈Q?

‖q − a‖ .
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Accordingly, we define the set

B(q,Q?) :=
{
q ∈ Sn−1 | dist (q,Q?) ≤ ε

}
that contains all the points on the sphere that are ε-close to Q?.

Riemannian derivatives. Since we are solving a nonconvex optimization problem (III.2) that is constrained
over a Riemannian manifold Sn−1, to study the geometric properties of optimization landscape, we need
formal definitions of the slope (gradient) and curvature (Hessian) of f(·) over the manifold. The sphere Sn−1
is an embedded smooth manifold in Rn; its tangent space at a point q ∈ Sn−1 can be identified with q⊥

TqSn−1 =
{
v ∈ Rn | q>v = 0

}
.

Thus, the projection onto the tangent space is given by Pq⊥ = I − qq>. If f is smooth, the slope of f(·)
over the sphere (formally, the Riemannian gradient) is defined in the tangent space TqSn−1, which is simply
the component of the standard (Euclidean) gradient ∇f(q) that is tangent to the sphere:

grad[f ](q) = Pq⊥∇f(q).

For f(q) =
∥∥Y >q∥∥

1
that is nonsmooth with a subgradient10 ∂f(q) = Y sign(Y >q) where sign is an

element-wise operator that takes the sign of the input if it is non-zero and sets 0 if the input is 0, we can
similarly introduce the corresponding Riemannian subgradient11

∂Rf(q) = Pq⊥∂f(q).

On the other hand, if f ∈ C2, the curvature of f(·) over the sphere is slightly more involved. For any
direction δ ∈ TqSn−1, the second derivative of f(·) at point q ∈ Sn−1 along the geodesic curve12 (great
circle) is given by δ>Hess[f ](q)δ, where Hess[f ](q) is the Riemannian Hessian

Hess[f ](q) = Pq⊥
(
∇2f(q)

curvature of f(·)
− 〈q,∇f(q)〉 I

curvature of the manifold

)
Pq⊥ .

This expression contains two terms: (i) the first is the standard (Euclidean) hessian ∇2f , which accounts for
the curvature of the objective function f ; (ii) the second term accounts for the curvature of the sphere itself.
Thus, analogous to the case in Euclidean space, critical points can be characterized by grad[f ](q) = 0 or
0 ∈ ∂Rf(q); curvature can be studied through the eigenvalues of Hess[f ](q).

B. Local Geometry: Basins of Attraction Around Target Solutions

At the nascent of theoretical understandings of global nonconvex optimization in early 2010s, in most cases
people tend to believe nonconvex problems only have benign local geometric structures. It can be showed that
there usually exist local basins of attraction around the target solutions, in the sense that the function either
has local strong convexity or it satisfies certain regularity condition around the target solutions. Therefore, to
have guaranteed global optimization, people developed data-driven initialization by using spectral methods
to initialize into the local basin such that descent methods efficiently converge to the target solutions. The
initialization plus local algorithmic analysis has led to global guarantees for several important problems
in signal processing and machine learning, such as generalized phase retrieval [10, 96], low rank matrix
recovery [28], tensor decomposition [97], and blind deconvolution with subspace model [98], and more.

10Its subdifferential which includes all the subgradients is given by Y Sign(Y >q), where Sign is an element-wise operator with
Sign(a) = sign(a) if a 6= 0 and Sign(a) = [−1, 1] if a = 0.

11We refer to [94] for a formal defintion of Riemannian subgradient. For a general nonsmooth function, the projection (onto
the tangent space) of a subgradiment may not be a Riemannian subgradient. Fortunately, for problem that is regular (such as
f(q) =

∥∥Y >q∥∥
1
), according to [94], the Riemannian subgradient can be simply introduced by the projection of a subgradient.

12A geodesic curve is the shortest path connecting two points on the manifold, which can be parameterized by an exponential map
expq (tδ). We refer readers to [95] for more technical details.
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In the context of finding the sparsest vector in a subspace, for functions f that are C∞ smooth, Sun et al.
[47] and Li et al. [50] showed that the function is locally strongly convex tangent to q, in the sense that

Hess[f ](q) � α · Pq⊥ , ∀q ∈ B (Q?, ε1) . (IV.1)

However, the regions that satisfy strong convexity are usually quite small (i.e., ε1 is small), that they only
cover a small measure of the sphere. For problems like complete DL [47] and sparse blind deconvolution
[50], it is often very difficult to initialize into the region B (Q?, ε1). Moreover, the strong convexity condition
also needs the function to be at least C2 smooth, which is quite stringent.

A more general local condition is the so-called regularity condition, which often ensures local convergences
of descent methods within a region of much larger radius. For instance, for a consideration of nonsmooth f ,
Bai et al. [69] and Zhu et al. [99] showed the following regularity condition13

〈q − PQ?
(q), ∂Rf(q)〉 ≥ α dist(q,Q?), ∀ q ∈ B(Q?, ε2). (IV.2)

q
<latexit sha1_base64="/FSK1EaRNHPIO6FHDmDTBsSoiM8="></latexit>

Q?<latexit sha1_base64="0Vqklo3Frym9PBLAa7vbIVj3Qwg="></latexit>

PQ?
(q)

<latexit sha1_base64="aCMtYm+UcLczJ14zjbHwK3DBtlM="></latexit>

@Rf(q)
<latexit sha1_base64="A+y3/sXTwWbb5sTHlwlJZy4Gtcg="></latexit>

Fig. 3: Illustration of Equation (IV.2).
Red nodes denote Q?, with the top one
closest to Q?. Inequality (IV.2) requires
the angle between PQ?(q) − q (purple
arrow) and −∂Rf(q) (blue arrow) to be
sufficiently small.

