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Complete Dictionary Recovery over the Sphere
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Abstract

We consider the problem of recovering a complete (i.e., square and invertible) matrix A0, from Y ∈ Rn×p

with Y = A0X0, provided X0 is sufficiently sparse. This recovery problem is central to theoretical understanding
of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous
applications in modern signal processing and machine learning. We give the first efficient algorithm that provably
recovers A0 when X0 has O (n) nonzeros per column, under suitable probability model for X0.

Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical
constraint, and hence is naturally phrased in the language of manifold optimization. In a companion paper [3], we
have showed that with high probability our nonconvex formulation has no “spurious” local minimizers and around
any saddle point the objective function has a negative directional curvature. In this paper, we take advantage of the
particular geometric structure, and describe a Riemannian trust region algorithm that provably converges to a local
minimizer with from arbitrary initializations. Such minimizers give excellent approximations to rows of X0. The
rows are then recovered by linear programming rounding and deflation.

Index Terms

Dictionary learning, Nonconvex optimization, Spherical constraint, Escaping saddle points, Trust-region method,
Manifold optimization, Function landscape, Second-order geometry, Inverse problems, Structured signals, Nonlinear
approximation

I. INTRODUCTION

Recently, there is a surge of research studying nonconvex formulations and provable algorithms for a number of
central problems in signal processing and machine learning, including, e.g., low-rank matrix completion/recovery [4]–
[25], phase retreival [26]–[36], tensor recovery [37]–[41], mixed regression [42], [43], structured element pursuit [41],
[44], blind deconvolution [45]–[49], noisy phase synchronization and community detection [50]–[52], deep
learning [53], [54], numerical linear algebra and optimization [55], [56]. The research efforts are fruitful in
producing more practical and scalable algorithms and even significantly better performance guarantees than known
convex methods.

In a companion paper [3], we set out to understand the surprising effectiveness of nonconvex heuristics on
the dictionary learning (DL) problem. In particular, we have focused on the complete dictionary recovery (DR)
setting: given Y = A0X0, with A0 ∈ Rn×n complete (i.e., square and invertible), and X0 ∈ Rn×p obeying an i.i.d.
Bernoulli-Gaussian (BG) model with rate θ (i.e., [X0]ij = ΩijZij with Ωij ∼ Ber(θ) and Zij ∼ N (0, 1)), recover
A0 and X0. In this setting, row(Y ) = row(X0), where row(·) denotes the row space. To first recover rows of X0,
we have tried to find the sparsest vectors in row(Y ), and proposed solving the nonconvex formulation

minimize f(q; Ŷ )
.
=

1

p

p∑
k=1

hµ(q∗ŷk) subject to q ∈ Sn−1, (I.1)

where Ŷ is a proxy of Y (i.e., after appropriate processing), ŷk is the k-th column of Ŷ , and hµ(z)
.
= µ log cosh(z/µ)

is a (convex) smooth approximation to the absolute-value function. The spherical constraint renders the problem
nonconvex.
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Despite the apparent nonconvexity, our prior analysis in [3] has showed that all local minimizers of (I.1) are
qualitatively equally good, because each of them produces a close approximation to certain row of X0 (Corollary
II.4 in [3]). So the central issue is how to escape from saddle points. Fortunately, our previous results (Theorem II.3
in [3]) imply that all saddle points under consideration are ridable, i.e., the associated Hessians have both strictly
positive and strictly negative values (see the recapitulation in Section II-B). Particularly, eigenvectors of the negative
eigenvalues are direction of negative curvature, which intuitively serve as directions of local descent.

Second-order methods can naturally exploit the curvature information to escape from ridable saddle points. To
gain some intuition, consider an unconstrained optimization problem

minimizex∈Rn φ(x).

The second-order Taylor expansion of φ at a saddle point x0 is

φ̂(δ;x0) = φ(x0) + 1
2δ
∗∇2φ(x0)δ.

When δ is chosen to align with an eigenvector of a negative eigenvalue λneg[∇2φ(x0)] < 0, it holds that

φ̂(δ;x0)− φ(x0) ≤ −
∣∣λneg[∇2φ(x)]

∣∣ ‖δ‖2 .
Thus, minimizing φ̂(δ;x0) returns a direction δ? that tends to decrease the objective φ, provided local approximation
of φ̂ to φ is reasonably accurate. Based on this intuition, we derive a (second-order) Riemannian trust-region
algorithm that exploits the second-order information to escape from saddle points and provably returns a local
minimizer to (I.1), from arbitrary initializations. We provide rigorous guarantees for recovering a local minimizer in
Section II.

Obtaining a local minimizer only helps approximate one row of X0. To recover the row, we derive a simple
linear programming rounding procedure that provably works. To recover all rows of X0, one repeats the above
process based on a carefully designed deflation process. The whole algorithmic pipeline and the related recovery
guarantees are provided in Section III. Particularly, we show that when p is reasonably large, with high probability
(w.h.p.), our pipeline efficiently recovers A0 and X0, even when each column of X0 contains O(n) nonzeros.

A. Prior Arts and Connections

In Section II.E of the companion paper [3], we provide detailed comparisons of our results with prior theoretical
results on DR; we conclude that this is the first algorithmic framework that guarantees efficient recovery of complete
dictionaries when the coefficients have up to constant fraction of nonzeros. We also draw methodological connections
to work on understanding nonconvex heuristics, and other nonconvex problems with similar geometric structures.
Here we focus on drawing detailed connections to the optimization literature.

Trust-region method (TRM) has a rich history dating back to 40’s; see the monograph [57] for accounts of the
history and developments. The main motivation for early developments was to address limitations of the classic
Newton’s method (see, e.g., Section 3 of [58]). The limitations include the technical subtleties to establish local and
global convergence results. Moreover, when the Hessian is singular or indefinite, the movement direction is either
not well-defined, or does not improve the objective function. [59]–[64] initialized the line of work that addresses
the limitations. Particularly, [58], [65] proposed using local second-order Taylor approximation as model function in
the trust-region framework for unconstrained optimization. They showed that under mild conditions, the trust-region
iterate sequence has a limit point that is critical and has positive semidefinite Hessian; see also Section 6.5-6.6
of [57]. Upon inspecting the relevant proofs, it seems not hard to strengthen the results to sequence convergence to
local minimizers, under a ridable saddle condition as ours, for unconstrained optimization.

Research activities to port theories and algorithms of optimization in Euclidean space to Riemannian manifolds
are best summarized by three monographs: [66]–[68]. [69] developed Newton and conjugate-gradient methods for
the Stiefel manifolds, of which the sphere is a special case; [68] presents a complete set of first- and second-order
Riemannian algorithms and convergence analyses; see also the excellent associated optimization software toolbox [70].
Among these, trust-region method was first ported to the Riemannian setting in [71], with emphasis on efficient
implementation which only approximately solves the trust-region subproblem according to the Cauchy point scheme.
The Cauchy point definition adopted there was the usual form based on the gradient, not strong enough to ensure the
algorithm escape from ridable saddle points even if the true Hessian is in use in local approximation. In comparison,
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in this work we assume that the trust-region subproblem is exactly solved, such that ridable saddles (the only
possible saddles for our problem) are properly skipped. By this, we obtain the strong guarantee that the iterate
sequence converges to a local minimizer, in contrast to the weak global convergence (gradient sequence converging
to zero) or local convergence (sequence converging to a local minimizer within a small radius) established in [71].
To the best of our knowledge, our convergence result is first of its kind for a specific problem on sphere. After our
initial submission, [72] has recently established worst-case iteration complexity of Riemannian TRM to converge
to second-order critical points (i.e., critical points with positive semidefinite Hessians), echoing the results in the
Euclidean case [73]. Their results are under mild Lipschitz-type assumptions and allow inexact subproblem solvers,
and hence are very practical and general. However, on our particular problem, their result is considerably pessimistic,
compared to our convergence result obtained from a specialized analysis.

Solving the trust-region subproblem exactly is expensive. Practically, often a reasonable approximate solution with
controlled quality is adequate to guarantee convergence. In this regard, the truncated conjugate gradient (tCG) solver
with a good initial search direction is commonly employed in practice (see, e.g., Section 7.5 in [57]). To ensure
ridable saddle points be properly escaped from, the eigenpoint idea (see, e.g., Section 6.6 of [57]) is particularly
relevant; see also Algorithm 3 and Lemma 10 in [72].

The benign function landscape we characterized in the first paper allows any reasonable iterative method that is
capable of escaping from ridable saddles to find a local minimizer, with possibly different performance guarantees.
The trust-region method we focus on here, and the curviliear search method [61] are second-order methods that
guarantee global optimization from arbitrary initializations. Typical first-order methods such as the vanilla gradient
descent can only guarantee convergence to a critical point. Nonetheless, for our particular function, noisy/stochastic
gradient method guarantees to find a local minimizer from an arbitrary initialization with high probability [74].

B. Notations, and Reproducible Research
We use bold capital and small letters such as X and x to denote matrices and vectors, respectively. Small letters

are reserved for scalars. Several specific mathematical objects we will frequently work with: Ok for the orthogonal
group of order k, Sn−1 for the unit sphere in Rn, Bn for the unit ball in Rn, and [m]

.
= {1, . . . ,m} for positive

integers m. We use (·)∗ for matrix transposition, causing no confusion as we will work entirely on the real field.
We use superscript to index rows of a matrix, such as xi for the i-th row of the matrix X , and subscript to index
columns, such as xj . All vectors are defaulted to column vectors. So the i-th row of X as a row vector will be
written as

(
xi
)∗. For norms, ‖·‖ is the usual `2 norm for a vector and the operator norm (i.e., `2 → `2) for a

matrix; all other norms will be indexed by subscript, for example the Frobenius norm ‖·‖F for matrices and the
element-wise max-norm ‖·‖∞. We use x ∼ L to mean that the random variable x is distributed according to the
law L. Let N denote the Gaussian law. Then x ∼ N (0, I) means that x is a standard Gaussian vector. Similarly,
we use x ∼i.i.d. L to mean elements of x are independently and identically distributed according to the law L. So
the fact x ∼ N (0, I) is equivalent to that x ∼i.i.d. N (0, 1). One particular distribution of interest for this paper is
the Bernoulli-Gaussian with rate θ: Z ∼ B ·G, with G ∼ N (0, 1) and B ∼ Ber (θ). We also write this compactly
as Z ∼ BG (θ). We frequently use indexed C and c for numerical constants when stating and proving technical
results. The scopes of such constants are local unless otherwise noted. We use standard notations for most other
cases, with exceptions clarified locally.

The codes to reproduce all the figures and experimental results are available online:
https://github.com/sunju/dl focm .

II. FINDING ONE LOCAL MINIMIZER VIA THE RIEMANNIAN TRUST-REGION METHOD

We are interested to seek a local minimizer of (I.1). The presence of saddle points have motivated us to develop
a second-order Riemannian trust-region algorithm over the sphere; the existence of descent directions at nonoptimal
points drives the trust-region iteration sequence towards one of the minimizers asymptotically. We will prove that
under our modeling assumptions, this algorithm with an arbitrary initialization efficiently produces an accurate
approximation1 to one of the minimizers. Throughout the exposition, basic knowledge of Riemannian geometry
is assumed. We will try to keep the technical requirement minimal possible; the reader can consult the excellent
monograph [68] for relevant background and details.

1By “accurate” we mean one can achieve an arbitrary numerical accuracy ε > 0 with a reasonable amount of time. Here the running time
of the algorithm is on the order of log log(1/ε) in the target accuracy ε, and polynomial in other problem parameters.

https://github.com/sunju/dl_focm
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A. Some Basic Facts about the Sphere and f

For any point q ∈ Sn−1, the tangent space TqSn−1 and the orthoprojector PTqSn−1 onto TqSn−1 are given by

TqSn−1 = {δ ∈ Rn : q∗δ = 0} ,
PTqSn−1 = I − qq∗ = UU∗,

where U ∈ Rn×(n−1) is an arbitrary orthonormal basis for TqSn−1 (note that the orthoprojector is independent of
the basis U we choose). Consider any δ ∈ TqSn−1. The map

γ(t) : t 7→ q cos (t ‖δ‖) +
δ

‖δ‖ sin (t ‖δ‖)

defines a smooth curve on the sphere that satisfies γ(0) = q and γ̇(0) = δ. Geometrically, γ(t) is a segment of the
great circle that passes q and has δ as its tangent vector at q. The exponential map for δ is defined as

expq(δ)
.
= γ(1) = q cos ‖δ‖ +

δ

‖δ‖ sin ‖δ‖ .

It is a canonical way of pulling δ to the sphere.

O

q
TqSn−1

δ

expq(δ)

Sn−1

Fig. 1: Illustrations of the tangent space TqSn−1 and exponential map expq (δ) defined on the sphere Sn−1.

In this paper we are interested in the restriction of f to the unit sphere Sn−1. For the sake of performing optimization,
we need local approximations of f . Instead of directly approximating the function in Rn, we form quadratic
approximations of f in the tangent spaces of Sn−1. We consider the smooth function f ◦ expq(δ) : TqSn−1 7→ R,
where ◦ is the usual function composition operator. An applications of vector space Taylor’s theorem gives

f ◦ expq(δ) ≈ f(q; Ŷ ) +
〈
∇f(q; Ŷ ), δ

〉
+

1

2
δ∗
(
∇2f(q; Ŷ )−

〈
∇f(q; Ŷ ), q

〉
I
)
δ

when ‖δ‖ is small. Thus, we form a quadratic approximation f̂(δ; q) : TqSn−1 7→ R as

f̂(δ; q, Ŷ )
.
= f(q; Ŷ ) +

〈
∇f(q; Ŷ ), δ

〉
+

1

2
δ∗

∇2f(q; Ŷ )−
〈
∇f(q; Ŷ ), q

〉
I

 δ. (II.1)

Here ∇f(q) and ∇2f(q) denote the usual (Euclidean) gradient and Hessian of f w.r.t. q in Rn. For our specific f
defined in (I.1), it is easy to check that

∇f(q; Ŷ ) =
1

p

p∑
k=1

tanh

(
q∗ŷk
µ

)
ŷk, (II.2)

∇2f(q; Ŷ ) =
1

p

p∑
k=1

1

µ

[
1− tanh2

(
q∗ŷk
µ

)]
ŷkŷ

∗
k. (II.3)

The quadratic approximation also naturally gives rise to the Riemannian gradient and Riemannian Hessian defined
on TqSn−1 as

grad f(q; Ŷ ) = PTqSn−1∇f(q; Ŷ ), (II.4)

Hess f(q; Ŷ ) = PTqSn−1

(
∇2f(q; Ŷ )−

〈
∇f(q; Ŷ ), q

〉
I
)
PTqSn−1 . (II.5)
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Thus, the above quadratic approximation can be rewritten compactly as

f̂
(
δ; q, Ŷ

)
= f(q; Ŷ ) +

〈
δ, grad f(q; Ŷ )

〉
+

1

2
δ∗Hess f(q; Ŷ )δ, ∀ δ ∈ TqSn−1.

The first order necessary condition for unconstrained minimization of function f̂ over TqSn−1 is

grad f(q; Ŷ ) + Hess f(q; Ŷ )δ? = 0. (II.6)

If Hess f(q; Ŷ ) is positive semidefinite and has “full rank” n− 1 (hence “nondegenerate”2), the unique solution δ?
is

δ? = −U
(
U∗
[
Hess f(q; Ŷ )

]
U
)−1

U∗ grad f(q),

which is also invariant to the choice of basis U . Given a tangent vector δ ∈ TqSn−1, let γ(t)
.
= expq(tδ) denote a

geodesic curve on Sn−1. Following the notation of [68], let

Pτ←0
γ : TqSn−1 → Tγ(τ)Sn−1

denotes the parallel translation operator, which translates the tangent vector δ at q = γ(0) to a tangent vector at
γ(τ), in a “parallel” manner. In the sequel, we identify Pτ←0

γ with the following n× n matrix, whose restriction to
TqSn−1 is the parallel translation operator (the detailed derivation can be found in Chapter 8.1 of [68]):

Pτ←0
γ =

(
I − δδ∗

‖δ‖2

)
− q sin (τ ‖δ‖) δ

∗

‖δ‖ +
δ

‖δ‖ cos (τ ‖δ‖) δ
∗

‖δ‖

= I + (cos(τ ‖δ‖)− 1)
δδ∗

‖δ‖2
− sin (τ ‖δ‖) qδ

∗

‖δ‖ . (II.7)

Similarly, following the notation of [68], we denote the inverse of this matrix by P0←τ
γ , where its restriction to

Tγ(τ)Sn−1 is the inverse of the parallel translation operator Pτ←0
γ .

B. The Geometric Results from [3]

We reproduce the main geometric theorems from [3] here for the sake of completeness. To characterize the
function landscape of f (q;X0) over Sn−1, we mostly work with the function

g (w;X0)
.
= f (q (w) ;X0) =

1

p

p∑
k=1

hµ (q (w)∗ (x0)k) , (II.8)

induced by the reparametrization

q (w) =

(
w,

√
1− ‖w‖2

)
, w ∈ Bn−1. (II.9)

Geometrically, this corresponds to projection of the function f above the equatorial section e⊥n onto e⊥n (see Fig. 2
(right) for illustration). In particular, we focus our attention to the smaller set of the ball:

Γ =

{
w : ‖w‖ <

√
4n− 1

4n

}
( Bn−1, (II.10)

because q (Γ) contains all points q ∈ Sn−1 with n ∈ arg maxi∈±[n] q
∗ei. We can similarly characterize other parts

of f on Sn−1 using projection onto other equatorial sections.

