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Complete Dictionary Recovery over the Sphere
I: Overview and the Geometric Picture
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Abstract

We consider the problem of recovering a complete (i.e., square and invertible) matrix A0, from Y ∈ Rn×p
with Y = A0X0, provided X0 is sufficiently sparse. This recovery problem is central to theoretical understanding
of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous
applications in modern signal processing and machine learning. We give the first efficient algorithm that provably
recovers A0 when X0 has O (n) nonzeros per column, under suitable probability model for X0. In contrast, prior
results based on efficient algorithms either only guarantee recovery when X0 has O(

√
n) zeros per column, or

require multiple rounds of SDP relaxation to work when X0 has O(n1−δ) nonzeros per column (for any constant
δ ∈ (0, 1)).

Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical
constraint. In this paper, we provide a geometric characterization of the objective landscape. In particular, we show
that the problem is highly structured: with high probability, (1) there are no “spurious” local minimizers; and (2)
around all saddle points the objective has a negative directional curvature. This distinctive structure makes the problem
amenable to efficient optimization algorithms. In a companion paper [3], we design a second-order trust-region
algorithm over the sphere that provably converges to a local minimizer from arbitrary initializations, despite the
presence of saddle points.

Index Terms

Dictionary learning, Nonconvex optimization, Spherical constraint, Escaping saddle points, Trust-region method,
Manifold optimization, Function landscape, Second-order geometry, Inverse problems, Structured signals, Nonlinear
approximation

I. INTRODUCTION

Given p signal samples from Rn, i.e., Y .
= [y1, . . . ,yp], is it possible to construct a “dictionary” A .

= [a1, . . . ,am]
with m much smaller than p, such that Y ≈ AX and the coefficient matrix X has as few nonzeros as possible? In
other words, this model dictionary learning (DL) problem seeks a concise representation for a collection of input
signals. Concise signal representations play a central role in compression, and also prove useful to many other
important tasks, such as signal acquisition, denoising, and classification.

Traditionally, concise signal representations have relied heavily on explicit analytic bases constructed in nonlinear
approximation and harmonic analysis. This constructive approach has proved highly successful; the numerous
theoretical advances in these fields (see, e.g., [4]–[8] for summary of relevant results) provide ever more powerful
representations, ranging from the classic Fourier basis to modern multidimensional, multidirectional, multiresolution
bases, including wavelets, curvelets, ridgelets, and so on. However, two challenges confront practitioners in
adapting these results to new domains: which function class best describes signals at hand, and consequently which
representation is most appropriate. These challenges are coupled, as function classes with known “good” analytic
bases are rare. 1

Around 1996, neuroscientists Olshausen and Field discovered that sparse coding, the principle of encoding a
signal with few atoms from a learned dictionary, reproduces important properties of the receptive fields of the simple
cells that perform early visual processing [10], [11]. The discovery has spurred a flurry of algorithmic developments
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1As Donoho et al [9] put it, “...in effect, uncovering the optimal codebook structure of naturally occurring data involves more challenging

empirical questions than any that have ever been solved in empirical work in the mathematical sciences.”
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and successful applications for DL in the past two decades, spanning classical image processing, visual recognition,
compressive signal acquisition, and also recent deep architectures for signal classification (see, e.g., [12], [13] for
review of this development).

The learning approach is particularly relevant to modern signal processing and machine learning, which deal
with data of huge volume and great variety (e.g., images, audios, graphs, texts, genome sequences, time series, etc).
The proliferation of problems and data seems to preclude analytically deriving optimal representations for each
new class of data in a timely manner. On the other hand, as datasets grow, learning dictionaries directly from data
looks increasingly attractive and promising. When armed with sufficiently many data samples of one signal class,
by solving the model DL problem, one would expect to obtain a dictionary that allows sparse representation for the
whole class. This hope has been borne out in a number of successful examples [12], [13] and theories [14]–[17].

A. Theoretical and Algorithmic Challenges

In contrast to the above empirical successes, theoretical study of dictionary learning is still developing. For
applications in which dictionary learning is to be applied in a “hands-free” manner, it is desirable to have efficient
algorithms which are guaranteed to perform correctly, when the input data admit a sparse model. There have been
several important recent results in this direction, which we will review in Section I-E, after our sketching main
results. Nevertheless, obtaining algorithms that provably succeed under broad and realistic conditions remains an
important research challenge.

To understand where the difficulties arise, we can consider a model formulation, in which we attempt to obtain
the dictionary A and coefficients X which best trade-off sparsity and fidelity to the observed data:

minimizeA∈Rn×m,X∈Rm×p λ ‖X‖1 +
1

2
‖AX − Y ‖2F , subject to A ∈ A. (I.1)

Here, ‖X‖1
.
=
∑

i,j |Xij | promotes sparsity of the coefficients, λ ≥ 0 trades off the level of coefficient sparsity and
quality of approximation, and A imposes desired structures on the dictionary.

This formulation is nonconvex: the admissible set A is typically nonconvex (e.g., orthogonal group, matrices with
normalized columns)2, while the most daunting nonconvexity comes from the bilinear mapping: (A,X) 7→ AX .
Because (A,X) and

(
AΠΣ,Σ−1Π∗X

)
result in the same objective value for the conceptual formulation (I.1),

where Π is any permutation matrix, and Σ any diagonal matrix with diagonal entries in {±1}, and (·)∗ denotes
matrix transpose. Thus, we should expect the problem to have combinatorially many global minimizers. These
global minimizers are generally isolated, likely jeopardizing natural convex relaxation (see similar discussions in,
e.g., [18] and [19]).3 This contrasts sharply with problems in sparse recovery and compressed sensing, in which
simple convex relaxations are often provably effective [26]–[35]. Is there any hope to obtain global solutions to the
DL problem?

B. An Intriguing Numerical Experiment with Real Images

We provide empirical evidence in support of a positive answer to the above question. Specifically, we learn
orthogonal bases (orthobases) for real images patches. Orthobases are of interest because typical hand-designed
dictionaries such as discrete cosine (DCT) and wavelet bases are orthogonal, and orthobases seem competitive in
performance for applications such as image denoising, as compared to overcomplete dictionaries [36]4.

2For example, in nonlinear approximation and harmonic analysis, orthonormal basis or (tight-)frames are preferred; to fix the scale ambiguity
discussed in the text, a common practice is to require that A to be column-normalized.

3Simple convex relaxations normally replace the objective function with a convex surrogate, and the constraint set with its convex hull.
When there are multiple isolated global minimizers for the original nonconvex problem, any point in the convex hull of these global minimizers
are necessarily feasible for the relaxed version, and such points tend to produce smaller or equal values than that of the original global
minimizers by the relaxed objective function, due to convexity. This implies such relaxations are bound to be loose. Semidefinite programming
(SDP) lifting may be one useful general strategy to convexify bilinear inverse problems, see, e.g., [20], [21]. However, for problems with
general nonlinear constraints, it is unclear whether the lifting always yields tight relaxation; consider, e.g., [21]–[23] and the identification
issue in blind deconvolution [24], [25].

4See Section I-C for more detailed discussions of this point. [37] also gave motivations and algorithms for learning (union of) orthobases
as dictionaries.
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Fig. 1: Alternating direction method for (I.2) on uncompressed real images seems to always produce the same
solution! Top: Each image is 512× 512 in resolution and encoded in the uncompressed pgm format (uncompressed
images to prevent possible bias towards standard bases used for compression, such as DCT or wavelet bases).
Each image is evenly divided into 8× 8 non-overlapping image patches (4096 in total), and these patches are all
vectorized and then stacked as columns of the data matrix Y . Bottom: Given each Y , we solve (I.2) 100 times with
independent and randomized (uniform over the orthogonal group) initialization A0. Let A∞ denote the value of A
at convergence (we set the maximally allowable number of ADM iterations to be 104 and λ = 2). The plots show
the values of ‖A∗∞Y ‖1 across the independent repetitions. They are virtually the same and the relative differences
are less than 10−3!

We divide a given greyscale image into 8× 8 non-overlapping patches, which are converted into 64-dimensional
vectors and stacked column-wise into a data matrix Y . Specializing (I.1) to this setting, we obtain the optimization
problem:

minimizeA∈Rn×n,X∈Rn×p λ ‖X‖1 +
1

2
‖AX − Y ‖2F , subject to A ∈ On, (I.2)

where On is the set of order n orthogonal matrices, i.e., order-n orthogonal group. To derive a concrete algorithm
for (I.2), one can deploy the alternating direction method (ADM)5, i.e., alternately minimizing the objective function
with respect to (w.r.t.) one variable while fixing the other. The iteration sequence actually takes very simple form:
for k = 1, 2, 3, . . . ,

Xk = Sλ
[
A∗k−1Y

]
, Ak = UV ∗ for UDV ∗ = SVD (Y X∗k)

where Sλ [·] denotes the well-known soft-thresholding operator acting elementwise on matrices, i.e., Sλ [x]
.
=

sign (x) max (|x| − λ, 0) for any scalar x.
Fig. 1 shows what we obtained using the simple ADM algorithm, with independent and randomized initializations:

The algorithm seems to always produce the same optimal value, regardless of the initialization.

5This method is also called alternating minimization or (block) coordinate descent method. see, e.g., [38], [39] for classic results and [40],
[41] for several interesting recent developments.
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This observation is consistent with the possibility that the heuristic ADM algorithm may always converge to a
global minimizer! 6 Equally surprising is that the phenomenon has been observed on real images7. One may imagine
only random data typically have “favorable” structures; in fact, almost all existing theories for DL pertain only to
random data [42]–[47].

C. Dictionary Recovery and Our Results

In this paper, we take a step towards explaining the surprising effectiveness of nonconvex optimization heuristics
for DL. We focus on the dictionary recovery (DR) setting: given a data matrix Y generated as Y = A0X0, where
A0 ∈ A ⊆ Rn×m and X0 ∈ Rm×p is “reasonably sparse”, try to recover A0 and X0. Here recovery means to
return any pair

(
A0ΠΣ,Σ−1Π∗X0

)
, where Π is a permutation matrix and Σ is a nonsingular diagonal matrix,

i.e., recovering up to sign, scale, and permutation.
To define a reasonably simple and structured problem, we make the following assumptions:
• The target dictionary A0 is complete, i.e., square and invertible (m = n). In particular, this class includes

orthogonal dictionaries. Admittedly overcomplete dictionaries tend to be more powerful for modeling and
to allow sparser representations. Nevertheless, most classic hand-designed dictionaries in common use are
orthogonal. Orthobases are competitive in performance for certain tasks such as image denoising [36], and
admit faster algorithms for learning and encoding. 8

• The coefficient matrix X0 follows the Bernoulli-Gaussian (BG) model with rate θ: [X0]ij = ΩijVij , with
Ωij ∼ Ber (θ) and Vij ∼ N (0, 1), where all the different random variables are jointly independent. We write
compactly X0 ∼i.i.d. BG (θ). This BG model, or the Bernoulli-Subgaussian model as used in [42], is a
reasonable first model for generic sparse coefficients: the Bernoulli process enables explicit control on the
(hard) sparsity level, and the (sub)-Gaussian process seems plausible for modeling variations in magnitudes.
Real signals may admit encoding coefficients with additional or different characteristics. We will focus on
generic sparse encoding coefficients as a first step towards theoretical understanding.

In this paper, we provide a nonconvex formulation for the DR problem, and characterize the geometric structure of
the formulation that allows development of efficient algorithms for optimization. In the companion paper [3], we
derive an efficient algorithm taking advantage of the structure, and describe a complete algorithmic pipeline for
efficient recovery. Together, we prove the following result:

Theorem I.1 (Informal statement of our results, a detailed version included in the companion paper [3]). For any
θ ∈ (0, 1/3), given Y = A0X0 with A0 a complete dictionary and X0 ∼i.i.d. BG (θ), there is a polynomial-time
algorithm that recovers (up to sign, scale, and permutation) A0 and X0 with high probability (at least 1−O(p−6))
whenever p ≥ p? (n, 1/θ, κ (A0) , 1/µ) for a fixed polynomial p? (·), where κ (A0) is the condition number of A0

and µ is a parameter that can be set as cn−5/4 for a constant c > 0.

Obviously, even if X0 is known, one needs p ≥ n to make the identification problem well posed. Under our
particular probabilistic model, a simple coupon collection argument implies that one needs p ≥ Ω

(
1
θ log n

)
to

ensure all atoms in A0 are observed with high probability (w.h.p.). Ensuring that an efficient algorithm exists may
demand more. Our result implies when p is polynomial in n, 1/θ and κ(A0), recovery with an efficient algorithm
is possible.

The parameter θ controls the sparsity level of X0. Intuitively, the recovery problem is easy for small θ and
becomes harder for large θ.9 It is perhaps surprising that an efficient algorithm can succeed up to constant θ, i.e.,

6Technically, the convergence to global solutions is surprising because even convergence of ADM to critical points is not guaranteed in
general, see, e.g., [40], [41] and references therein.

7Actually the same phenomenon is also observed for simulated data when the coefficient matrix obeys the Bernoulli-Gaussian model, which
is defined later. The result on real images supports that previously claimed empirical successes over two decades may be non-incidental.

8Empirically, there is no systematic evidence supporting that overcomplete dictionaries are strictly necessary for good performance in all
published applications (though [11] argues for the necessity from a neuroscience perspective). Some of the ideas and tools developed here for
complete dictionaries may also apply to certain classes of structured overcomplete dictionaries, such as tight frames. See Section III for
relevant discussion.

9Indeed, when θ is small enough such that columns of X0 are predominately 1-sparse, one directly observes scaled versions of the atoms
(i.e., columns of X0); when X0 is fully dense corresponding to θ = 1, recovery is never possible as one can easily find another complete
A′0 and fully dense X ′0 such that Y = A′0X

′
0 with A′0 not equivalent to A0.
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linear sparsity in X0. Compared to the case when A0 is known, there is only at most a constant gap in the sparsity
level one can deal with.

For DL, our result gives the first efficient algorithm that provably recovers complete A0 and X0 when X0 has
O(n) nonzeros per column under appropriate probability model. Section I-E provides detailed comparison of our
result with other recent recovery results for complete and overcomplete dictionaries.

D. Main Ingredients and Innovations

In this section we describe three main ingredients that we use to obtain the stated result.
1) A Nonconvex Formulation: Since Y = A0X0 and A0 is complete, row (Y ) = row (X0) (row (·) denotes

the row space of a matrix) and hence rows of X0 are sparse vectors in the known (linear) subspace row (Y ).
We can use this fact to first recover the rows of X0, and subsequently recover A0 by solving a system of linear
equations. In fact, for X0 ∼i.i.d. BG (θ), rows of X0 are the n sparsest vectors (directions) in row (Y ) w.h.p.
whenever p ≥ Ω (n log n) [42]. Thus, recovering rows of X0 is equivalent to finding the sparsest vectors/directions
(due to the scale ambiguity) in row(Y ). Since any vector in row(Y ) can be written as q∗Y for a certain q, one
might try to solve

minimize ‖q∗Y ‖0 subject to q∗Y 6= 0 (I.3)

to find the sparsest vector in row(Y ). Once the sparsest one is found, one then appropriately reduces the subspace
row(Y ) by one dimension, and solves an analogous version of (I.3) to find the second sparsest vector. The process
is continued recursively until all sparse vectors are obtained. The above idea of reducing the original recovery
problem into finding sparsest vectors in a known subspace first appeared in [42].

The objective is discontinuous, and the domain is an open set. In particular, the homogeneous constraint is
unconventional and tricky to deal with. Since the recovery is up to scale, one can remove the homogeneity by fixing
the scale of q. Known relaxations [42], [48] fix the scale by setting ‖q∗Y ‖∞ = 1 and use ‖·‖1 as a surrogate to
‖·‖0, where ‖·‖∞ is the elementwise `∞ norm, leading to the optimization problem

minimize ‖q∗Y ‖1 subject to ‖q∗Y ‖∞ = 1. (I.4)

The constraint means at least one coordinate of q∗Y has unit magnitude10. Thus, (I.4) reduces to a sequence of
convex (linear) programs. [42] has shown that (see also [48]) solving (I.4) recovers (A0,X0) for very sparse X0,
but the idea provably breaks down when θ is slightly above O(1/

√
n), or equivalently when each column of X0

has more than O (
√
n) nonzeros.

Inspired by our previous image experiment, we work with a nonconvex alternative11:

minimize f(q; Ŷ )
.
=

1

p

p∑
k=1

hµ (q∗ŷk) , subject to ‖q‖ = 1, (I.5)

where Ŷ ∈ Rn×p is a proxy for Y (i.e., after appropriate processing), k indexes columns of Ŷ , and ‖·‖ is the usual
`2 norm for vectors. Here hµ (·) is chosen to be a convex smooth approximation to |·|, namely,

hµ (z) = µ log

(
exp (z/µ) + exp (−z/µ)

2

)
= µ log cosh(z/µ), (I.6)

which is infinitely differentiable and µ controls the smoothing level.12 An illustration of the hµ(·) function vs. the
`1 function is provided in Fig. 2. The spherical constraint is nonconvex. Hence, a-priori, it is unclear whether
(I.5) admits efficient algorithms that attain global optima. Surprisingly, simple descent algorithms for (I.5) exhibit
very striking behavior: on many practical numerical examples13, they appear to produce global solutions. Our next
section will uncover interesting geometrical structures underlying the phenomenon.
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Fig. 2: The smooth `1 surrogate defined in (I.6) vs. the `1 function, for varying values of µ. The surrogate
approximates the `1 function more closely when µ gets smaller.

Fig. 3: Why is dictionary learning over Sn−1 tractable? Assume the target dictionary A0 = I . Left: Large sample
objective function EX0

[f (q)]. The only local minimizers are the signed basis vectors ±ei. Right: A visualization
of the function as a height above the equatorial section e⊥3 , i.e., span{e1, e2}∩B3. The derived function is obtained
by assigning values of points on the upper hemisphere to their corresponding projections on the equatorial section
e⊥3 . The minimizers for the derived function are 0,±e1,±e2. Around 0 in e⊥3 , the function exhibits a small region
of strong convexity, a region of large gradient, and finally a region in which the direction away from 0 is a direction
of negative curvature.

2) A Glimpse into High-dimensional Function Landscape: For the moment, suppose A0 = I and take Ŷ =
Y = A0X0 = X0 in (I.5). Fig. 3 (left) plots EX0

[f (q;X0)] over q ∈ S2 (n = 3). Remarkably, EX0
[f (q;X0)]

has no spurious local minimizers. In fact, every local minimizer q̂ is one of the signed standard basis vectors, i.e.,
±ei’s where i ∈ {1, 2, 3}. Hence, q̂∗Y reproduces a certain row of X0, and all minimizers reproduce all rows of
X0.