As illustrated in Figure 3, the condition (IV.2) shows that the
negative direction of the chosen Riemannian subgradient ∂Rf(q)
is aligned with the direction q − PQ?

(q) pointing to the target
solutions. In other words, this regularity condition will force the
trajectory of (sub)gradient iterates getting closer to the target
solutions when the step size is chosen appropriately, which we will
discuss in more details in Section V. Moreover, (IV.2) also indicates
a lower bound14 for the Riemannian subgradient ‖∂Rf(q)‖ ≥
α for all q ∈ B(Q?, ε2) \ Q?. Thus, if (IV.2) holds for all the
Riemannian subgradients of any q ∈ B(Q?, ε2)—which is true for
both orthogonal dictionary learning and DPCP problems—then
one can conclude that there is no critical point other than the
target solutions Q? in B(Q?, ε2). This property further implies the
possibility of finding a target solution by not only the Riemannian
subgradient but also many other local iterative algorithms (which
will be described in Section V) as long as they are initialized
properly and converge to a critical point.

Minimal Example I: Robust Subspace Recovery. In the context of finding the sparsest vector in a subspace,
we use the robust subspace recovery problem as an example to elaborate on the regularity condition (IV.2).
As illustrated in Section II, given the dataset Y corrupted by outliers as Y =

[
X O

]
Γ, where X ∈ Rn×p1

are inliers generated from a subspace SX , O ∈ Rn×p2 are outliers with no linear structure, and Γ is an
unknown permutation matrix, the goal is to recover the underlying inlier subspace SX . Noting that estimating
SX is equivalent to finding its orthogonal complement S⊥X , the DPCP approach [100] attempts to find one
basis vector q ∈ S⊥X in each time. Once one basis vector is founded, we can then find another basis vector
by removing the contribution from the previous one and repeat this process until finding all the basis vectors
for S⊥X .

Recall that if q is in the orthogonal complement subspace S⊥X , then it is at least orthogonal to the n
inliers X . This motivates us to find such a basis q ∈ S⊥X by seeking a vector that is orthogonal to as
many data points in Y as possible (i.e., the sparsest vector in Y ⊥), resulting in (III.2) with ϕ being the
`1-norm [52, 58, 100]. In this case, since the goal of DPCP is to compute a basis for S⊥X , the set of target
solutions is Q? = S⊥X ∩ Sn−1. With this choice of Q?, it is proved in [99] that the DPCP problem (III.2)
satisfies the regularity condition15 (IV.2) with positive α and sufficiently large ε that depend on the number of

13The consideration of nonsmooth objective is only for the ease to resort to existing results [69, 99], and the simplicity of presenting
the regularity condition. For smooth objectives,

14This lower bound can be obtained by applying the Cauchy-Schwartz inequality to the left hand side of (IV.2).
15This underlying regularity condition has been implicitly explored in [52, 100] in convergence analysis. Similar regularity condition

has also been exploited in [101].
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Fig. 4: Orthogonal DL with permutation symmetry. Left: ϕ(Y >q) as a function on the
sphere S2. Local minimizers (red) are signed standard basis vectors Q? = {±ei}. These are
the maximally sparse vectors on S2. Right: graph of ϕ(Y >q) reparameterized into Euclidean
space; notice the strong negative curvature at points that are not sparse.

inlier points p1 and outlier points p2 and how well distributed the inliers and outliers are. Moreover, starting
from a spectral initialization (i.e., the eigenvector of Y Y > corresponding to the smallest eigenvalue) that
falls in B(Q?, ε), a basis vector for S⊥X can be efficiently obtained by iterative algorithms which will be
described in Section V.

Furthermore, this type of regularity condition also exist for other subspace models. For the orthogonal
dictionary learning, Gilboa et al. [68] and Bai et al. [69] showed that random initialization falls into regions
satisfies (IV.2) with constant probability, ensuring fast convergence of gradient methods. This result is later
extended to the sparse blind deconvolution problems [74, 81], where similar results are established. Finally,
it should be noted that all these convergence guarantees are based on this underlying geometric property,
that we will discuss in more detail about exploiting these properties for algorithmic design in Section V.

C. Global Geometry: Negative Curvature Near Saddles

More surprisingly, more recent work [11, 28, 29, 47, 50] showed that in many cases nonconvex problems
even have benign global geometric structures (see Figure 4 for an example), in the sense that
• There is no spurious local minimizer. (All) minimizers are (approximately) symmetric versions of the ground

truth, and the optimization landscape around them exhibits local strong convexity or certain regularity
properties that we discussed previously.

• There is no flat saddle points. All saddles are created by symmetric superposition of the target solutions,
and they exhibit negative curvature16 in symmetry breaking directions.

These two characteristics circumvent two computational obstacles (see Figure 1) for nonconvex optimization:
existences of (i) spurious local minimizers and (ii) high-order critical points. This implies that starting from
any initialization, any optimization method which is able to efficiently escape saddle points converges to the
global solution up to symmetry ambiguity. This type of function is also called strict saddle or ridable saddle
functions [29, 102].

16Here, for C2 smooth functions, the negative curvature direction means the negative eigenvector direction of the Hessian.
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Minimal Example II: Orthogonal Dictionary Learning. In the context of finding the sparsest vector
in a subspace S = row(Y ), let us first use orthgonal DL model Y = AX in (II.2) as an example to
elaborate more on this type of global geometric structures. Recall from Section II, given the generative
model Y = AX ∈ Rn×p with orthogonal dictionary A ∈ Rn×n and sparse coefficient X ∈ Rn×p, we aim
to learn both A and X only given the data Y . When the dictionary A is orthogonal, the observation is
that row(Y ) = row(X) and the row vectors of X are sparse. When X is random and Bernoulli-Gaussian,
Spielman et al. [46] proved that the row vectors of X are the sparsest vectors in the subspace S = row(Y )
provided p ≥ Ω(n log n). Therefore, we can reduce the orthogonal DL problem to finding one sparse row
vector of X by solving the problem (III.2). If one sparse row vector of X can be found, one may resort to
deflation [47] or repeating random trials [46, 69] to recover X and A up to a signed permutation ambiguity.