Theorem II.1 (High-dimensional landscape - orthogonal dictionary). Suppose A0 = I and hence Y = A0X0 = X0.
There exist positive constants c? and C, such that for any θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
, whenever

p ≥ C

µ2θ2
n3 log

n

µθ
, (II.11)

2Note that the n× n matrix Hess f(q; Ŷ ) has rank at most n− 1, as the nonzero q obviously is in its null space. When Hess f(q; Ŷ )
has rank n− 1, it has no null direction in the tangent space. Thus, in this case it acts on the tangent space like a full-rank matrix.
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Fig. 2: Why is dictionary learning over Sn−1 tractable? Assume the target dictionary A0 = I . Left: Large
sample objective function EX0

[f (q)]. The only local minimizers are the standard basis vectors ei’s and their
negatives. Right: A visualization of the function as a height above the equatorial section e⊥3 , i.e., span{e1, e2}∩B3.
The derived function is obtained by assigning values of points on the upper hemisphere to their corresponding
projections on the equatorial section e⊥3 . The minimizers for the derived function are 0,±e1,±e2. Around 0 in e⊥3 ,
the function exhibits a small region of strong convexity, a region of large gradient, and finally a region in which the
direction away from 0 is a direction of negative curvature.

the following hold simultaneously with probability at least 1− cbp−6:

∇2g(w;X0) � c?θ

µ
I ∀w s.t. ‖w‖ ≤ µ

4
√

2
, (II.12)

w∗∇g(w;X0)

‖w‖ ≥ c?θ ∀w s.t.
µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5
(II.13)

w∗∇2g(w;X0)w

‖w‖2
≤ −c?θ ∀w s.t.

1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
, (II.14)

and the function g(w;X0) has exactly one local minimizer w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
, which

satisfies

‖w? − 0‖ ≤ min

{
ccµ

θ

√
n log p

p
,
µ

16

}
. (II.15)

Here ca through cc are all positive constants.

Recall that the reason we just need to characterize the geometry for the case A0 = I is that for other orthogonal
A0, the function landscape is simply a rotated version of that of A0 = I .

Theorem II.2 (High-dimensional landscape - complete dictionary). Suppose A0 is complete with its condition
number κ (A0). There exist positive constants c? (particularly, the same constant as in Theorem II.1) and C, such
that for any θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
, when

p ≥ C

c2
?θ

2
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
(II.16)

and Y .
=
√
pθ (Y Y ∗)−1/2 Y , UΣV ∗ = SVD (A0), the following hold simultaneously with probability at least

1− cbp−6:

∇2g(w;V U∗Y ) � c?θ

2µ
I ∀w s.t. ‖w‖ ≤ µ

4
√

2
, (II.17)

w∗∇g(w;V U∗Y )

‖w‖ ≥ 1

2
c?θ ∀w s.t.

µ

4
√

2
≤ ‖w‖ ≤ 1

20
√

5
(II.18)
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w∗∇2g(w;V U∗Y )w

‖w‖2
≤ −1

2
c?θ ∀w s.t.

1

20
√

5
≤ ‖w‖ ≤

√
4n− 1

4n
, (II.19)

and the function g(w;V U∗Y ) has exactly one local minimizer w? over the open set Γ
.
=
{
w : ‖w‖ <

√
4n−1

4n

}
,

which satisfies
‖w? − 0‖ ≤ µ/7. (II.20)

Here ca, cb are both positive constants.

From the above theorems, it is clear that for any saddle point in the w space, the Hessian of g has at least one
negative eigenvalue. Now the problem is whether all saddle points of f on Sn−1 are “ridable”, because as alluded
to in previous discussion, we need to perform actual optimization in the q space. Instead of presenting a rigorous
technical statement and detailed proof, we include here just an informal argument; our actual proof for algorithmic
convergence runs back and forth in w and q space and such lack will not affect our arguments there.

It is very easy to verify the following fact (see proof of Lemma II.13 on page 33):

〈grad f(q), q − en/qn〉 = 〈w,∇g(w)〉 .
Thus, 〈grad f(q), q − en/qn〉 6= 0 if and only if 〈w,∇g(w)〉 6= 0, implying that grad f(q) will never be zero in the
spherical region corresponding to

{
w : µ/(4

√
2) ≤ ‖w‖ ≤ 1/(20

√
5)
}

. Moreover, it is shown in Lemma II.11 below
that the Riemannian Hessian is positive definite for the spherical region corresponding to

{
w : ‖w‖ ≤ µ/(4

√
2)
}

,
so there is no saddle point in this region either. Over q(Γ) ∩ Sn−1, potential saddle points lie only in the region
corresponding to {w : 1/(20

√
5) ≤ ‖w‖ ≤

√
(4n− 1)/(4n)}. Theorem II.1 and Theorem II.2 imply that around

each point in this region, a cross section of the function g(w) is strictly concave locally. Intuitively, by the q(w)
mapping the same happens in the q space, i.e., the Riemannian Hessian has a strictly negative eigenvalue.

C. The Riemannian Trust-Region Algorithm over the Sphere

For a function f in the Euclidean space, the typical TRM starts from some initialization q(0) ∈ Rn, and produces
a sequence of iterates q(1), q(2), . . . , by repeatedly minimizing a quadratic approximation f̂ to the objective function
f(q), over a ball centered around the current iterate.

For our f defined over Sn−1, given the previous iterate q(r−1), the TRM produces the next movement by generating
a solution δ̂ to

minimizeδ∈T
q(r−1)Sn−1, ‖δ‖≤∆ f̂

(
δ; q(r−1)

)
, (II.21)

where f̂
(
δ; q(r−1)

)
is the local quadratic approximation defined in (II.1). The solution δ̂ is then pulled back to

Sn−1 from TqSn−1. If we choose the exponential map to pull back the movement δ̂,3 the next iterate then reads

q(r) = q(r−1) cos ‖δ̂‖+
δ̂

‖δ̂‖
sin ‖δ̂‖. (II.22)

To solve the subproblem (II.21) numerically, we can take any matrix U ∈ Rn×(n−1) whose columns form an
orthonormal basis for Tq(r−1)Sn−1, and produce a solution ξ̂ to

minimize‖ξ‖≤∆ f̂
(
Uξ; q(r−1)

)
. (II.23)

Solution to (II.21) can then be recovered as δ̂ = Uξ̂.
The problem (II.23) is an instance of the classic trust region subproblem, i.e., minimizing a quadratic function

subject to a single quadratic constraint. Albeit potentially nonconvex, this notable subproblem can be solved in
polynomial time by several numerical methods [57], [65], [75]–[78]. Approximate solution of the subproblem suffices
to guarantee convergence in theory, and lessens the storage and computational burden in practice. We will deploy
the approximate version in simulations. For simplicity, however, our subsequent analysis assumes the subproblem is
solved exactly. We next briefly describe how one can deploy the semidefinite programming (SDP) approach [75]–[78]

3The exponential map is only one of the many possibilities; also for general manifolds other retraction schemes may be more practical. See
exposition on retraction in Chapter 4 of [68].
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to solve the subproblem exactly. This choice is due to the well-known effectiveness and robustness of the SDP
approach on this problem. We introduce

ξ̃ = [ξ∗, 1]∗ , Θ = ξ̃ξ̃∗, M =

[
A b
b∗ 0

]
, (II.24)

where A = U∗Hess f(q(r−1); Ŷ )U and b = U∗ grad∇f(q(r−1); Ŷ ). The resulting SDP to solve is

minimize Θ 〈M ,Θ〉 , subject to tr(Θ) ≤ ∆2 + 1, 〈En+1,Θ〉 = 1, Θ � 0, (II.25)

where En+1 = en+1e
∗
n+1. Once the problem (II.25) is solved to its optimum Θ?, one can provably recover the

minimizer ξ? of (II.23) by computing the SVD of Θ? = ŨΣṼ ∗, and extract as a subvector the first n−1 coordinates
of the principal eigenvector ũ1 (see Appendix B of [79]).

D. Main Convergence Results

Using general convergence results on Riemannian TRM (see, e.g., Chapter 7 of [68]), it is not difficult to prove
that the gradient sequence grad f(q(r); Ŷ ) produced by TRM converges to zero (i.e., global convergence), or the
sequence converges (at quadratic rate) to a local minimizer if the initialization is already close a local minimizer
(i.e., local convergence). In this section, we show that under our probabilistic assumptions, these results can be
substantially strengthened. In particular, the algorithm is guaranteed to produce an accurate approximation to a local
minimizer of the objective function, in a number of iterations that is polynomial in the problem size, from arbitrary
initializations. The arguments in the companion paper [3] showed that w.h.p. every local minimizer of f produces a
close approximation to a row of X0. Taken together, this implies that the algorithm efficiently produces a close
approximation to one row of X0.

Thorough the analysis, we assume the trust-region subproblem is exactly solved and the step size parameter
∆ is fixed. Our next two theorems summarize the convergence results for orthogonal and complete dictionaries,
respectively.

Theorem II.3 (TRM convergence - orthogonal dictionary). Suppose the dictionary A0 is orthogonal. There exists a
positive constant C, such that for all θ ∈ (0, 1/2) and µ < ca min

{
θn−1, n−5/4

}
, whenever

p ≥ C

µ2θ2
n3 log

n

µθ
,

with probability at least 1 − cbp−6, the Riemannian trust-region algorithm with input data matrix Ŷ = Y , any
initialization q(0) on the sphere, and a step size satisfying

∆ ≤ ccc
3
?θ

3µ2

n7/2 log7/2 (np)
(II.26)

returns a solution q̂ ∈ Sn−1 which is ε near to one of the local minimizers q? (i.e., ‖q̂ − q?‖ ≤ ε) in at most

max

{
cdn

6 log3 (np)

c3
?θ

3µ4
,

cen

c2
?θ

2∆2

}
f(q(0)) + log log

cfc?θµ

εn3/2 log3/2 (np)
(II.27)

iterations. Here c? is as defined in Theorem II.1, and ca through cf are all positive constants.

Theorem II.4 (TRM convergence - complete dictionary). Suppose the dictionary A0 is complete with condition
number κ (A0). There exists a positive constant C, such that for all θ ∈ (0, 1/2), and µ < ca min

{
θn−1, n−5/4

}
,

whenever

p ≥ C

c2
?θ

2
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

with probability at least 1 − cbp
−6, the Riemannian trust-region algorithm with input data matrix Y

.
=√

pθ (Y Y ∗)−1/2 Y where UΣV ∗ = SVD (A0), any initialization q(0) on the sphere and a step size satisfying

∆ ≤ ccc
3
?θ

3µ2

n7/2 log7/2 (np)
(II.28)
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returns a solution q̂ ∈ Sn−1 which is ε near to one of the local minimizers q? (i.e., ‖q̂ − q?‖ ≤ ε) in at most

max

{
cdn

6 log3 (np)

c3
?θ

3µ4
,

cen

c2
?θ

2∆2

}
f(q(0)) + log log

cfc?θµ

εn3/2 log3/2 (np)
(II.29)

iterations. Here c? is as in Theorem II.1, and ca through cf are all positive constants.

Our convergence result shows that for any target accuracy ε > 0 the algorithm terminates within polynomially
many steps. Specifically, the first summand in (II.27) or (II.29) is the number of steps the sequence takes to enter
the strongly convex region and be “reasonably” close to a local minimizer. All subsequent trust-region subproblems
are then unconstrained (proved below) – the constraint is inactive at optimal point, and hence the steps behave like
Newton steps. The second summand reflects the typical quadratic local convergence of the Newton steps.

Our estimate of the number of steps is pessimistic: the running time is a relatively high-degree polynomial in
p and n. We will discuss practical implementation details that help speed up in Section IV. Our goal in stating
the above results is not to provide a tight analysis, but to prove that the Riemannian TRM algorithm finds a local
minimizer in polynomial time. For nonconvex problems, this is not entirely trivial – results of [80] show that in
general it is NP-hard to find a local minimizer of a nonconvex function.

E. Sketch of Proof for Orthogonal Dictionaries

The reason that our algorithm is successful derives from the geometry formalized in Theorem II.1. Basically, the
sphere Sn−1 can be divided into three regions. Near each local minimizer, the function is strongly convex, and the
algorithm behaves like a standard (Euclidean) TRM algorithm applied to a strongly convex function – in particular,
it exhibits a quadratic asymptotic rate of convergence. Away from local minimizers, the function always exhibits
either a strong gradient, or a direction of negative curvature (i.e., the Hessian has a strictly negative eigenvalue).
The Riemannian TRM algorithm is capable of exploiting these quantities to reduce the objective value by at least a
fixed amount in each iteration. The total number of iterations spent away from the vicinity of the local minimizers
can be bounded by comparing this amount to the initial objective value. Our proofs follow exactly this line and
make the various quantities precise.

Note that for any orthogonal A0, f (q;A0X0) = f (A∗0q;X0). In words, this is the established fact that the
function landscape of f(q;A0X0) is a rotated version of that of f(q;X0). Thus, any local minimizer q? of
f(q;X0) is rotated to A0q?, a local minimizer of f(q;A0X0). Also if our algorithm generates iteration sequence
q0, q1, q2, . . . for f(q;X0) upon initialization q0, it will generate the iteration sequence A0q0,A0q1,A0q2, . . .
for f (q;A0X0). So w.l.o.g. it is adequate that we prove the convergence results for the case A0 = I . So in this
section (Section II-E), we write f(q) to mean f(q;X0).

We partition the sphere into three regions, for which we label as RI, RII, RIII, corresponding to the strongly
convex, nonzero gradient, and negative curvature regions, respectively (see Theorem II.1). That is, RI consists of
a union of 2n spherical caps of radius µ/(4

√
2), each centered around a signed standard basis vector ±ei. RII

consist of the set difference of a union of 2n spherical caps of radius 1/(20
√

5), centered around the standard basis
vectors ±ei, and RI. Finally, RIII covers the rest of the sphere. We say a trust-region step takes an RI step if
the current iterate is in RI; similarly for RII and RIII steps. Since we use the geometric structures derived in
Theorem II.1 and Corollary II.2 in [3], the conditions

θ ∈ (0, 1/2), µ < cmin
{
θn−1, n−5/4

}
, p ≥ C

µ2θ2
n3 log

n

µθ
(II.30)

are always in force.
At step r of the algorithm, suppose δ(r) is the minimizer of the trust-region subproblem (II.21). We call the step

“constrained” if
∥∥δ(r)

∥∥ = ∆ (the minimizer lies on the boundary and hence the constraint is active), and call it
“unconstrained” if ‖δ(r)‖ < ∆ (the minimizer lies in the relative interior and hence the constraint is not in force).
Thus, in the unconstrained case the optimality condition is (II.6).

The next lemma provides some estimates about ∇f and ∇2f that are useful in various contexts.
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Lemma II.5. We have the following estimates about ∇f and ∇2f :

sup
q∈Sn−1

‖∇f (q)‖ .
= M∇ ≤

√
n ‖X0‖∞ ,

sup
q∈Sn−1

∥∥∇2f (q)
∥∥ .

= M∇2 ≤ n

µ
‖X0‖2∞ ,

sup
q,q′∈Sn−1,q 6=q′

‖∇f (q)−∇f (q′)‖
‖q − q′‖

.
= L∇ ≤

n

µ
‖X0‖2∞ ,

sup
q,q′∈Sn−1,q 6=q′

∥∥∇2f (q)−∇2f (q′)
∥∥

‖q − q′‖
.
= L∇2 ≤ 2

µ2
n3/2 ‖X0‖3∞ .

Proof. See Page 25 under Section VI.

Our next lemma says if the trust-region step size ∆ is small enough, one Riemannian trust-region step reduces
the objective value by a certain amount when there is any descent direction.

Lemma II.6. Suppose that the trust region size ∆ ≤ 1, and there exists a tangent vector δ ∈ TqSn−1 with ‖δ‖ ≤ ∆,
such that

f(expq(δ)) ≤ f(q)− s

for some positive scalar s ∈ R. Then the trust region subproblem produces a point δ? with

f(expq(δ?)) ≤ f(q)− s+
1

3
ηf∆3,

where ηf
.
= M∇ + 2M∇2 + L∇ + L∇2 and M∇, M∇2 , L∇, L∇2 are the quantities defined in Lemma II.5.

Proof. See Page 26 under Section VI.

To show decrease in objective value for RII and RIII, now it is enough to exhibit a descent direction for
each point in these regions. The next two lemmas help us almost accomplish the goal. For convenience again
we choose to state the results for the “canonical” section that is in the vicinity of en and the projection map
q (w) = [w; (1− ‖w‖2)1/2], with the idea that similar statements hold for other symmetric sections.

Lemma II.7. Suppose that the trust region size ∆ ≤ 1, w∗∇g(w)/ ‖w‖ ≥ βg for some scalar βg, and that
w∗∇g(w)/ ‖w‖ is Lg-Lipschitz on an open ball B

(
w, 3∆

2π
√
n

)
centered at w. Then there exists a tangent vector

δ ∈ TqSn−1 with ‖δ‖ ≤ ∆, such that

f(expq(δ)) ≤ f(q)−min

{
β2
g

2Lg
,

3βg∆

4π
√
n

}
.

Proof. See Page 27 under Section VI.

Lemma II.8. Suppose that the trust-region size ∆ ≤ 1, w∗∇2g(w)w/ ‖w‖2 ≤ −βS, for some βS, and that
w∗∇2g(w)w/ ‖w‖2 is LS Lipschitz on the open ball B

(
w, 3∆

2π
√
n

)
centered at w. Then there exists a tangent

vector δ ∈ TqSn−1 with ‖δ‖ ≤ ∆, such that

f(expq(δ)) ≤ f(q)−min

{
2β3

S

3L2
S
,
3∆2βS
8π2n

}
.

Proof. See Page 28 under Section VI.

One can take βg = βS = c?θ as shown in Theorem II.1, and take the Lipschitz results in Proposition B.4 and
Proposition B.3 (note that ‖X0‖∞ ≤ 4 log1/2(np) w.h.p. by Lemma B.6), repeat the argument for other 2n − 1
symmetric regions, and conclude that w.h.p. the objective value decreases by at least a constant amount. The next
proposition summarizes the results.
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Proposition II.9. Assume (II.30). In regions RII and RIII, each trust-region step reduces the objective value by at
least

dII =
1

2
min

(
c2
?caθ

2µ

n2 log (np)
,
3∆c?θ

4π
√
n

)
, and dIII =

1

2
min

(
c3
?cbθ

3µ4

n6 log3 (np)
,
3∆2c?θ

8π2n

)
(II.31)

respectively, provided that

∆ <
ccc?θµ

2

n5/2 log3/2 (np)
, (II.32)

where ca to cc are positive constants, and c? is as defined in Theorem II.1.