Let e⊥3 be the equatorial section that is orthogonal to e3, i.e., e⊥3
.
= span(e1, e2) ∩ B3. To better illustrate the

above point, we project the upper hemisphere above e⊥3 onto e⊥3 . The projection is bijective and we equivalently
define a reparameterization g : e⊥3 7→ R of f . Fig. 3 (right) plots the graph of g. Obviously the only local minimizers
are 0,±e1,±e2, and they are also global minimizers. Moreover, the apparent nonconvex landscape has interesting
structures around 0: when moving away from 0, one sees successively a strongly convex region, a strong gradient

10The sign ambiguity is tolerable here.
11A similar formulation has been proposed in [49] in the context of blind source separation; see also [50].
12In fact, there is nothing special about this choice and we believe that any valid smooth (twice continuously differentiable) approximation

to |·| would work and yield qualitatively similar results. We also have some preliminary results showing the latter geometric picture remains
the same for certain nonsmooth functions, such as a modified version of the Huber function, though the analysis involves handling a different
set of technical subtleties. The algorithm also needs additional modifications.

13... not restricted to the model we assume here for A0 and X0.
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region, and a region where at each point one can always find a direction of negative curvature. This geometry
implies that at any nonoptimal point, there is always at least one direction of descent. Thus, any algorithm that can
take advantage of the descent directions will likely converge to a global minimizer, irrespective of initialization.

Two challenges stand out when implementing this idea. For geometry, one has to show similar structure exists for
general complete A0, in high dimensions (n ≥ 3), when the number of observations p is finite (vs. the expectation
in the experiment). For algorithms, we need to be able to take advantage of this structure without knowing A0

ahead of time. In Section I-D3, we describe a Riemannian trust region method which addresses the latter challenge.
a) Geometry for orthogonal A0.: In this case, we take Ŷ = Y = A0X0. Since f (q;A0X0) = f (A∗0q;X0),

the landscape of f (q;A0X0) is simply a rotated version of that of f (q;X0), i.e., when A0 = I . Hence we will
focus on the case when A0 = I . Among the 2n symmetric sections of Sn−1 centered around the signed basis vectors
±e1, . . . ,±en, we work with the symmetric section around en as an exemplar. An illustration of the symmetric
sections and the exemplar we choose to work with on S2 is provided in Fig. 4. The result will carry over to all
sections with the same argument; together this provides a complete characterization of the function f (q;X0) over
Sn−1.

Fig. 4: Illustration of the six symmetric sections on S2 and the exemplar we work with. Left: The six symmetric
sections on S2, as divided by the green curves. The signed basis vectors, ±ei’s, are centers of these sections. We
choose to work with the exemplar that is centered around e3 that is shaded in blue. Right: Projection of the upper
hemisphere onto the equatorial section e⊥3 . The blue region is projection of the exemplar under study. The larger
region enclosed by the red circle is the Γ set on which we characterize the reparametrized function g.

To study the function on this exemplar region, we again invoke the projection trick described above, this time
onto the equatorial section e⊥n . This can be formally captured by the reparameterization mapping:

q (w) =

(
w,

√
1− ‖w‖2

)
, w ∈ Bn−1, (I.7)

where w is the new variable and Bn−1 is the unit ball in Rn−1. We first study the composition g (w;X0)
.
=

f (q (w) ;X0) over the set

Γ
.
=

{
w : ‖w‖ <

√
4n−1

4n

}
( Bn−1. (I.8)

It can be verified the exemplar we chose to work with is strictly contained in this set14. This is illustrated for the
case n = 3 in Fig. 4 (right).

Our analysis characterizes the properties of g (w;X0) by studying three quantities

∇2g (w;X0) ,
w∗∇g (w;X0)

‖w‖
,

w∗∇2g (w;X0)w

‖w‖2

14Indeed, if 〈q, en〉 ≥ |〈q, ei〉| for all i 6= n, 1− ‖w‖2 = q2n ≥ 1/n, implying ‖w‖2 ≤ n−1
n

< 4n−1
4n

. The reason we have defined an
open set instead of a closed (compact) one is to avoid potential trivial local minimizers located on the boundary. We study behavior of g over
this slightly larger set Γ, instead of just the projection of the chosen symmetric section, to conveniently deal with the boundary effect: if we
choose to work with just projection of the chosen symmetric section, there would be considerable technical subtleties at the boundaries when
we call the union argument to cover the whole sphere.
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respectively over three consecutive regions moving away from the origin, corresponding to the three regions in
Fig. 3 (right). In particular, through typical expectation-concentration style arguments, we show that there exists a
positive constant c such that

∇2g (w;X0) � 1

µ
cθI,

w∗∇g (w;X0)

‖w‖
≥ cθ, w∗∇2g (w;X0)w

‖w‖2
≤ −cθ (I.9)

over the respective regions w.h.p., confirming our low-dimensional observations described above. In particular, the
favorable structure we observed for n = 3 persists in high dimensions, w.h.p., even when p is large yet finite, for
the case A0 is orthogonal. Moreover, the local minimizer of g (w;X0) over Γ is very close to 0, within a distance
of O (µ)15.

b) Geometry for complete A0.: For general complete dictionaries A0, we hope that the function f retains the
nice geometric structure discussed above. We can ensure this by “preconditioning” Y such that the output looks as
if being generated from a certain orthogonal matrix, possibly plus a small perturbation. We can then argue that the
perturbation does not significantly affect qualitative properties of the objective landscape. Write

Y =
(

1
pθY Y

∗
)−1/2

Y . (I.10)

Note that for X0 ∼i.i.d. BG (θ), E [X0X
∗
0 ] / (pθ) = I . Thus, one expects 1

pθY Y
∗ = 1

pθA0X0X
∗
0A
∗
0 to behave

roughly like A0A
∗
0 and hence Y to behave like

(A0A
∗
0)−1/2A0X0 = (UΣV ∗V ΣU∗)−1/2UΣV ∗X0

= UΣ−1U∗UΣV ∗X0

= UV ∗X0 (I.11)

where SVD(A0) = UΣV ∗. It is easy to see UV ∗ is an orthogonal matrix. Hence the preconditioning scheme we
have introduced is technically sound.

Our analysis shows that Y can be written as

Y = UV ∗X0 + ΞX0, (I.12)

where Ξ is a matrix with a small magnitude. Simple perturbation argument shows that the constant c in (I.9) is at
most shrunk to c/2 for all w when p is sufficiently large. Thus, the qualitative aspects of the geometry have not
been changed by the perturbation.

3) A Second-order Algorithm on Manifold: Riemannian Trust-Region Method: We do not know A0 ahead
of time, so our algorithm needs to take advantage of the structure described above without knowledge of A0.
Intuitively, this seems possible as the descent direction in the w space appears to also be a local descent direction
for f over the sphere. Another issue is that although the optimization problem has no spurious local minimizers,
it does have many saddle points with indefinite Hessian, which we call ridable saddles 16 (Fig. 3). We can use
second-order information to guarantee to escape from such saddle points. In the companion paper [3], we derive
an algorithm based on the Riemannian trust region method (TRM) [53], [54] for this purpose. There are other
algorithmic possibilities; see, e.g., [52], [55].

We provide here only the basic intuition why a local minimizer can be retrieved by the second-order trust-region
method. Consider an unconstrained optimization problem

min
x∈Rn

φ (x) .

Typical (second-order) TRM proceeds by successively forming a second-order approximation to φ at the current
iterate,

φ̂(δ;x(r−1))
.
= φ(x(r−1)) +∇∗φ(x(r−1))δ + 1

2δ
∗Q(x(r−1))δ, (I.13)

15When p→∞, the local minimizer is exactly 0; deviation from 0 that we described is due to finite-sample perturbation. The deviation
distance depends both the hµ(·) and p; see Theorem II.1 for example.

16See [51] and [52].
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where Q(x(r−1)) is a proxy for the Hessian matrix ∇2φ(x(r−1)), which encodes the second-order geometry. The
next movement direction is determined by seeking a minimum of φ̂(δ;x(r−1)) over a small region, normally a norm
ball ‖δ‖p ≤ ∆, called the trust region, inducing the well-studied trust-region subproblem that can efficiently solved:

δ(r) .
= arg min
δ∈Rn,‖δ‖

p
≤∆

φ̂(δ;x(r−1)), (I.14)

where ∆ is called the trust-region radius that controls how far the movement can be made. If we take Q(x(r−1)) =
∇2φ(x(r−1)) for all r, then whenever the gradient is nonvanishing or the Hessian is indefinite, we expect to decrease
the objective function by a concrete amount provided ‖δ‖ is sufficiently small. Since the domain is compact, the
iterate sequence ultimately moves into the strongly convex region, where the trust-region algorithm behaves like
a typical Newton algorithm. All these are generalized to our objective over the sphere and made rigorous in the
companion paper [3].

E. Prior Arts and Connections

It is far too ambitious to include here a comprehensive review of the exciting developments of DL algorithms
and applications after the pioneer work [10]. We refer the reader to Chapter 12 - 15 of the book [12] and the survey
paper [13] for summaries of relevant developments in image analysis and visual recognition. In the following, we
focus on reviewing recent developments on the theoretical side of dictionary learning, and draw connections to
problems and techniques that are relevant to the current work.

a) Theoretical Dictionary Learning: The theoretical study of DL in the recovery setting started only very
recently. [56] was the first to provide an algorithmic procedure to correctly extract the generating dictionary.
The algorithm requires exponentially many samples and has exponential running time; see also [57]. Subsequent
work [18], [19], [58]–[60] studied when the target dictionary is a local optimizer of natural recovery criteria. These
meticulous analyses show that polynomially many samples are sufficient to ensure local correctness under natural
assumptions. However, these results do not imply that one can design efficient algorithms to obtain the desired local
optimizer and hence the dictionary.

[42] initiated the on-going research effort to provide efficient algorithms that globally solve DR. They showed
that one can recover a complete dictionary A0 from Y = A0X0 by solving a certain sequence of linear programs,
when X0 is a sparse random matrix (under the Bernoulli-Subgaussian model) with O(

√
n) nonzeros per column (and

the method provably breaks down when X0 contains slightly more than Ω(
√
n) nonzeros per column). [43], [45]

and [44], [47] gave efficient algorithms that provably recover overcomplete (m ≥ n), incoherent dictionaries, based
on a combination of {clustering or spectral initialization} and local refinement. These algorithms again succeed
when X0 has Õ(

√
n) 17 nonzeros per column. Recent work [61] provided the first polynomial-time algorithm

that provably recovers most “nice” overcomplete dictionaries when X0 has O(n1−δ) nonzeros per column for any
constant δ ∈ (0, 1). However, the proposed algorithm runs in super-polynomial (quasipolynomial) time when the
sparsity level goes up to O(n). Similarly, [46] also proposed a super-polynomial time algorithm that guarantees
recovery with (almost) O (n) nonzeros per column. Detailed models for those methods dealing with overcomplete
dictionaries are differ from one another; nevertheless, they all assume each column of X0 has bounded sparsity
levels, and the nonzero coefficients have certain sub-Gaussian magnitudes18. By comparison, we give the first
polynomial-time algorithm that provably recovers complete dictionary A0 when X0 has O (n) nonzeros per column,
under the BG model.

Aside from efficient recovery, other theoretical work on DL includes results on identifiability [56], [57], [62],
generalization bounds [14]–[17], and noise stability [63].

b) Finding Sparse Vectors in a Linear Subspace: We have followed [42] and cast the core problem as finding
the sparsest vectors in a given linear subspace, which is also of independent interest. Under a planted sparse model19,
[48] showed that solving a sequence of linear programs similar to [42] can recover sparse vectors with sparsity up
to O (p/

√
n), sublinear in the vector dimension. [50] improved the recovery limit to O (p) by solving a nonconvex

17The Õ suppresses some logarithm factors.
18Thus, one may anticipate that the performances of those methods do not change much qualitatively, if the BG model for the coefficients

had been assumed.
19... where one sparse vector embedded in an otherwise random subspace.
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sphere-constrained problem similar to (I.5)20 via an ADM algorithm. The idea of seeking rows of X0 sequentially by
solving the above core problem sees precursors in [49] for blind source separation, and [64] for matrix sparsification.
[49] also proposed a nonconvex optimization similar to (I.5) here and that employed in [50].

c) Nonconvex Optimization Problems: For other nonconvex optimization problems of recovery of structured
signals21, including low-rank matrix completion/recovery [73]–[82], phase retreival [83]–[86], tensor recovery [87]–
[90], mixed regression [91], [92], structured element pursuit [50], and recovery of simultaneously structured
signals [92], numerical linear algebra and optimization [93], [94], the initialization plus local refinement strategy
adopted in theoretical DL [43]–[47] is also crucial: nearness to the target solution enables exploiting the local
property of the optimizing objective to ensure that the local refinement succeeds.22 By comparison, we provide a
complete characterization of the global geometry, which admits efficient algorithms without any special initialization.

(a) Correlated Gaussian, θ = 0.1 (b) Correlated Uniform, θ = 0.1 (c) Independent Uniform, θ = 0.1

(d) Correlated Gaussian, θ = 0.9 (e) Correlated Uniform, θ = 0.9 (f) Independent Uniform, θ = 1

Fig. 5: Asymptotic function landscapes when rows of X0 are not independent. W.l.o.g., we again assume
A0 = I . In (a) and (d), X0 = Ω� V , with Ω ∼i.i.d. Ber(θ) and columns of X0 i.i.d. Gaussian vectors obeying
vi ∼ N (0,Σ2) for symmetric Σ with 1’s on the diagonal and i.i.d. off-diagonal entries distributed as N (0,

√
2/20).

Similarly, in (b) and (e), X0 = Ω �W , with Ω ∼i.i.d. Ber(θ) and columns of X0 i.i.d. vectors generated as
wi = Σui with ui ∼i.i.d. Uniform[−0.5, 0.5]. For comparison, in (c) and (f), X0 = Ω�W with Ω ∼i.i.d. Ber(θ)
and W ∼i.i.d. Uniform[−0.5, 0.5]. Here � denote the elementwise product, and the objective function is still based
on the log cosh function as in (I.5).

d) Independent Component Analysis (ICA) and Other Matrix Factorization Problems: DL can also be considered
in the general framework of matrix factorization problems, which encompass the classic principal component analysis
(PCA), ICA, and clustering, and more recent problems such as nonnegative matrix factorization (NMF), multi-layer
neural nets (deep learning architectures). Most of these problems are NP-hard. Identifying tractable cases of practical
interest and providing provable efficient algorithms are subject of on-going research endeavors; see, e.g., recent
progresses on NMF [98], and learning deep neural nets [99]–[102].

ICA factors a data matrix Y as Y = AX such that A is square and rows of X achieve maximal statistical
independence [103], [104]. In theoretical study of the recovery problem, it is often assumed that rows of X0

are (weakly) independent (see, e.g., [105]–[107]). Our i.i.d. probability model on X0 implies rows of X0 are
independent, aligning our problem perfectly with the ICA problem. More interestingly, the log cosh objective we

20The only difference is that they chose to work with the Huber function as a proxy of the ‖·‖1 function.
21This is a body of recent work studying nonconvex recovery up to statistical precision, including, e.g., [65]–[72].
22The powerful framework [40], [41] to establish local convergence of ADM algorithms to critical points applies to DL/DR also, see, e.g.,

[95]–[97]. However, these results do not guarantee to produce global optima.
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analyze here was proposed as a general-purpose contrast function in ICA that has not been thoroughly analyzed [108].
Algorithms and analysis with another popular contrast function, the fourth-order cumulants, however, indeed overlap
with ours considerably [106], [107]23. While this interesting connection potentially helps port our analysis to ICA,
it is a fundamental question to ask what is playing a more vital role for DR, sparsity or independence.

Fig. 5 helps shed some light in this direction, where we again plot the asymptotic objective landscape with
the natural reparameterization as in Section I-D2. From the left and central panels, it is evident that even without
independence, X0 with sparse columns induces the familiar geometric structures we saw in Fig. 3; such structures
are broken when the sparsity level becomes large. We believe all our later analyses can be generalized to the
correlated cases we experimented with. On the other hand, from the right panel24, it seems that with independence,
the function landscape undergoes a transition, as sparsity level grows: target solution goes from minimizers of the
objective to the maximizers of the objective. Without adequate knowledge of the true sparsity, it is unclear whether
one would like to minimize or maximize the objective.25 This suggests that sparsity, instead of independence, makes
our current algorithm for DR work.

e) Nonconvex Problems with Similar Geometric Structure: Besides ICA discussed above, it turns out that
a handful of other practical problems arising in signal processing and machine learning induce the “no spurious
minimizers, all saddles are second-order” structure under natural setting, including the eigenvalue problem, generalized
phase retrieval [109], orthogonal tensor decomposition [52], low-rank matrix recovery/completion [110], [111], noisy
phase synchronization and community detection [112]–[114], linear neural nets learning [115]–[117]. [51] gave a
review of these problems, and discussed how the methodology developed in this and the companion paper [3] can
be generalized to solve those problems.

F. Notations, and Reproducible Research

We use bold capital and small letters such as X and x to denote matrices and vectors, respectively. Small letters
are reserved for scalars. Several specific mathematical objects we will frequently work with: Ok for the orthogonal
group of order k, Sn−1 for the unit sphere in Rn, Bn for the unit ball in Rn, and [m]

.
= {1, . . . ,m} for positive

integers m. We use (·)∗ for matrix transposition, causing no confusion as we will work entirely on the real field.
We use superscript to index rows of a matrix, such as xi for the i-th row of the matrix X , and subscript to index
columns, such as xj . All vectors are defaulted to column vectors. So the i-th row of X as a row vector will be
written as

(
xi
)∗. For norms, ‖·‖ is the usual `2 norm for a vector and the operator norm (i.e., `2 → `2) for a

matrix; all other norms will be indexed by subscript, for example the Frobenius norm ‖·‖F for matrices and the
element-wise max-norm ‖·‖∞. We use x ∼ L to mean that the random variable x is distributed according to the
law L. Let N denote the Gaussian law. Then x ∼ N (0, I) means that x is a standard Gaussian vector. Similarly,
we use x ∼i.i.d. L to mean elements of x are independently and identically distributed according to the law L. So
the fact x ∼ N (0, I) is equivalent to that x ∼i.i.d. N (0, 1). One particular distribution of interest for this paper is
the Bernoulli-Gaussian with rate θ: Z ∼ B ·G, with G ∼ N (0, 1) and B ∼ Ber (θ). We also write this compactly
as Z ∼ BG (θ). We reserve indexed C and c for absolute constants when stating and proving technical results. The
scopes of such constants are local unless otherwise noted. We use standard notations for most other cases, with
exceptions clarified locally.