The reason that we can only solve the problem up to a signed permutation SP(n) ambiguity, is because
of the inherent symmetry structure, in the sense that signed permutation

Y = AX = (AΓ) · (±Γ>X)

which creates equivalent feasible solutions, where Γ ∈ SP(n) is any signed permutation matrix. To see how
this symmetry plays out in shaping the benign global optimization landscape, let us consider a simple case17

that the dictionary A = I , so that Y = X and the target solution set Q? of our optimization variable q
becomes the set of signed standard basis vectors Q? = {±e1, · · · ,±en}. Since the set Q? is also symmetric
to signed permutations, it is obvious that the function values f(Γq) = f(q) for the problem (III.2). As
observed from Figure 4, for all critical points over the sphere:
• All local minimizers are close to the signed standard basis vector q? = ±ei with the positive Riemannian

Hessian, in the sense that

Hess[f ](q?) = Pq⊥?
(
Y ∇2ϕ(Y >q?)Y

> −
〈
Y ∇ϕ(Y >q?), q?

〉
I
)
Pq⊥? � α · Pq⊥?

for some α > 0, so that the function is strongly convex around the local minimizers.
• Saddle point qs does exist, but they are balanced superpositions of target solutions

qs =
1√
|I|
∑
i∈I

σiei,

for every subset I ⊆ {1, · · · ,m} and sign scalar σi ∈ {±1}. For each saddle point qs, the Riemannian
Hessian manifests negative curvature

e>i Hess[f ](q?)ei < 0

along the direction pointing to any i-th standard basis with i ∈ I.
Since there is no spurious local minimizer presenting for orthogonal DL, we can start from any point on the
sphere and use any saddle point escaping method to find one sparse row vector from X via Y >q?.

So far, we only considered a relative simple case in DL, where the dictionary A is orthogonal. If
the dictionary is complete (i.e., square and invertible), we can approximately reduce the complete DL to
orthogonal DL via simple techniques such as preconditioning or whitening of the data Y [47, 103]. Aside
from complete DL, recently similar benign global geometric properties have also been discovered for sparse
blind deconvolution with multiple inputs [50] (see Figure 2). Similar to DL, this benign global landscape has
also been induced by an intrinsic symmetry structure within the problem – the shift symmetry. Indeed, every
local minimizer for the sparse blind deconvolution is corresponding to a circulant shift of the filter.

Table II summarizes representative references on the local and global geometric properties for finding the
sparsest vector in a subspace in the context of DPCP, DL, and MCS-BD that are illustrated in Section II.
Finally, we close this section by noting that the benign global geometric structure pertains to subspace models

17For orthogonal A, without loss of generality, we can always assume that A = I . This is because a change of variable q = A>q
reduces the problem (III.2) to the case A = I , which only rotates the optimization landscape.
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TABLE II: A selective summary of geometric analysis for problems (III.2). Here ? indicates
that there is no existing result for this task.

Objective ϕ(·) Problem Distance between minimum
and the target solution Local geometry Global geometry

`1-norm DL [69] 0 X ?
DPCP [51, 52] 0 X ?

Huber loss MCS-BD [81] O(µ) X ?
C∞ smooth

(e.g., Logcosh)
DL [47, 68] O(µ) X X

MCS-BD [50] O(µ) X X

with certain symmetric structures, such as complete DL and sparse blind deconvolution. In both cases, the
discrete symmetry such as permutation or shift only induce equivalent good solutions but no spurious local
minimizers (see Figure 2). From this perspective, we conjecture that the DPCP problem could also obey
benign global geometric property (by using a smooth objective) since in this case, the continuous symmetry
such as the rotation may also only introduce equivalent good solutions but no spurious local minimizers.

V. EFFICIENT NONCONVEX OPTIMIZATION METHODS

The underlying benign geometric structures of the problem have strong implications for designing efficient,
guaranteed optimization algorithms. In the following, we overview recent advances of optimization algorithms
for solving problems (III.2) with different choices of convex surrogate ϕ, ranging from smooth to nonsmooth
methods, and first-order to second-order approaches. We discuss the underlying principles and the advantages
of each method.

A. Algorithms for smooth ϕ

First, we consider the simplest setting where ϕ is smooth. Undeniably, the most natural way to enforce
sparsity is using nonsmooth surrogates such as `1-penalty (e.g., ϕ(·) = ‖·‖1). However, nonsmooth loss
often raises great challenges in optimization and algorithmic analysis, due to the non-Lipschitzness of its
subgradient. As shown in Table I, there are many ways to replace `1-penalty with its smooth surrogate, such
that we can adopt simple algorithms to tackle our problem. Nonetheless, the tradeoff is that smoothing will
introduce approximation errors. To have exact recovery, we need extra rounding step as shown in [34, 67, 81].

a) First-order methods First, let us start with first-order iterative methods for solving the optimization
problem (III.2) on the sphere. As we explained in the last section that the Riemannian gradient describes the
notion of slope over the sphere, one simple algorithm is to iteratively perform two steps – move the iterate
along the opposite direction of the Riemannian gradient and then project it back to the sphere – which is
known as Riemannian gradient descent (RGD) [104] on the sphere. In particular, in the (k+ 1)-th step RGD
computes

q(k+1) = PSn−1

(
q(k) − ηk · grad[f ](q(k))

)
, (V.1)

where ηk represents the step size which can be chosen simply as a constant or selected by the line search
method [104].