Proof. We only consider the symmetric section in the vicinity of en and the claims carry on to others by symmetry.
If the current iterate q(r) is in the region RII, by Theorem II.1, w.h.p., we have w∗g (w) / ‖w‖ ≥ c?θ for the
constant c?. By Proposition B.4 and Lemma B.6, w.h.p., w∗g (w) / ‖w‖ is C2n

2 log (np) /µ-Lipschitz. Therefore,
By Lemma II.6 and Lemma II.7, a trust-region step decreases the objective value by at least

dII
.
= min

(
c2
?θ

2µ

2C2n2 log (np)
,
3c?θ∆

4π
√
n

)
− c0n

3/2 log3/2 (np)

3µ2
∆3.

Similarly, if q(r) is in the region RIII, by Proposition B.3, Theorem II.1 and Lemma B.6, w.h.p.,w∗∇2g (w)w/ ‖w‖2
is C3n

3 log3/2 (np) /µ2-Lipschitz and upper bounded by −c?θ. By Lemma II.6 and Lemma II.8, a trust-region step
decreases the objective value by at least

dIII
.
= min

(
2c3
?θ

3µ4

3C2
3n

6 log3 (np)
,
3∆2c?θ

8π2n

)
− c0n

3/2 log3/2 (np)

3µ2
∆3.

It can be easily verified that when ∆ obeys (II.31), (II.32) holds.

The analysis for RI is slightly trickier. In this region, near each local minimizer, the objective function is strongly
convex. So we still expect each trust-region step decreases the objective value. On the other hand, it is very unlikely
that we can provide a universal lower bound for the amount of decrease - as the iteration sequence approaches a
local minimizer, the movement is expected to be diminishing. Nevertheless, close to the minimizer the trust-region
algorithm takes “unconstrained” steps. For constrained RI steps, we will again show reduction in objective value by
at least a fixed amount; for unconstrained step, we will show the distance between the iterate and the nearest local
minimizer drops down rapidly.

The next lemma concerns the function value reduction for constrained RI steps.

Lemma II.10. Suppose the trust-region size ∆ ≤ 1, and that at a given iterate r, Hess f
(
q(r)

)
� mHPT

q(r)Sn−1 , and∥∥Hess f
(
q(r)

)∥∥ ≤MH . Further assume the optimal solution δ? ∈ Tq(r)Sn−1 to the trust-region subproblem (II.21)
satisfies ‖δ?‖ = ∆, i.e., the norm constraint is active. Then there exists a tangent vector δ ∈ Tq(r)Sn−1 with
‖δ‖ ≤ ∆, such that

f(expq(r)(δ)) ≤ f
(
q(r)

)
− m2

H∆2

MH
+

1

6
ηf∆3,

where ηf is defined the same as Lemma II.6.

Proof. See Page 28 under Section VI.

The next lemma provides an estimate of mH . Again we will only state the result for the “canonical” section with
the “canonical” q(w) mapping.

Lemma II.11. There exists a positive constant C, such that for all θ ∈ (0, 1/2) and µ < θ/10, whenever
p ≥ Cn3 log n

θµ/(µθ
2), it holds with probability at least 1− cp−7 that for all q with ‖w (q)‖ ≤ µ/(4

√
2),

Hess f (q) � c?
θ

µ
PTqSn−1 .

Here c? is as in Theorem II.1 and Theorem II.2, and c > 0 is another constant.
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Proof. See Page 29 under Section VI.

We know that ‖X0‖∞ ≤ 4 log1/2(np) w.h.p., and hence by the definition of Riemannian Hessian and Lemma II.5,

MH
.
= ‖Hess f(q)‖ ≤

∥∥∇2f(q)
∥∥ + ‖∇f(q)‖ ≤M∇2 +M∇ ≤

2n

µ
‖X0‖2∞ ≤

16n

µ
log(np).

Combining this estimate and Lemma II.11 and Lemma II.6, we obtain a concrete lower bound for the reduction of
objective value for each constrained RI step.

Proposition II.12. Assume (II.30). Each constrained RI trust-region step (i.e., ‖δ‖ = ∆) reduces the objective
value by at least

dI =
cc2
?θ

2

µn log(np)
∆2, (II.33)

provided

∆ ≤ c′c2
?θ

2µ

n5/2 log5/2(np)
. (II.34)

Here c? is as in Theorem II.1 and Theorem II.2, and c, c′ are positive constants.

Proof. We only consider the symmetric section in the vicinity of en and the claims carry on to others by symmetry.
We have that w.h.p.

‖Hess f(q)‖ ≤ 16n

µ
log(np), and Hess f(q) � c?

θ

µ
PTqSn−1 .

Combining these estimates with Lemma II.6 and Lemma II.10, one trust-region step will find next iterate q(r+1)

that decreases the objective value by at least

dI
.
=

c2
?θ

2/µ2

2n log (np) /µ
∆2 − c0n

3/2 log3/2 (np)

µ2
∆3.

Finally, by the condition on ∆ in (II.34) and the assumed conditions (II.30), we obtain

dI ≥
c2
?θ

2

2µn log(np)
∆2 − c0n

3/2 log3/2 (np)

µ2
∆3 ≥ c2

?θ
2

4µn log(np)
∆2,

as desired.

By the proof strategy for RI we sketched before Lemma II.10, we expect the iteration sequence ultimately always
takes unconstrained steps when it moves very close to a local minimizer. We will show that the following is true:
when ∆ is small enough, once the iteration sequence starts to take unconstrained RI step, it will take consecutive
unconstrained RI steps afterwards. It takes two steps to show this: (1) upon an unconstrained RI step, the next
iterate will stay in RI. It is obvious we can make ∆ ∈ O(1) to ensure the next iterate stays in RI ∪ RII. To
strengthen the result, we use the gradient information. From Theorem II.1, we expect the magnitudes of the gradients
in RII to be lower bounded; on the other hand, in RI where points are near local minimizers, continuity argument
implies that the magnitudes of gradients should be upper bounded. We will show that when ∆ is small enough,
there is a gap between these two bounds, implying the next iterate stays in RI; (2) when ∆ is small enough, the
step is in fact unconstrained. Again we will only state the result for the “canonical” section with the “canonical”
q(w) mapping. The next lemma exhibits an absolute lower bound for magnitudes of gradients in RII.

Lemma II.13. For all q satisfying µ/(4
√

2) ≤ ‖w (q)‖ ≤ 1/(20
√

5), it holds that

‖grad f (q)‖ ≥ 9

10

w∗∇g (w)

‖w‖ .

Proof. See Page 33 under Section VI.

Assuming (II.30), Theorem II.1 gives that w.h.p. w∗∇g(w)/ ‖w‖ ≥ c?θ. Thus, w.h.p, ‖grad f(q)‖ ≥ 9c?θ/10
for all q ∈ RII. The next lemma compares the magnitudes of gradients before and after taking one unconstrained RI
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step. This is crucial to providing upper bound for magnitude of gradient for the next iterate, and also to establishing
the ultimate (quadratic) sequence convergence.

Lemma II.14. Suppose the trust-region size ∆ ≤ 1, and at a given iterate r, Hess f
(
q(r)

)
� mHPT

q(r)Sn−1 , and
that the unique minimizer δ? ∈ Tq(r)Sn−1 to the trust region subproblem (II.21) satisfies ‖δ?‖ < ∆ (i.e., the
constraint is inactive). Then, for q(r+1) = expq(r) (δ?), we have

‖ grad f(q(r+1))‖ ≤ LH
2m2

H

‖ grad f(q(r))‖2,

where LH
.
= 5n3/2/(2µ2) ‖X0‖3∞ + 9n/µ ‖X0‖2∞ + 9

√
n ‖X0‖∞.

Proof. See Page 34 under Section VI.

We can now bound the Riemannian gradient of the next iterate as

‖ grad f(q(r+1))‖ ≤ LH
2m2

H

‖ grad f(q(r))‖2

≤ LH
2m2

H

‖[U∗Hess f(q(r))U ][U∗Hess f(q(r))U ]−1 grad f(q(r))‖2

≤ LH
2m2

H

∥∥∥Hess f(q(r))
∥∥∥2

∆2 =
LHM

2
H

2m2
H

∆2.

Obviously, one can make the upper bound small by tuning down ∆. Combining the above lower bound for
‖grad f(q)‖ for q ∈ RII, one can conclude that when ∆ is small, the next iterate q(r+1) stays in RI. Another
application of the optimality condition (II.6) gives conditions on ∆ that guarantees the next trust-region step is also
unconstrained. Detailed argument can be found in proof of the following proposition.

Proposition II.15. Assume (II.30). W.h.p, once the trust-region algorithm takes an unconstrained RI step (i.e.,
‖δ‖ < ∆), it always takes unconstrained RI steps, provided that

∆ ≤ cc3
?θ

3µ

n7/2 log7/2 (np)
, (II.35)

Here c? is as in Theorem II.1 and Theorem II.2, and c > 0 is another constant.

Proof. We only consider the symmetric section in the vicinity of en and the claims carry on to others by symmetry.
Suppose that step k is an unconstrained RI step. Then

‖w(q(r+1))−w(q(r))‖ ≤ ‖q(r+1) − q(r)‖ = ‖ expq(r)(δ)−q(r)‖

=
√

2− 2 cos ‖δ‖ = 2 sin(‖δ‖ /2) ≤ ‖δ‖ < ∆.

Thus, if ∆ ≤ 1
20
√

5
− µ

4
√

2
, q(r+1) will be in RI ∪RII. Next, we show that if ∆ is sufficiently small, q(r+1) will be

indeed in RI. By Lemma II.14,∥∥∥grad f
(
q(r+1)

)∥∥∥ ≤ LH
2m2

H

∥∥∥grad f
(
q(r)

)∥∥∥2

≤ LHM
2
H

2m2
H

∥∥∥∥[U∗Hess f
(
q(r)

)
U
]−1

U∗ grad f
(
q(r)

)∥∥∥∥2

≤ LHM
2
H

2m2
H

∆2, (II.36)

where we have used the fact that∥∥∥δ(r)
∥∥∥ =

∥∥∥∥[U∗Hess f
(
q(r)

)
U
]−1

U∗ grad f
(
q(r)

)∥∥∥∥ < ∆,

as the step is unconstrained. On the other hand, by Theorem II.1 and Lemma II.13, w.h.p.

‖grad f (q)‖ ≥ βgrad
.
=

9

10
c?θ, ∀ q ∈ RII. (II.37)
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Hence, provided

∆ <
mH

MH

√
2βgrad

LH
, (II.38)

we have q(r+1) ∈ RI.
We next show that when ∆ is small enough, the next step is also unconstrained. Straight forward calculations give∥∥∥∥U [U∗Hess f

(
q(r+1)

)
U
]−1

U∗ grad f
(
q(r+1)

)∥∥∥∥ ≤ LHM
2
H

2m3
H

∆2.

Hence, provided that

∆ <
2m3

H

LHM2
H

, (II.39)

we will have ∥∥∥∥U [U∗Hess f
(
q(r+1)

)
U
]−1

U∗ grad f
(
q(r+1)

)∥∥∥∥ < ∆;

in words, the minimizer to the trust-region subproblem for the next step lies in the relative interior of the trust
region - the constraint is inactive. By Lemma II.14 and Lemma B.6, we have

LH = C1n
3/2 log3/2 (np) /µ2, (II.40)

w.h.p.. Combining this and our previous estimates of mH , MH , we conclude whenever

∆ ≤ min

{
1

20
√

5
− µ

4
√

2
,

c1c
3/2
? θ3/2

n7/4 log7/4 (np)
,

c2µc
3
?θ

3

n7/2 log7/2 (np)

}
,

w.h.p., our next trust-region step is also an unconstrained RI step. Simplifying the above bound completes the
proof.

Finally, we want to show that ultimate unconstrained RI iterates actually converges to one nearby local minimizer
rapidly. Lemma II.14 has established the gradient is diminishing. The next lemma shows the magnitude of gradient
serves as a good proxy for distance to the local minimizer.

Lemma II.16. Let q? ∈ Sn−1 such that grad f(q?) = 0, and δ ∈ Tq?Sn−1. Consider a geodesic γ(t) = expq?(tδ),
and suppose that on [0, τ ], Hess f(γ(t)) � mHPTγ(t)Sn−1 . Then

‖grad f(γ(τ))‖ ≥ mHτ ‖δ‖ .
Proof. See Page 34 under Section VI.

To see this relates the magnitude of gradient to the distance away from the nearby local minimizer, w.l.o.g., one
can assume τ = 1 and consider the point q = expq?(δ). Then

‖q? − q‖ =
∥∥expq?(δ)− q

∥∥ =
√

2− 2 cos ‖δ‖ = 2 sin(‖δ‖ /2) ≤ ‖δ‖ ≤ ‖grad f(q)‖ /mH ,

where at the last inequality above we have used Lemma II.16. Hence, combining this observation with Lemma II.14,
we can derive the asymptotic sequence convergence rate as follows.

Proposition II.17. Assume (II.30) and the conditions in Lemma II.15. Let q(r0) ∈ RI and the r0-th step the first
unconstrained RI step and q? be the unique local minimizer of f over one connected component of RI that contains
q(r0). Then w.h.p., for any positive integer r′ ≥ 1,∥∥∥q(r0+r′) − q?

∥∥∥ ≤ cc?θµ

n3/2 log3/2 (np)
2−2r

′

, (II.41)

provided that

∆ ≤ c′c2
?θ

2µ

n5/2 log5/2(np)
. (II.42)
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Here c? is as in Theorem II.1 and Theorem II.2, and c, c′ are both positive constants.

Proof. By the geometric characterization in Theorem II.1 and corollary II.2 in [3], f has 2n separated local
minimizers, each located in RI and within distance

√
2µ/16 of one of the 2n signed basis vectors {±ei}i∈[n].

Moreover, it is obvious when µ ≤ 1, RI consists of 2n disjoint connected components. We only consider the
symmetric component in the vicinity of en and the claims carry on to others by symmetry.

Suppose that r0 is the index of the first unconstrained iterate in region RI, i.e., q(r0) ∈ RI. By Lemma II.14, for
any integer r′ ≥ 1, we have∥∥∥grad f

(
q(r0+r′)

)∥∥∥ ≤ 2m2
H

LH

(
LH

2m2
H

∥∥∥grad f
(
q(r0)

)∥∥∥)2r
′

. (II.43)

where LH is as defined in Lemma II.14, mH as the strong convexity parameter for RI defined above.
Now suppose q? is the unique local minimizer of f , lies in the same RI component that q(r0) is located. Let

γr′(t) = expq? (tδ) to be the unique geodesic that connects q? and q(r0+r′) with γr′(0) = q? and γr′(1) = q(r0+r′).
We have ∥∥∥q(r0+r′) − q?

∥∥∥ ≤ ∥∥expq?(δ)− q?
∥∥ =

√
2− 2 cos ‖δ‖ = 2 sin(‖δ‖ /2)

≤ ‖δ‖ ≤ 1

mH

∥∥∥grad f
(
q(r0+r′)

)∥∥∥ ≤ 2mH

LH

(
LH

2m2
H

∥∥∥grad f
(
q(r0)

)∥∥∥)2r
′

,

where at the second line we have repeatedly applied Lemma II.16.
By the optimality condition (II.6) and the fact that

∥∥δ(r0)
∥∥ < ∆, we have

LH
2m2

H

∥∥∥grad f
(
q(r0)

)∥∥∥ ≤ LH
2m2

H

MH

∥∥∥∥[U∗Hess f
(
q(r0)

)
U
]−1

U∗ grad f
(
q(r0)

)∥∥∥∥ ≤ LHMH

2m2
H

∆.

Thus, provided

∆ <
m2
H

LHMH
, (II.44)

we can combine the above results and obtain∥∥∥q(r0+r′) − q?
∥∥∥ ≤ 2mH

LH
2−2r

′

.

Based on the previous estimates for mH , MH and LH , we obtain that w.h.p.,∥∥∥q(r0+r′) − q?
∥∥∥ ≤ c1c?θµ

n3/2 log3/2 (np)
2−2r

′

.

Moreover, by (II.44), w.h.p., it is sufficient to have the trust region size

∆ ≤ c2c
2
?θ

2µ

n5/2 log5/2(np)
.

Thus, we complete the proof.

Now we are ready to piece together the above technical proposition to prove Theorem II.3.

Proof. (of Theorem II.3) Assuming (II.30) and in addition that

∆ <
c1c

3
?θ

3µ2

n7/2 log7/2 (np)
,

it can be verified that the conditions of all the above propositions are satisfied.
By the preceding four propositions, a step will either be RIII, RII, or constrained RI step that decreases the

objective value by at least a certain fixed amount (we call this Type A), or be an unconstrained RI step (Type
B), such that all future steps are unconstrained RI and the sequence converges to a local minimizer quadratically.
Hence, regardless the initialization, the whole iteration sequence consists of consecutive Type A steps, followed by
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consecutive Type B steps. Depending on the initialization, either the Type A phase or the Type B phase can be
absent. In any case, from q(0) it takes at most (note f(q) ≥ 0 always holds)

f
(
q(0)

)
min {dI, dII, dIII}

(II.45)

steps for the iterate sequence to start take consecutive unconstrained RI steps, or to already terminate. In case the
iterate sequence continues to take consecutive unconstrained RI steps, Proposition II.17 implies that it takes at most

log log

(
c2c?θµ

εn3/2 log3/2 (np)

)
(II.46)

steps to obtain an ε-near solution to the q? that is contained in the connected subset of RI that the sequence entered.
Thus, the number of iterations to obtain an ε-near solution to q? can be grossly bounded by

#Iter ≤ f
(
q(0)

)
min {dI, dII, dIII}

+ log log

(
c2c?θµ

εn3/2 log3/2 (np)

)

≤
[
min

{
c3c

3
?θ

3µ4

n6 log3 (np)
,
c4c

2
?θ

2

n
∆2

}]−1

f
(
q(0)

)
+ log log

(
c2c?θµ

εn3/2 log3/2 (np)

)
.

Finally, the claimed failure probability comes from a simple union bound with careful bookkeeping.