The codes to reproduce all the figures and experimental results are available online:

https://github.com/sunju/dl focm .

23Nevertheless, the objective functions are apparently different. Moreover, we have provided a complete geometric characterization of the
objective, in contrast to [106], [107]. We believe the geometric characterization could not only provide insight to the algorithm, but also help
improve the algorithm in terms of stability and also finding all components.

24We have not showed the results on the BG model here, as it seems the structure persists even when θ approaches 1. We suspect the
“phase transition” of the landscape occurs at different points for different distributions and Gaussian is the outlying case where the transition
occurs at 1.

25For solving the ICA problem, this suggests the log cosh contrast function, that works well empirically [108], may not work for all
distributions (rotation-invariant Gaussian excluded of course), at least when one does not process the data (say perform certain whitening or
scaling).

https://github.com/sunju/dl_focm
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II. THE HIGH-DIMENSIONAL FUNCTION LANDSCAPE

To characterize the function landscape of f (q;X0) over Sn−1, we mostly work with the function

g (w)
.
= f (q (w) ;X0) =

1

p

p∑
k=1

hµ (q (w)∗ (x0)k) , (II.1)

induced by the reparametrization

q (w) =

(
w,

√
1− ‖w‖2

)
, w ∈ Bn−1. (II.2)

In particular, we focus our attention to the smaller set

Γ =

{
w : ‖w‖ <

√
4n− 1

4n

}
( Bn−1, (II.3)

because q (Γ) contains all points q ∈ Sn−1 with n ∈ arg maxi∈±[n] q
∗ei and we can similarly characterize other

parts of f on Sn−1 using projection onto other equatorial sections. Note that over Γ, qn =
√

1− ‖w‖2 ≥ 1/(2
√
n).

A. Main Geometric Theorems

Theorem II.1 (High-dimensional landscape - orthogonal dictionary). Suppose A0 = I and hence Y = A0X0 = X0.
There exist positive constants c? and C, such that for any θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
, whenever

p ≥ C

µ2θ2
n3 log

n

µθ
, (II.4)

the following hold simultaneously with probability at least 1− cbp−6:

∇2g(w;X0) � c?θ

µ
I ∀w s.t. ‖w‖ ≤ µ

4
√

2
, (II.5)

w∗∇g(w;X0)

‖w‖
≥ c?θ ∀w s.t.

µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5
(II.6)

w∗∇2g(w;X0)w

‖w‖2
≤ −c?θ ∀w s.t.

1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
, (II.7)

and the function g(w;X0) has exactly one local minimizer w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
, which

satisfies

‖w? − 0‖ ≤ min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (II.8)

Here ca through cc are all positive constants.

Here q (0) = en, which exactly recovers the last row of X0, (x0)n. Though the unique local minimizer w?

may not be 0, it is very near to 0. Hence the resulting q (w?) produces a close approximation to (x0)n. Note that
q (Γ) (strictly) contains all points q ∈ Sn−1 such that n = arg maxi∈±[n] q

∗ei. We can characterize the graph of the
function f (q;X0) in the vicinity of other signed basis vector ±ei simply by changing the equatorial section e⊥n to
e⊥i . Doing this 2n times (and multiplying the failure probability in Theorem II.1 by 2n), we obtain a characterization
of f (q;X0) over the entirety of Sn−1.26 The result is captured by the next corollary.

Corollary II.2. Suppose A0 = I and hence Y = A0X0 = X0. There exist positive constant C, such that for any
θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
, whenever p ≥ C

µ2θ2n
3 log n

µθ , with probability at least 1− cbp−5, the
function f (q;X0) has exactly 2n local minimizers over the sphere Sn−1. In particular, there is a bijective map

26In fact, it is possible to pull the very detailed geometry captured in (II.5) through (II.7) back to the sphere (i.e., the q space) also; analysis
of the Riemannian trust-region algorithm later does part of these. We will stick to this simple global version here.
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between these minimizers and signed basis vectors {±ei}i, such that the corresponding local minimizer q? and
b ∈ {±ei}i satisfy

‖q? − b‖ ≤
√

2 min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (II.9)

Here ca to cc are positive constants.

Proof. By Theorem II.1, over q (Γ), q (w?) is the unique local minimizer. Suppose not. Then there exist q′ ∈ q (Γ)
with q′ 6= q (w?) and ε > 0, such that f (q′;X0) ≤ f (q;X0) for all q ∈ q (Γ) satisfying ‖q′ − q‖ < ε. Since the
mapping w 7→ q (w) is 2

√
n-Lipschitz (Lemma IV.8), g (w (q′) ;X0) ≤ g (w (q) ;X0) for all w ∈ Γ satisfying

‖w (q′)−w (q)‖ < ε/ (2
√
n), implying w (q′) is a local minimizer different from w?, a contradiction. Let

‖w? − 0‖ = η. Straightforward calculation shows

‖q (w?)− en‖2 = (1−
√

1− η2)2 + η2 = 2− 2
√

1− η2 ≤ 2η2.

Repeating the argument 2n times in the vicinity of other signed basis vectors ±ei gives 2n local minimizers of
f . Indeed, the 2n symmetric sections cover the sphere with certain overlaps. We claim that none of the 2n local
minimizers lies in the overlapped regions. This is due to the nearness of these local minimizers to standard basis
vectors. To see this, w.l.o.g., suppose q, which is the local minimizer next to en, is in the overlapped region
determined by en and ei for some i 6= n. This implies that

‖[w1(q), . . . , wi−1(q), wi+1(q), . . . , qn]‖2 < 4n− 1

4n

by the definition of our symmetric sections. On the other hand, we know

‖[w1(q), . . . , wi−1(q), wi+1(q), . . . , qn]‖2 ≥ q2
n = 1− η2.

Thus, so long as 1− η2 ≥ 4n−1
4n , or η ≤ 1/(2

√
n), a contradiction arises. Since η ∈ O(µ) and µ ≤ O(n−5/4) by

our assumption, our claim is confirmed. There are no extra local minimizers, as any extra local minimizer must
be contained in at least one of the 2n symmetric sections, making two different local minimizers in one section,
contradicting the uniqueness result we obtained above.

Though the 2n isolated local minimizers may have different objective values, they are equally good in the sense
each of them helps produce a close approximation to a certain row of X0. As discussed in Section I-D2, for cases
A0 is an orthobasis other than I , the landscape of f (q;Y ) is simply a rotated version of the one we characterized
above.

Theorem II.3 (High-dimensional landscape - complete dictionary). Suppose A0 is complete with its condition
number κ (A0). There exist positive constants c? (particularly, the same constant as in Theorem II.1) and C, such
that for any θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
, when

p ≥ C

c2
?θ

2
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
(II.10)

and Y .
=
√
pθ (Y Y ∗)−1/2 Y , UΣV ∗ = SVD (A0), the following hold simultaneously with probability at least

1− cbp−6:

∇2g(w;V U∗Y ) � c?θ

2µ
I ∀w s.t. ‖w‖ ≤ µ

4
√

2
, (II.11)

w∗∇g(w;V U∗Y )

‖w‖
≥ 1

2
c?θ ∀w s.t.

µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5
(II.12)

w∗∇2g(w;V U∗Y )w

‖w‖2
≤ −1

2
c?θ ∀w s.t.

1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
, (II.13)

and the function g(w;V U∗Y ) has exactly one local minimizer w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
,

which satisfies
‖w? − 0‖ ≤ µ/7. (II.14)
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Here ca, ab are both positive constants.

Corollary II.4. Suppose A0 is complete with its condition number κ (A0). There exist positive constants c? (partic-
ularly, the same constant as in Theorem II.1) and C, such that for any θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
,

when p ≥ C
c2?θ

2 max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
and Y .

=
√
pθ (Y Y ∗)−1/2 Y , UΣV ∗ = SVD (A0), with

probability at least 1− cbp−5, the function f
(
q;V U∗Y

)
has exactly 2n local minimizers over the sphere Sn−1.

In particular, there is a bijective map between these minimizers and signed basis vectors {±ei}i, such that the
corresponding local minimizer q? and b ∈ {±ei}i satisfy

‖q? − b‖ ≤
√

2µ/7. (II.15)

Here ca, cb are both positive constants.

We omit the proof to Corollary II.4 as it is almost identical to that of corollary II.2. From the above theorems, it
is clear that for any saddle point in the w space, the Hessian has at least one negative eigenvalue with an associated
eigenvector w/‖w‖. Now the question is whether all saddle points of f on Sn−1 have analogous properties, since
as alluded to in Section I-D3, we need to perform actual optimization in the q space. This is indeed true, but we
will only argue informally in the companion paper [3]. The arguments need to be put in the language of Riemannian
geometry, and we can switch back and forth between q and w spaces in our algorithm analysis without stating this
fact.

B. Useful Technical Lemmas and Proof Ideas for Orthogonal Dictionaries

Proving Theorem II.1 is conceptually straightforward: one shows that the expectation of each quantity of interest
has the claimed property, and then proves that each quantity concentrates uniformly about its expectation. The
detailed calculations are nontrivial.

Note that

EX0
[g (q;X0)] = Ex∼i.i.d.BG(θ) [hµ (q (w)∗ x)] .

The next three propositions show that in the expected function landscape, we see successively strongly convex
region, large gradient region, and negative directional curvature region when moving away from zero, as depicted in
Fig. 3 and sketched in Section I-D2.

Proposition II.5. For any θ ∈ (0, 1/2), if µ ≤ cmin
{
θn−1, n−5/4

}
, it holds for all w with 1/

(
20
√

5
)
≤ ‖w‖ ≤√

(4n− 1)/(4n) that

w∗∇2
wE [hµ (q∗ (w)x)]w

‖w‖2
≤ − θ

2
√

2π
.

Here c > 0 is a constant.

Proof. See Page 17 under Section IV-A1.

Proposition II.6. For any θ ∈ (0, 1/2), if µ ≤ 9/50, it holds for all w with µ/(4
√

2) ≤ ‖w‖ ≤ 1/(20
√

5) that

w∗∇wE [hµ(q∗ (w)x)]

‖w‖
≥ θ

20
√

2π
.

Proof. See Page 23 under Section IV-A2.

Proposition II.7. For any θ ∈ (0, 1/2), if µ ≤ 1/(20
√
n), it holds for all w with ‖w‖ ≤ µ/(4

√
2) that

∇2
wE[hµ (q∗ (w)x)] � θ

5
√

2πµ
I.

Proof. See Page 24 under Section IV-A3.

To prove that the above hold qualitatively for finite p, i.e., the function g (w;X0), we will need first prove
that for a fixed w each of the quantity of interest concentrates about their expectation w.h.p., and the function is
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nice enough (Lipschitz) such that we can extend the results to all w via a discretization argument. The next three
propositions provide the desired pointwise concentration results.

Proposition II.8. For every w ∈ Γ, it holds that for any t > 0,

P
[∣∣∣∣w∗∇g(w;X0)

‖w‖
− E

[
w∗∇g(w;X0)

‖w‖

]∣∣∣∣ ≥ t] ≤ 2 exp

(
− pt2

8n+ 4
√
nt

)
.

Proof. See Page 28 under Section IV-A4.

Proposition II.9. Suppose 0 < µ ≤ 1/
√
n. For every w ∈ Γ, it holds that for any t > 0,

P

[∣∣∣∣∣w∗∇2g(w;X0)w

‖w‖2
− E

[
w∗∇2g(w;X0)w

‖w‖2

]∣∣∣∣∣ ≥ t
]
≤ 4 exp

(
− pµ2t2

512n2 + 32nµt

)
.

Proof. See Page 28 under Section IV-A4.

Proposition II.10. Suppose 0 < µ ≤ 1/
√
n. For every w ∈ Γ ∩ {w : ‖w‖ ≤ 1/4}, it holds that for any t > 0,

P
[∥∥∇2g(w;X0)− E

[
∇2g(w;X0)

]∥∥ ≥ t] ≤ 4n exp

(
− pµ2t2

512n2 + 32µnt

)
.

Proof. See Page 29 under Section IV-A4.

The next three propositions provide the desired Lipschitz results.

Proposition II.11 (Hessian Lipschitz). Fix any rS ∈ (0, 1). Over the set Γ ∩ {w : ‖w‖ ≥ rS},
w∗∇2g(w;X0)w/ ‖w‖2 is LS-Lipschitz with

LS ≤
16n3

µ2
‖X0‖3∞ +

8n3/2

µrS
‖X0‖2∞ +

48n5/2

µ
‖X0‖2∞ + 96n5/2 ‖X0‖∞ .

Proof. See Page 33 under Section IV-A5.

Proposition II.12 (Gradient Lipschitz). Fix any rg ∈ (0, 1). Over the set Γ∩{w : ‖w‖ ≥ rg}, w∗∇g(w;X0)/ ‖w‖
is Lg-Lipschitz with

Lg ≤
2
√
n ‖X0‖∞
rg

+ 8n3/2 ‖X0‖∞ +
4n2

µ
‖X0‖2∞ .

Proof. See Page 33 under Section IV-A5.

Proposition II.13 (Lipschitz for Hessian around zero). Fix any rN ∈ (0, 1/2). Over the set Γ ∩ {w : ‖w‖ ≤ rN},
∇2g(w;X0) is LN-Lipschitz with

LN ≤
4n2

µ2
‖X0‖3∞ +

4n

µ
‖X0‖2∞ +

8
√

2
√
n

µ
‖X0‖2∞ + 8 ‖X0‖∞ .

Proof. See Page 34 under Section IV-A5.

Integrating the above pieces, Section IV-B provides a complete proof of Theorem II.1.

C. Extending to Complete Dictionaries

As hinted in Section I-D2, instead of proving things from scratch, we build on the results we have obtained for
orthogonal dictionaries. In particular, we will work with the preconditioned data matrix

Y
.
=
√
pθ(Y Y ∗)−1/2Y (II.16)

and show that the function landscape f
(
q;Y

)
looks qualitatively like that of orthogonal dictionaries (up to a global

rotation), provided that p is large enough.
The next lemma shows Y can be treated as being generated from an orthobasis with the same BG coefficients,

plus small noise.
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Lemma II.14. For any θ ∈ (0, 1/2), suppose A0 is complete with condition number κ (A0) and X0 ∼i.i.d. BG (θ).
Provided p ≥ Cκ4 (A0) θn2 log(nθκ (A0)), one can write Y as defined in (II.16) as

Y = UV ∗X0 + ΞX0,

for a certain Ξ obeying ‖Ξ‖ ≤ 20κ4 (A)
√

θn log p
p , with probability at least 1− p−8. Here UΣV ∗ = SVD (A0),

and C > 0 is a constant.

Proof. See Page 37 under Section IV-C.

Notice that UV ∗ above is orthogonal, and that landscape of f(q;Y ) is simply a rotated version of that of
f(q;V U∗Y ), or using the notation in the above lemma, that of f(q;X0 + V U∗ΞX0) = f(q;X0 + Ξ̃X0) with
Ξ̃
.
= V U∗Ξ. So similar to the orthogonal case, it is enough to consider this “canonical” case, and its “canonical”

reparametrization:

g
(
w;X0 + Ξ̃X0

)
=

1

p

p∑
k=1

hµ

(
q∗ (w) (x0)k + q∗ (w) Ξ̃ (x0)k

)
.

The following lemma provides quantitative comparison between the gradient and Hessian of g
(
w;X0 + Ξ̃X0

)
and that of g (w;X0).

Lemma II.15. For all w ∈ Γ,∥∥∥∇wg(w;X0 + Ξ̃X0)−∇wg (w;X0)
∥∥∥ ≤ Can

µ
log (np) ‖Ξ̃‖,∥∥∥∇2

wg(w;X0 + Ξ̃X0)−∇2
wg (w;X0)

∥∥∥ ≤ Cb max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np) ‖Ξ̃‖

with probability at least 1− θ (np)−7 − exp (−0.3θnp). Here Ca, Cb are positive constants.

Proof. See Page 37 under Section IV-C.

Combining the above two lemmas, it is easy to see when p is large enough, ‖Ξ̃‖ = ‖Ξ‖ is then small enough
(Lemma II.14), and hence changes to the gradient and Hessian caused by the perturbation are small. This gives
the results presented in Theorem II.3; see Section IV-C for a detailed proof. In particular, for the p chosen in
Theorem II.3, it holds that

‖Ξ̃‖ ≤ cc?θ
(

max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

(II.17)

for a certain constant c which can be made arbitrarily small by making the constant C in p large.

III. DISCUSSION

The dependency of p on n and other parameters could be suboptimal due to several factors: (1) The `1 proxy.
Derivatives of the log cosh function we adopted entail the tanh function, which is not amenable to effective
approximation and affects the sample complexity; (2) Space of geometric characterization. It seems working directly
on the sphere (i.e., in the q space) could simplify and possibly improve certain parts of the analysis; (3) Dealing
with the complete case. Treating the complete case directly, rather than using (pessimistic) bounds to treat it as a
perturbation of the orthogonal case, is very likely to improve the sample complexity. Particularly, general linear
transforms may change the space significantly, such that preconditioning and comparing to the orthogonal transforms
may not be the most efficient way to proceed.

It is possible to extend the current analysis to other dictionary settings. Our geometric structures (and algorithms)
allow plug-and-play noise analysis. Nevertheless, we believe a more stable way of dealing with noise is to directly
extract the whole dictionary, i.e., to consider geometry and optimization (and perturbation) over the orthogonal
group. This will require additional nontrivial technical work, but likely feasible thanks to the relatively complete
knowledge of the orthogonal group [54], [118]. A substantial leap forward would be to extend the methodology to
recovery of structured overcomplete dictionaries, such as tight frames. Though there is no natural elimination of
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one variable, one can consider the marginalization of the objective function w.r.t. the coefficients and work with
implicit functions. 27 For the coefficient model, as we alluded to in Section I-E, our analysis and results likely can
be carried through to coefficients with statistical dependence and physical constraints.