However, since RGD only uses the Riemannian gradient information, for general nonconvex problems it is
only guaranteed to converge to a critical point [104, 105], i.e., it may get stuck at a saddle point. Fortunately,
for specific nonconvex problems such as these considered in this paper, Jason et al. [106] proved that RGD
escapes from saddle points with negative curvature and converges to a second order critical point almost
surely when using random initialization and constant step size. This escaping saddle property was also
recently proved in [107] for RGD with varying step sizes. Therefore, when all saddle points exhibis negative
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(a) ODL: partition of the sphere (b) ODL: negative curvature

e1
e2

−e2

e3
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ξ = 0

ξ = 5 log(n)

(c) ODL: large basin of attraction

Fig. 5: Illustration of partition of optimization landscape for orthogonal dictionary learning (ODL).

curvature (or it is called strict saddle property [29]), RGD converges almost surely to a local minimum that
satisfies second-order optimality condition. Furthermore, as we elaborated in Section IV, this type of local
minimizer is close to a target solution for several important cases in finding the sparsest vector in a subspace.

Nonetheless, because the strict function is still too general, these results [106, 107] do not directly imply
how fast RGD escapes the saddle points and converges to a local minimum. For general strict saddle functions,
the only known result with global convergence rate is a perturbed version of RGD, which injects random
noise into the descent iterates preventing stucking at saddle points. In particular, the results [108, 109] showed
a sublinear convergence rate O(1/ε2) for noisy RGD, where ε is the accuracy tolerance18. However, this
type of results does not have direct implication in practice: (i) it is hard to control the level of noise to be
injected, (ii) the convergence speed is hindered due to the random noise.

In practice, for many instances of finding the sparsest vector in a subspace, vanilla RGD with random
initializations seemingly always converge to the target solution with linear rate (see Figure 7a and Figure 8a
for an illustration). This is mainly due to the fact that particular problems often have extra structures other
than strict saddle property. For example, in the orthgonal DL problem discussed in Section IV, as illustrated
in Figure 5, the stable manifold (i.e., the set of points along the flow that are sent towards the saddle
point) exhibits strong negative curvature, that the gradient increases geometrically moving away the the
stable manifold (see Figure 5b). Therefore, we have a large basin of attraction for each target solutions (see
Figure 5c), within which the function satisfies regularity conditions analgous to (IV.2) that we discussed
in Section IV. Thus, it can be shown that a random initialization falls into one of these basins (the dotted
region in Figure 5c) with constant probability. In particular, when ϕ(·) is a log cosh function, Gilboa et al.
[68] rigorously showed this is true for orthogonal DL and proved sublinear convergence of RGD method.
Similar ideas have been adopted for solving sparse blind deconvolution with multiple inputs [81], with Huber
loss and an improved analysis that guarantees linear convergence.

b) Second-order methods Another important class of methods that can naturally escape saddle points for
problems with benign global geometry are the second-order methods. This type of methods usually forms
quadratic approximations of the function in the tangent space, and search for the descent direction based
on this approximation within a restricted radius. At a saddle point qs ∈ Sn−1 with grad[f ](qs) = 0, this
type of methods can directly exploit the Hessian information to find the descent direction that is aligned
with the negative eigenvector of the Hessian. To see why this happens, consider the following quadratic

18Precisely, it produces a point q with gradient smaller than ε and Hessian within
√
ε of being positive semidefinite, i.e.,

‖ grad[f ](q)‖ ≤ ε,Hess[f ](q) � −
√
εPq⊥ .
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approximation f̂ of the function f at a saddle point qs ∈ Sn−1,

f̂ (qs + d) = f(qs) +
1

2
d>Hess[f ](qs)d+O(‖d‖3), ∀ d ∈ Tqs

Sn−1.

Because the Riemannian Hessian has negative eigenvalues, if we can find a direction d aligned with the
negative eigenvector of the Hessian, then we have d>Hess[f ](qs)d < 0. When ‖d‖ is small enough such
that f̂ (qs + d) ≈ f (qs + d), this further implies that f (qs + d) < f (qs). In other words, the saddle points
can be efficiently escaped with second-order methods, directly exploiting the negative curvature information
of the Riemannian Hessian.

In addition, when optimizing over the sphere, it should be noted that the Riemannian second-order methods
can be viewed as a natural extension of classical second-order methods in the Euclidean space. The quadratic
approximation is formed using Riemannian derivatives in the tangent space (which is also a linear space),
while the only difference is that we need to perform an extra retraction step to retract the iterate from
tangent space back to the sphere (see Figure 6). These Riemannian second-order methods include Riemannian
Newton method [104], and Riemannian Quasi-Newton (RQN) method (e.g., the Riemannian trust-region
method [104] and the Riemannian cubic-regularization method [110]), where we omit the algorithmic details
and refer interested readers to these references [104, 110] for a closer look.

O

q
TqSn−1

δ

expq(δ)

Sn−1

Fig. 6: Illustration of tangent space and
retraction to the sphere.

In comparison with first-order methods, the major advantage of
second order methods is the convergence speed. As can be seen
from Figure 7 and Figure 8, the second methods are usually
10 times faster than first-order methods in terms of iteration
complexity. In theory, for example, the Riemannian trust-region
method is proved to converge to a target solution at a local
quadratic rate for complete DL [47]. Nonetheless, because a
common requirement of second-order methods is to form and
compute the Riemannian Hessian Hess f(·), for each iteration
the second-order methods are way much more expensive than
first-order methods in terms of computation and memory cost.
Therefore, it is often preferred to use second-order methods for
small-scale problems, and use first-order methods for large-scale ones. In the future, it is intersting how to
design fast algorithms with low computation cost per iteration (e.g., Riemannian versions of limited-memory
BFGS algorithms [111, 112]).