F. Extending to Convergence for Complete Dictionaries

Recall that in this case we consider the preconditioned input

Y
.
=
√
pθ(Y Y ∗)−1/2Y . (II.47)

Note that for any complete A0 with condition number κ (A0), from Lemma B.7 we know when p is large enough,
w.h.p. one can write the preconditioned Y as

Y = UV ∗X0 + ΞX0

for a certain Ξ with small magnitude, and UΣV ∗ = SVD (A0). Particularly, when p is chosen by Theorem II.2, the
perturbation is bounded as

‖Ξ̃‖ ≤ cc?θ
(

max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

(II.48)

for a certain constant c which can be made arbitrarily small by making the constant C in p large. Since UV ∗ is
orthogonal,

f (q;UV ∗X0 + ΞX0) = f (V U∗q;X0 + V U∗ΞX0) .

In words, the function landscape of f(q;UV ∗X0+ΞX0) is a rotated version of that of f(q;X0+V U∗ΞX0). Thus,
any local minimizer q? of f(q;X0 + V U∗ΞX0) is rotated to UV ∗q?, one minimizer of f(q;UV ∗X0 + ΞX0).
Also if our algorithm generates iteration sequence q0, q1, q2, . . . for f(q;X0 + V U∗ΞX0) upon initialization q0,
it will generate the iteration sequence UV ∗q0, UV ∗q1, UV ∗q2, . . . for f (q;UV ∗X0 + ΞX0). So w.l.o.g. it is
adequate that we prove the convergence results for the case f(q;X0 + V U∗ΞX0), corresponding to A0 = I with
perturbation Ξ̃

.
= V U∗Ξ. So in this section (Section II-F), we write f(q; X̃0) to mean f(q;X0 + Ξ̃X0).

Theorem II.2 has shown that when

θ ∈
(

0,
1

2

)
, µ ≤ cmin

{
θ

n
,

1

n5/4

}
, p ≥ C

c2
?θ

2
max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
, (II.49)

the geometric structure of the landscape is qualitatively unchanged from the orthogonal case, and the parameter c?
constant can be replaced with c?/2. Particularly, for this choice of p, Lemma B.7 implies

‖Ξ̃‖ = ‖V U∗Ξ‖ ≤ cc?θ
(

max

{
n3/2

µ2
,
n2

µ

}
log3/2 (np)

)−1

(II.50)
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for a constant c that can be made arbitrarily small by setting the constant C in p sufficiently large. The whole proof
is quite similar to that of orthogonal case in the last section. We will only sketch the major changes below. To
distinguish with the corresponding quantities in the last section, we use ·̃ to denote the corresponding perturbed
quantities here.
• Lemma II.5: Note that

‖X0 + Ξ̃X0‖∞ ≤ ‖X0‖∞ + ‖Ξ̃X0‖∞ ≤ ‖X0‖∞ +
√
n‖Ξ̃‖‖X0‖∞ ≤ 3‖X0‖∞/2,

where by (II.50) we have used ‖Ξ̃‖ ≤ 1/(2
√
n) to simplify the above result. So we obtain

M̃∇ ≤
3

2
M∇, M̃∇2 ≤ 9

4
M∇2 , L̃∇ ≤

9

4
L∇, L̃∇2 ≤ 27

8
L∇2 .

• Lemma II.6: Now we have

η̃f
.
= M̃∇ + 2M̃∇2 + L̃∇ + L̃∇2 ≤ 4ηf .

• Lemma II.7 and Lemma II.8 are generic and nothing changes.
• Proposition II.9: We have now w∗g(w; X̃0)/ ‖w‖ ≥ c?θ/2 by Theorem II.2, w.h.p. w∗∇g(w; X̃0)/ ‖w‖ is
C1n

2 log(np)/µ-Lipschitz by Proposition B.4, and
∥∥∥X0 + Ξ̃X0

∥∥∥
∞
≤ 3 ‖X0‖∞ /2 as shown above. Similarly,

w∗g(w; X̃0)/ ‖w‖ ≤ −c?θ/2 by Theorem II.2, and w∗∇2g(w; X̃0)w/ ‖w‖2 is C2n
3 log3/2(np)/µ2-Lipschitz.

Moreover, η̃f ≤ 4ηf as shown above. Since there are only multiplicative constant changes to the various
quantities, we conclude

d̃II = c1dII, d̃III = c1dIII (II.51)

provided

∆ <
c2c?θµ

2

n5/2 log3/2 (np)
. (II.52)

• Lemma II.10: ηf is changed to η̃f with η̃f ≤ 4ηf as shown above.
• Lemma II.11: By (II.3), we have∥∥∥∇2f(q;X0)−∇2f(q; X̃0)

∥∥∥ ≤ 1

p

p∑
k=1

{
Lḧ‖Ξ̃‖ ‖(x0)k‖2 +

1

µ

∥∥∥(x0)k(x0)∗k − (̃x0)k (̃x0)
∗
k

∥∥∥}

≤ ‖Ξ̃‖
(
Lḧ + 2/µ+ ‖Ξ̃‖/µ

) p∑
k=1

‖(x0)k‖2 ≤ ‖Ξ̃‖
(
Lḧ + 3/µ

)
n ‖X0‖2∞ ,

where Lḧ is the Lipschitz constant for the function ḧµ (·) and we have used the fact that ‖Ξ̃‖ ≤ 1. Similarly,
by II.2,∥∥∥∇f(q;X0)−∇f(q; X̃0)

∥∥∥ ≤ 1

p

p∑
k=1

{
Lḣµ‖Ξ̃‖ ‖(x0)k‖ + ‖Ξ̃‖ ‖(x0)k‖

}
≤
(
Lḣµ + 1

)
‖Ξ̃‖√n ‖X0‖∞ ,

where Lḣ is the Lipschitz constant for the function ḣµ (·). Since Lḧ ≤ 2/µ2 and Lḣ ≤ 1/µ, and ‖X0‖∞ ≤
4
√

log(np) w.h.p. (Lemma B.6). By (II.50), w.h.p. we have∥∥∥∇f(q;X0)−∇f(q; X̃0)
∥∥∥ ≤ 1

2
c?θ, and

∥∥∥∇2f(q;X0)−∇2f(q; X̃0)
∥∥∥ ≤ 1

2
c?θ,

provided the constant C in (II.49) for p is large enough. Thus, by (II.5) and the above estimates we have∥∥∥Hess f(q;X0)−Hess f(q; X̃0)
∥∥∥ ≤ ∥∥∥∇f(q;X0)−∇f(q; X̃0)

∥∥∥ +
∥∥∥∇2f(q;X0)−∇2f(q; X̃0)

∥∥∥
≤ c?θ ≤

1

2
c?
θ

µ
,
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provided µ ≤ 1/2. So we conclude

Hess f(q; X̃0) � 1

2
c?
θ

µ
PTq

Sn−1 =⇒ m̃H ≥
1

2
c?
θ

µ
. (II.53)

• Proposition II.12: From the estimate of MH above Proposition II.12 and the last point, we have∥∥∥Hess f(q; X̃0)
∥∥∥ ≤ 36

µ
log(np), and Hess f(q; X̃0) � 1

2
c?
θ

µ
PTq

Sn−1.

Also since η̃f ≤ 4ηf in Lemma II.6 and Lemma II.10, there are only multiplicative constant change to the
various quantities. We conclude that

d̃I = c3dI (II.54)

provided that

∆ ≤ c4c
2
?θ

2µ

n5/2 log5/2(np)
. (II.55)

• Lemma II.13 is generic and nothing changes.
• Lemma II.14: L̃H ≤ 27LH/8.
• Proposition II.15: All the quantities involved in determining ∆, mH , MH , and LH , βgrad are modified by at

most constant multiplicative factors and changed to their respective tilde version, so we conclude that the TRM
algorithm always takes unconstrained RI step after taking one, provided that

∆ ≤ c5c
3
?θ

3µ

n7/2 log7/2 (np)
. (II.56)

• Lemma II.16:is generic and nothing changes.
• Proposition II.17: Again mH , MH , LH are changed to m̃H , M̃H , and L̃H , respectively, differing by at most

constant multiplicative factors. So we conclude for any integer k′ ≥ 1,∥∥∥q(k0+k′) − q?
∥∥∥ ≤ c6c?θµ

n3/2 log3/2 (np)
2−2k

′

, (II.57)

provided

∆ ≤ c7c
2
?θ

2µ

n5/2 log5/2(np)
. (II.58)

The final proof to Theorem II.2 is almost identical to that of Theorem II.1, except that dI, dII, and dIII are changed
to d̃I, d̃II, and d̃III as defined above, respectively. The final iteration complexity to each an ε-near solution is hence

#Iter ≤
[
min

{
c8c

3
?θ

3µ4

n6 log3 (np)
,
c9c

2
?θ

2

n
∆2

}]−1 (
f
(
q(0)

)
− f (q?)

)
+ log log

(
c10c?θµ

εn3/2 log3/2 (np)

)
.

Hence overall the qualitative behavior of the algorithm is not changed, as compared to that for the orthogonal case.

III. COMPLETE ALGORITHM PIPELINE AND MAIN RESULTS

For orthogonal dictionaries, from Theorem II.1 (and Corollary II.2 in [3]), we know that all the minimizers q̂?
are O(µ) away from their respective nearest “target” q?, with q∗?Ŷ = αe∗iX0 for a certain α 6= 0 and i ∈ [n]; in
Theorem II.3, we have shown that w.h.p. the Riemannian TRM algorithm produces a solution q̂ ∈ Sn−1 that is ε
away to one of the minimizers, say q̂?. Thus, the q̂ returned by the TRM algorithm is O(ε+ µ) away from q?. For
exact recovery, we use a simple linear programming rounding procedure, which guarantees to produce the target
q?. We then use deflation to sequentially recover other rows of X0. Overall, w.h.p. both the dictionary A0 and
sparse coefficient X0 are exactly recovered up to sign permutation, when θ ∈ Ω(1), for orthogonal dictionaries. We
summarize relevant technical lemmas and main results in Section III-A. The same procedure can be used to recover
complete dictionaries, though the analysis is slightly more complicated; we present the results in Section III-B. Our
overall algorithmic pipeline for recovering orthogonal dictionaries is sketched as follows.
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1) Estimating one row of X0 by the Riemannian TRM algorithm. By Theorem II.1 (resp. Theorem II.2)
and Theorem II.3 (resp. Theorem II.4), starting from any q ∈ Sn−1, when the relevant parameters are
set appropriately (say as µ? and ∆?), w.h.p., our Riemannian TRM algorithm finds a local minimizer q̂,
with q? the nearest target that exactly recovers a row of X0 and ‖q̂ − q?‖ ∈ O(µ) (by setting the target
accuracy of the TRM as, say, ε = µ).

2) Recovering one row of X0 by rounding. To obtain the target solution q? and hence recover (up to scale)
one row of X0, we solve the following linear program:

minimizeq

∥∥∥q∗Ŷ ∥∥∥
1
, subject to 〈r, q〉 = 1, (III.1)

with r = q̂. We show in Lemma III.2 (resp. Lemma III.4) that when 〈q̂, q?〉 is sufficiently large, implied
by µ being sufficiently small, w.h.p. the minimizer of (III.1) is exactly q?, and hence one row of X0 is
recovered by q∗?Ŷ .

3) Recovering all rows of X0 by deflation. Once ` rows of X0 (1 ≤ ` ≤ n− 2) have been recovered, say,
by unit vectors q1

?, . . . , q
`
?, one takes an orthonormal basis U for [span

(
q1
?, . . . , q

`
?

)
]⊥, and minimizes

the new function h(z)
.
= f(Uz; Ŷ ) on the sphere Sn−`−1 with the Riemannian TRM algorithm (though

conservative, one can again set parameters as µ?, ∆?, as in Step 1) to produce a ẑ. Another row of X0 is
then recovered via the LP rounding (III.1) with input r = Uẑ (to produce q`+1

? ). Finally, by repeating the
procedure until depletion, one can recover all the rows of X0.

4) Reconstructing the dictionary A0. By solving the linear system Y = AX0, one can obtain the dictionary
A0 = Y X∗0 (X0X

∗
0 )−1.

A. Recovering Orthogonal Dictionaries

Theorem III.1 (Main theorem - recovering orthogonal dictionaries). Assume the dictionary A0 is orthogonal and
we take Ŷ = Y . Suppose θ ∈ (0, 1/3), µ? < ca min

{
θn−1, n−5/4

}
, and p ≥ Cn3 log n

µ?θ
/
(
µ2
?θ

2
)
. The above

algorithmic pipeline with parameter setting

∆? =
cbc

3
?θ

3µ2
?

n7/2 log7/2 (np)
, (III.2)

recovers the dictionary A0 and X0 in polynomial time, with failure probability bounded by ccp−6. Here c? is as
defined in Theorem II.1, and ca through cc, and C are all positive constants.

Towards a proof of the above theorem, it remains to be shown the correctness of the rounding and deflation
procedures.

a) Proof of LP rounding.: The following lemma shows w.h.p. the rounding will return the desired q?, provided
the estimated q̂ is already near to it.

Lemma III.2 (LP rounding - orthogonal dictionary). For any θ ∈ (0, 1/3), whenever p ≥ Cn2 log(n/θ)/θ, with
probability at least 1− cp−6, the rounding procedure (III.1) returns q? for any input vector r that satisfies

〈r, q?〉 ≥ 249/250.

Here C, c are both positive constants.

Proof. See Page 36 under Section VII.

Since 〈q̂, q?〉 = 1 − ‖q̂ − q?‖2/2, and ‖q̂ − q?‖ ∈ O(µ), it is sufficient when µ is smaller than some small
constant.

b) Proof sketch of deflation.: We show the deflation works by induction. To understand the deflation procedure,
it is important to keep in mind that the “target” solutions

{
qi?
}n
i=1

are orthogonal to each other. W.l.o.g., suppose
we have found the first ` unit vectors q1

?, . . . , q
`
? which recover the first ` rows of X0. Correspondingly, we partition

the target dictionary A0 and X0 as

A0 = [V ,V ⊥], X0 =
[
X

[`]
0

X
[n−`]
0

]
, (III.3)
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where V ∈ Rn×`, and X [`]
0 ∈ R`×n denotes the submatrix with the first ` rows of X0. Let us define a function:

f↓n−` : Rn−` 7→ R by

f↓n−`(z;W )
.
=

1

p

p∑
k=1

hµ(z∗wk), (III.4)

for any matrix W ∈ R(n−`)×p. Then by (I.1), our objective function is equivalent to

h(z) = f(Uz;A0X0) = f↓n−`(z;U∗A0X0) = f↓n−`(z;U∗V X
[`]
0 +U∗V ⊥X

[n−`]
0 ).

Since the columns of the orthogonal matrix U ∈ Rn×(n−`) forms the orthogonal complement of span
(
q1
?, · · · , q`?

)
,

it is obvious that U∗V = 0. Therefore, we obtain

h(z) = f↓n−`(z;U∗V ⊥X
[n−`]
0 ).

Since U∗V ⊥ is orthogonal and X [n−`]
0 ∼i.i.d. BG(θ), this is another instance of orthogonal dictionary learning

problem with reduced dimension. If we keep the parameter settings µ? and ∆? as Theorem III.1, the conditions of
Theorem II.1 and Theorem II.3 for all cases with reduced dimensions are still valid. So w.h.p., the TRM algorithm
returns a ẑ such that ‖ẑ − z?‖ ∈ O(µ?) where z? is a “target” solution that recovers a row of X0:

z∗?U
∗V ⊥X

[n−`]
0 = z∗?U

∗A0X0 = αe∗iX0, for some i 6∈ [`].

So pulling everything back in the original space, the effective target is q`+1
?

.
= Uz?, and Uẑ is our estimation

obtained from the TRM algorithm. Moreover,

‖Uẑ −Uz?‖ = ‖ẑ − z?‖ ∈ O(µ?).

Thus, by Lemma III.2, one successfully recovers Uz? from Uẑ w.h.p. when µ? is smaller than a constant. The
overall failure probability can be obtained via a simple union bound and simplification of the exponential tails with
inverse polynomials in p.

B. Recovering Complete Dictionaries

By working with the preconditioned data samples Ŷ = Y
.
=
√
θp (Y Y ∗)−1/2 Y ,4 we can use the same procedure

as described above to recover complete dictionaries.

Theorem III.3 (Main theorem - recovering complete dictionaries). Assume the dictionary A0 is complete with
a condition number κ (A0) and we take Ŷ = Y . Suppose θ ∈ (0, 1/3), µ? < ca min

{
θn−1, n−5/4

}
, and

p ≥ C
c2?θ

2 max
{
n4

µ4 ,
n5

µ2

}
κ8 (A0) log4

(
κ(A0)n
µθ

)
. The algorithmic pipeline with parameter setting

∆? =
cdc

3
?θ

3µ2
?

n7/2 log7/2 (np)
(III.5)

recovers the dictionary A0 and X0 in polynomial time, with failure probability bounded by cbp−6. Here c? is as
defined in Theorem II.1, and ca, cb are both positive constants.

Similar to the orthogonal case, we need to show the correctness of the rounding and deflation procedures so that
the theorem above holds.

4In practice, the parameter θ might not be know beforehand. However, because it only scales the problem, it does not affect the overall
qualitative aspect of results.
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a) Proof of LP rounding: The result of the LP rounding is only slightly different from that of the orthogonal
case in Lemma III.2, so is the proof.

Lemma III.4 (LP rounding - complete dictionary). For any θ ∈ (0, 1/3), whenever

p ≥ C

c2
?θ

max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

with probability at least 1− cp−6, the rounding procedure (III.1) returns q? for any input vector r that satisfies

〈r, q?〉 ≥ 249/250.

Here C, c are both positive constants.