The connection to ICA we discussed in Section I-E suggests our geometric characterization and algorithms can
be modified for the ICA problem. This likely will provide new theoretical insights and computational schemes to
ICA. In the surge of theoretical understanding of nonconvex heuristics [43]–[47], [50], [73]–[78], [83], [84], [87],
[88], [91], [92], [92], the initialization plus local refinement strategy mostly differs from practice, whereby random
initializations seem to work well, and the analytic techniques developed in that line are mostly fragmented and
highly specialized. The analytic and algorithmic framework we developed here holds promise to providing a coherent
account of these problems, see [51]. In particular, we have intentionally separated the geometric characterization and
algorithm development, hoping to making both parts modular. It is interesting to see how far we can streamline the
geometric characterization. Moreover, the separation allows development of more provable and practical algorithms,
say in the direction of [52].

IV. PROOFS OF TECHNICAL RESULTS

In this section, we provide complete proofs for technical results stated in Section II. Before that, let us introduce
some convenient notations and common results. Since we deal with BG random variables and random vectors, it
is often convenient to write such vector explicitly as x = [Ω1v1, . . . ,Ωnvn] = Ω� v, where Ω1, . . . ,Ωn are i.i.d.
Bernoulli and v1, . . . , vn are i.i.d. standard normal. For a particular realization of such random vector, we will denote
the support as I ⊂ [n]. Due to the particular coordinate map in use, we will often refer to subset J .

= I \ {n} and
the random vectors x .

= [Ω1v1, . . . ,Ωn−1vn−1] and v .
= [v1, . . . , vn−1] in Rn−1. Naturally, xn and qn(w) denote

the last coordinates in x and q, respectively. Hence, by our notation, q∗(w)x = w∗x+ qn(w)xn. By Lemma A.1
and chain rules, the following are immediate:

∇whµ (q∗ (w)x) = tanh

(
q∗ (w)x

µ

)(
x− xn

qn (w)
w

)
, (IV.1)

∇2
whµ (q∗ (w)x) =

1

µ

[
1− tanh2

(
q∗ (w)x

µ

)](
x− xn

qn (w)
w

)(
x− xn

qn (w)
w

)∗
− xn tanh

(
q∗ (w)x

µ

)(
1

qn (w)
I +

1

q3
n (w)

ww∗
)
. (IV.2)

A. Proofs for Section II-B

1) Proof of Proposition II.5: The proof involves some delicate analysis, particularly polynomial approximation of
the function f (t) = 1/ (1 + t)2 over t ∈ [0, 1]. This is naturally induced by the 1− tanh2 (·) function. The next
lemma characterizes one polynomial approximation of f (t).

Lemma IV.1. Consider f(t) = 1/(1 + t)2 for t ∈ [0, 1]. For every T > 1, there is a sequence b0, b1, . . . , with
‖b‖`1 = T <∞, such that the polynomial p(t) =

∑∞
k=0 bkt

k satisfies

‖f − p‖L1[0,1] ≤
1

2
√
T
, ‖f − p‖L∞[0,1] ≤

1√
T
.

In particular, one can choose bk = (−1)k(k + 1)βk with β = 1− 1/
√
T < 1 such that

p (t) =
1

(1 + βt)2 =

∞∑
k=0

(−1)k(k + 1)βktk.

Moreover, such sequence satisfies 0 <
∑∞

k=0
bk

(1+k)3 <
∑∞

k=0
|bk|

(1+k)3 < 2.

Proof. See page 42 under Section B.

27This recent work [47] on overcomplete DR has used a similar idea. The marginalization taken there is near to the global optimum of one
variable, where the function is well-behaved. Studying the global properties of the marginalization may introduce additional challenges.
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Lemma IV.2. Let X ∼ N
(
0, σ2

X

)
and Y ∼ N

(
0, σ2

Y

)
be independent. We have

E
[(

1− tanh2

(
X + Y

µ

))
X2

1X+Y >0

]
≤ 1√

2π

µσ2
Xσ

2
Y(

σ2
X + σ2

Y

)3/2 +
3

4
√

2π

σ2
Xµ

3(
σ2
X + σ2

Y

)5/2 (3µ2 + 4σ2
X

)
.

Proof. For X + Y ≥ 0, let Z = exp (−2(X + Y )/µ) ∈ [0, 1], then

1− tanh2

(
X + Y

µ

)
=

4Z

(1 + Z)2 .

First fix any T > 1. By Lemma IV.1, we choose the polynomial pβ (Z) = 1
(1+βZ)2

with β = 1− 1/
√
T to upper

bound f (Z) = 1
(1+Z)2

. So we have

E
[(

1− tanh2

(
X + Y

µ

))
X2

1X+Y >0

]
= 4E

[
Zf (Z)X2

1X+Y >0

]
≤ 4E

[
Zpβ (Z)X2

1X+Y >0

]
= 4

∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
,

where bk = (−1)k(k + 1)βk, and the exchange of infinite summation and expectation above is justified due to
∞∑
k=0

|bk|E
[
Zk+1X2

1X+Y >0

]
≤
∞∑
k=0

|bk|E
[
X2

1X+Y >0

]
≤ σ2

X

∞∑
k=0

|bk| <∞

and the dominated convergence theorem (see, e.g., theorem 2.24 and 2.25 of [119]). By Lemma B.1, we have
∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
=

∞∑
k=0

(−β)k (k + 1)

[(
σ2
X +

4 (k + 1)2

µ2
σ4
X

)
exp

(
2 (k + 1)2

µ2

(
σ2
X + σ2

Y

))
Φc

(
2 (k + 1)

µ

√
σ2
X + σ2

Y

)

−2 (k + 1)

µ

σ4
X

√
2π
√
σ2
X + σ2

Y


≤ 1√

2π

∞∑
k=0

(−β)k (k + 1)

 σ2
Xµ

2 (k + 1)
√
σ2
X + σ2

Y

−
σ2
Xµ

3

8 (k + 1)3 (σ2
X + σ2

Y

)3/2 − µσ4
X

2 (k + 1)
(
σ2
X + σ2

Y

)3/2


+
3√
2π

∞∑
k=0

βk (k + 1)

(
σ2
X +

4 (k + 1)2

µ2
σ4
X

)
µ5

32 (k + 1)5 (σ2
X + σ2

Y

)5/2 ,
where we have applied Type I upper and lower bounds for Φc (·) to even k and odd k respectively and rearranged
the terms to obtain the last line. Using the following estimates (see Lemma IV.1)

∞∑
k=0

(−β)k =
1

1 + β
,

∞∑
k=0

bk

(k + 1)3 ≥ 0,

∞∑
k=0

|bk|
(k + 1)5 ≤

∞∑
k=0

|bk|
(k + 1)3 ≤ 2,

we obtain
∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
≤ 1

2
√

2π

µσ2
Xσ

2
Y(

σ2
X + σ2

Y

)3/2 1

1 + β
+

3

16
√

2π

σ2
Xµ

3(
σ2
X + σ2

Y

)5/2 (3µ2 + 4σ2
X

)
.

Since the above holds for any T > 1, we obtain the claimed result by letting T →∞ such that β → 1.
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Lemma IV.3. Let X ∼ N
(
0, σ2

X

)
and Y ∼ N

(
0, σ2

Y

)
be independent. We have

E
[(

1− tanh2

(
X + Y

µ

))
XY 1X+Y >0

]
≥ − 1√

2π

µσ2
Xσ

2
Y(

σ2
X + σ2

Y

)3/2 − 3√
2π

σ2
Xσ

2
Y µ

3(
σ2
X + σ2

Y

)5/2 .
Proof. For X + Y > 0, let z = exp (−2(X + Y )/µ) ∈ [0, 1], then

1− tanh2

(
X + Y

µ

)
=

4Z

(1 + Z)2 .

First fix any T > 1. By Lemma IV.1, we choose the polynomial pβ (Z) = 1
(1+βZ)2

with β = 1− 1/
√
T to upper

bound f (Z) = 1
(1+Z)2

. So we have

E
[(

1− tanh2

(
X + Y

µ

))
XY 1X+Y >0

]
= 4E [Zf (Z)XY 1X+Y >0]

= 4E [Zpβ (Z)XY 1X+Y >0]− 4E [Z (pβ (Z)− f(Z))XY 1X+Y >0] .

Now the first term can be rewritten as

4E [Zpβ (Z)XY 1X+Y >0] = 4

∞∑
k=0

{
bkE

[
Zk+1X2

1X+Y >0

]}
,

where bk = (−1)k(k + 1)βk, and exchange of infinite summation and expectation is justified, due to
∞∑
k=0

|bk|E
[
Zk+1XY 1X+Y >0

]
≤
∞∑
k=0

|bk|E [|XY |1X+Y >0] ≤ max
{
σ2
X , σ

2
Y

} ∞∑
k=0

|bk| <∞

and the dominated convergence theorem (see, e.g., theorem 2.24 and 2.25 of [119]). By Lemma B.1, we have
∞∑
k=0

{
bkE

[
Zk+1XY 1X+Y >0

]}
=

∞∑
k=0

(−β)k (k + 1)

[
4 (k + 1)2

µ2
σ2
Xσ

2
Y exp

(
2 (k + 1)2

µ2

(
σ2
X + σ2

Y

))
Φc

(
2 (k + 1)

µ

√
σ2
X + σ2

Y

)

−2 (k + 1)

µ

σ2
Xσ

2
Y

√
2π
√
σ2
X + σ2

Y


≥ − 1√

2π

∞∑
k=0

(−β)k (k + 1)
µσ2

Xσ
2
Y

2(k + 1)
(
σ2
X + σ2

Y

)3/2 − 3

8
√

2π

∞∑
k=0

βk (k + 1)
µ3σ2

Xσ
2
Y

(k + 1)3 (σ2
X + σ2

Y

)5/2 ,
where we have applied Type I lower and upper bounds for Φc (·) to even k and odd k respectively and rearranged
the terms to obtain the last line. Using the following estimates (see Lemma IV.1)

∞∑
k=0

(−β)k =
1

1 + β
,

∞∑
k=0

|bk|
(k + 1)3 ≤ 2,

we obtain
∞∑
k=0

{
bkE

[
Zk+1XY 1X+Y >0

]}
≥ − 1

2
√

2π

µσ2
Xσ

2
Y(

σ2
X + σ2

Y

)3/2 1

1 + β
− 3

4
√

2π

σ2
Xσ

2
Y µ

3(
σ2
X + σ2

Y

)5/2 .
For the second term, by Lemma IV.1, we have

E [(pβ(Z)− f(Z))ZXY 1X+Y >0] ≤ ‖p− f‖L∞[0,1] E [Z |XY |1X+Y >0]

≤ ‖p− f‖L∞[0,1] E [|X|]E [|Y |] (Z ≤ 1, X,Y independent)

≤ 2

π
√
T
σXσY .
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Thus,

E
[(

1− tanh2

(
X + Y

µ

))
XY 1X+Y >0

]
≥ − 2√

2π

µσ2
Xσ

2
Y(

σ2
X + σ2

Y

)3/2 1

1 + β
− 3√

2π

σ2
Xσ

2
Y µ

3(
σ2
X + σ2

Y

)5/2 − 8

π
√
T
σXσY .

Since the above bound holds for any T > 1, we obtain the claimed result by letting T →∞ such that β → 1 and
1/
√
T → 0.

Lemma IV.4. Let X ∼ N
(
0, σ2

X

)
and Y ∼ N

(
0, σ2

Y

)
be independent. We have

E
[
tanh

(
X + Y

µ

)
X

]
≥
√

2

π

σ2
X√

σ2
X + σ2

Y

−
2σ2

Xµ
2

√
2π
(
σ2
X + σ2

Y

)3/2 − 3σ2
Xµ

4

2
√

2π
(
σ2
X + σ2

Y

)5/2 .
Proof. By Lemma B.1, we know

E
[
tanh

(
X + Y

µ

)
X

]
=

σ2
X

µ
E
[
1− tanh2

(
X + Y

µ

)]
Similar to the proof of the above lemma, for X +Y > 0, let Z .

= exp
(
−2X+Y

µ

)
and f (Z)

.
= 1

(1+Z)2
. First fix any

T > 1. We will use 4zpβ (Z) = 4Z
(1+βZ)2

to approximate the 1− tanh2
(
X+Y
µ

)
= 4Zf (Z) function from above,

where again β = 1− 1/
√
T . So we obtain

E
[
1− tanh2

(
X + Y

µ

)]
= 8E [f (Z)Z1X+Y >0]

= 8E [pβ (Z)Z1X+Y >0]− 8E [(pβ (Z)− f (Z))Z1X+Y >0] .

Now for the first term, we have

E [pβ (Z)Z1X+Y >0] =

∞∑
k=0

bkE
[
Zk+1

1X+Y >0

]
,

justified as
∑∞

k=0 |bk|E
[
Zk+1

1X+Y >0

]
≤
∑∞

k=0 |bk| <∞ making the dominated convergence theorem (see, e.g.,
theorem 2.24 and 2.25 of [119]) applicable. To proceed, from Lemma B.1, we obtain

∞∑
k=0

bkE
[
Zk+1

1X+Y >0

]
=

∞∑
k=0

(−β)k (k + 1) exp

(
2

µ2
(k + 1)2 (σ2

X + σ2
Y

))
Φc

(
2

µ
(k + 1)

√
σ2
X + σ2

Y

)

≥ 1√
2π

∞∑
k=0

(−β)k (k + 1)

 µ

2 (k + 1)
√
σ2
X + σ2

Y

− µ3

8 (k + 1)3 (σ2
X + σ2

Y

)3/2


− 3√
2π

∞∑
k=0

βk (k + 1)
µ5

32 (k + 1)5 (σ2
X + σ2

Y

)5/2 ,
where we have applied Type I upper and lower bounds for Φc (·) to odd k and even k respectively and rearranged
the terms to obtain the last line. Using the following estimates (see Lemma IV.1)

∞∑
k=0

(−β)k =
1

1 + β
, 0 ≤

∞∑
k=0

bk

(k + 1)3 ≤
∞∑
k=0

|bk|
(k + 1)5 ≤

∞∑
k=0

|bk|
(k + 1)3 ≤ 2,

we obtain
∞∑
k=0

bkE
[
Zk+1

1X+Y >0

]
≥ µ

2
√

2π
√
σ2
X + σ2

Y

1

1 + β
− µ3

4
√

2π
(
σ2
X + σ2

Y

)3/2 − 3µ5

16
√

2π
(
σ2
X + σ2

Y

)5/2 .
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For the second term, by Lemma B.1 and Lemma IV.1, we have

E [(pβ(Z)− f(Z))Z1X+Y >0] ≤ ‖p− f‖L∞[0,1] E [Z1X+Y >0] ≤ µ

2
√

2πT
√
σ2
X + σ2

Y

,

where we have also used Type I upper bound for Φc (·). Combining the above estimates, we get

E
[
tanh

(
X + Y

µ

)
X

]
≥

4σ2
X

√
2π
√
σ2
X + σ2

Y

(
1

1 + β
− 1√

T

)
−

2σ2
Xµ

2

√
2π
(
σ2
X + σ2

Y

)3/2 − 3σ2
Xµ

4

2
√

2π
(
σ2
X + σ2

Y

)5/2 .
Since the above holds for any T > 1, we obtain the claimed result by letting T → ∞, such that β → 1 and
1/
√
T → 0.

Proof. (of Proposition II.5) For any i ∈ [n− 1], we have∫ 1

0

∫
x

∣∣∣∣ ∂∂wihµ (q∗ (w)x)

∣∣∣∣µ (dx) dwi ≤
∫ 1

0

∫
x

(
|xi|+ |xn|

1

qn (w)

)
µ (dx) dwi <∞.

Hence by Lemma A.3 we obtain ∂
∂wi

E [hµ (q∗ (w)x)] = E
[
∂
∂wi

hµ (q∗ (w)x)
]
. Moreover for any j ∈ [n− 1],

∫ 1

0

∫
x

∣∣∣∣ ∂2

∂wj∂wi
hµ (q∗ (w)x)

∣∣∣∣µ (dx) dwj ≤∫ 1

0

∫
x

[
1

µ

(
|xi|+

|xn|
qn (w)

)(
|xj |+

|xn|
qn (w)

)
+ |xn|

(
1

qn (w)
+

1

q3
n (w)

)]
µ (dx) dwi <∞.

Invoking Lemma A.3 again we obtain

∂2

∂wj∂wi
E [hµ (q∗ (w)x)] =

∂

∂wj
E
[
∂

∂wi
hµ (q∗ (w)x)

]
= E

[
∂2

∂wj∂wi
hµ (q∗ (w)x)

]
.

The above holds for any pair of i, j ∈ [n− 1], so it follows that

∇2
wE [hµ (q∗ (w)x)] = E

[
∇2
whµ (q∗ (w)x)

]
.

Hence it is easy to see that

w∗∇2
wE [hµ (q∗ (w)x)]w

=
1

µ
E

[(
1− tanh2

(
q∗ (w)x

µ

))(
w∗x− xn

qn (w)
‖w‖2

)2
]

︸ ︷︷ ︸
(A)

−E
[
tanh

(
q∗ (w)x

µ

)
xn

q3
n (w)

‖w‖2
]

︸ ︷︷ ︸
(B)

.