B. Algorithms for non-smooth ϕ
As alluded in Section V-A, optimizing smooth surrogates often induces approximation errors of the solution,

so that extra steps are required for finding exact solutions. In contrast, as demonstrated in Figure 7 and
Figure 8, optimizing nonsmooth objectives directly produces exact solutions. In the following, we review
recent advances on developing nonsmooth optimization methods for finding the sparsest vector in a subspace.

a) Riemannian SubGradient (RSG) methods. A natural modification of RGD for a non-smooth ϕ (i.e., the
`1 loss) is a Riemannian SubGradient (RSG) method that replaces the Riemannian gradient by a Riemannian
subgradient in (V.1). Although the iterate of RSG has a similar form as RGD in (V.1)

q(k+1) = PSn−1

(
q(k) − ηk · ∂Rf(q(k))

)
, (V.2)

the convergence behavior of RSG is more complicated than RGD because of the nonsmoothness. Unlike
RGD, the RSG with a constant step size may not converge to a critical point19. Moreover, in contrast to

19This is true even there is no sphere constraint [113]. As a simple example, consider minimizing |x| by the subgradiment method
xk+1 = xk − ηk sign(xk) and suppose that we take x0 = 0.01 and ηk = 0.02 for all k ≥ 0. Then, the iterates {xk}k≥0 will
oscillate between the two points x+ = 0.01 and x− = −0.01 and never converge to the global minimum x? = 0. At best, one can
only show that even for a convex function, the subgradient method with a constant step size will converge to a neighborhood of the
set of global optima (with rate guarantees if the problem satisfies additional regularity conditions); see, e.g., [113–116]. To ensure
the convergence of subgradient methods, a set of diminishing step sizes is generally needed [113, 117].
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RGD, the convergence analysis of RSG for general nonsmooth Riemannian optimization problems are largely
unexploited [118]. Very recently, Li et al. [119] provided the first convergence rate guarantees for RSG when
utilized to optimize nonsmooth functions over Stiefel manifold (which includes the sphere as a special case),
under reasonable regularities of the functions. Specifically, if the objective function is weakly convex20 in
the Euclidean space, then RSG with an arbitrary initialization and diminishing step size (e.g., ηk = 1/

√
k)

converge to a critical point at a sublinear rate (e.g., O(1/k1/4)). A piecewise geometrically diminishing step
size has also been used in [52, 101], resulting in a fast convergence speed. To avoiding tuning the step size, a
modified backtracking line search technique has been used in [52], which works well in practice but without
a formal convergence guarantee.

For problems (III.2) that satisfy the local regularity condition21 (IV.2), it is possible to make RSG converge
much faster to a target solution by exploiting this local geometric property. For example, if we choose a
geometrically diminishing step size (i.e., µk = O(βk) for appropriate β ∈ (0, 1)) and an initialization within
B(Q?, ε), then RSG converges to Q? with a linear rate [99], i.e., dist(q(k),Q?) . βk.

Finally, although RSG is guaranteed to converge to the target solutions under certain regularity condition
such as (IV.2), it should be noted that the negative Riemannian subgradient −∂Rf(q) is not necessarily a
descent direction. How to efficiently search for an appropriate descent direction to accelerate the convergence
for nonsmooth objective is still an open and interesting question. Existing methods such as Riemannian
gradient sampling algorithm [120] is often very expensive and lacks non-asymptotic convergence guarantees.

b) Manifold proximal point algorithm (ManPPA). The manifold proximal point algorithm (ManPPA)
[121] adopts the idea of the classical proximal point method in the Euclidean space. It can be viewed as an
effective approach to find a descent direction on the Moreau envolope of ϕ within the tangent space:

d(k) = argmin
d∈Rn

ϕ
(
Y >(q(k) + d)

)
+

1

2t
‖d‖2 s.t. d>q(k) = 0,

q(k+1) = PSn−1

(
q(k) + αkd

(k)
)
,

(V.3)

where t > 0 and αk > 0 are the step sizes. The efficiency of ManPPA depends on whether we can efficiently
solve the optimization subproblem for the descent direction in (V.3). Chen et al. [121] solves this convex
subproblem by using an inexact augmented Lagrangian method together with a semi-smooth Newton method.
In comparison with RSG, ManPPA converges much faster in terms of iteration complexity22, but its overall
computational complexity can still be higher because solving the subproblem in (V.3) is usually quite
expensive even with efficient implementations.

c) Alternating linearization and projection (ALP) method. Another way to deal with nonsmooth `1

minimization problem with nonlinear connstraint is to linearize the nonlinear constraint, and solve a sequence
of linear programs (LPs) until convergence. This is the so-called alternating linearization and projection
(ALP) method [82, 100]. In particular, for our problem (III.2), we linearize the spherical constraint ‖q‖ = 1
by using its first order Taylor approximation at each iterate q(k), resulting in a linear constraint q>q(k) = 1.
Thus, we compute a sequence of iterates q(k) via solving the following subproblem

q(k) = argmin
q∈Rn

∥∥∥Y >q∥∥∥
1

subject to q>q(k) = 1, and q(k+1) = PSn−1

(
q(k)

)
, (V.4)

where the optimization subproblem is simply a LP. It turns out that ALP can be viewed as a special instance
of ManPPA by choosing t =∞ and αk = 1 in (V.3) and setting q = q(k) + d in (V.4).

For general nonconvex problems, Späth and Watson [82] established the convergence of ALP to a critical
point. For the DPCP problem, this proving technique is further utilized in [100, 122] to show the convergence

20We say f is weakly convex if there exists a τ such that f(·) + τ
2
‖ · ‖2 is convex.