Proof. See Page 37 under Section VII.

b) Proof sketch of deflation.: We use a similar induction argument to show the deflation works. Compared
to the orthogonal case, the tricky part here is that the target vectors

{
qi?
}n
i=1

are not necessarily orthogonal to
each other, but they are almost so. W.l.o.g., let us again assume that q1

?, . . . , q
`
? recover the first ` rows of X0, and

similarly partition the matrix X0 as in (III.3).
By Lemma B.7 and (II.48), we can write Y = (Q+ Ξ)X0 for some orthogonal matrix Q and small perturbation

Ξ with ‖Ξ‖ ≤ δ < 1/10 for some large p as usual. Similar to the orthogonal case, we have

h(z) = f(Uz; (Q+ Ξ)X0) = f↓n−`(z;U∗(Q+ Ξ)X0),

where f↓n−` is defined the same as in (III.4). Next, we show that the matrix U∗(Q+ Ξ)X0 can be decomposed as
U∗V X

[n−`]
0 + ∆, where V ∈ R(n−`)×n is orthogonal and ∆ is a small perturbation matrix. More specifically, we

show that

Lemma III.5. Suppose the matrices U ∈ Rn×(n−`), Q ∈ Rn×n are orthogonal as defined above, Ξ is a perturbation
matrix with ‖Ξ‖ ≤ 1/20, then

U∗ (Q+ Ξ)X0 = U∗V X
[n−`]
0 + ∆, (III.6)

where V ∈ Rn×(n−`) is an orthogonal matrix spanning the same subspace as that of U , and the norms of ∆ is
bounded by

‖∆‖`1→`2 ≤ 16
√
n ‖Ξ‖ ‖X0‖∞ , ‖∆‖ ≤ 16 ‖Ξ‖ ‖X0‖ , (III.7)

where ‖W ‖`1→`2 = sup‖z‖
1
=1 ‖Wz‖ = maxk ‖wk‖ denotes the max column `2-norm of a matrix W .

Proof. See Page 38 under Section VII.

Since UV is orthogonal and X [n−`]
0 ∼i.i.d. BG(θ), we come into another instance of perturbed dictionary learning

problem with a reduced dimension

h(z) = f↓n−`

(
z;U∗V X

[n−`]
0 + ∆

)
.

Since our perturbation analysis in proving Theorem II.2 and Theorem II.4 solely relies on the fact that ‖∆‖`1→`2 ≤
C ‖Ξ‖ √n ‖X0‖∞, it is enough to make p large enough so that the theorems are still applicable for the reduced
version f↓n−`(z;U∗V X

[n−`]
0 + ∆). Thus, by invoking Theorem II.2 and Theorem II.4, the TRM algorithm provably

returns one ẑ such that ẑ is near to a perturbed optimal ẑ? with

ẑ∗?U
∗V X

[n−`]
0 = z∗?U

∗V X
[n−`]
0 + z∗?∆ = αe∗iX0, for some i 6∈ [`], (III.8)

where z? with ‖z?‖ = 1 is the exact solution. More specifically, Corollary II.4 in [3] implies that

‖ẑ − ẑ?‖ ≤
√

2µ?/7.
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Next, we show that ẑ is also very near to the exact solution z?. Indeed, the identity (III.8) suggests

(ẑ? − z?)∗U∗V X [n−`]
0 = z∗?∆

=⇒ ẑ? − z? =
[
(X

[n−`]
0 )∗V ∗U

]†
∆∗z? = U∗V

[
(X

[n−`]
0 )∗

]†
∆∗z? (III.9)

where W † = (W ∗W )−1W ∗ denotes the pseudo inverse of a matrix W with full column rank. Hence, by (III.9)
we can bound the distance between ẑ? and z? by

‖ẑ? − z?‖ ≤
∥∥∥∥[(X [n−`]

0 )∗
]†∥∥∥∥ ‖∆‖ ≤ σ−1

min(X
[n−`]
0 ) ‖∆‖

By Lemma B.1, when p ≥ Ω(n2 log n), w.h.p.,

θp/2 ≤ σmin(X
[n−`]
0 (X

[n−`]
0 )∗) ≤

∥∥∥X [n−`]
0 (X

[n−`]
0 )∗

∥∥∥ ≤ ‖X0X
∗
0‖ ≤ 3θp/2.

Hence, combined with Lemma III.5, we obtain

σ−1
min(X

[n−`]
0 ) ≤

√
2

θp
, ‖∆‖ ≤ 28

√
θp ‖Ξ‖ /

√
2,

which implies that ‖ẑ? − z?‖ ≤ 28 ‖Ξ‖. Thus, combining the results above, we obtain

‖ẑ − z?‖ ≤ ‖ẑ − ẑ?‖ + ‖ẑ? − z?‖ ≤
√

2µ?/7 + 28 ‖Ξ‖ .

Lemma B.7, and in particular (II.48), for our choice of p as in Theorem II.2, ‖Ξ‖ ≤ cµ2
?n
−3/2, where c can be

made smaller by making the constant in p larger. For µ? sufficiently small, we conclude that

‖Uẑ −Uz?‖ = ‖ẑ − z?‖ ≤ 2µ?/7.

In words, the TRM algorithm returns a ẑ such that Uẑ is very near to one of the unit vectors
{
qi?
}n
i=1

, such that
(qi?)

∗Y = αe∗iX0 for some α 6= 0. For µ? smaller than a fixed constant, one will have〈
Uẑ, qi?

〉
≥ 249/250,

and hence by Lemma III.4, the LP rounding exactly returns the optimal solution qi? upon the input Uẑ.
The proof sketch above explains why the recursive TRM plus rounding works. The overall failure probability can

be obtained via a simple union bound and simplifications of the exponential tails with inverse polynomials in p.

IV. SIMULATIONS

A. Practical TRM Implementation

Fixing a small step size and solving the trust-region subproblem exactly eases the analysis, but also renders the
TRM algorithm impractical. In practice, the trust-region subproblem is never exactly solved, and the trust-region
step size is adjusted to the local geometry, say by backtracking. It is possible to modify our algorithmic analysis to
account for inexact subproblem solvers and adaptive step size; for sake of brevity, we do not pursue it here. Recent
theoretical results on the practical version include [72], [73].

Here we describe a practical implementation based on the Manopt toolbox [70]5. Manopt is a user-friendly Matlab
toolbox that implements several sophisticated solvers for tackling optimization problems over Riemannian manifolds.
The most developed solver is based on the TRM. This solver uses the truncated conjugate gradient (tCG; see,
e.g., Section 7.5.4 of [57]) method to (approximately) solve the trust-region subproblem (vs. the exact solver in
our analysis). It also dynamically adjusts the step size using backtracking. However, the original implementation
(Manopt 2.0) is not adequate for our purposes. Their tCG solver uses the gradient as the initial search direction,
which does not ensure that the TRM solver can escape from saddle points [68], [71]. We modify the tCG solver,
such that when the current gradient is small and there is a negative curvature direction (i.e., the current point is
near a saddle point or a local maximizer of f(q)), the tCG solver explicitly uses the negative curvature direction6

5Available online: http://www.manopt.org.
6...adjusted in sign to ensure positive correlation with the gradient – if it does not vanish.

http://www.manopt.org
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Fig. 3: Phase transition for recovering a single sparse vector. Left: We fix p = 5n2 log n and vary the dimension n
and sparsity level k; Right: We fix the sparsity level as d0.2 · ne and vary the dimension n and number of samples
p. For each configuration, the experiment is independently repeated for five times. White indicates success, and
black indicates failure.

as the initial search direction. This modification ensures the TRM solver always escape from saddle points/local
maximizers with negative directional curvature. Hence, the modified TRM algorithm based on Manopt is expected
to have the same qualitative behavior as the idealized version we analyzed above, with better scalability. We will
perform our numerical simulations using the modified TRM algorithm whenever necessary. Algorithm 3 together
with Lemmas 9 and 10 and the surrounding discussion in the very recent work [72] provides a detailed description
of this practical version.

B. Simulated Data

To corroborate our theory, we experiment with dictionary recovery on simulated data.7 For simplicity, we focus on
recovering orthogonal dictionaries and we declare success once a single row of the coefficient matrix is recovered.

Since the problem is invariant to rotations, w.l.o.g. we set the dictionary as A0 = I ∈ Rn×n. For any fixed sparsity
k, each column of the coefficient matrix X0 ∈ Rn×p has exactly k nonzero entries, chosen uniformly random from([n]
k

)
. These nonzero entries are i.i.d. standard normals. This is slightly different from the Bernoulli-Gaussian model

we assumed for analysis. For n reasonably large, these two models have similar behaviors. For our sparsity surrogate,
we fix the smoothing parameter as µ = 10−2. Because the target points are the signed basis vector ±ei’s (to recover
rows of X0), for a solution q̂ returned by the TRM algorithm, we define the reconstruction error (RE) to be

RE = min
i∈[n]

(‖q̂ − ei‖ , ‖q̂ + ei‖) . (IV.1)

One trial is determined to be a success once RE ≤ µ, with the idea that this indicates q̂ is already very near the
target and the target can likely be recovered via the LP rounding we described (which we do not implement here).

We consider two settings: (1) fix p = 5n2 log n and vary the dimension n and sparsity k; (2) fix the sparsity
level as d0.2 · ne and vary the dimension n and number of samples p. For each pair of (k, n) for (1), and each pair
of (p, n) for (2), we repeat the simulations independently for T = 5 times. Fig. 3 shows the phase transition for
the two settings. It seems that our TRM algorithm can work well into the linear region whenever p ∈ O(n2 log n)
(Fig. 3-Left), but p should have order greater than Ω(n) (Fig. 3-Right). The sample complexity from our theory is
significantly suboptimal compared to this.

C. Image Data Again

Our algorithmic framework has been derived based on the BG model on the coefficients. Real data may not admit
sparse representations w.r.t. complete dictionaries, or even so, the coefficients may not obey the BG model. In this

7The code is available online: https://github.com/sunju/dl focm

https://github.com/sunju/dl_focm
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Â

−
1
Y
‖
1

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Repetition Index

‖
Â
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Fig. 4: Results of learning complete dictionaries from image patches, using the algorithmic pipeline in Section III.
Top: Images we used for the experiment. These are the three images we used in our motivational experiment
(Section I.B) in the companion paper [3]. The way we formed the data matrix Y is exactly the same as in that
experiment. Middle: The 64 dictionary elements we learned. Bottom: Let Â be the final dictionary matrix at
convergence. This row shows the value ‖Â−1Y ‖1 across one hundred independent runs. The values are almost the
same, with a relative difference less than 10−3.

experiment, we explore how our algorithm performs in learning complete dictionaries for image patches, emulating
our motivational experiment in the companion paper [3] (Section I.B). Thanks to research on image compression,
we know patches of natural images tend to admit sparse representation, even w.r.t. simple orthogonal bases, such as
Fourier basis or wavelets.

We take the three images that we used in the motivational experiment. For each image, we divide it into 8× 8
non-overlapping patches, vectorize the patches, and then stack the vectorized patches into a data matrix Y . Y is
preconditioned as

Y =
(
Y Y >

)−1/2
Y ,

and the resulting Y is fed to the dictionary learning pipeline described in Section III. The smoothing parameter µ
is fixed to 10−2. Fig. 4 contains the learned dictionaries: the dictionaries generally contain localized, directional
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features that resemble subset of wavelets and generalizations. These are very reasonable representing elements for
natural images. Thus, the BG coefficient model may be a sensible, simple model for natural images.

Another piece of strong evidence in support of the above claim is as follows. For each image, we repeat the
learning pipeline for one hundred times, with independent initializations across the runs. Let Â be the final learned
dictionary for each run, we plot the value of ‖Â−1Y ‖1 across the one hundred independent runs. Strikingly, the
values are virtually the same, with a relative difference of 10−3! This is predicted by our theory, under the BG
model. If the model is unreasonable for natural images, the preconditioning, benign function landscape, LP rounding,
and the deflation process that hinge on this model would have completely fallen down.

For this image experiment, n = 64 and p = 4096. A single run of the learning pipeline, including solving 64
instances of the optimization over the sphere (with varying dimensions) and solving 64 instances of the LP rounding
(using CVX), lasts about 20 minutes on a mid-range modern laptop. So with careful implementation we discussed
above, the learning pipeline is actually not far from practical.

V. DISCUSSION

For recovery of complete dictionaries, the LP program approach in [81] that works with θ ≤ O(1/
√
n) only

demands p ≥ Ω(n2 log2 n). The sample complexity has recently been improved to p ≥ Ω(n log n) [82], matching
the information-theoretic lower bound Ω(n log n) (i.e., when θ ∼ 1/n; see also [83]), albeit still in the θ ∈ O(1/

√
n)

regime. The sample complexity of our method working in the θ ∼ Θ(1) regime as stated in Theorem III.3 is
obviously much higher. As already discussed in [3], working with other `1 proxies, directly in the q space would
likely save the sample complexity both for geometric characterization and algorithm analysis. Another possibility is
to analyze the complete case directly, instead of treating it as transformed version of perturbed orthogonal case.

Our experiments seem to suggest the necessary complexity level lies between Ω(n) and O(n2 log n) even for
the orthogonal case. While it is interesting to determine the true complexity requirement for the TRM, there
could be other efficient algorithms that demand less. For example, simulations in [44] seem to suggest O(n log n)
samples suffice to guarantee efficient recovery. The simulations run an alternating direction algorithm fed with
problem-specific initializations, nevertheless.

Our analysis is based on exact trust-region subproblem solver and fixed step size. The convergence result for the
practical version from [72], based on approximate solver and adaptive step size, is general, but pessimistic. It seems
not difficult to adapt their analysis according to our objective geometry, and obtain a tight, practical convergence
result.

Our motivating experiment on real images in introduction of our companion paper [3] remains mysterious. If we
were to believe that real image data are “nice” and our objective there does not have spurious local minima either, it
is surprising ADM would escape all other critical points – this is not predicted by classic or modern theories. One
reasonable place to start is to look at how gradient descent algorithms with generic initializations can escape from
ridable saddle points (at least with high probability). The recent work [74] has showed that randomly perturbing
each iterate can help gradient algorithm to achieve this with high probability.

VI. PROOF OF CONVERGENCE FOR THE TRUST-REGION ALGORITHM

A. Proof of Lemma II.5

Proof. Using the fact tanh (·) and 1− tanh2 (·) are bounded by one in magnitude, by (II.2) and (II.3) we have

‖∇f (q)‖ ≤ 1

p

p∑
k=1

‖(x0)k‖ ≤
√
n ‖X0‖∞ ,

∥∥∇2f (q)
∥∥ ≤ 1

p

p∑
k=1

1

µ
‖(x0)k‖2 ≤

n

µ
‖X0‖2∞ ,
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for any q ∈ Sn−1. Moreover,

sup
q,q′∈Sn−1,q 6=q′

‖∇f (q)−∇f (q′)‖
‖q − q′‖ ≤ 1

p

p∑
k=1

‖(x0)k‖ sup
q,q′∈Sn−1,q 6=q′

∣∣∣tanh
(
q∗(x0)k

µ

)
− tanh

(
q′∗(x0)k

µ

)∣∣∣
‖q − q′‖

≤ 1

p

p∑
k=1

‖(x0)k‖
‖(x0)k‖

µ
≤ n

µ
‖X0‖2∞ ,

where at the last line we have used the fact the mapping q 7→ q∗(x0)k/µ is ‖(x0)k‖ /µ Lipschitz, and x 7→ tanh (x)
is 1-Lipschitz, and the composition rule of Lipschitz functions (i.e., Lemma V.5 of [3]). Similar argument yields the
final bound.

B. Proof of Lemma II.6

Proof. Suppose we can establish ∣∣∣f (expq(δ)
)
− f̂ (q, δ)

∣∣∣ ≤ 1

6
ηf ‖δ‖3 .

Applying this twice we obtain

f(expq(δ?)) ≤ f̂(q, δ?) +
1

6
ηf∆3 ≤ f̂(q, δ) +

1

6
ηf∆3 ≤ f(expq(δ)) +

1

3
ηf∆3 ≤ f(q)− s+

1

3
ηf∆3,

as claimed. Next we establish the first result. Let δ0 = δ
‖δ‖ , and t = ‖δ‖. Consider the composite function

ζ(t)
.
= f(expq(tδ0)) = f(q cos(t) + δ0 sin(t)),

and also

ζ̇(t) = 〈∇f (q cos(t) + δ0 sin(t)) ,−q sin(t) + δ0 cos(t)〉
ζ̈(t) =

〈
∇2f (q cos(t) + δ0 sin(t)) (−q sin(t) + δ0 cos(t)),−q sin(t) + δ0 cos(t)

〉
+ 〈∇f (q cos(t) + δ0 sin(t)) ,−q cos(t)− δ0 sin(t)〉 .

In particular, this gives that

ζ(0) = f(q)

ζ̇(0) = 〈δ0,∇f(q)〉
ζ̈(0) = δ∗0

(
∇2f(q)− 〈∇f(q), q〉 I

)
δ0.

We next develop a bound on
∣∣∣ζ̈(t)− ζ̈(0)

∣∣∣. Using the triangle inequality, we can casually bound this difference as∣∣∣ζ̈(t)− ζ̈(0)
∣∣∣

≤
∣∣〈∇2f (q cos(t) + δ0 sin(t)) (−q sin(t) + δ0 cos(t)),−q sin(t) + δ0 cos(t)

〉
− δ∗0∇2f(q)δ0

∣∣
+ |〈∇f (q cos(t) + δ0 sin(t)) ,−q cos(t)− δ0 sin(t)〉+ 〈∇f(q), q〉|

≤
∣∣〈[∇2f(q cos(t) + δ0 sin(t))−∇2f(q)

]
(−q sin(t) + δ0 cos(t)) ,−q sin(t) + δ0 cos(t)

〉∣∣
+

∣∣〈∇2f(q) (−q sin(t) + δ0 cos(t)− δ0) ,−q sin(t) + δ0 cos(t)
〉∣∣

+
∣∣〈∇2f(q)δ0,−q sin(t) + δ0 cos(t)− δ0

〉∣∣
+ |〈∇f(q cos(t) + δ0 sin(t)),−q cos(t)− δ0 sin(t)〉+ 〈∇f(q cos(t) + δ0 sin(t)), q〉|
+ |〈∇f(q cos(t) + δ0 sin(t)), q〉 − 〈∇f(q), q〉|

≤ L∇2 ‖q cos(t) + δ0 sin(t)− q‖
+M∇2 ‖−q sin(t) + δ0 cos(t)− δ0‖
+M∇2 ‖−q sin(t) + δ0 cos(t)− δ0‖
+M∇ ‖−q cos(t)− δ0 sin(t) + q‖
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+ L∇ ‖q cos(t) + δ0 sin(t)− q‖

= (L∇2 + 2M∇2 +M∇ + L∇)

√
(1− cos(t))2 + sin2(t)

= ηf
√

2− 2 cos t ≤ ηf
√

4 sin2 (t/2) ≤ ηf t,

where in the final line we have used the fact 1− cosx = 2 sin2 (x/2) and that sinx ≤ x for x ∈ [0, 1], and M∇,
M∇2 , L∇ and L∇2 are the quantities defined in Lemma II.5. By the integral form of Taylor’s theorem in Lemma
A.7 and the result above, we have∣∣∣f (expq(δ)

)
− f̂ (q, δ)

∣∣∣ =
∣∣∣ζ(t)−

(
ζ(0) + tζ̇(0) + t2

2 ζ̈(0)
)∣∣∣

=

∣∣∣∣t2 ∫ 1

0
(1− s) ζ̈ (st) ds− t2

2 ζ̈(0)

∣∣∣∣
= t2

∣∣∣∣∫ 1

0
(1− s)

[
ζ̈ (st)− ζ̈ (0)

]
ds

∣∣∣∣
≤ t2

∫ 1

0
(1− s) stηf ds =

ηf t
3

6
,

with t = ‖δ‖ we obtain the desired result.