1) An upper bound for (A). When xn is not in support set of x, the term reduces to

2

µ
E
[(

1− tanh2

(
w∗x

µ

))
(w∗x)2

1w∗x>0

]
≤ 8

µ
E
[
exp

(
−2
w∗x

µ

)
(w∗x)2

1w∗x>0

]
(Lemma A.1)

≤ 8 exp(−2)µ,

where to obtain the last line we used that t 7→ exp(−2t/µ)t2 for t > 0 is maximized at µ.
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When xn is in the support set, we expand the square term inside the expectation and obtain

(A)xn 6=0 =
2

µ
EJEv

[(
1− tanh2

(
w∗J v + qn (w) vn

µ

))(
w∗J v

)2
1w∗Jv+qn(w)vn>0

]
+

2

µ

‖w‖4

q4
n (w)

EJEv
[(

1− tanh2

(
w∗J v + qn (w) vn

µ

))
(qn (w) vn)2

1w∗Jv+qn(w)vn>0

]
− 4

µ

‖w‖2

q2
n (w)

EJEv
[(

1− tanh2

(
w∗J v + qn (w) vn

µ

))(
w∗J v

)
(qn (w) vn)1w∗Jv+qn(w)vn>0

]
=

2

µ
EJEX,Y

[(
1− tanh2

(
X + Y

µ

))
Y 2

1X+Y >0

]
+

2

µ

‖w‖4

q4
n (w)

EJEX,Y
[(

1− tanh2

(
X + Y

µ

))
X2

1X+Y >0

]
− 4

µ

‖w‖2

q2
n (w)

EJEX,Y
[(

1− tanh2

(
X + Y

µ

))
XY 1X+Y >0

]
,

where conditioned on each support set J , we let X .
= qn (w) vn ∼ N

(
0, q2

n (w)
)

and Y
.
= w∗J v ∼

N
(

0, ‖wJ ‖2
)

. An upper bound for the above is obtained by calling the estimates in Lemma IV.2 and
Lemma IV.3:

(A)xn 6=0 ≤
2

µ
EJ

[
1√
2π

µ ‖wJ ‖2 q2
n (w)

‖qI‖3
+

3

4
√

2π

‖wJ ‖2 µ3

‖qI‖5
(

3µ2 + 4 ‖wJ ‖2
)]

+
2

µ

‖w‖4

q4
n (w)

EJ

[
1√
2π

µ ‖wJ ‖2 q2
n (w)

‖qI‖3
+

3

4
√

2π

q2
n (w)µ3

‖qI‖5
(
3µ2 + 4q2

n (w)
)]

+
4

µ

‖w‖2

q2
n (w)

EJ

[
1√
2π

µ ‖wJ ‖2 q2
n (w)

‖qI‖3
+

3√
2π

‖wJ ‖2 q2
n(w)µ3

‖qI‖5

]

≤
√

2

π
EJ

[
‖wJ ‖2 q4

n(w) + ‖wJ ‖2 ‖w‖4 + 2 ‖wJ ‖2 ‖w‖2 q2
n(w)

q2
n(w) ‖qI‖3

]

+
12µ2

√
2πq5

n(w)
+

9µ4

2
√

2πq5
n(w)

≤ 1

q2
n(w)

√
2

π
EJ

[
‖wJ ‖2

‖qI‖3

]
+

12µ2

√
2πq5

n(w)
+

9µ4

2
√

2πq5
n(w)

,

where we have used µ < qn (w) ≤ ‖qI‖ and ‖wJ ‖ ≤ ‖qI‖ and ‖w‖ ≤ 1 and θ ∈ (0, 1/2) to simplify the
intermediate quantities to obtain the last line.
Thus, we obtain that

(A) ≤ (1− θ) · 8 exp(−2)µ+
θ

q2
n(w)

√
2

π
EJ

[
‖wJ ‖2

‖qI‖3

]
+

12θµ2

√
2πq5

n(w)
+

9θµ4

2
√

2πq5
n(w)

≤ θ

q2
n(w)

√
2

π
EJ

[
‖wJ ‖2

‖qI‖3

]
+ 2µ+

12θµ2

√
2π

(
1

q3
n(w)

+
1

q5
n(w)

)
. (IV.3)

2) A lower bound for (B). Similarly, we obtain

E
[
tanh

(
q∗ (w)x

µ

)
xn

q3
n (w)

‖w‖2
]

=
‖w‖2 θ
q4
n (w)

EJEv
[
tanh

(
w∗J v + qn (w) vn

µ

)
vnqn (w)

]
≥
‖w‖2 θ
q4
n (w)

EJ

[√
2

π

q2
n (w)

‖qI‖
−
√

2

π

q2
n (w)µ2

‖qI‖3
− 3q2

n (w)µ4

2
√

2π ‖qI‖5

]
(Lemma IV.4)
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≥
√

2

π

θ

q2
n (w)

EJ

[
‖w‖2

‖qI‖

]
− 4θµ2

√
2πq5

n(w)
.

Collecting the above estimates, we obtain

w∗∇2
wE [hµ (q∗ (w)x)]w

≤
√

2

π

θ

q2
n (w)

EJ

‖wJ ‖2
‖qI‖3

−
‖w‖2

(
‖wJ ‖2 + q2

n (w)
)

‖qI‖3

+ 2µ+
4θµ2

√
2π

(
3

q3
n(w)

+
4

q5
n(w)

)

= −
√

2

π
θE

[
‖wJ c‖2

‖qI‖3

]
+ 2µ+

4θµ2

√
2π

(
3

q3
n(w)

+
4

q5
n(w)

)

≤ −
√

2

π
θ (1− θ) ‖w‖2 E

[
1

‖qI‖3

]
+ 2µ+

4θµ2

√
2π

(
3

q3
n(w)

+
4

q5
n(w)

)
, (IV.4)

where to obtain the last line we have invoked the association inequality in Lemma A.2, as both ‖wJ c‖2 and
1/ ‖qI‖3 both coordinatewise nonincreasing w.r.t. the index set. Substituting the upper bound for µ into (IV.4) and
noting qn (w) ≥ 1/(2

√
n) (implied by the assumption ‖w‖ ≤

√
(4n− 1)/(4n)), we obtain the claimed result.

2) Proof of Proposition II.6:

Proof. By similar consideration as proof of the above proposition, the following is justified:

∇wE [hµ (q∗ (w)x)] = E [∇whµ (q∗ (w)x)] .

Now consider

w∗∇E [hµ(q∗ (w)x)] = ∇E [w∗hµ(q∗ (w)x)]

= E
[
tanh

(
q∗ (w)x

µ

)
(w∗x̄)

]
︸ ︷︷ ︸

(A)

−
‖w‖2

qn
E
[
tanh

(
q∗ (w)x

µ

)
xn

]
︸ ︷︷ ︸

(B)

. (IV.5)

1) A lower bound for (A). We have

E
[
tanh

(
q∗ (w)x

µ

)
(w∗x)

]
= θEJ

[
Ev
[
tanh

(
w∗J v + qn (w) vn

µ

)(
w∗J v

)]]
+ (1− θ)EJ

[
Ev
[
tanh

(
w∗J v

µ

)(
w∗J v

)]]
= θEJ

[
EX,Y

[
tanh

(
X + Y

µ

)
Y

]]
+ (1− θ)EJ

[
EY
[
tanh

(
Y

µ

)
Y

]]
,

where X .
= qn (w) vn ∼ N

(
0, q2

n (w)
)

and Y .
= w∗J v ∼ N

(
0, ‖wJ ‖2

)
. Now by Lemma A.2 we obtain

E
[
tanh

(
X + Y

µ

)
Y

]
≥ E

[
tanh

(
X + Y

µ

)]
E [Y ] = 0,
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as tanh
(
X+Y
µ

)
and X are both coordinatewise nondecreasing function of X and Y . Using tanh (z) ≥

(1− exp (−2z)) /2 for all z ≥ 0 and integral results in Lemma B.1, we obtain

E
[
tanh

(
Y

µ

)
Y

]
= 2E

[
tanh

(
Y

µ

)
Y 1Y >0

]
≥ E

[(
1− exp

(
−2Y

µ

))
Y 1Y >0

]
=

2σ2
Y

µ
exp

(
2σ2

Y

µ2

)
Φc

(
2σY
µ

)

≥
2σ2

Y

µ
√

2π

√1 +
σ2
Y

µ2
− σY

µ

 (Type III lower bound for Φc(·), Lemma A.4)

≥
2σ2

Y

µ
√

2π

√1 +
‖w‖2

µ2
−
‖w‖
µ

 . (t 7→
√

1 + t2 − t decreasing over t > 0)

Collecting the above estimates, we have

E
[
tanh

(
q∗ (w)x

µ

)
(w∗x)

]
≥ (1− θ)EJ

2 ‖wJ ‖2

µ
√

2π

√1 +
‖w‖22
µ2
−
‖w‖
µ


≥ (1− θ)EJ

[
2 ‖wJ ‖2

µ
√

2π

µ

10 ‖w‖

]

≥
θ (1− θ) ‖w‖

5
√

2π
, (IV.6)

where at the second line we have used the assumption that ‖w‖ ≥ µ/(4
√

2) and also the fact that
√

1 + x2 ≥
x+ 1

10x for x ≥ 1/(4
√

2).
2) An upper bound for (B). We have

E
[
tanh

(
q∗ (w)x

µ

)
xn

]
≤ θE

[∣∣∣∣tanh

(
q∗ (w)x

µ

)∣∣∣∣ |vn|] ≤ θ
√

2

π
, (IV.7)

as tanh (·) is bounded by one in magnitude
Plugging the results of (IV.6) and (IV.7) into (IV.5) and noticing that qn (w)2 + ‖w‖2 = 1 we obtain

w∗∇E [hµ(q∗ (w)x)] ≥
θ ‖w‖√

2π

1− θ
5
−

2 ‖w‖√
1− ‖w‖2

 ≥ θ (1− θ) ‖w‖
10
√

2π
,

where we have used 2‖w‖√
1−‖w‖2

≤ 1
10 (1− θ) when ‖w‖ ≤ 1/(20

√
5) and θ ≤ 1/2, completing the proof.

3) Proof of Proposition II.7:

Proof. By consideration similar to proof of Proposition II.5, we can exchange the Hessian and expectation, i.e.,

∇2
wE [hµ (q∗ (w)x)] = E

[
∇2
whµ (q∗ (w)x)

]
.

We are interested in the expected Hessian matrix

∇2
wE [hµ (q∗ (w)x)] =

1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))(
x− xn

qn (w)
w

)(
x− xn

qn (w)
w

)∗]
− E

[
tanh

(
q∗ (w)x

µ

)(
xn

qn (w)
I +

xn
q3
n (w)

ww∗
)]

in the region that 0 ≤ ‖w‖ ≤ µ/(4
√

2).
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When w = 0, by Lemma B.1, we have

E
[
∇2
whµ (q∗ (w)x)

]∣∣
w=0

=
1

µ
E
[(

1− tanh2

(
xn
µ

))
x x∗

]
− E

[
tanh

(
xn
µ

)
xn

]
I

=
θ(1− θ)

µ
I +

θ2

µ
Evn

[
1− tanh2

(
vn
µ

)]
I − θ

µ
Evn

[
1− tanh2

(
vn
µ

)]
I

=
θ(1− θ)

µ
Evn

[
tanh2

(
qn (w) vn

µ

)]
I.

Simple calculation based on Lemma B.1 shows

Evn
[
tanh2

(
vn
µ

)]
≥ 2

(
1− 4 exp

(
2

µ2

)
Φc

(
2

µ

))
≥ 2

(
1− 2√

2π
µ

)
.

Invoking the assumptions µ ≤ 1/(20
√
n) ≤ 1/20 and θ < 1/2, we obtain

E
[
∇2
whµ (q∗ (w)x)

]∣∣
w=0
� θ (1− θ)

µ

(
2− 4√

2π
µ

)
I � θ

µ

(
1− 1

10
√

2π

)
I.

When 0 < ‖w‖ ≤ µ/(4
√

2), we aim to derive a semidefinite lower bound for

E
[
∇2
whµ (q∗ (w)x)

]
=

1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))
x x∗

]
︸ ︷︷ ︸

(A)

− 1

q2
n (w)

E
[
tanh

(
q∗ (w)x

µ

)
qn (w)xn

]
I︸ ︷︷ ︸

(B)

− 1

µq2
n (w)

E
[(

1− tanh2

(
q∗ (w)x

µ

))
qn (w)xn (wx∗ + xw∗)

]
︸ ︷︷ ︸

(C)

+
1

q4
n (w)

{
1

µ
E
[(

1− tanh2

(
q∗ (w)x

µ

))
(qn (w)xn)2

]
− E

[
tanh

(
q∗ (w)x

µ

)
qn (w)xn

]}
ww∗︸ ︷︷ ︸

(D)

.

(IV.8)

We will first provide bounds for (C) and (D), which are relatively simple. Then we will bound (A) and (B), which
are slightly more tricky.

1) An upper bound for (C). We have

(C) ≤ 1

µq2
n (w)

∥∥∥∥E [(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xn (wx∗ + xw∗)

]∥∥∥∥
≤ 2

µq2
n (w)

∥∥∥∥E [(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xnx̄

]
w∗
∥∥∥∥

≤ 2

µq2
n (w)

∥∥∥∥E [(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xnx

]∥∥∥∥ ‖w‖
≤ 2

µq2
n (w)

E
∥∥∥∥(1− tanh2

(
q∗ (w)x

µ

))
qn (w)xnx

∥∥∥∥ ‖w‖ (Jensen’s inequality)

≤ 2

µqn (w)
θ2E [|vn|]E [‖v‖] ‖w‖ (1− tanh2(·) ≤ 1, xn and x independent)

≤ 4θ2

πµqn (w)

√
n ‖w‖ ≤ θ

µ

4θ
√
n ‖w‖

π
√

1− ‖w‖2
≤ θ

µ

1

40π
,

where to obtain the final bound we have invoked the assumptions: ‖w‖ ≤ µ/(4
√

2), µ ≤ 1/(20
√
n), and

θ ≤ 1/2.
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2) A lower bound for (D). We directly drop the first expectation which is positive, and derive an upper for the
second expectation term as:

E
[
tanh

(
q∗ (w)x

µ

)
qnxn

]
≤ qn(w)θE [|vn|] =

√
2

π
θqn(w).

Thus,

(D) � − 1

q4
n(w)

√
2

π
θqn(w)ww∗ � − θ

q3
n(w)

√
2

π
‖w‖2 I � − θ

32000µ

√
2

π
I,

where we have again used ‖w‖ ≤ µ/(4
√

2), µ ≤ 1/(20
√
n), and qn (w) ≥ 1/(2

√
n) to obtain the final

bound.
3) An upper bound for (B). Similar to the way we bound (D),

1

q2
n(w)

E
[
tanh

(
q∗ (w)x

µ

)
qnxn

]
≤ 1

qn(w)

√
2

π
θ ≤ θ

10µ

√
2

π
.

4) A lower bound for (A). First note that

(A) � 1− θ
µ

Ex
[(

1− tanh2

(
w∗x

µ

))
x x∗

]
.

Thus, we set out to lower bound the expectation as

Ex
[(

1− tanh2

(
w∗x

µ

))
x x∗

]
� θβI

for some scalar β ∈ (0, 1), as Ex [xx∗] = θI . Suppose w has k ∈ [n− 1] nonzeros, w.l.o.g., further assume
the first k elements of w are these nonzeros. It is easy to see the expectation above has a block diagonal
structure diag (Σ;αθIn−1−k), where

α
.
= Ex

[(
1− tanh2

(
w∗x

µ

))]
.

So in order to derive the θβI lower bound as desired, it is sufficient to show Σ � θβI and β ≤ α, i.e., letting
w̃ ∈ Rk be the subvector of nonzero elements,

Ex̃∼i.i.d.BG(θ)

[(
1− tanh2

(
w̃∗x̃

µ

))
x̃ x̃∗

]
� θβI,

which is equivalent to that for all z ∈ Rk such that ‖z‖ = 1,

Ex̃∼i.i.d.BG(θ)

[(
1− tanh2

(
w̃∗x̃

µ

))
(x̃∗z)2

]
≥ θβ.

It is then sufficient to show that for any nontrivial support set S ⊂ [k] and any vector z ∈ Rk such that
supp (z) = S with ‖z‖ = 1,

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗z)2

]
≥ β.

To see the above implication, suppose the latter claimed holds, then for any z with unit norm,

Ex̃∼i.i.d.BG(θ)

[(
1− tanh2

(
w̃∗x̃

µ

))
(x̃∗z)2

]
=

k∑
s=1

θs (1− θ)k−s
∑
S∈([k]

s )

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗zS)2

]

≥
k∑
s=1

θs (1− θ)k−s
∑
S∈([k]

s )

β ‖zS‖2 = βES
[
‖zS‖2

]
= θβ.
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Now for any fixed support set S ⊂ [k], z = Pw̃Sz + (I − Pw̃S ) z. So we have

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗z)2

]
= Eṽ

[(
1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗Pw̃Sz)2

]
+ Eṽ

[(
1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗ (I − Pw̃S ) z)2

]
(cross-term vanishes due to independence)

=
(w̃∗Sz)2

‖wS‖4
Eṽ
[(

1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗w̃S)2

]
+ Eṽ

[(
1− tanh2

(
w̃∗S ṽ

µ

))]
Eṽ
[
(ṽ∗ (I − Pw̃S ) z)2

]
(exp. factorizes due to independence)

≥ 2
(w̃∗Sz)2

‖wS‖4
Eṽ
[
exp

(
−

2w̃∗S ṽ

µ

)
(ṽ∗w̃S)2

1ṽ∗w̃S>0

]
+ 2Eṽ

[
exp

(
−

2w̃∗S ṽ

µ

)
1w̃∗S ṽ>0

]
‖(I − Pw̃S ) z‖2 .

Using expectation result from Lemma B.1, the above lower bound is further bounded as:

Eṽ∼i.i.d.N (0,1)

[(
1− tanh2

(
w̃∗S ṽ

µ

))
(ṽ∗z)2

]
≥ 2

(w̃∗Sz)2

‖wS‖4

[(
‖w̃S‖2 +

4

µ2
‖w̃S‖4

)
exp

(
2 ‖w̃S‖2

µ2

)
Φc

(
2 ‖w̃S‖
µ

)
−

2 ‖w̃S‖3

µ
√

2π

]

+ 2 exp

(
2 ‖w̃S‖2

µ2

)
Φc

(
2 ‖w̃S‖
µ

)
‖(I − Pw̃S ) z‖2

≥

(
2

(w̃∗Sz)2

‖wS‖2
+ 2 ‖(I − Pw̃S ) z‖2

)
︸ ︷︷ ︸

=2‖z‖2=2

exp

(
2 ‖w̃S‖2

µ2

)
Φc

(
2 ‖w̃S‖
µ

)
−

4 (w̃∗Sz)2

µ
√

2π ‖w̃S‖

≥ 1√
2π

√4 +
4 ‖w̃S‖2

µ2
−

2 ‖w̃S‖
µ

− 4 (w̃∗Sz)2

µ
√

2π ‖w̃S‖
(Type III lower bound for Φc(·))

≥ 1√
2π

√4 +
4 ‖w‖2

µ2
−

2 ‖w‖
µ

− 4 ‖w‖
µ
√

2π
(t 7→

√
4 + t2 − t nonincreasing and Cauchy-Schwarz)

≥ 1√
2π

(
2− 3

4

√
2

)
,

where to obtain the last line we have used ‖w‖ ≤ µ/(4
√

2). On the other hand, we similarly obtain

α = EJEZ∼N (0,‖wJ ‖2)[1− tanh2(Z/µ)] ≥ 2√
2π

√
4‖w‖2/µ2 + 4− 2‖w‖/µ

2
≥ 1√

2π

(
2− 1

2

√
2

)
.

So we can take β = 1√
2π

(
2− 3

4

√
2
)
< 1.

Putting together the above estimates for the case w 6= 0, we obtain

E
[
∇2
whµ (q∗ (w)x)

]
� θ

µ
√

2π

(
1− 3

8

√
2−
√

2π

40π
− 1

16000
− 1

5

)
I � 1

5
√

2π

θ

µ
I.