21 [119] utilizes another property called sharpness, which together with the weak convexity also results a similar regularity condition
(IV.2).

22A local quadratic convergence rate is established in [121] for problems obeying shaprness, which is satisfied for both DPCP and
the orthogonal dictionary learning [119].
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TABLE III: Summary of Optimization Methods

Loss function ϕ Methods Order Convergence Pros Cons

Smooth
RGD 1st xx xx

RQN 2nd xx xx xx

Nonsmooth
RSG 1st xx xx xx

ManPP ? xx xx xx

IRLS ? xx xx xx

to a target solution starting from a spectral initialization. The latter result is achieved is due to the underlying
benign geometric structures of the problem that we discussed in Section IV-B. In practice, the ALP usually
converges much faster than RSG in terms of iterations, but for each iteration it involves solving a LP (e.g.,
can be solved using Gurobi [123]) subproblem which is often time consuming.

Finally, we note that if q(0) is very close to a global minimum, solving one LP in (V.4) exactly returns
the target solution. This property has been exploit in [47, 81, 124] for rounding approximate solutions (often
produced by optimizing smooth objectives) to the exact target points. Moreover, for the rounding step Qu et
al. [81] proposed an efficient projected subgradient method that enjoys local linear convergence.

d) Iterative reweighted least squares (IRLS). While the ALP iteratively linearizes the nonconvex constraint,
the iterative reweighted least squares (IRLS) [100, 125–127] attempts to smooth the nonsmooth objective by
a weighted least squares. It should be noted that the IRLS is a classical method to solve `p-minimization
problems (p 6= 2) such as compressive sensing [128–130]. The main idea behind IRLS is to alternatively
solve a weighted least-squares problem (which often admits a closed-form solution) and update the weights.
To illustrate the IRLS for solving (III.2) [100, 125–127], let us rewrite the nonsmooth `1-norm as ‖Y >q‖1 =∑p

i=1

∣∣y>i q∣∣ =
∑p

i=1
1
|y>i q|(y

>
i q)2. This inpsires us to consider solving the following subproblem

q(k) = argmin
q∈Sn−1

p∑
i=1

w
(k−1)
i (y>i q)2, and w

(k)
i =

1

max{δ,
∣∣y>i q(k)∣∣} ∀i ∈ [p], (V.5)

where δ is a small scalar to avoid numerical explosion. It is not difficult to show that the optimal solution of the
subproblem (V.5) is given by the eigenvector corresponding to the smallest eigenvalue of

∑p
i=1w

(k−1)
i yiy

>
i .

The convergence behavior of IRLS is discussed in [126], where the global convergence to a critical point
and a local convergence to an approximate target solution is established for solving DPCP. In comparison to
RSG, IRLS converges much faster and it does not require tuning the step size. However, similar to ALP, the
subproblem of IRLS is expensive as it requires performing an eigen-decomposition.

e) Other methods. Finally, we close this section by noting that there are many other methods developed
for constrained nonsmooth problems that may also be used for solving (III.2). Typical examples include
[131] SQP-GS (which combines sequential quadratic programming and gradient sampling techiniques), and
a faster quasi-Newton type method which called GRANSO [132] which improves SQP-GS by employing
the BFGS method. GRANSO has been used for solving orthogonal DL in [69] and converges very fast in
practice, but there is no convergence guarantee yet.

C. Convergence evaluation

We will conduct simulations to compare different algorithms mentioned in the last two sections for
orthogonal dictionary learning (ODL) and dual principle component pursuit (DPCP). For each application,
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Fig. 7: Convergence performance for DPCP problem.

we examine two formulations: 1) the nonsmooth objective function using `1-loss, 2) the infinitely smooth
objective function using logcosh-loss. The algorithms we execute for tackling `1-loss are the first order RSG,
and higher order IRLS and ManPPA. On the other hand, we employ the first order algorithm RGD and
higher order algorithm RTR for addressing the smooth logcosh loss.

For DPCP application, a subspace S⊥X is randomly sampled with co-dimension r = 40 in ambient
dimension n = 100. We then generate m1 = 1500 inliers uniformly at random from the unit sphere in S⊥X
and m2 = 3500 outliers uniformly at random from the unit sphere in Rn. We initialize all the algorithm at
the same point with its entries follow standard Gaussian distribution. For ODL application, we generate the
synthetic data according to [69]. First, a random orthogonal dictionary A ∈ Rn is generated with n = 64.
Wet set the number of samples m = 5120 ≈ 10×n1.5. The sparse coefficient matrix X ∈ Rn×m is generated
with each entry satisfying Bernoulli-Gaussian distribution with sparsity 0.25. Then the observation Y is
generated as Y = AX . Similarly, we initialize all the algorithms at the same point whose entries follow
standard Gaussian distribution. We illustrate the convergence speed of first order methods and higher order
methods separately. The experimental results for DPCP and ODL are displayed in Figure 7 and Figure 8,
respectively.

In terms of solution accuracy, one can observe from Figure 7a and Figure 8a that both RSG for `1-loss
and RGD for logcosh-loss converge linearly. The difference lies in RSG for `1-loss is able to find the exact
solution, while RGD for logcosh-loss can only admit an approximate solution and the accuracy directly
depends on the smoothing parameter µ in the logcosh loss. In Figure 7b and Figure 8b, the ManPPA and
IRLS for `1-loss converge to the accurate solution of the problem after a few iterations, whereas the RTR for
logcosh-loss only finds an approximate one with the gap depending on smooth parameter µ. This observation
corroborates with the summary in Table I. In terms of convergence speed, higher order methods converge
faster than first order ones in terms of iteration number. However, first order methods often have a much
cheaper computational load in each iteration. Thus, if the problem size is small scale, higher order methods
are recommended, while first order methods will take less time to converge for large scale problems.