C. Proof of Lemma II.7

Proof. By the integral form of Taylor’s theorem in Lemma A.7, for any t ∈
[
0, 3∆

2π
√
n

]
, we have

g

(
w − t w‖w‖

)
= g(w)− t

∫ 1

0

〈
∇g
(
w − st w‖w‖

)
,
w

‖w‖

〉
ds

= g (w)− tw
∗∇g (w)

‖w‖ + t

∫ 1

0

〈
∇g (w)−∇g

(
w − st w‖w‖

)
,
w

‖w‖

〉
ds

= g (w)− tw
∗∇g (w)

‖w‖ + t

∫ 1

0

(〈
∇g (w) ,

w

‖w‖

〉
−
〈
∇g
(
w − st w‖w‖

)
,
w − stw/ ‖w‖
‖w − stw/ ‖w‖‖

〉)
ds

≤ g (w)− tw
∗∇g (w)

‖w‖ +
Lg
2
t2 ≤ g (w)− tβg +

Lg
2
t2.

Minimizing this function over t ∈
[
0, 3∆

2π
√
n

]
, we obtain that there exists a w′ ∈ B

(
w, 3∆

2π
√
n

)
such that

g(w′) ≤ g(w)−min

{
β2
g

2Lg
,

3βg∆

4π
√
n

}
.

Given such a w′ ∈ B
(
w, 3∆

2π
√
n

)
, there must exist some δ ∈ TqSn−1 such that q(w′) = expq(δ). It remains to

show that ‖δ‖ ≤ ∆. It is easy to verify that ‖q(w′)− q (w)‖ ≤ 2
√
n ‖w′ −w‖ ≤ 3∆/π. Hence,∥∥expq (δ)− q

∥∥2
=

∥∥∥∥q (1− cos ‖δ‖) +
δ

‖δ‖ sin ‖δ‖
∥∥∥∥2

= 2− 2 cos ‖δ‖ = 4 sin2 ‖δ‖
2
≤ 9∆2

π2
,

which means that sin (‖δ‖ /2) ≤ 3∆/ (2π). Because sinx ≥ 3
πx over x ∈ [0, π/6], it implies that ‖δ‖ ≤ ∆. Since

g(w) = f(q(w)), by summarizing all the results, we conclude that there exists a δ with ‖δ‖ ≤ ∆, such that

f(expq(δ)) ≤ f(q)−min

{
β2
g

2Lg
,

3βg∆

4π
√
n

}
,

as claimed.
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D. Proof of Lemma II.8

Proof. Let σ = sign (w∗∇g(w)). For any t ∈
[
0, ∆

2
√
n

]
, by integral form of Taylor’s theorem in Lemma A.7, we

have

g

(
w − tσ w

‖w‖

)

= g(w)− tσw
∗∇g(w)

‖w‖ + t2
∫ 1

0
(1− s)

w∗∇2g
(
w − stσ w

‖w‖

)
w

‖w‖2
ds

≤ g(w) +
t2

2

w∗∇2g(w)w

‖w‖2
+ t2

∫ 1

0

(1− s)
w∗∇2g

(
w − stσ w

‖w‖

)
w

‖w‖2
− (1− s) w

∗∇2g(w)w

‖w‖2

 ds

= g(w) +
t2

2

w∗∇2g(w)w

‖w‖2

+ t2
∫ 1

0
(1− s)


(
w − stσ w

‖w‖

)∗
∇2g

(
w − stσ w

‖w‖

)(
w − stσ w

‖w‖

)
∥∥∥w − stσ w

‖w‖

∥∥∥2 − w
∗∇2g(w)w

‖w‖2

 ds

≤ g(w)− t2

2
βS + t2

∫ 1

0
(1− s) sLSt ds ≤ g(w)− t2

2
βS +

t3

6
LS.

Minimizing this function over t ∈
[
0, 3∆

2π
√
n

]
, we obtain

t? = min

{
2βS
LS

,
3∆

2π
√
n

}
,

and there exists a w′ = w − t?σ w
‖w‖ such that

g

(
w − t?σ

w

‖w‖

)
≤ g(w)−min

{
2β3

S

3L2
S
,
3∆2βS
8π2n

}
.

By arguments identical to those used in Lemma II.7, there exists a tangent vector δ ∈ TqSn−1 such that q(w′) =
expq(δ) and ‖δ‖ ≤ ∆. This completes the proof.

E. Proof of Lemma II.10

Proof. For any t ∈
[
0, ∆
‖grad f(q(r))‖

]
, it holds that

∥∥t grad f
(
q(r)

)∥∥ ≤ ∆, and the quadratic approximation

f̂
(
q(r),−t grad f

(
q(r)

))
≤ f

(
q(r)

)
− t
∥∥∥grad f

(
q(r)

)∥∥∥2
+
MH

2
t2
∥∥∥grad f

(
q(r)

)∥∥∥2

= f
(
q(r)

)
− t
(

1− 1

2
MHt

)∥∥∥grad f
(
q(r)

)∥∥∥2
.

Taking t0 = min
{

∆
‖grad f(q(r))‖ ,

1
MH

}
, we obtain

f̂
(
q(r),−t0 grad f

(
q(r)

))
≤ f

(
q(r)

)
− 1

2
min

{
∆∥∥grad f
(
q(r)

)∥∥ , 1

MH

}∥∥∥grad f
(
q(r)

)∥∥∥2
. (VI.1)

Now let U be an arbitrary orthonormal basis for Tq(r)Sn−1. Since the norm constraint is active, by the optimality
condition in (II.6), we have

∆ ≤
∥∥∥∥[U∗Hess f

(
q(r)

)
U
]−1

U∗ grad f
(
q(r)

)∥∥∥∥
≤
∥∥∥∥[U∗Hess f

(
q(r)

)
U
]−1
∥∥∥∥ ∥∥∥U∗ grad f

(
q(r)

)∥∥∥ ≤ ∥∥grad f
(
q(r)

)∥∥
mH

,
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which means that
∥∥grad f

(
q(r)

)∥∥ ≥ mH∆. Substituting this into (VI.1), we obtain

f̂
(
q(r),−t0 grad f

(
q(r)

))
≤ f

(
q(r)

)
− 1

2
min

{
mH∆2,

m2
H

MH
∆2

}
≤ f

(
q(r)

)
− m2

H∆2

2MH
.

By the key comparison result established in proof of Lemma II.6, we have

f
(

expq(r)

(
−t0 grad f

(
q(r)

)))
≤ f̂

(
q(r),−t0 grad f

(
q(r)

))
+

1

6
ηf∆3

≤ f
(
q(r)

)
− m2

H∆2

MH
+

1

6
ηf∆3.

This completes the proof.

F. Proof of Lemma II.11

It takes certain delicate work to prove Lemma II.11. Basically to use discretization argument, the degree of
continuity of the Hessian is needed. The tricky part is that for continuity, we need to compare the Hessian operators
at different points, while these Hessian operators are only defined on the respective tangent planes. This is the place
where parallel translation comes into play. The next two lemmas compute spectral bounds for the forward and
inverse parallel translation operators.

Lemma VI.1. For τ ∈ [0, 1] and ‖δ‖ ≤ 1/2, we have∥∥Pτ←0
γ − I

∥∥ ≤ 5

4
τ ‖δ‖ , (VI.2)∥∥P0←τ

γ − I
∥∥ ≤ 3

2
τ ‖δ‖ . (VI.3)

Proof. By (II.7), we have

∥∥Pτ←0
γ − I

∥∥ =

∥∥∥∥∥(cos(τ ‖δ‖)− 1)
δδ∗

‖δ‖2
− sin (τ ‖δ‖) qδ

∗

‖δ‖

∥∥∥∥∥
≤ 1− cos (τ ‖δ‖) + sin (τ ‖δ‖)

≤ 2 sin2

(
τ ‖δ‖

2

)
+ sin (τ ‖δ‖) ≤ 1

4
τ ‖δ‖ + τ ‖δ‖ ≤ 5

4
τ ‖δ‖ ,

where we have used the fact sin (t) ≤ t and 1−cosx = 2 sin2 (x/2). Moreover, P0←τ
γ is in the form of (I + uv∗)−1

for some vectors u and v. By the Sherman-Morrison matrix inverse formula, i.e., (I + uv∗)−1 = I−uv∗/ (1 + v∗u)

(justified as
∥∥∥(cos(τ ‖δ‖)− 1) δδ∗

‖δ‖2 − q sin (τ ‖δ‖) δ∗

‖δ‖

∥∥∥ ≤ 5τ ‖δ‖ /4 ≤ 5/8 < 1 as shown above), we have∥∥P0←τ
γ − I

∥∥
=

∥∥∥∥∥(cos(τ ‖δ‖)− 1)
δδ∗

‖δ‖2
− q sin (τ ‖δ‖) δ

∗

‖δ‖

∥∥∥∥∥ 1

1 + (cos (τ ‖δ‖)− 1)
(as q∗δ = 0)

≤ 5

4
τ ‖δ‖ 1

cos (τ ‖δ‖) ≤
5

4
τ ‖δ‖ 1

cos (1/2)
≤ 3

2
τ ‖δ‖ ,

completing the proof.

The next lemma establishes the “local-Lipschitz” property of the Riemannian Hessian.

Lemma VI.2. Let γ(t) = expq (tδ) denotes a geodesic curve on Sn−1. Whenever ‖δ‖ ≤ 1/2 and τ ∈ [0, 1],∥∥P0←τ
γ Hess f(γ(τ))Pτ←0

γ −Hess f(q)
∥∥ ≤ LH · τ ‖δ‖ , (VI.4)

where LH = 5n3/2 ‖X0‖3∞ /(2µ2) + 9
µn ‖X0‖2∞ + 9

√
n ‖X0‖∞.
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Proof. First of all, by (II.5) and using the fact that the operator norm of a projection operator is unitary bounded,
we have

‖Hess f(γ(τ))−Hess f(q)‖
≤
∥∥PTγ(τ)Sn−1

[
∇2f (γ (τ))−∇2f (q)− (〈∇f (γ (τ)) , γ (τ)〉 − 〈∇f (q) , q〉) I

]
PTγ(τ)Sn−1

∥∥
+
∥∥PTγ(τ)Sn−1

(
∇2f (q)− 〈∇f (q) , q〉 I

)
PTγ(τ)Sn−1

−PTqSn−1

(
∇2f (q)− 〈∇f (q) , q〉 I

)
PTqSn−1

∥∥
≤
∥∥∇2f (γ (τ))−∇2f (q)

∥∥ + |〈∇f (γ (τ))−∇f (q) , γ (τ)〉|+ |〈∇f (q) , γ (τ)− q〉|
+
∥∥PTγ(τ)Sn−1 − PTqSn−1

∥∥ ∥∥PTγ(τ)Sn−1 + PTqSn−1

∥∥ ∥∥∇2f (q)− 〈∇f (q) , q〉 I
∥∥ .

By the estimates in Lemma II.5, we obtain

‖Hess f(γ(τ))−Hess f(q)‖

≤ 2

µ2
n3/2 ‖X0‖3∞ ‖γ (τ)− q‖ +

n

µ
‖X0‖2∞ ‖γ (τ)− q‖ +

√
n ‖X0‖∞ ‖γ (τ)− q‖

+ 2 ‖γ (τ) γ∗ (τ)− qq∗‖
(
n

µ
‖X0‖2∞ +

√
n ‖X0‖∞

)
≤
(

5

2µ2
n3/2 ‖X0‖3∞ +

25n

4µ
‖X0‖2∞ +

25

4

√
n ‖X0‖∞

)
τ ‖δ‖ , (VI.5)

where at the last line we have used the following estimates:

‖γ (τ)− q‖ =

∥∥∥∥q (cos (τ ‖δ‖)− 1) +
δ

‖δ‖ sin (τ ‖δ‖)
∥∥∥∥ ≤ 5

4
τ ‖δ‖ , (Proof of Lemma VI.1)

‖γ (τ) γ∗ (τ)− qq∗‖ ≤
∥∥∥∥∥
(
δδ∗

‖δ‖2
− qq∗

)
sin2 (τ ‖δ‖)

∥∥∥∥∥ + 2 sin (τ ‖δ‖) cos (τ ‖δ‖)

≤ sin2 (τ ‖δ‖) + sin (2τ ‖δ‖) ≤ 5

2
τ ‖δ‖ .

Therefore, by Lemma VI.1, we obtain∥∥P0←τ
γ Hess f(γ(τ))Pτ←0

γ −Hess f(q)
∥∥

≤
∥∥P0←τ

γ Hess f(γ(τ))Pτ←0
γ −Hess f(γ(τ))Pτ←0

γ

∥∥ +
∥∥Hess f(γ(τ))Pτ←0

γ −Hess f(γ(τ))
∥∥

+ ‖Hess f(γ(τ))−Hess f(q)‖
≤
∥∥P0←τ

γ − I
∥∥ ‖Hess f(γ(τ))‖ +

∥∥Pτ←0
γ − I

∥∥ ‖Hess f(γ(t))‖ + ‖Hess f(γ(t))−Hess f(q)‖

≤ 11

4
τ ‖δ‖

∥∥∇2f (γ (τ))− 〈∇f (γ (τ)) , γ (t)〉 I
∥∥ + ‖Hess f(γ(τ))−Hess f(q)‖ .

By Lemma II.5 and substituting the estimate in (VI.5), we obtain the claimed result.

Proof. (of Lemma II.11) For any given q with ‖w(q)‖ ≤ µ/(4
√

2), assume U is an orthonormal basis for its
tangent space TqSn−1. Again we first work with the “canonical” section in the vicinity of en with the “canonical”
reparametrization q(w) = [w;

√
1− ‖w‖2].

1) Expectation of the operator. By definition of the Riemannian Hessian in (II.5), expressions of ∇2f and ∇f
in (II.2) and (II.3), and exchange of differential and expectation operators, we obtain

U∗HessE [f(q)]U = E [U∗Hess f(q)U ]

= E
[
U∗∇2f(q)U − 〈q,∇f(q)〉 In−1

]
= U∗E

[
1

µ

{
1− tanh2

(
q∗x

µ

)}
xx∗

]
U − E

[
tanh

(
q∗x

µ

)
q∗x

]
In−1.
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Let x ∈ Rn−1 be the first n− 1 coordinates of x and w ∈ Rn−1 the similar subvector of q (as used in [3]).
We have

U∗E
[

1

µ

{
1− tanh2

(
q∗x

µ

)}
xx∗

]
U � 1− θ

µ
U∗E

[{
1− tanh2

(
w∗x

µ

)}[
x x∗ 0
0∗ 0

]]
U .

Now consider any vector z ∈ TqSn−1 such that z = Uv for some v ∈ Rn−1 and ‖z‖ = 1. Then

z∗E
[{

1− tanh2

(
w∗x

µ

)}[
x x∗ 0
0∗ 0

]]
z ≥ θ√

2π

(
2− 3

4

√
2

)
‖z‖2

by proof of Proposition II.7 in [3], where z ∈ Rn−1 as above is the first n− 1 coordinates of z. Now we
know that 〈q, z〉 = 0, or

w∗z + qnzn = 0 =⇒ ‖z‖|zn|
=

qn
‖w‖ =

√
1− ‖w‖2
‖w‖ ≥ 50,

where we have used ‖w‖ ≤ µ/(4
√

2) and µ ≤ 1/10 to obtain the last lower bound. Combining the above
with the fact that ‖z‖ = 1, we obtain

U∗E
[

1

µ

{
1− tanh2

(
q∗x

µ

)}
xx∗

]
U � 99

100

1− θ
µ

θ√
2π

(2− 3
√

2/4)In−1

� 99

200
√

2π
(2− 3

√
2/4)

θ

µ
In−1, (VI.6)

where we have simplified the expression using θ ≤ 1/2. To bound the second term,

E
[
tanh

(
q∗x

µ

)
q∗x

]
= EI

[
EZ∼N(0,‖qI‖2) [tanh(Z/µ)Z]

]
=

1

µ
EI
[
‖qI‖2EZ∼N(0,‖qI‖2)

[
1− tanh2(Z/µ)

]]
(by Lemma B.1 in [3])

≤ 1

µ
EI
[
EZ∼N(0,‖qI‖2)

[
1− tanh2(Z/µ)

]]
.