Hence for all w, we can take the 1
5
√

2π
θ
µ as the lower bound, completing the proof.
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4) Proof of Pointwise Concentration Results: We first establish a useful comparison lemma between random i.i.d.
Bernoulli random vectors random i.i.d. normal random vectors.

Lemma IV.5. Suppose z, z′ ∈ Rn are independent and obey z ∼i.i.d. BG (θ) and z′ ∼i.i.d. N (0, 1). Then, for any
fixed vector v ∈ Rn, it holds that

E [|v∗z|m] ≤ E
[∣∣v∗z′∣∣m] = EZ∼N(0,‖v‖2) [|Z|m] ,

E [‖z‖m] ≤ E
[∥∥z′∥∥m] ,

for all integers m ≥ 1.

Proof. See page 42 under Section B.

Now, we are ready to prove Proposition II.8 to Proposition II.10 as follows.

Proof. (of Proposition II.8) Let

Xk =
w∗

‖w‖2
∇hµ (q(w)∗(x0)k) ,

then w∗∇g(w)/ ‖w‖ = 1
p

∑p
k=1Xk. For each Xk, k ∈ [p], from (IV.1), we know that

|Xk| =
∣∣∣∣tanh

(
q(w)∗(x0)k

µ

)(
w∗x0k

‖w‖
−
‖w‖2 x0k (n)

qn (w)

)∣∣∣∣ ≤ ∣∣∣∣w∗x0k

‖w‖
−
‖w‖2 x0k (n)

qn (w)

∣∣∣∣ ,
as the magnitude of tanh (·) is bounded by one. Because

w∗x0k

‖w‖2
−
‖w‖ x0k (n)

qn (w)
=

(
w

‖w‖
,−
‖w‖
qn (w)

)∗
(x0)k and (x0)k ∼i.i.d. BG (θ) ,

invoking Lemma IV.5, we obtain for every integer m ≥ 2 that

E [|Xk|m] ≤ EZ∼N (0,1/q2n(w)) [|Z|m] ≤ 1

qn (w)m
(m− 1)!! ≤ m!

2
(4n)

(
2
√
n
)m−2

,

where the Gaussian moment can be looked up in Lemma A.5 and we have used that (m− 1)!! ≤ m!/2 and the
assumption that qn (w) ≥ 1/(2

√
n) to get the result. Thus, by taking σ2 = 4n ≥ E

[
X2
k

]
and R = 2

√
n, and we

obtain the claimed result by invoking Lemma A.8.

Proof. (of Proposition II.9) Let

Yk =
1

‖w‖2
w∗∇2hµ (q(w)∗(x0)k)w,

then w∗∇2g(w)w/ ‖w‖2 = 1
p

∑p
k=1 Yk. For each Yk (k ∈ [p]), from (IV.2), we know that

Yk =
1

µ

(
1− tanh2

(
q(w)∗(x0)k

µ

))(
w∗x0k

‖w‖
−
x0k (n) ‖w‖
qn(w)

)2

︸ ︷︷ ︸
.
=Wk

− tanh

(
q(w)∗(x0)k

µ

)
x0k (n)

q3
n(w)︸ ︷︷ ︸

.
=Vk

.

Then by similar argument as in proof to Proposition II.8, we have for all integers m ≥ 2 that

E [|Wk|m] ≤ 1

µm
E

[∣∣∣∣w∗xk‖w‖
−
xk (n) ‖w‖
qn(w)

∣∣∣∣2m
]
≤ 1

µm
EZ∼N (0,1/q2n(w))

[
|Z|2m

]
≤ 1

µm
(2m− 1)!!(4n)m ≤ m!

2

(
4n

µ

)m
,

E [|Vk|m] ≤ 1

q3m
n (w)

E [|vk (n)|m] ≤
(
2
√
n
)3m

(m− 1)!! ≤ m!

2

(
8n
√
n
)m

,
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where we have again used the assumption that qn (w) ≥ 1/(2
√
n) to simplify the result. Taking σ2

W = 16n2/µ2 ≥
E
[
W 2
k

]
, RW = 4n/µ and σ2

V = 64n3 ≥ E
[
V 2
k

]
, RV = 8n

√
n, and considering SW = 1

p

∑p
k=1Wk and SV =

1
p

∑p
k=1 Vk, then by Lemma A.8, we obtain

P
[
|SW − E [SW ]| ≥ t

2

]
≤ 2 exp

(
− pµ2t2

128n2 + 16nµt

)
,

P
[
|SV − E [SV ]| ≥ t

2

]
≤ 2 exp

(
− pt2

512n3 + 32n
√
nt

)
.

Combining the above results, we obtain

P

[∣∣∣∣∣1p
p∑

k=1

Yk − E [Yk]

∣∣∣∣∣ ≥ t
]

= P [|SW − E [SW ] + SV − E [SV ]| ≥ t]

≤ P
[
|SW − E [SW ]| ≥ t

2

]
+ P

[
|SV − E [SV ]| ≥ t

2

]
≤ 2 exp

(
− pµ2t2

128n2 + 16nµt

)
+ 2 exp

(
− pt2

512n3 + 32n
√
nt

)
≤ 4 exp

(
− pµ2t2

512n2 + 32nµt

)
,

provided that µ ≤ 1/
√
n, as desired.

Proof. (of Proposition II.10) Let Zk = ∇2
whµ (q(w)∗(x0)k), then ∇2

wg (w) = 1
p

∑p
k=1Zk. From (IV.2), we know

that

Zk = Wk + Vk

where

Wk =
1

µ

(
1− tanh2

(
q(w)∗(x0)k

µ

))(
x0k −

x0k (n)w

qn(w)

)(
x0k −

x0k (n)w

qn(w)

)∗
Vk = − tanh

(
q(w)∗(x0)k

µ

)(
x0k (n)

qn(w)
I +

x0k (n)ww∗

q3
n(w)

)
.

For Wk, we have

0 � E [Wm
k ] � 1

µm
E

[∥∥∥∥x0k −
x0k (n)w

qn(w)

∥∥∥∥2m−2(
x0k −

x0k (n)w

qn(w)

)(
x0k −

x0k (n)w

qn(w)

)∗]

� 1

µm
E

[∥∥∥∥x0k −
x0k (n)w

qn(w)

∥∥∥∥2m
]
I

� 2m

µm
E

[(
‖x0k‖2 +

x2
0k (n) ‖w‖2

q2
n(w)

)m]
I

� 2m

µm
E
[
‖(x0)k‖2m

]
I � 2m

µm
EZ∼χ2(n) [Zm] I,

where we have used the fact that ‖w‖2 /q2
n(w) = ‖w‖2 /(1 − ‖w‖2) ≤ 1 for ‖w‖2 ≤ 1/4 and Lemma IV.5 to

obtain the last line. By Lemma A.6, we obtain

0 � E [Wm
k ] �

(
2

µ

)m m!

2
(2n)m I =

m!

2

(
4n

µ

)m
I.

Taking RW = 4n/µ and σ2
W = 16n2/µ2 ≥ E

[
W 2

k

]
, and letting SW

.
= 1

p

∑p
k=1Wk, by Lemma A.9, we obtain

P
[
‖SW − E [SW ]‖ ≥ t

2

]
≤ 2n exp

(
− pµ2t2

128n2 + 16µnt

)
.
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Similarly, for Vk, we have

E [V m
k ] �

(
1

qn(w)
+
‖w‖2

q3
n(w)

)m
E [|xk (n)|m] I

�
(
8n
√
n
)m

(m− 1)!!I

� m!

2

(
8n
√
n
)m
I,

where we have used the fact qn (w) ≥ 1/(2
√
n) to simplify the result. Similar argument also shows −E [V m

k ] �
m! (8n

√
n)
m
I/2. Taking RV = 8n

√
n and σ2

V = 64n3, and letting SV
.
= 1

p

∑p
k=1 Vk, again by Lemma A.9, we

obtain

P
[
‖SV − E [SV ]‖ ≥ t

2

]
≤ 2n exp

(
− pt2

512n3 + 32n
√
nt

)
.

Combining the above results, we obtain

P

[∥∥∥∥∥1

p

p∑
k=1

Zk − E [Zk]

∥∥∥∥∥ ≥ t
]

= P [‖SW − E [SW ] + SV − E [SV ]‖ ≥ t]

≤ P
[
‖SW − E [SW ]‖ ≥ t

2

]
+ P

[
‖SV − E [SV ]‖ ≥ t

2

]
≤ 2n exp

(
− pµ2t2

128n2 + 16µnt

)
+ 2n exp

(
− pt2

512n3 + 32n
√
nt

)
≤ 4n exp

(
− pµ2t2

512n2 + 32µnt

)
,

where we have simplified the final result using µ ≤ 1/
√
n.

5) Proof of Lipschitz Results: We need the following lemmas to prove the Lipschitz results.

Lemma IV.6. Suppose that ϕ1 : U → V is an L-Lipschitz map from a normed space U to a normed space V , and
that ϕ2 : V →W is an L′-Lipschitz map from V to a normed space W . Then the composition ϕ2 ◦ϕ1 : U →W is
LL′-Lipschitz.

Lemma IV.7. Fix any D ⊆ Rn−1. Let g1, g2 : D → R, and assume that g1 is L1-Lipschitz, and g2 is L2-Lipschitz,
and that g1 and g2 are bounded over D, i.e., |g1(x)| ≤M1 and |g2(x)| ≤M2 for all x ∈ D with some constants
M1 > 0 and M2 > 0. Then the function h(x) = g1(x)g2(x) is L-Lipschitz, with

L = M1L2 +M2L1.

Lemma IV.8. For every w,w′ ∈ Γ, and every fixed x, we have∣∣∣ḣµ (q(w)∗x)− ḣµ
(
q(w′)∗x

)∣∣∣ ≤ 2
√
n

µ
‖x‖

∥∥w −w′∥∥ ,∣∣∣ḧµ (q(w)∗x)− ḧµ
(
q(w′)∗x

)∣∣∣ ≤ 4
√
n

µ2
‖x‖

∥∥w −w′∥∥ .
Proof. We have∣∣qn (w)− qn

(
w′
)∣∣ =

∣∣∣∣√1− ‖w‖2 −
√

1− ‖w′‖2
∣∣∣∣ =

‖w +w′‖ ‖w −w′‖√
1− ‖w‖2 +

√
1− ‖w′‖2

≤
max (‖w‖ , ‖w′‖)

min (qn (w) , qn (w′))

∥∥w −w′∥∥ .
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Hence it holds that

∥∥q (w)− q
(
w′
)∥∥2

=
∥∥w −w′∥∥2

+
∣∣qn (w)− qn

(
w′
)∣∣2 ≤

1 +
max

(
‖w‖2 , ‖w′‖2

)
min (q2

n (w) , q2
n (w′))

∥∥w −w′∥∥2

=
1

min (q2
n (w) , q2

n (w′))

∥∥w −w′∥∥2 ≤ 4n
∥∥w −w′∥∥2

,

where we have used the fact qn (w) ≥ 1/(2
√
n) to get the final result. Hence the mapping w 7→ q(w) is 2

√
n-

Lipschitz over Γ. Moreover it is easy to see q 7→ q∗x is ‖x‖2-Lipschitz. By Lemma A.1 and the composition rule
in Lemma IV.6, we obtain the desired claims.

Lemma IV.9. For any fixed x, consider the function

tx(w)
.
=
w∗x

‖w‖
− xn
qn(w)

‖w‖

defined over w ∈ Γ. Then, for all w,w′ in Γ such that ‖w‖ ≥ r and ‖w′‖ ≥ r for any constant r ∈ (0, 1), it holds
that ∣∣tx(w)− tx(w′)

∣∣ ≤ 2

(
‖x‖
r

+ 4n3/2 ‖x‖∞

)∥∥w −w′∥∥ ,
|tx(w)| ≤ 2

√
n ‖x‖ ,∣∣t2x(w)− t2x(w′)

∣∣ ≤ 8
√
n ‖x‖

(
‖x‖
r

+ 4n3/2 ‖x‖∞

)∥∥w −w′∥∥ ,∣∣t2x(w)
∣∣ ≤ 4n ‖x‖2 .

Proof. First of all, we have

|tx(w)| =

[
w∗

‖w‖
,−
‖w‖
qn(w)

]
x ≤ ‖x‖

(
1 +
‖w‖2

q2
n(w)

)1/2

=
‖x‖
|qn(w)|

≤ 2
√
n ‖x‖ ,

where we have used the assumption that qn (w) ≥ 1/(2
√
n) to simplify the final result. The claim about

∣∣t2x (w)
∣∣

follows immediately. Now∣∣tx(w)− tx(w′)
∣∣ ≤ ∣∣∣∣( w

‖w‖
− w′

‖w′‖

)∗
x

∣∣∣∣+ |xn|
∣∣∣∣ ‖w‖qn(w)

−
‖w′‖
qn(w′)

∣∣∣∣ .
Moreover we have∣∣∣∣( w

‖w‖
− w′

‖w′‖

)∗
x

∣∣∣∣ ≤ ‖x‖ ∥∥∥∥ w

‖w‖
− w′

‖w′‖

∥∥∥∥ ≤ ‖x‖ ‖w −w′‖ ‖w′‖ + ‖w′‖ |‖w‖ − ‖w′‖|
‖w‖ ‖w′‖

≤
2 ‖x‖
r

∥∥w −w′∥∥ ,
where we have used the assumption that ‖w‖ ≥ r to simplify the result. Noticing that t 7→ t/

√
1− t2 is continuous

over [a, b] and differentiable over (a, b) for any 0 < a < b < 1, by mean value theorem,∣∣∣∣ ‖w‖qn(w)
−
‖w′‖
qn(w′)

∣∣∣∣ ≤ sup
w ∈ Γ

1(
1− ‖w‖2

)3/2

∥∥w −w′∥∥ ≤ 8n3/2
∥∥w −w′∥∥ ,

where we have again used the assumption that qn (w) ≥ 1/(2
√
n) to simplify the last result. Collecting the above

estimates, we obtain ∣∣tx(w)− tx(w′)
∣∣ ≤ (2

‖x‖
r

+ 8n3/2 ‖x‖∞

)∥∥w −w′∥∥ ,
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as desired. For the last one, we have∣∣t2x(w)− t2x(w′)
∣∣ =

∣∣tx(w)− tx(w′)
∣∣ ∣∣tx(w) + tx(w′)

∣∣
≤ 2 sup

s ∈ Γ
|tx(s)|

∣∣tx(w)− tx(w′)
∣∣ ,

leading to the claimed result once we substitute estimates of the involved quantities.

Lemma IV.10. For any fixed x, consider the function

Φx(w) =
xn

qn(w)
I +

xn
q3
n(w)

ww∗

defined over w ∈ Γ. Then, for all w,w′ ∈ Γ such that ‖w‖ < r and ‖w′‖ < r with any constant r ∈ (0, 1/2), it
holds that

‖Φx(w)‖ ≤ 2 ‖x‖∞ ,∥∥Φx(w)−Φx(w′)
∥∥ ≤ 4 ‖x‖∞

∥∥w −w′∥∥ .
Proof. Simple calculation shows

‖Φx(w)‖ ≤ ‖x‖∞

(
1

qn(w)
+
‖w‖2

q3
n(w)

)
=
‖x‖∞
q3
n(w)

≤
‖x‖∞

(1− r2)3/2
≤ 2 ‖x‖∞ .

For the second one, we have∥∥Φx(w)−Φx(w′)
∥∥ ≤ ‖x‖∞ ∥∥∥∥ 1

qn(w)
I +

1

q3
n(w)

ww∗ − 1

qn(w′)
I − 1

q3
n(w′)

w′(w′)∗
∥∥∥∥

≤ ‖x‖∞

(∣∣∣∣ 1

qn (w)
− 1

qn (w′)

∣∣∣∣+

∣∣∣∣∣ ‖w‖2q3
n (w)

−
‖w′‖2

q3
n (w′)

∣∣∣∣∣
)
.

Now ∣∣∣∣ 1

qn (w)
− 1

qn (w′)

∣∣∣∣ =
|qn (w)− qn (w′)|
qn (w) qn (w′)

≤
max (‖w‖ , ‖w′‖)

min (q3
n (w) , q3

n (w′))

∥∥w −w′∥∥ ≤ 4

3
√

3

∥∥w −w′∥∥ ,
where we have applied the estimate for |qn (w)− qn (w′)| as established in Lemma IV.8 and also used ‖w‖ ≤ 1/2

and ‖w′‖ ≤ 1/2 to simplify the above result. Further noticing t 7→ t2/
(
1− t2

)3/2 is differentiable over t ∈ (0, 1),
we apply the mean value theorem and obtain∣∣∣∣∣ ‖w‖2q3

n (w)
−
‖w′‖2

q3
n (w′)

∣∣∣∣∣ ≤ sup
s∈Γ,‖s‖≤r< 1

2

‖s‖3 + 2 ‖s‖(
1− ‖s‖2

)5/2

∥∥w −w′∥∥ ≤ 4√
3

∥∥w −w′∥∥ .
Combining the above estimates gives the claimed result.

Lemma IV.11. For any fixed x, consider the function

ζx(w) = x− xn
qn(w)

w

defined over w ∈ Γ. Then, for all w,w′ ∈ Γ such that ‖w‖ ≤ r and ‖w′‖ ≤ r for any constant r ∈ (0, 1/2), it
holds that

‖ζx(w)ζx(w)∗‖ ≤ 2n ‖x‖2∞ ,∥∥ζx(w)ζx(w)∗ − ζx(w′)ζx(w′)∗
∥∥ ≤ 8

√
2
√
n ‖x‖2∞

∥∥w −w′∥∥ .
Proof. We have ‖w‖2 /q2

n (w) ≤ 1/3 when ‖w‖ ≤ r < 1/2, hence it holds that

‖ζx(w)ζx(w)∗‖ ≤ ‖ζx(w)‖2 ≤ 2 ‖x‖2 + 2x2
n

‖w‖
q2
n (w)

≤ 2n ‖x‖2∞ .
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For the second, we first estimate∥∥ζ(w)− ζ(w′)
∥∥ =

∥∥∥∥xn( w

qn (w)
− w′

qn (w′)

)∥∥∥∥ ≤ ‖x‖∞ ∥∥∥∥ w

qn (w)
− w′

qn (w′)

∥∥∥∥
≤ ‖x‖∞

(
1

qn(w)

∥∥w −w′∥∥ +
∥∥w′∥∥ ∣∣∣∣ 1

qn(w)
− 1

qn(w′)

∣∣∣∣)
≤ ‖x‖∞

(
1

qn(w)
+

‖w′‖
min {q3

n(w), q3
n(w′)}

)∥∥w −w′∥∥
≤ ‖x‖∞

(
2√
3

+
4

3
√

3

)∥∥w −w′∥∥ ≤ 4 ‖x‖∞
∥∥w −w′∥∥ .