VI. APPLICATIONS IN LEARNING LOW-COMPLEXITY MODELS FROM THE DATA

High dimensional data often possess low dimensional structures such as sparsity. For a variety of applications
in data science, one of the fundamental problems that we are facing today is how to learn those low-complexity
structures/models only given the data. In the following, we present several engineering applications for which
some of these challenging learning problems can be reduced to the task of finding the sparsest vector in a
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Fig. 8: Convergence performance for ODL problem.

Fig. 9: Road detection for autonomous driving [52]. Illustration of results on Frame 21 of
KITTI-CITY-48 dataset [133], where DPCP [52] outperforms other methods.

subspace. Therefore, we can leverage on the nonconvex optimization approaches illustrated in this work,
efficiently solving these problems with provable guarantees.

a) Machine Intelligence. How to endow machines with similar human intelligence has been a long term
research interest for decades, which has broad applications in national security, autonomous driving, healthcare,
etc. In many cases, it often requires learning low-complexity structures from the observations, in the meanwhile
we need guaranteed methods to robustly deal with outliers. Many of these problems can be naturally reduced
to finding the sparsest vector in a subspace. As an one example, the DPCP approach introduced in Section II
has been successfully applied in the context of the three-view problem, which is of fundamental importance
in many computer vision applications, such as 3D reconstruction from 2D images of the scene [51].

Another successful application of DPCP is on road plane detection from 3D point cloud data using the
KITTI dataset [133], which is an important computer vision task in autonomous car driving systems. The
dataset, recorded from a moving platform while driving in and around Karlsruhe, Germany, consists of image
data together with corresponding 3D points collected by a rotating 3D laser scanner. As shown in Figure 9,
one important problem is to determine the 3D points that lie off the road plane (outliers indicated by blue)
and those on that plane (inliers indicated by red), follows which the road plane can then be easily estimated.
Experimental results in Figure 9 show that DPCP outperforms other methods, in particular the RANSAC
[134], which is one of the most popular methods for such computer vision applications.
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Fig. 10: Learning representations of natural images [67]. Top: natural images. Middle: 64
dictionary elements of size 8× 8 learned via solving (III.2) and deflation. Bottom: the plots
show the values of

∥∥A>? Y ∥∥1 across 100 independent repetitions, where A? is the obtained
solution for each trial.

b) Representation Learning. High dimensional data often contains quite a lot redundant information, and
they often possess low-dimensional structures/representations. The performance of modern machine learning
and data analytical methods heavily depends on appropriate low-complexity data representations (or features)
which capture hidden information underlying the data. While we used to manually craft representations in the
past, it has been demonstrated that learned representations from the data show much superior performance [39].
Therefore, (unsupervised) learning of latent representations of high-dimensional data becomes a fundamental
problem in signal processing, machine learning, theoretical neuroscience and many other [135]. As alluded in
Section II, one of the most important unsupervised representation learning problems is learning sparsely-used
dictionaries [136], which aims to learn a compact dictionary such that every data point can be represented
by only a few atoms from the dictionary.

However, despite of recent algorithmic and empirical success [63, 64], most of the methods based on
alternating minimizations are lacking theoretical justifications for when and why these algorithms work for
dictionary learning. As shown in Section II, when the dictionary is complete, it can be reduced to finding
the sparsest vector in a subspace. Moreover, Sun et al. [47, 67] showed that this problem can be solved to
the target solutions with efficient algorithms and optimal sparsity level. Figure 10 shows the learned compact
representations from natural images using this approach, which is optimized by a second order Riemannian
trust region algorithm followed by deflation [67]. As we observe, the method does not only enjoy global
performance guarantees (see the bottom of Figure 10) but also efficiently learn meaningful representation
from the data (see the middle of Figure 10).

c) Scientific Imaging. In many imaging science applications, we often face the problem of recovering
a low-complexity signal from the observation taken from an unknown physical system. For instance, in
fluorescent optical microscopy imaging, super-resolution microscopy is a new computation based imaging
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(a) Observation (b) HR Image: Truth (c) HR Image: Recovered

(d) PSF: Ground truth (e) PSF: Recovered

Fig. 11: Solving sparse blind deconvolution for solving super-resolution microscopy
imaging [81]. Results on a standard stochastic optical reconstruction microscopy [139] dataset.
Top: from left to right, observed blurred image, ground truth and recovered HR images Bottom:
from left to right, ground truth and recovered PSFs.

technique which breaks the resolution limits of conventional optical fluorescence microscopy [137–139]. The
basic principle is using photoswitchable florescent probes to create multiple sparse frames of individual
molecules to temporally separates the spatially overlapping low resolution image. To improve the resolution
limit, we need to computationally recover a sequence of sparse high resolution (HR) images from their
convolution with a point spread function (i.e., low resolution images). However, in many scenarios (especially
in 3D imaging), as it is often difficult to directly estimate the PSF due to defocus and unknown aberrations
[140], it is more desired to jointly estimate both PSF and high resolution image by solving a sparse blind
deconvolution problem with multiple inputs.

As discussed in Section II, this sparse blind deconvolution problem can be reduced to finding the sparsest
vector in a subspace, which can be efficiently solved by the algorithms in Section V. As a demonstration
on effectiveness, we test this approach23 on a realistic simulated dataset obtained from SMLM challenge
website24 using 1000 video frames. The fluorescence wavelength is 690 nanometer (nm) and the imaging
frequency is f = 25Hz. Each frame is of size 128× 128 with 100 nm pixel resolution, and we solve the
single-molecule localization problem on the same grid25. As observed in Figure 11, by reducing and solving
the finding the sparsest vector in a subspace problem using simple algorithms, it can near perfectly recover
both the underlying PSF and HR images, producing accurate recovery results.