Now we have the following estimate:

EZ∼N(0,‖wJ ‖2+q2n)
[
1− tanh2(Z/µ)

]
= 2EZ∼N(0,‖wJ ‖2+q2n)

[(
1− tanh2(Z/µ)

)
1Z>0

]
≤ 8EZ∼N(0,‖wJ ‖2+q2n)

[exp(−2Z/µ)1Z>0]

= 8 exp

(
2 ‖wJ ‖2 + 2q2

n

µ2

)
Φc

2
√
‖wJ ‖2 + q2

n

µ

 (by Lemma B.1 in [3])

≤ 4√
2π

µ√
‖wJ ‖2 + q2

n

,

where at the last inequality we have applied Gaussian tail upper bound of Type II in Lemma A.2. Since
‖wJ ‖2 + q2

n ≥ q2
n = 1− ‖w‖2 ≥ 1− µ2/32 ≥ 31/32 for ‖w‖ ≤ µ/(4

√
2) and µ ≤ 1, we obtain

EZ∼N(0,‖wJ ‖2+q2n)
[
1− tanh2(Z/µ)

]
≤ 4√

2π

µ√
31/32

≤ 4√
2π
µ. (VI.7)

Collecting the above estimates, we obtain

U∗HessE [f(q)]U � 99

200
√

2π
(2− 3

√
2/4)

θ

µ
In−1 −

1

µ

4√
2π
µIn−1 �

1

4
√

2π

θ

µ
In−1, (VI.8)
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where we have used the fact µ ≤ θ/10 to obtain the final lower bound.
2) Concentration. Next we perform concentration analysis. For any q, we can write

U∗∇2f(q)U =
1

p

p∑
k=1

Wk, with Wk
.
=

1

µ

[
1− tanh2

(
q∗(x0)k

µ

)]
U∗(x0)k(x0)∗kU .

For any integer m ≥ 2, we have

0 � E [Wm
k ] � 1

µm
E [(U∗(x0)k(x0)∗kU)m]

� 1

µm
E [‖(x0)k(x0)∗k‖m] I =

1

µm
E
[
‖(x0)k‖2m

]
I � 1

µm
EZ∼χ2(n) [Zm] I,

where we have used Lemma B.8 to obtain the last inequality. By Lemma A.4, we obtain

0 � E [Wm
k ] � 1

µm
m!

2
(2n)m I � m!

2

(
2n

µ

)m
I.

Taking RW = 2n/µ, and σ2
W = 4n2/µ2 ≥ E

[
W 2

k

]
, by Lemma A.6, we obtain

P

[∥∥∥∥∥1

p

p∑
k=1

Wk −
1

p

p∑
k=1

E [Wk]

∥∥∥∥∥ > t/2

]
≤ 2n exp

(
− pµ2t2

32n2 + 8nt

)
(VI.9)

for any t > 0. Similarly, we write

〈∇f(q), q〉 =
1

p

p∑
k=1

Zk, with Zk
.
= tanh

(
q∗(x0)k

µ

)
q∗(x0)k.

For any integer m ≥ 2, we have

E [|Zk|m] ≤ E [|q∗(x0)k|m] ≤ EZ∼N (0,1) [|Z|m] ≤ m!

2
,

where at the first inequality we used the fact |tanh(·)| ≤ 1, at the second we invoked Lemma B.8, and at the
third we invoked Lemma A.3. Taking RZ = σ2

Z = 1, by Lemma A.5, we obtain

P

[∣∣∣∣∣1p
p∑

k=1

Zk −
1

p

p∑
k=1

E [Zk]

∣∣∣∣∣ > t/2

]
≤ 2 exp

(
−pt2/16

)
(VI.10)

for any t > 0. Gathering (VI.9) and (VI.10), we obtain that for any t > 0,

P [‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ > t]

≤ P
[∥∥U∗∇2f(q)U −∇2E [f(q)]

∥∥ > t/2
]

+ P [|〈∇f(q), q〉 − 〈∇E [f(q)] , q〉| > t/2]

≤ 2n exp

(
− pµ2t2

32n2 + 8nt

)
+ 2 exp

(
−pt

2

16

)
≤ 4n exp

(
− pµ2t2

32n2 + 8nt

)
. (VI.11)

3) Uniformizing the bound. Now we are ready to pull above results together for a discretization argument.
For any ε ∈ (0, µ/(4

√
2)), there is an ε-net Nε of size at most (3µ/(4

√
2ε))n that covers the region{

q : ‖w(q)‖ ≤ µ/(4
√

2)
}

. By Lemma VI.2, the function Hess f(q) is locally Lipschitz within each normal
ball of radius ∥∥q − expq(1/2)

∥∥ =
√

2− 2 cos(1/2) ≥ 1/
√

5

with Lipschitz constant LH (as defined in Lemma VI.2). Note that ε < µ/(4
√

2) < 1/(4
√

2) < 1/
√

5 for
µ < 1, so any choice of ε ∈ (0, µ/(4

√
2)) makes the Lipschitz constant LH valid within each ε-ball centered

around one element of the ε-net. Let

E∞ .
=
{

1 ≤ ‖X0‖∞ ≤ 4
√

log(np)
}
.
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From Lemma B.6, P [Ec∞] ≤ θ (np)−7 + exp (−0.3θnp). By Lemma VI.2, with at least the same probability,

LH ≤ C1
n3/2

µ2
log3/2(np).

Set ε = θ
12
√

2πµLH
< µ/(4

√
2), so

#Nε ≤ exp

(
n log

C2n
3/2 log3/2(np)

θ

)
.

Let EH denote the event that

EH .
=

{
max
q∈Nε

‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ ≤ θ

12
√

2πµ

}
.

On E∞ ∩ EH ,

sup
q:‖w(q)‖≤µ/(4

√
2)

‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ ≤ θ

6
√

2πµ
.

So on E∞ ∩ EH , we have

U∗Hess f(q)U � c]
θ

µ
(VI.12)

for any c] ≤ 1/(12
√

2π). We take c] = c? for simplicity. Setting t = θ
12
√

2πµ
in (VI.11), we obtain that for

any fixed q in this region,

P [‖U∗HessE [f(q)]U −U∗Hess f(q)U‖ > t] ≤ 4n exp

(
− pθ2

c3n2 + c4nθ/µ

)
.

Taking a union bound, we obtain that

P [EcH ] ≤ 4n exp

(
− pθ2

c3n2 + c4nθ/µ
+ C5n log n+ C6n log log p

)
.

It is enough to make p ≥ C7n
3 log(n/(µθ))/(µθ2) to make the failure probability small, completing the proof.

G. Proof of Lemma II.13

Proof. For a given q, consider the vector r .
= q−en/qn. It is easy to verify that 〈q, r〉 = 0, and hence r ∈ TqSn−1.

Now, by (II.2) and (II.4), we have

〈grad f (q) , r〉 = 〈(I − qq∗)∇f (q) , q − en/qn〉
= 〈(I − qq∗)∇f (q) ,−en/qn〉

=
1

p

p∑
k=1

〈
(I − qq∗) tanh

(
q∗(x0)k

µ

)
(x0)k,−en/qn

〉

=
1

p

p∑
k=1

tanh

(
q∗(x0)k

µ

)(
−xk (n)

qn
+ q∗(x0)k

)

=
1

p

p∑
k=1

tanh

(
q∗(x0)k

µ

)(
w∗ (q)xk −

xk (n)

qn
‖w (q)‖2

)
= w∗ (q)∇g (w) ,

where an explicit expression for g(w) can be found at the start of Section IV in [3]. Thus,

w∗∇g (w)

‖w‖ =
〈grad f (q) , r〉

‖w‖ ≤ ‖grad f (q)‖ ‖r‖‖w‖ ,
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where

‖r‖2

‖w‖2
=
‖w‖2 +

(
qn − 1

qn

)2

‖w‖2
=
‖w‖2 + ‖w‖4 /q2

n

‖w‖2
=

1

q2
n

=
1

1− ‖w‖2
≤ 1

1− 1
2000

=
2000

1999
,

where we have invoked our assumption that ‖w‖ ≤ 1
20
√

5
. Therefore we obtain

‖grad f (q)‖ ≥ ‖w‖‖r‖
w∗∇g (w)

‖w‖ ≥
√

1999

2000

w∗∇g (w)

‖w‖ ≥ 9

10

w∗∇g (w)

‖w‖ ,

completing the proof.

H. Proof of Lemma II.14

Proof of Lemma II.14 combines the local Lipschitz property of Hess f(q) in Lemma VI.2, and the Taylor’s
theorem (manifold version, Lemma 7.4.7 of [68]).

Proof. (of Lemma II.14) Let γ (t) be the unique geodesic that satisfies γ (0) = q(r), γ (1) = q(r+1), and its
directional derivative γ̇ (0) = δ?. Since the parallel translation defined by the Riemannian connection is an
isometry, then

∥∥grad f(q(r+1))
∥∥ =

∥∥P0←1
γ grad f(q(r+1))

∥∥. Moreover, since ‖δ?‖ ≤ ∆, the unconstrained optimality
condition in (II.6) implies that grad f(q(r)) + Hess f(q(r))δ? = 0q(r) . Thus, by using Taylor’s theorem in [68], we
have ∥∥∥grad f(q(r+1))

∥∥∥ =
∥∥∥P0←1

γ grad f
(
q(r+1)

)
− grad f

(
q(r)

)
−Hess f

(
q(r)

)
δ?

∥∥∥
=

∥∥∥∥∫ 1

0

[
P0←t
γ Hess f (γ (t)) [γ̇ (t)]−Hess f

(
q(r)

)
δ?

]
dt

∥∥∥∥ (Taylor’s theorem)

=

∥∥∥∥∫ 1

0

(
P0←t
γ Hess f (γ (t))Pt←0

γ δ? −Hess f
(
q(r)

)
δ?

)
dt

∥∥∥∥
≤ ‖δ?‖

∫ 1

0

∥∥∥P0←t
γ Hess f (γ (t))Pt←0

γ −Hess f
(
q(r)

)∥∥∥ dt.

From the Lipschitz bound in Lemma VI.2 and the optimality condition in (II.6), we obtain∥∥∥grad f
(
q(r+1)

)∥∥∥ ≤ 1

2
‖δ?‖2 LH =

LH
2m2

H

∥∥∥grad f
(
q(r)

)∥∥∥2
.

This completes the proof.

I. Proof of Lemma II.16

Proof. By invoking Taylor’s theorem in [68], we have

P0←τ
γ grad f (γ (τ)) =

∫ τ

0
P0←t
γ Hess f (γ (t)) [γ̇ (t)] dt.

Hence, we have 〈
P0←τ
γ grad f (γ (τ)) , δ

〉
=

∫ τ

0

〈
P0←t
γ Hess f (γ (t)) [γ̇ (t)], δ

〉
dt

=

∫ τ

0

〈
P0←t
γ Hess f (γ (t)) [γ̇ (t)],P0←t

γ γ̇ (t)
〉
dt

=

∫ τ

0
〈Hess f (γ (t)) [γ̇ (t)], γ̇ (t)〉 dt

≥ mH

∫ τ

0
‖γ̇ (t)‖2 dt ≥ mHτ ‖δ‖2 ,
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where we have used the fact that the parallel transport P0←t
γ defined by the Riemannian connection is an isometry.

On the other hand, we have〈
P0←τ
γ grad f (γ (τ)) , δ

〉
≤
∥∥P0←τ

γ grad f (γ (τ))
∥∥ ‖δ‖ = ‖grad f (γ (τ))‖ ‖δ‖ ,

where again used the isometry property of the operator P0←τ
γ . Combining the two bounds above, we obtain

‖grad f (γ (τ))‖ ‖δ‖ ≥ mHτ ‖δ‖2 ,
which implies the claimed result.

VII. PROOFS OF TECHNICAL RESULTS FOR SECTION III

We need one technical lemma to prove Lemma III.2 and the relevant lemma for complete dictionaries.

Lemma VII.1. For all integer n1 ∈ N, θ ∈ (0, 1/3), and n2 ∈ N with n2 ≥ Cn1 log (n1/θ) /θ
2, any random matrix

M ∈ Rn1×n2 ∼i.i.d. BG(θ) obeys the following: for any fixed index set I ⊂ [n2] with |I| ≤ 9
8θn2, it holds that

‖v∗MIc‖1 − ‖v∗MI‖1 ≥
n2

6

√
2

π
θ ‖v‖ for all v ∈ Rn1 ,

with probability at least 1− cp−6. Here C, c are both positive constants.

Proof. By homogeneity, it is sufficient to consider all v ∈ Sn1 . For any i ∈ [n2], let mi ∈ Rn1 be a column of M .
For a fixed v such that ‖v‖ = 1, we have

T (v)
.
= ‖v∗MIc‖1 − ‖v∗MI‖1 =

∑
i∈Ic
|v∗mi| −

∑
i∈I
|v∗mi| ,

namely as a sum of independent random variables. Since |I| ≤ 9n2θ/8, we have

E [T (v)] ≥
(
n2 −

9

8
θn2 −

9

8
θn2

)
E [|v∗m1|] =

(
1− 9

4
θ

)
n2E [|v∗m1|] ≥

1

4
n2E [|v∗m1|] ,

where the expectation E [|v∗m1|] can be lower bounded as

E [|v∗m1|] =

n1∑
k=0

θk (1− θ)n1−k
∑

J∈([n1]

k )

Eg∼N (0,I)

[∣∣v∗J g∣∣]
=

n1∑
k=0

θk (1− θ)n1−k
∑

J∈([n1]

k )

√
2

π
‖vJ ‖ ≥

√
2

π
‖EJ [vJ ]‖ =

√
2

π
θ.

Moreover, by Lemma B.8 and Lemma A.3, for any i ∈ [n2] and any integer m ≥ 2,

E [|v∗mi|m] ≤ EZ∼N (0,1) [|Z|m] ≤ (m− 1)!! ≤ m!

2
.

So invoking the moment-control Bernstein’s inequality in Lemma A.5, we obtain

P

[
T (v) <

n2

4

√
2

π
θ − t

]
≤ P [T (v) < E [T (v)]− t] ≤ exp

(
− t2

2n2 + 2t

)
.

Taking t = n2

20

√
2
πθ and simplifying, we obtain that

P

[
T (v) <

n2

5

√
2

π
θ

]
≤ exp

(
−c1θ

2n2

)
. (VII.1)

Fix ε =
√

2
π

θ
120 [n1 log (n1n2)]−1/2 < 1. The unit sphere Sn1 has an ε-net Nε of cardinality at most (3/ε)n1 .

Consider the event

Ebg .
=

{
T (v) ≥ n2

5

√
2

π
θ ∀ v ∈ Nε

}
.
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A simple union bound implies

P
[
Ecbg
]
≤ exp

(
−c1θ

2n2 + n1 log

(
3

ε

))
≤ exp

(
−c1θ

2n2 + c2n1 log
n1 log n2

θ

)
. (VII.2)

Conditioned on Ebg, we have that any z ∈ Sn1−1 can be written as z = v + e for some v ∈ Nε and ‖e‖ ≤ ε.
Moreover,

T (z) = ‖(v + e)∗MIc‖1 − ‖(v + e)∗MI‖1 ≥ T (v)− ‖e∗MIc‖1 − ‖e∗MI‖1

=
n2

5

√
2

π
θ − ‖e∗M‖1 =

n2

5

√
2

π
θ −

n2∑
k=1

|e∗mk|

≥ n2

5

√
2

π
θ − ε

n2∑
k=1

‖mk‖ .

By Lemma B.6, with probability at least 1− θ (n1n2)−7 − exp (−0.3θn1n2), ‖M‖∞ ≤ 4
√

log (n1n2). Thus,

T (z) ≥ n2

5

√
2

π
θ −

√
2

π

θ

120

n2
√
n14
√

log (n1n2)
√
n1

√
log (n1n2)

=
n2

6

√
2

π
θ. (VII.3)

Thus, by (VII.2), it is enough to take n2 > Cn1 log (n1/θ) /θ
2 for sufficiently large C > 0 to make the overall

failure probability small enough so that the lower bound (VII.3) holds.

A. Proof of Lemma III.2

Proof. The proof is similar to that of [44]. First, let us assume the dictionary A0 = I . W.l.o.g., suppose that the
Riemannian TRM algorithm returns a solution q̂, to which en is the nearest signed basis vector. Thus, the rounding
LP (III.1) takes the form:

minimizeq ‖q∗X0‖1 , subject to 〈r, q〉 = 1. (VII.4)

where the vector r = q̂. Next, We will show whenever q̂ is close enough to en, w.h.p., the above linear program
returns en. Let X0 =

[
X;x∗n

]
, where X ∈ R(n−1)×p and x∗n is the last row of X0. Set q = [q, qn], where q

denotes the first n− 1 coordinates of q and qn is the last coordinate; similarly for r. Let us consider a relaxation of
the problem (VII.4),

minimizeq ‖q∗X0‖1 , subject to qnrn + 〈q, r〉 ≥ 1, (VII.5)

It is obvious that the feasible set of (VII.5) contains that of (VII.4). So if en is the unique optimal solution (UOS)
of (VII.5), it is the UOS of (VII.4). Suppose I = supp(xn) and define an event E0 =

{
|I| ≤ 9

8θp
}

. By Hoeffding’s
inequality, we know that P [Ec0] ≤ exp

(
−θ2p/2

)
. Now conditioned on E0 and consider a fixed support I. (VII.5)

can be further relaxed as

minimizeq ‖xn‖1 |qn| −
∥∥q∗XI∥∥1

+
∥∥q∗XIc∥∥1

, subject to qnrn + ‖q‖ ‖r‖ ≥ 1. (VII.6)

The objective value of (VII.6) lower bounds that of (VII.5), and are equal when q = en. So if q = en is UOS of
(VII.6), it is UOS of (VII.4). By Lemma VII.1, we know that

∥∥q∗XIc∥∥1
−
∥∥q∗XI∥∥1

≥ p

6

√
2

π
θ ‖q‖

holds w.h.p. when p ≥ C1(n−1) log ((n− 1)/θ) /θ2. Let ζ = p
6

√
2
πθ, thus we can further lower bound the objective

value in (VII.6) by

minimizeq ‖xn‖1 |qn|+ ζ ‖q‖ , subject to qnrn + ‖q‖ ‖r‖ ≥ 1. (VII.7)
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By similar arguments, if en is the UOS of (VII.7), it is also the UOS of (VII.4). For the optimal solution of (VII.7),
notice that it is necessary to have sign (qn) = sign (rn) and qnrn + ‖q‖ ‖r‖ = 1. Therefore, the problem (VII.7) is
equivalent to

minimizeqn ‖xn‖1 |qn|+ ζ
1− |rn| |qn|
‖r‖ , subject to |qn| ≤

1

|rn|
. (VII.8)

Notice that the problem (VII.8) is a linear program in |qn| with a compact feasible set, which indicates that the
optimal solution only occurs at the boundary points |qn| = 0 and |qn| = 1/ |rn|. Therefore, q = en is the UOS of
(VII.8) if and only if

1

|rn|
‖xn‖1 <

ζ

‖r‖ . (VII.9)

Conditioned on E0, by using the Gaussian concentration bound, we have

P

[
‖xn‖1 ≥

9

8

√
2

π
θp+ t

]
≤ P [‖xn‖1 ≥ E [‖xn‖1] + t] ≤ exp

(
− t

2

2p

)
,

which means that

P

[
‖xn‖1 ≥

5

4

√
2

π
θp

]
≤ exp

(
− θ

2p

64π

)
. (VII.10)

Therefore, by (VII.9) and (VII.10), for q = en to be the UOS of (VII.4) w.h.p., it is sufficient to have

5

4 |rn|

√
2

π
θp <

θp

6
√

1− |rn|2

√
2

π
, (VII.11)

which is implied by

|rn| >
249

250
.