Thus, we have∥∥ζx(w)ζx(w)∗ − ζx(w′)ζx(w′)∗
∥∥ ≤ ‖ζ(w)‖

∥∥ζ(w)− ζ(w′)
∥∥ +

∥∥ζ(w)− ζ(w′)
∥∥ ∥∥ζ(w′)

∥∥
≤ 8
√

2
√
n ‖x‖2∞

∥∥w −w′∥∥ ,
as desired.

Now, we are ready to prove all the Lipschitz propositions.

Proof. (of Proposition II.11) Let

Fk(w) = ḧµ (q(w)∗(x0)k) t
2
(x0)k

(w) + ḣµ (q(w)∗(x0)k)
x0k (n)

q3
n(w)

.

Then, w∗∇2g(w;X0)w/ ‖w‖2 = 1
p

∑p
k=1 Fk(w). Noticing that ḧµ (q(w)∗(x0)k) is bounded by 1/µ and

ḣµ (q(w)∗(x0)k) is bounded by 1, both in magnitude. Applying Lemma IV.7, Lemma IV.8 and Lemma IV.9,
we can see Fk(w) is LkS-Lipschitz with

LkS = 4n ‖(x0)k‖2
4
√
n

µ2
‖(x0)k‖ +

1

µ
8
√
n ‖(x0)k‖

(
‖(x0)k‖
rS

+ 4n3/2 ‖(x0)k‖∞

)
+ (2
√
n)3 ‖(x0)k‖∞

2
√
n

µ
‖(x0)k‖ + sup

rS<a<
√

2n−1

2n

3

(1− a2)5/2
‖(x0)k‖∞

=
16n3/2

µ2
‖(x0)k‖3 +

8
√
n

µrS
‖(x0)k‖2 +

48n2

µ
‖(x0)k‖ ‖(x0)k‖∞ + 96n5/2 ‖(x0)k‖∞ .

Thus, 1
‖w‖

2

w∗∇2g(w;X0)w is LS-Lipschitz with

LS ≤
1

p

p∑
k=1

LkS ≤
16n3

µ2
‖X0‖3∞ +

8n3/2

µrS
‖X0‖2∞ +

48n5/2

µ
‖X0‖2∞ + 96n5/2 ‖X0‖∞ ,

as desired.

Proof. (of Proposition II.12) We have∥∥∥∥ w∗‖w‖∇g(w;X0)− w′∗

‖w′‖
∇g(w′;X0)

∥∥∥∥ ≤ 1

p

p∑
k=1

∥∥∥ḣµ (q(w)∗(x0)k) t(x0)k (w)− ḣµ
(
q(w′)∗(x0)k

)
t(x0)k

(
w′
)∥∥∥

where ḣµ(t) = tanh(t/µ) is bounded by one in magnitude, and t(x0)k(w) and t(x0)′k
(w) is defined as in Lemma

IV.9. By Lemma IV.7, Lemma IV.8 and Lemma IV.9, we know that ḣµ (q(w)∗(x0)k) t(x0)k (w) is Lk-Lipschitz
with constant

Lk =
2 ‖(x0)k‖

rg
+ 8n3/2 ‖(x0)k‖∞ +

4n

µ
‖(x0)k‖2 .
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Therefore, we have∥∥∥∥ w∗‖w‖∇g(w)− w∗

‖w‖
∇g(w′)

∥∥∥∥ ≤ 1

p

p∑
k=1

(
2 ‖(x0)k‖

rg
+ 8n3/2 ‖(x0)k‖∞ +

4n

µ
‖(x0)k‖2

)∥∥w −w′∥∥
≤
(

2
√
n

rg
‖X0‖∞ + 8n3/2 ‖X0‖∞ +

4n2

µ
‖X0‖2∞

)∥∥w −w′∥∥ ,
as desired.

Proof. (of Proposition II.13) Let

Fk(w) = ḧµ(q(w)∗(x0)k)ζk(w)ζk(w)∗ − ḣµ (q(w)∗(x0)k) Φk(w)

with ζk(w) = x0k−
x0k(n)
qn(w)w and Φk(w) = x0k(n)

qn(w) I+ x0k(n)
q3n(w)ww

∗. Then, ∇2g(w) = 1
p

∑p
k=1 Fk(w). Using Lemma

IV.7, Lemma IV.8, Lemma IV.10 and Lemma IV.11, and the facts that ḧµ(t) is bounded by 1/µ and that ḧµ(t) is
bounded by 1 in magnitude, we can see Fk(w) is LkN-Lipschitz continuous with

LkN =
1

µ
× 8
√

2
√
n ‖(x0)k‖2∞ +

2
√
n

µ2
‖(x0)k‖ × 2n ‖(x0)k‖2∞ + 4 ‖(x0)k‖∞ +

2
√
n

µ
‖(x0)k‖ × 2 ‖(x0)k‖∞

≤ 4n3/2

µ2
‖(x0)k‖ ‖(x0)k‖2∞ +

4
√
n

µ
‖(x0)k‖ ‖(x0)k‖∞ +

8
√

2
√
n

µ
‖(x0)k‖2∞ + 4 ‖(x0)k‖∞ .

Thus, we have

LN ≤
1

p

p∑
k=1

LkN ≤
4n2

µ2
‖X‖3∞ +

4n

µ
‖X‖2∞ +

8
√

2
√
n

µ
‖X‖2∞ + 8 ‖X‖∞ ,

as desired.

B. Proofs of Theorem II.1

Before proving Theorem II.1, we record one useful lemma.

Lemma IV.12. For any θ ∈ (0, 1), consider the random matrix X ∈ Rn1×n2 with X ∼i.i.d. BG (θ). Define the
event E∞

.
=
{

1 ≤ ‖X‖∞ ≤ 4
√

log (np)
}

. It holds that

P [Ec∞] ≤ θ (np)−7 + exp (−0.3θnp) .

Proof. See page 43 under Section B.

For convenience, we define three regions for the range of w:

R1
.
=

{
w : ‖w‖ ≤ µ

4
√

2

}
, R2

.
=

{
w :

µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5

}
,

R3
.
=

{
w :

1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n

}
.

Proof. (of Theorem II.1)
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a) Strong convexity in region R1.: Proposition II.7 shows that for any w ∈ R1, E
[
∇2g(w;X0)

]
� c1θ

µ I . For
any ε ∈ (0, µ/

(
4
√

2
)
), R1 has an ε-net N1 of size at most (3µ/

(
4
√

2ε
)
)n. On E∞, ∇2g is

L1
.
=
C2n

2

µ2
log3/2(np)

Lipschitz by Proposition II.13. Set ε = c1θ
3µL1

, so

#N1 ≤ exp

(
2n log

(
C3n log(np)

θ

))
.

Let E1 denote the event

E1 =

{
max
w∈N1

∥∥∇2g(w;X0)− E
[
∇2g(w;X0)

]∥∥ ≤ c1θ

3µ

}
.

On E1 ∩ E∞,

sup
‖w‖≤µ/(4

√
2)

∥∥∇2g(w;X0)− E
[
∇2g(w;X0)

]∥∥ ≤ 2c1θ

3µ
,

and so on E1 ∩ E∞, (II.5) holds for any constant c? ≤ c1/3. Setting t = c1θ/3µ in Proposition II.10, we obtain that
for any fixed w,

P
[∥∥∇2g(w;X0)− E

[
∇2g(w;X0)

]∥∥ ≥ c1θ

3µ

]
≤ 4n exp

(
−c4pθ

2

n2

)
.

Taking a union bound, we obtain that

P [Ec1] ≤ 4n exp

(
−c4pθ

2

n2
+ C5n log(n) + C5n log log(p)

)
.

b) Large gradient in region R2.: Similarly, for the gradient quantity, for w ∈ R2, Proposition II.6 shows that

E
[
w∗∇g(w;X0)

‖w‖

]
≥ c6θ.

Moreover, on E∞, w∗∇g(w;X0)/ ‖w‖ is

L2
.
=
C7n

2

µ
log(np)

Lipschitz by Proposition II.12. For any ε < 1
20
√

5
, the set R2 has an ε-net N2 of size at most

(
3

20ε
√

5

)n
. Set ε = c6θ

3L2
,

so

#N2 ≤ exp

(
n log

(
C8n

2 log(np)

θµ

))
.

Let E2 denote the event

E2 =

{
max
w∈N2

∣∣∣∣w∗∇g(w;X0)

‖w‖
− E

[
w∗∇g(w;X0)

‖w‖

]∣∣∣∣ ≤ c6θ

3

}
.

On E2 ∩ E∞,

sup
w∈R2

∣∣∣∣w∗∇g(w;X0)

‖w‖
− E

[
w∗∇g(w;X0)

‖w‖

]∣∣∣∣ ≤ 2c6θ

3
, (IV.9)

and so on E2 ∩ E∞, (II.6) holds for any constant c? ≤ c6/3. Setting t = c6θ/3 in Proposition II.8, we obtain that
for any fixed w ∈ R2,

P
[∣∣∣∣w∗∇g(w;X0)

‖w‖
− E

[
w∗∇g(w;X0)

‖w‖

∣∣∣∣]] ≤ 2 exp

(
−c9pθ

2

n

)
,

and so

P [Ec2] ≤ 2 exp

(
−c9pθ

2

n
+ n log

(
C8n

2 log(np)

θµ

))
. (IV.10)
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c) Existence of negative curvature direction in R3.: Finally, for any w ∈ R3, Proposition II.5 shows that

E

[
w∗∇2g(w;X0)w

‖w‖2

]
≤ −c9θ.

On E∞, w∗∇2g(w;X0)w/ ‖w‖2 is

L3 =
C10n

3

µ2
log3/2(np)

Lipschitz by Proposition II.11. As above, for any ε ≤
√

4n−1
4n , R3 has an ε-net N3 of size at most (3/ε)n. Set

ε = c9θ/3L3. Then

#N3 ≤ exp

(
n log

(
C11n

3 log3/2(np)

θµ2

))
.

Let E3 denote the event

E3 =

{
max
w∈N3

∣∣∣∣∣w∗∇2g(w;X0)w

‖w‖2
− E

[
w∗∇2g(w;X0)w

‖w‖2

]∣∣∣∣∣ ≤ c9θ

3

}
On E3 ∩ E∞,

sup
w∈R3

∣∣∣∣∣w∗∇2g(w;X0)w

‖w‖2
− E

[
w∗∇2g(w;X0)w

‖w‖2

]∣∣∣∣∣ ≤ 2c9θ

3
,

and (II.7) holds with any constant c? < c9/3. Setting t = c9θ/3 in Proposition II.9 and taking a union bound, we
obtain

P [Ec3] ≤ 4 exp

(
−c12pµ

2θ2

n2
+ n log

(
C11n

3 log3/2(np)

θµ2

))
.

d) The unique local minimizer located near 0. : Let Eg be the event that the bounds (II.5)-(II.7) hold. On
Eg, the function g is c?θ

µ -strongly convex over R1 =
{
w : ‖w‖ ≤ µ/

(
4
√

2
)}

. This implies that f has at most one
local minimum on R1. It also implies that for any w ∈ R1,

g(w;X0) ≥ g(0;X0) + 〈∇g(0;X0),w〉+
cθ

2µ
‖w‖2 ≥ g(0;X0)− ‖w‖ ‖∇g(0;X0)‖ +

c?θ

2µ
‖w‖2 .

So, if g(w;X0) ≤ g(0;X0), we necessarily have

‖w‖ ≤ 2µ

c?θ
‖∇g(0;X0)‖ .

Suppose that

‖∇g(0;X0)‖ ≤ c?θ

32
. (IV.11)

Then g(w;X0) ≤ g(0;X0) implies that ‖w‖ ≤ µ/16. By Wierstrass’s theorem, g(w;X0) has at least one minimizer
w? over the compact set S = {w : ‖w‖ ≤ µ/10}. By the above reasoning, ‖w?‖ ≤ µ/16, and hence w? does not
lie on the boundary of S. This implies that w? is a local minimizer of g. Moreover, as above,

‖w?‖ ≤
2µ

c?θ
‖∇g(0;X0)‖ .

We now use the vector Bernstein inequality to show that with our choice of p, (IV.11) is satisfied w.h.p. Notice
that

∇g(0;X0) =
1

p

p∑
k=1

ḣµ(x0k(n))x0k,

and ḣµ is bounded by one in magnitude, so for any integer m ≥ 2,

E
[∥∥∥ḣµ(x0k(n))x0k

∥∥∥m] ≤ E [‖(x0)k‖m] ≤ EZ∼χ(n) [Zm] ≤ m!nm/2,
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where we have applied the moment estimate for the χ (n) distribution shown in Lemma A.7. Applying the vector
Bernstein inequality in Corollary A.10 with R =

√
n and σ2 = 2n, we obtain

P [‖∇g(0;X0)‖ ≥ t] ≤ 2(n+ 1) exp

(
− pt2

4n+ 2
√
nt

)
for all t > 0. Using this inequality, it is not difficult to show that there exist constants C13, C14 > 0 such that when
p ≥ C13n log n, with probability at least 1− 4np−10,

‖∇g(0;X0)‖ ≤ C3

√
n log p

p
. (IV.12)

When p
log p ≥

C14n
θ2 , for appropriately large C14, (IV.12) implies (IV.11). Summing up failure probabilities completes

the proof.

C. Proofs for Section II-C and Theorem II.3

Proof. (of Lemma II.14) By the generative model,

Y =
√
pθ (Y Y ∗)−1/2 Y =

√
pθ (A0X0X

∗
0A
∗
0)−1/2A0X0.

Since E [X0X
∗
0/ (pθ)] = I , we will compare

√
pθ (A0X0X

∗
0A
∗
0)−1/2A0 with (A0A

∗
0)−1/2A0 = UV ∗. By

Lemma B.2, we have ∥∥∥√pθ (A0X0X
∗
0A
∗
0)−1/2A0 − (A0A

∗
0)−1/2A0

∥∥∥
≤ ‖A0‖

∥∥∥√pθ (A0X0X
∗
0A
∗
0)−1/2 − (A0A

∗
0)−1/2

∥∥∥
≤ ‖A0‖

2 ‖A0‖3

σ4
min (A0)

∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥ = 2κ4 (A0)

∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥
provided

‖A0‖2
∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥ ≤ σ2
min (A0)

2
⇐⇒

∥∥∥∥ 1

pθ
X0X

∗
0 − I

∥∥∥∥ ≤ 1

2κ2 (A0)
.

On the other hand, by Lemma B.3, when p ≥ C1n
2 log n,

∥∥∥ 1
pθX0X

∗
0 − I

∥∥∥ ≤ 10
√

θn log p
p with probability at least

1− p−8. Thus, when p ≥ C2κ
4 (A0) θn2 log(nθκ (A0)),

∥∥∥√pθ (A0X0X
∗
0A
∗
0)−1/2A0 − (A0A

∗
0)−1/2A0

∥∥∥ ≤ 20κ4 (A0)

√
θn log p

p
,

as desired.

Proof. (of Lemma II.15) Let Ỹ .
= X0 + Ξ̃X0. Note the Jacobian matrix for the mapping q (w) is ∇wq (w) =[

I,−w/
√

1− ‖w‖2
]

. Hence for any vector z ∈ Rn and all w ∈ Γ,

‖∇wq (w) z‖ ≤
√
n− 1 ‖z‖∞ +

‖w‖√
1− ‖w‖2

‖z‖∞ ≤ 3
√
n ‖z‖∞ .
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Now we have ∥∥∥∇wg (w; Ỹ
)
−∇wg (w;X0)

∥∥∥
=

∥∥∥∥∥1

p

p∑
k=1

ḣµ (q∗ (w) ỹk)∇wq (w) ỹk −
1

p

p∑
k=1

ḣµ (q∗ (w) (x0)k)∇wq (w) (x0)k

∥∥∥∥∥
≤

∥∥∥∥∥1

p

p∑
k=1

ḣµ (q∗ỹk)∇wq (w) (ỹk − (x0)k)

∥∥∥∥∥
+

∥∥∥∥∥1

p

p∑
k=1

[
ḣµ (q∗ (w) ỹk)− ḣµ (q∗ (w) (x0)k)

]
∇wq (w) (x0)k

∥∥∥∥∥
≤
∥∥∥Ξ̃∥∥∥ (max

t
ḣµ (t) 3n ‖X0‖∞ + Lḣµ3n ‖X0‖2∞

)
,

where Lḣµ denotes the Lipschitz constant for ḣµ (·). Similarly, suppose
∥∥∥Ξ̃∥∥∥ ≤ 1/(2n), and also notice that∥∥∥∥ I

qn (w)
+
ww∗

q3
n (w)

∥∥∥∥ ≤ 1

qn (w)
+
‖w‖2

q3
n (w)

=
1

q3
n (w)

≤ 2
√

2n3/2,

we obtain that∥∥∥∇2
wg
(
w; Ỹ

)
−∇2

wg (w;X0)
∥∥∥

≤

∥∥∥∥∥1

p

p∑
k=1

[
ḧ (q∗ (w) ỹk)∇wq (w) ỹkỹ

∗
k (∇wq (w))∗ − ḧ (q∗ (w) (x0)k)∇wq (w) (x0)k(x0)∗k (∇wq (w))∗

]∥∥∥∥∥
+

∥∥∥∥∥1

p

p∑
k=1

[
ḣ (q∗ (w) ỹk)

(
I

qn (w)
+
ww∗

q3
n

)
ỹk (n)− ḣ (q∗ (w) (x0)k)

(
I

qn (w)
+
ww∗

q3
n

)
(x0)k (n)

]∥∥∥∥∥
≤ 45

2 Lḧµn
3/2 ‖X‖3∞

∥∥∥Ξ̃∥∥∥ + max
t
ḧµ (t)

(
18n3/2 ‖X‖2∞

∥∥∥Ξ̃∥∥∥ + 10n2 ‖X‖2∞
∥∥∥Ξ̃∥∥∥2

)
+ 3
√

2Lḣµn
2
∥∥∥Ξ̃∥∥∥ ‖X‖2∞ + max

t
ḣ (t) 2

√
2n2

∥∥∥Ξ̃∥∥∥ ‖X‖∞ ,
where Lḧµ denotes the Lipschitz constant for ḧµ (·). Since

max
t
ḣµ (t) ≤ 1, max

t
ḧµ (t) ≤ 1

µ
, Lhµ ≤ 1, Lḣµ ≤

1

µ
, Lḧµ ≤

2

µ2
,

and by Lemma IV.12, ‖X‖∞ ≤ 4
√

log (np) with probability at least 1− θ (np)−7 − exp (−0.3θnp), we obtain∥∥∥∇wg (w; Ỹ
)
−∇wg (w;X)

∥∥∥ ≤ C1
n

µ
log (np)

∥∥∥Ξ̃∥∥∥ ,∥∥∥∇2
wg
(
w; Ỹ

)
−∇2

wg (w;X)
∥∥∥ ≤ C2 max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

∥∥∥Ξ̃∥∥∥ ,
completing the proof.