VII. CONCLUSION AND FUTURE DIRECTIONS

This work is part of a recent surge of research efforts on deriving provable and practical nonconvex
algorithms to central problems in modern signal processing and machine learning, In this paper, we reviewed
several important aspects of recent advances on nonconvex optimization method for solving the problem
of finding the sparsest vector in a subspace, ranging from problem formulation, geometric analysis of
optimization landscapes, to efficient algorithms and applications. In the following, we discuss several open
problems to be addressed along this line of research in the near future.

23Here, we consider the Huber-loss for ϕ, and solve the problem via RGD.
24Available at http://bigwww.epfl.ch/smlm/datasets/index.html?p=tubulin-conjal647.
25Here, we are estimating the HR images on the same grid as the original image. To obtain even higher resolution than the result

we obtain here, people are usually estimating the HR images on a finer grid.
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a) Towards more disciplined nonconvex optimization theory. Despite of recent theoretical and algorithmic
advances, our understandings of nonconvex optimization is still far from satisfactory – the current analysis
is delicate, case-by-case, and pertains to problems with elementary symmetry (e.g., permutation or shift
symmetry) and simple manifold (e.g., sphere). Analogous to the study of convex functions [9], there is a
pressing need for simpler analytic tools, to identify and generalize benign properties for new nonconvex
problems appearing in signal processing and machine learning.

b) Learning low-complexity structures over more complicated manifold. In this work, we formulate the
problems such as robust subspace recovery and dictionary learning as finding a sparse vector in a subspace,
which is constrained over the sphere. However, more natural and robust formulations for these problems
involves optimization over more complicated manifolds, such as Stiefel manifold. More technical tools need
to be developed towards a better understanding of optimization over these complicated manifolds, despite
recent endeavors [99, 103, 119, 141].

c) Applications. In this paper, we reviewed a variety of optimization algorithm for finding a sparse vector in
a subspace, with global and strong theoretical guarantees. Moreover, these algorithms are practical for handling
large dataset as we demonstrated on several applications in unsupervised learning and imaging sciences.
However, we believe the potential of seeking sparse/structured element in a subspace is still unexplored,
despite the cases we mentioned at the start. We hope the motivating application discussed in this review
could inspire more application ideas of these results.
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[114] A. Nedić and D. Bertsekas, “Convergence Rate of Incremental Subgradient Algorithms,” in Stochastic Optimization:
Algorithms and Applications (S. Uryasev and P. M. Pardalos, eds.), vol. 54 of Applied Optimization, Dordrecht:
Springer Science+Business Media, 2001.

[115] D. P. Bertsekas, “Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization,” in
Optimization for Machine Learning (S. Sra, S. Nowozin, and S. J. Wright, eds.), Neural Information Processing
Series, pp. 85–119, Cambridge, Massachusetts: MIT Press, 2012.

[116] D. Davis, D. Drusvyatskiy, K. J. MacPhee, and C. Paquette, “Subgradient Methods for Sharp Weakly Convex
Functions,” Journal of Optimization Theory and Applications, vol. 179, no. 3, pp. 962–982, 2018.

[117] J.-L. Goffin, “On Convergence Rates of Subgradient Optimization Methods,” Mathematical programming, vol. 13,
no. 1, pp. 329–347, 1977.

[118] P.-A. Absil and S. Hosseini, “A collection of nonsmooth riemannian optimization problems,” in Nonsmooth
Optimization and Its Applications, pp. 1–15, Springer, 2019.

[119] X. Li, S. Chen, Z. Deng, Q. Qu, Z. Zhu, and A. M. C. So, “Nonsmooth optimization over stiefel manifold:
Riemannian subgradient methods,” arXiv preprint arXiv:1911.05047, 2019.

[120] S. Hosseini and A. Uschmajew, “A riemannian gradient sampling algorithm for nonsmooth optimization on
manifolds,” SIAM Journal on Optimization, vol. 27, no. 1, pp. 173–189, 2017.

[121] S. Chen, Z. Deng, S. Ma, and A. M.-C. So, “Manifold proximal point algorithms for dual principal component

24



pursuit and orthogonal dictionary learning,” in Asilomar Conference on Signals, Systems, and Computers, 2019.
[122] Z. Zhu, Y. Wang, D. P. Robinson, D. Q. Naiman, R. Vidal, and M. C. Tsakiris, “Dual principal component

pursuit: Probability analysis and efficient algorithms,” arXiv preprint arXiv:1812.09924, 2018.
[123] G. Optimization, “Inc.,“gurobi optimizer reference manual,” 2015,” 2014.
[124] Q. Qu, J. Sun, and J. Wright, “Finding a sparse vector in a subspace: Linear sparsity using alternating directions,”

in Advances in Neural Information Processing Systems, pp. 3401–3409, 2014.
[125] G. Lerman, M. B. McCoy, J. A. Tropp, and T. Zhang, “Robust computation of linear models by convex relaxation,”

Foundations of Computational Mathematics, vol. 15, no. 2, pp. 363–410, 2015.
[126] G. Lerman and T. Maunu, “Fast, robust and non-convex subspace recovery,” Information and Inference: A Journal

of the IMA, vol. 7, no. 2, pp. 277–336, 2017.
[127] T. Zhang and G. Lerman, “A novel m-estimator for robust pca,” The Journal of Machine Learning Research,

vol. 15, no. 1, pp. 749–808, 2014.
[128] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted `1 minimization,” Journal of

Fourier analysis and applications, vol. 14, no. 5-6, pp. 877–905, 2008.
[129] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in 2008 IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872, IEEE, 2008.
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