Proof. (of Theorem II.3) Here c? is as defined in Theorem II.1. By Lemma II.14, when

p ≥ C1

c2
?θ

max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

the magnitude of the perturbation is bounded as∥∥∥Ξ̃∥∥∥ ≤ C2c?θ

(
max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

,
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where C2 can be made arbitrarily small by making C1 large. Combining this result with Lemma II.15, we obtain
that for all w ∈ Γ, ∥∥∥∇wg (w;X0 + Ξ̃X0

)
−∇wg (w;X)

∥∥∥ ≤ c?θ

2∥∥∥∇2
wg
(
w;X0 + Ξ̃X0

)
−∇2

wg (w;X)
∥∥∥ ≤ c?θ

2
,

with probability at least 1− p−8 − θ (np)−7 − exp (−0.3θnp). In view of (II.13) in Theorem II.1, we have

w∗∇2
wg
(
w;X0 + Ξ̃X0

)
w

‖w‖2
=
w∗∇2

wg (w;X0)w

‖w‖2
+
w∗∇2

wg
(
w;X0 + Ξ̃X0

)
w

‖w‖2
− w

∗∇2
wg (w;X0)w

‖w‖2

≤ −c?θ +
∥∥∥∇2

wg
(
w;X0 + Ξ̃X0

)
−∇2

wg (w;X0)
∥∥∥ ≤ −1

2
c?θ.

By similar arguments, we obtain (II.11) through (II.13) in Theorem II.3.
To show the unique local minimizer over Γ is near 0, we note that (recall the last part of proof of Theorem II.1

in Section IV-B) g
(
w;X0 + Ξ̃X0

)
being c?θ

2µ strongly convex near 0 implies that

‖w?‖ ≤
4µ

c?θ

∥∥∥∇g (0;X0 + Ξ̃X0

)∥∥∥ .
The above perturbation analysis implies there exists C3 > 0 such that when

p ≥ C3

c2
?θ

max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

it holds that ∥∥∥∇wg (0;X0 + Ξ̃X0

)
−∇wg (0;X)

∥∥∥ ≤ c?θ

400
,

which in turn implies

‖w?‖ ≤
4µ

c?θ
‖∇g (0;X0)‖ +

4µ

c?θ

c?θ

400
≤ µ

8
+

µ

100
<
µ

7
,

where we have recall the result that 2µ
c?θ
‖∇g (0;X0)‖ ≤ µ/16 from proof of Theorem II.1. A simple union bound

with careful bookkeeping gives the success probability.

APPENDIX A
TECHNICAL TOOLS AND BASIC FACTS USED IN PROOFS

In this section, we summarize some basic calculations that are useful throughout, and also record major technical
tools we use in proofs.

Lemma A.1 (Derivates and Lipschitz Properties of hµ (z)). For the sparsity surrogate

hµ (z) = µ log cosh (z/µ) ,

the first two derivatives are

ḣµ(z) = tanh(z/µ), ḧµ(z) =
[
1− tanh2(z/µ)

]
/µ.

Also, for any z ≥ 0, we have

max {1− 2 exp(−2z/µ), 1/2− exp(−2z/µ)/2} ≤ tanh(z/µ) ≤ 1− exp(−2z/µ),

2 exp(−2z/µ)− exp(−4z/µ) ≤ 1− tanh2(z/µ) ≤ 4 exp(−2z/µ)− 4 exp(−4z/µ).

Moreover, for any z, z′ ∈ R, we have

|ḣµ(z)− ḣµ(z′)| ≤ |z − z′|/µ, |ḧµ(z)− ḧµ(z′)| ≤ 2|z − z′|/µ2.
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Lemma A.2 (Harris’ Inequality, [120], see also Theorem 2.15 of [121]). Let X1, . . . , Xn be independent, real-valued
random variables and f, g : Rn 7→ R be nonincreasing (nondecreasing) w.r.t. any one variable while fixing the
others. Define a random vector X = (X1, · · · , Xn) ∈ Rn, then we have

E [f (X) g (X)] ≥ E [f (X)]E [g (X)] .

Similarly, if f is nondecreasing (nonincreasing) and g is nonincreasing (nondecreasing) coordinatewise in the above
sense, we have

E [f (X) g (X)] ≤ E [f (X)]E [g (X)] .

Lemma A.3 (Differentiation under the Integral Sign). Consider a function F : Rn × R 7→ R such that ∂F (x,s)
∂s is

well defined and measurable over U × (0, t0) for some open subset U ⊂ Rn and some t0 > 0. For any probability
measure ρ on Rn and any t ∈ (0, t0) such that

∫ t
0

∫
U

∣∣∣∂F (x,s)
∂s

∣∣∣ ρ (dx) ds <∞, it holds that

d

dt

∫
U
F (x, t) ρ (dx) =

∫
U

∂F (x, t)

∂t
ρ (dx) , or

d

dt
Ex [F (x, t)1U ] = Ex

[
∂F (x, t)

∂t
1U

]
.

Proof. See proof of Lemma A.4 in the technical report [2].

Lemma A.4 (Gaussian Tail Estimates). Let X ∼ N (0, 1) and Φ (x) be CDF of X . For any x ≥ 0, we have the
following estimates for Φc (x)

.
= 1− Φ (x):(

1

x
− 1

x3

)
exp

(
−x2/2

)
√

2π
≤ Φc (x) ≤

(
1

x
− 1

x3
+

3

x5

)
exp

(
−x2/2

)
√

2π
, (Type I)

x

x2 + 1

exp
(
−x2/2

)
√

2π
≤ Φc (x) ≤ 1

x

exp
(
−x2/2

)
√

2π
, (Type II)

√
x2 + 4− x

2

exp
(
−x2/2

)
√

2π
≤ Φc (x) ≤

(√
2 + x2 − x

) exp
(
−x2/2

)
√

2π
(Type III).

Proof. See proof of Lemma A.5 in the technical report [2].

Lemma A.5 (Moments of the Gaussian RV). If X ∼ N
(
0, σ2

)
, then it holds for all integer p ≥ 1 that

E [|X|p] ≤ σp (p− 1)!!.

Lemma A.6 (Moments of the χ2 RV). If X ∼ χ2 (n), then it holds for all integer p ≥ 1 that

E [Xp] = 2p
Γ (p+ n/2)

Γ (n/2)
=

p∏
k=1

(n+ 2k − 2) ≤ p! (2n)p /2.

Lemma A.7 (Moments of the χ RV). If X ∼ χ (n), then it holds for all integer p ≥ 1 that

E [Xp] = 2p/2
Γ (p/2 + n/2)

Γ (n/2)
≤ p!np/2.

Lemma A.8 (Moment-Control Bernstein’s Inequality for Scalar RVs, Theorem 2.10 of [122]). Let X1, . . . , Xp be
i.i.d. real-valued random variables. Suppose that there exist some positive numbers R and σ2 such that

E [|Xk|m] ≤ m!σ2Rm−2/2, for all integers m ≥ 2.

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(
− pt2

2σ2 + 2Rt

)
.

Lemma A.9 (Moment-Control Bernstein’s Inequality for Matrix RVs, Theorem 6.2 of [123]). LetX1, . . . ,Xp ∈ Rd×d
be i.i.d. random, symmetric matrices. Suppose there exist some positive number R and σ2 such that

E [Xm
k ] � m!σ2Rm−2/2 · I and− E [Xm

k ] � m!σ2Rm−2/2 · I , for all integers m ≥ 2.
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Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [‖S − E [S]‖ ≥ t] ≤ 2d exp

(
− pt2

2σ2 + 2Rt

)
.

Proof. See proof of Lemma A.10 in the technical report [2].

Corollary A.10 (Moment-Control Bernstein’s Inequality for Vector RVs). Let x1, . . . ,xp ∈ Rd be i.i.d. random
vectors. Suppose there exist some positive number R and σ2 such that

E [‖xk‖m] ≤ m!σ2Rm−2/2, for all integers m ≥ 2.

Let s = 1
p

∑p
k=1 xk, then for any t > 0, it holds that

P [‖s− E [s]‖ ≥ t] ≤ 2(d+ 1) exp

(
− pt2

2σ2 + 2Rt

)
.

Proof. See proof of Lemma A.11 in the technical report [2].

Lemma A.11 (Integral Form of Taylor’s Theorem). Let f(x) : Rn 7→ R be a twice continuously differentiable
function, then for any direction y ∈ Rn, we have

f(x+ ty) = f(x) + t

∫ 1

0
〈∇f(x+ sty),y〉 ds,

f(x+ ty) = f(x) + t 〈∇f(x),y〉+ t2
∫ 1

0
(1− s)

〈
∇2f(x+ sty)y,y

〉
ds.

APPENDIX B
AUXILLARY RESULTS FOR PROOFS

Lemma B.1. Let X ∼ N (0, σ2
X) and Y ∼ N (0, σ2

Y ) be independent random variables and Φc (t) =
1√
2π

∫∞
t exp

(
−x2/2

)
dx be the complementary cumulative distribution function of the standard normal. For

any a > 0, we have

E [X1X>0] =
σX√
2π
, (B.1)

E [exp (−aX)X1X>0] =
σX√
2π
− aσ2

X exp

(
a2σ2

X

2

)
Φc (aσX) , (B.2)

E [exp (−aX)1X>0] = exp

(
a2σ2

X

2

)
Φc (aσX) , (B.3)

E
[
exp (−a(X + Y ))X2

1X+Y >0

]
= σ2

X

(
1 + a2σ2

X

)
exp

(
a2σ2

X + a2σ2
Y

2

)
Φc

(
a
√
σ2
X + σ2

Y

)
−

aσ4
X

√
2π
√
σ2
X + σ2

Y

, (B.4)

E [exp (−a(X + Y ))XY 1X+Y >0] = a2σ2
Xσ

2
Y exp

(
a2σ2

X + a2σ2
Y

2

)
Φc

(
a
√
σ2
X + σ2

Y

)
−

aσ2
Xσ

2
Y

√
2π
√
σ2
X + σ2

Y

, (B.5)

E [tanh (aX)X] = aσ2
XE
[
1− tanh2 (aX)

]
, (B.6)

E [tanh (a(X + Y ))X] = aσ2
XE
[
1− tanh2 (a(X + Y ))

]
. (B.7)

Proof. Equalities (B.1), (B.2), (B.3), (B.4) and (B.5) can be obtained by direct integrations. Equalities (B.6) and
(B.7) can be derived using integration by part.
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Proof. (of Lemma IV.1) Indeed 1
(1+βt)2

=
∑∞

k=0(−1)k(k + 1)βktk, as

∞∑
k=0

(−1)k(k + 1)βktk =

∞∑
k=0

(−βt)k +

∞∑
k=0

k(−βt)k =
1

1 + βt
+

−βt
(1 + βt)2

=
1

(1 + βt)2
.

The magnitude of the coefficient vector is

‖b‖`1 =

∞∑
k=0

βk(1 + k) =

∞∑
k=0

βk +

∞∑
k=0

kβk =
1

1− β
+

β

(1− β)2
=

1

(1− β)2
= T.

Observing that 1
(1+βt)2

> 1
(1+t)2

for t ∈ [0, 1] when 0 < β < 1, we obtain

‖p− f‖L1[0,1] =

∫ 1

0
|p(t)− f(t)| dt =

∫ 1

0

[
1

(1 + βt)2
− 1

(1 + t)2

]
dt =

1− β
2(1 + β)

≤ 1

2
√
T
.

Moreover, we have

‖f − p‖L∞[0,1] = max
t∈[0,1]

p(t)− f(t) = max
t∈[0,1]

t(1− β) (2 + t(1 + β))

(1 + t)2(1 + βt)2
≤ 1− β =

1√
T
.

Finally, notice that
∞∑
k=0

bk
(1 + k)3

=

∞∑
k=0

(−β)k

(1 + k)2
=

∞∑
i=0

[
β2i

(1 + 2i)2
− β2i+1

(2i+ 2)2

]

=

∞∑
i=0

β2i (2i+ 2)2 − β(2i+ 1)2

(2i+ 2)2(2i+ 1)2
> 0,

where at the second equality we have grouped consecutive even-odd pair of summands. In addition, we have
n∑
k=0

bk
(1 + k)3

≤
n∑
k=0

|bk|
(1 + k)3

=

n∑
k=0

βk

(1 + k)2
≤ 1 +

n∑
k=1

1

(1 + k)k
= 2− 1

n+ 1
,

which converges to 2 when n→∞, completing the proof.

Proof. (of Lemma IV.5) The first inequality is obviously true for v = 0. When v 6= 0, we have

E [|v∗z|m] =

n∑
`=0

θ` (1− θ)n−`
∑
J∈([n]

` )

EZ∼N(0,‖vJ ‖2) [|Z|m]

≤
n∑
`=0

θ` (1− θ)n−`
∑
J∈([n]

` )

EZ∼N(0,‖v‖2) [|Z|m]

= EZ∼N(0,‖v‖2) [|Z|m]

n∑
`=0

θ` (1− θ)n−`
(
n

`

)
= EZ∼N(0,‖v‖2) [|Z|m] ,

where the second line relies on the fact ‖vJ ‖ ≤ ‖v‖ and that for a fixed order, central moment of Gaussian is
monotonically increasing w.r.t. its variance. Similarly, to see the second inequality,

E [‖z‖m] =

n∑
`=0

θ` (1− θ)n−`
∑
J∈([n]

` )

E
[∥∥z′J ∥∥m]

≤ E
[∥∥z′∥∥m] n∑

`=0

θ` (1− θ)n−`
(
n

`

)
= E

[∥∥z′∥∥m] ,
as desired.
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Proof. (of Lemma IV.12) Consider one component of X , i.e., Xij = BijVij for i ∈ [n] and j ∈ [p], where
Bij ∼ Ber (θ)) and Vij ∼ N (0, 1). We have

P
[
|Xij | > 4

√
log (np)

]
≤ θP

[
|Vij | > 4

√
log(np)

]
≤ θ exp (−8 log(np)) = θ(np)−8.

And also

P [|Xij | < 1] = 1− θ + θP [|Vij | < 1] ≤ 1− 0.3θ.

Applying a union bound as

P
[
‖X‖∞ ≤ 1 or ‖X‖∞ ≥ 4

√
log (np)

]
≤ (1− 0.3θ)np + npθ (np)−8 ≤ exp (−0.3θnp) + θ (np)−7 ,

we complete the proof.

Lemma B.2. Suppose A � 0. Then for any symmetric perturbation matrix ∆ with ‖∆‖ ≤ σmin(A)
2 , it holds that∥∥∥(A+ ∆)−1/2 −A−1/2

∥∥∥ ≤ 2 ‖A‖1/2 ‖∆‖
σ2

min (A)
. (B.8)

Proof. See proof of Lemma B.2 in the technical report [2].

Lemma B.3. For any θ ∈ (0, 1/2), X ∈ Rn1×n2 with X ∼i.i.d. BG (θ) obeys∥∥∥∥ 1

n2θ
XX∗ − I

∥∥∥∥ ≤ 10

√
θn1 log n2

n2
(B.9)

with probability at least 1− n−8
2 , provided n2 > Cn2

1 log n1. Here C > 0 is a constant.

Proof. Observe that E
[

1
θxkx

∗
k

]
= I for any column xk of X and so 1

n2θ
XX∗ can be considered as a normalize

sum of independent random matrices. Moreover, for any integer m ≥ 2,

E
[(

1

θ
xkx

∗
k

)m]
=

1

θm
E
[
‖xk‖2m−2 xkx

∗
k

]
.

Now E
[
‖xk‖2m−2 xkx

∗
k

]
is a diagonal matrix (as E

[
‖xk‖2 xk (i)xk (j)

]
= −E

[
‖xk‖2 xk (i)xk (j)

]
for any i 6= j

by symmetry of the distribution) in the form E
[
‖xk‖2m−2 xkx

∗
k

]
= E

[
‖x‖2m−2 x(1)2

]
I for x ∼i.i.d. BG (θ) with

x ∈ Rn1 . Let t2 (x) = ‖x‖2 − x(1)2. Then if m = 2,

E
[
‖x‖2 x(1)2

]
= E

[
x(1)4

]
+ E

[
t2 (x)

]
E
[
x(1)2

]
= E

[
x(1)4

]
+ (n1 − 1)

(
E
[
x(1)2

])2
= 3θ + (n1 − 1) θ2 ≤ 3n1θ,

where for the last simplification we use the assumption θ ≤ 1/2. For m ≥ 3,

E
[
‖x‖2m−2 x(1)2

]
=

m−1∑
k=0

(
m− 1

k

)
E
[
t2k (x)x(1)2m−2k

]
=

m−1∑
k=0

(
m− 1

k

)
E
[
t2k (x)

]
E
[
x(1)2m−2k

]
≤

m−1∑
k=0

(
m− 1

k

)
EZ∼χ2(n1−1)

[
Zk
]
θEW∼N (0,1)

[
W 2m−2k

]
≤ θ

m−1∑
k=0

(
m− 1

k

)
k!

2
(2n1 − 2)k (2m− 2k)!!

≤ θ2mm!

2

m−1∑
k=0

(
m− 1

k

)
(n1 − 1)k

≤ m!

2
nm−1

1 2m−1,
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where we have used the moment estimates for Gaussian and χ2 random variables from Lemma A.5 and Lemma A.6,
and also θ ≤ 1/2. Taking σ2 = 3n1θ and R = 2n1, and invoking the matrix Bernstein in Lemma A.9, we obtain

E

[∥∥∥∥∥ 1

pθ

p∑
k=1

xkx
∗
k − I

∥∥∥∥∥ > t

]
≤ exp

(
− n2t

2

6n1θ + 4n1t
+ 2 log n1

)
(B.10)

for any t ≥ 0. Taking t = 10
√
θn1 log (n2) /n2 gives the claimed result.
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