The failure probability can be estimated via a simple union bound. Since the above argument holds uniformly for
any fixed support set I, we obtain the desired result.

When our dictionary A0 is an arbitrary orthogonal matrix, it only rotates the row subspace of X0. Thus, w.l.o.g.,
suppose the TRM algorithm returns a solution q̂, to which A0q? is the nearest “target” with q? a signed basis
vector. By a change of variable q̃ = A∗0q, the problem (VII.4) is of the form

minimizeq̃ ‖q̃∗X0‖1 , subject to 〈A∗0r, q̃〉 = 1,

obviously our target solution for q̃ is again the standard basis q?. By a similar argument above, we only need
〈A∗0r, en〉 > 249/250 to exactly recover the target, which is equivalent to 〈r, q̂?〉 > 249/250. This implies that our
rounding (III.1) is invariant to change of basis, completing the proof.

B. Proof of Lemma III.4

Proof. Define q̃ .
= (UV ∗ + Ξ)∗q. By Lemma B.7, and in particular (II.48), when

p ≥ C1

c2
?θ

max

{
n4

µ4
,
n5

µ2

}
κ8 (A0) log4

(
κ (A0)n

µθ

)
,

‖Ξ‖ ≤ 1/2 so that UV ∗ + Ξ is invertible. Then the LP rounding can be written as

minimizeq̃ ‖q̃∗X0‖1 , subject to
〈
(UV ∗ + Ξ)−1r, q̃

〉
= 1.

By Lemma III.2, to obtain q̃ = en from this LP, it is enough to have〈
(UV ∗ + Ξ)−1r, en

〉
≥ 249/250,

and p ≥ C2n
2 log(n/θ)/θ for some large enough C2. This implies that to obtain q? for the original LP, such that

(UV ∗ + Ξ)∗q? = en, it is enough that〈
(UV ∗ + Ξ)−1r, (UV ∗ + Ξ)∗q?

〉
= 〈r, q?〉 ≥ 249/250,

completing the proof.
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C. Proof of Lemma III.5

Proof. Note that [q1
?, . . . , q

`
?] = (Q∗ + Ξ∗)−1[e1, . . . , e`], we have

U∗(Q+ Ξ)X0 = U∗(Q∗ + Ξ∗)−1(Q+ Ξ)∗(Q+ Ξ)X0

= U∗
[
q1
?, . . . , q

`
? | V̂

]
(I + ∆1)X0,

where V̂ .
= (Q∗ + Ξ∗)−1[e`+1, . . . , en], and the matrix ∆1 = Q∗Ξ + Ξ∗Q+ Ξ∗Ξ so that ‖∆1‖ ≤ 3 ‖Ξ‖. Since

U∗
[
q1
?, . . . , q

`
? | V̂

]
=
[
0 | U∗V̂

]
, we have

U∗(Q+ Ξ)X0 =
[
0 | U∗V̂

]
X0 +

[
0 | U∗V̂

]
∆1X0 = U∗V̂ X

[n−`]
0 + ∆2X0, (VII.12)

where ∆2 =
[
0 | U∗V̂

]
∆1. Let δ = ‖Ξ‖, so that

‖∆2‖ ≤
‖∆1‖

σmin (Q+ Ξ)
≤ 3 ‖Ξ‖
σmin (Q+ Ξ)

≤ 3δ

1− δ . (VII.13)

Since the matrix V̂ is near orthogonal, it can be decomposed as V̂ = V + ∆3, where V is orthogonal, and ∆3 is
a small perturbation. Obviously, V = UR for some orthogonal matrix R, so that V spans the same subspace as
that of U . Next, we control the spectral norm of ∆3:

‖∆3‖ = min
R∈O`

∥∥∥UR− V̂ ∥∥∥ ≤ min
R∈O`

∥∥UR−Q[n−`]
∥∥ +

∥∥∥Q[n−`] − V̂
∥∥∥ , (VII.14)

where Q[n−`] collects the last n− ` columns of Q, i.e., Q = [Q[`],Q[n−`]].
To bound the second term on the right, we have∥∥∥Q[n−`] − V̂

∥∥∥ ≤ ∥∥Q−1 − (Q+ Ξ)−1
∥∥ ≤ ∥∥Q−1

∥∥ ∥∥Q−1Ξ
∥∥

1− ‖Q−1Ξ‖ ≤ δ

1− δ ,

where we have used perturbation bound for matrix inverse (see, e.g., Theorem 2.5 of Chapter III in [84]).
To bound the first term, from Lemma B.2, it is enough to upper bound the largest principal angle θ1 between

the subspaces span([q1
?, . . . , q

`
?]), and that spanned by Q[e1, . . . , e`]. Write I[`]

.
= [e1, . . . , e`] for short, we bound

sin θ1 as

sin θ1 ≤
∥∥∥∥QI[`]I

∗
[`]Q

∗ − (Q∗ + Ξ∗)−1I[`]

(
I∗[`](Q+ Ξ)−1(Q∗ + Ξ∗)−1I[`]

)−1
I∗[`](Q+ Ξ)−1

∥∥∥∥
=

∥∥∥∥QI[`]I
∗
[`]Q

∗ − (Q∗ + Ξ∗)−1I[`]

(
I∗[`](I + ∆1)−1I[`]

)−1
I∗[`](Q+ Ξ)−1

∥∥∥∥
≤
∥∥∥QI[`]I

∗
[`]Q

∗ − (Q∗ + Ξ∗)−1I[`]I
∗
[`](Q+ Ξ)−1

∥∥∥
+

∥∥∥∥(Q∗ + Ξ∗)−1I[`]

[
I −

(
I∗[`](I + ∆1)−1I[`]

)−1
]
I∗[`](Q+ Ξ)−1

∥∥∥∥
≤
(

1 +
1

σmin(Q+ Ξ)

)∥∥Q−1 − (Q+ Ξ)−1
∥∥ +

1

σ2
min(Q+ Ξ)

∥∥∥∥I − (I∗[`](I + ∆1)−1I[`]

)−1
∥∥∥∥

≤
(

1 +
1

1− δ

)
δ

1− δ +
1

(1− δ)2

∥∥∥I∗[`](I + ∆1)−1I[`] − I
∥∥∥

1−
∥∥∥I∗[`](I + ∆1)−1I[`] − I

∥∥∥
≤
(

1 +
1

1− δ

)
δ

1− δ +
1

(1− δ)2

‖∆1‖
1− 2 ‖∆1‖

,

where to obtain the first line we used that for any full column rank matrix M , M(M∗M)−1M∗ is the orthogonal
projector onto the its column span, and to obtain the fifth and six lines we invoked the matrix inverse perturbation
bound again. Using δ < 1/20 and ‖∆1‖ ≤ 3δ < 1/2, we have

sin θ1 ≤
(2− δ)δ
(1− δ)2

+
3δ

(1− δ)2(1− 6δ)
=

5δ − 13δ2 + 6δ3

(1− δ)2(1− 6δ)
≤ 8δ.
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For δ < 1/20, the upper bound is nontrivial. By Lemma B.2,

min
R∈O`

∥∥UR−Q[n−`]
∥∥ ≤√2− 2 cos θ1 ≤

√
2− 2 cos2 θ1 =

√
2 sin θ1 ≤ 8

√
2δ.

Put the estimates above, there exists an orthogonal matrix R ∈ O` such that V = UR and V̂ = V + ∆3 with

‖∆3‖ ≤ δ/(1− δ) + 8
√

2δ ≤ 25/(2δ). (VII.15)

Therefore, by (VII.12), we obtain

U∗(Q+ Ξ)X0 = U∗V X
[n−`]
0 + ∆, with ∆

.
= U∗∆3X

[n−`]
0 + ∆2X0. (VII.16)

By using the results in (VII.13) and (VII.15), we get the desired result.

APPENDIX A
TECHNICAL TOOLS AND BASIC FACTS USED IN PROOFS

In this section, we summarize some basic calculations that are useful throughout, and also record major technical
tools we use in proofs.

Lemma A.1 (Derivates and Lipschitz Properties of hµ (z)). For the sparsity surrogate

hµ (z) = µ log cosh (z/µ) ,

the first two derivatives are

ḣµ(z) = tanh(z/µ), ḧµ(z) =
[
1− tanh2(z/µ)

]
/µ.

Also, for any z > 0, we have

(1− exp(−2z/µ)/2 ≤ tanh(z/µ) ≤ 1− exp(−2z/µ),

exp(−2z/µ) ≤ 1− tanh2(z/µ) ≤ 4 exp(−2z/µ).

Moreover, for any z, z′ ∈ R, we have

|ḣµ(z)− ḣµ(z′)| ≤ |z − z′|/µ, |ḧµ(z)− ḧµ(z′)| ≤ 2|z − z′|/µ2.

Lemma A.2 (Gaussian Tail Estimates). Let X ∼ N (0, 1) and Φ (x) be CDF of X . For any x ≥ 0, we have the
following estimates for Φc (x)

.
= 1− Φ (x):(

1

x
− 1

x3

)
exp

(
−x2/2

)
√

2π
≤ Φc (x) ≤

(
1

x
− 1

x3
+

3

x5

)
exp

(
−x2/2

)
√

2π
, (Type I)

x

x2 + 1

exp
(
−x2/2

)
√

2π
≤ Φc (x) ≤ 1

x

exp
(
−x2/2

)
√

2π
, (Type II)

√
x2 + 4− x

2

exp
(
−x2/2

)
√

2π
≤ Φc (x) ≤

(√
2 + x2 − x

) exp
(
−x2/2

)
√

2π
(Type III).

Proof. See proof of Lemma A.5 in the technical report [2].

Lemma A.3 (Moments of the Gaussian RV). If X ∼ N
(
0, σ2

)
, then it holds for all integer p ≥ 1 that

E [|X|p] ≤ σp (p− 1)!!.

Lemma A.4 (Moments of the χ2 RV). If X ∼ χ2 (n), then it holds for all integer p ≥ 1 that

E [Xp] = 2p
Γ (p+ n/2)

Γ (n/2)
=

p∏
k=1

(n+ 2k − 2) ≤ p! (2n)p /2.

Lemma A.5 (Moment-Control Bernstein’s Inequality for Scalar RVs, Theorem 2.10 of [85]). Let X1, . . . , Xp be
i.i.d. real-valued random variables. Suppose that there exist some positive numbers R and σ2 such that

E [|Xk|m] ≤ m!σ2Rm−2/2, for all integers m ≥ 2.
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Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [|S − E [S]| ≥ t] ≤ 2 exp

(
− pt2

2σ2 + 2Rt

)
.

Lemma A.6 (Moment-Control Bernstein’s Inequality for Matrix RVs, Theorem 6.2 of [86]). Let X1, . . . ,Xp ∈ Rd×d
be i.i.d. random, symmetric matrices. Suppose there exist some positive number R and σ2 such that

E [Xm
k ] � m!σ2Rm−2/2 · I and− E [Xm

k ] � m!σ2Rm−2/2 · I , for all integers m ≥ 2.

Let S .
= 1

p

∑p
k=1Xk, then for all t > 0, it holds that

P [‖S − E [S]‖ ≥ t] ≤ 2d exp

(
− pt2

2σ2 + 2Rt

)
.

Proof. See proof of Lemma A.10 in the technical report [2].

Lemma A.7 (Integral Form of Taylor’s Theorem). Let f(x) : Rn 7→ R be a twice continuously differentiable
function, then for any direction y ∈ Rn, we have

f(x+ ty) = f(x) + t

∫ 1

0
〈∇f(x+ sty),y〉 ds,

f(x+ ty) = f(x) + t 〈∇f(x),y〉+ t2
∫ 1

0
(1− s)

〈
∇2f(x+ sty)y,y

〉
ds.

APPENDIX B
AUXILLARY RESULTS FOR PROOFS

Lemma B.1. There exists a positive constant C such that for any θ ∈ (0, 1/2) and n2 > Cn2
1 log n1, the random

matrix X ∈ Rn1×n2 with X ∼i.i.d. BG (θ) obeys∥∥∥∥ 1

n2θ
XX∗ − I

∥∥∥∥ ≤ 10

√
θn1 log n2

n2
(B.1)

with probability at least 1− n−8
2 .

Proof. See proof of Lemma B.3 in [3].

Lemma B.2. Consider two linear subspaces U , V of dimension k in Rn (k ∈ [n]) spanned by orthonormal bases
U and V , respectively. Suppose π/2 ≥ θ1 ≥ θ2 · · · ≥ θk ≥ 0 are the principal angles between U and V . Then it
holds that
i) minQ∈Ok ‖U − V Q‖ ≤

√
2− 2 cos θ1;

ii) sin θ1 = ‖UU∗ − V V ∗‖;
iii) Let U⊥ and V⊥ be the orthogonal complement of U and V , respectively. Then θ1(U ,V) = θ1(U⊥,V⊥).

Proof. See proof of Lemma B.4 in [2].

Below are restatements of several technical results from [3] that are important for proofs in this paper.

Proposition B.3 (Hessian Lipschitz). Fix any rS ∈ (0, 1). Over the set Γ ∩ {w : ‖w‖ ≥ rS},
w∗∇2g(w;X0)w/ ‖w‖2 is LS-Lipschitz with

LS ≤
16n3

µ2
‖X0‖3∞ +

8n3/2

µrS
‖X0‖2∞ +

48n5/2

µ
‖X0‖2∞ + 96n5/2 ‖X0‖∞ .

Proposition B.4 (Gradient Lipschitz). Fix any rg ∈ (0, 1). Over the set Γ∩ {w : ‖w‖ ≥ rg}, w∗∇g(w;X0)/ ‖w‖
is Lg-Lipschitz with

Lg ≤
2
√
n ‖X0‖∞
rg

+ 8n3/2 ‖X0‖∞ +
4n2

µ
‖X0‖2∞ .
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Proposition B.5 (Lipschitz for Hessian around zero). Fix any rN ∈ (0, 1/2). Over the set Γ ∩ {w : ‖w‖ ≤ rN},
∇2g(w;X0) is LN-Lipschitz with

LN ≤
4n2

µ2
‖X0‖3∞ +

4n

µ
‖X0‖2∞ +

8
√

2
√
n

µ
‖X0‖2∞ + 8 ‖X0‖∞ .

Lemma B.6. For any θ ∈ (0, 1), consider the random matrix X ∈ Rn1×n2 with X ∼i.i.d. BG (θ). Define the event
E∞ .

=
{

1 ≤ ‖X‖∞ ≤ 4
√

log (np)
}

. It holds that

P [Ec∞] ≤ θ (np)−7 + exp (−0.3θnp) .

Lemma B.7. For any θ ∈ (0, 1/2), suppose A0 is complete with condition number κ (A0) and X0 ∼i.i.d. BG (θ).
Provided p ≥ Cκ4 (A0) θn2 log(nθκ (A0)), one can write Y as defined in (II.47) as

Y = UV ∗X0 + ΞX0,

for a certain Ξ obeying ‖Ξ‖ ≤ 20κ4 (A)
√

θn log p
p , with probability at least 1− p−8. Here UΣV ∗ = SVD (A0),

and C is a positive numerical constant.

Lemma B.8. Suppose z, z′ ∈ Rn are independent and obey z ∼i.i.d. BG (θ) and z′ ∼i.i.d. N (0, 1). Then, for any
fixed vector v ∈ Rn, it holds that

E [|v∗z|m] ≤ E
[∣∣v∗z′∣∣m] = EZ∼N(0,‖v‖2) [|Z|m] ,

E [‖z‖m] ≤ E
[∥∥z′∥∥m] ,

for all integers m ≥ 1.
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[64] J. J. Moré and D. C. Sorensen, “On the use of directions of negative curvature in a modified newton method,” Mathematical Programming,

vol. 16, no. 1, pp. 1–20, 1979.
[65] ——, “Computing a trust region step,” SIAM Journal on Scientific and Statistical Computing, vol. 4, no. 3, pp. 553–572, 1983.
[66] U. Helmke, J. B. Moore, and W. Germany, Optimization and dynamical systems. Springer, 1994.
[67] C. Udriste, Convex functions and optimization methods on Riemannian manifolds. Springer Science & Business Media, 1994, vol. 297.
[68] P.-A. Absil, R. Mahoney, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.
[69] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality constraints,” SIAM journal on Matrix

Analysis and Applications, vol. 20, no. 2, pp. 303–353, 1998.
[70] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a matlab toolbox for optimization on manifolds,” The Journal of

Machine Learning Research, vol. 15, no. 1, pp. 1455–1459, 2014.
[71] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods on Riemannian manifolds,” Foundations of Computational

Mathematics, vol. 7, no. 3, pp. 303–330, 2007.
[72] N. Boumal, P.-A. Absil, and C. Cartis, “Global rates of convergence for nonconvex optimization on manifolds,” arXiv preprint

arXiv:1605.08101, 2016.
[73] C. Cartis, N. I. Gould, and P. L. Toint, “Complexity bounds for second-order optimality in unconstrained optimization,” Journal of

Complexity, vol. 28, no. 1, pp. 93–108, 2012.
[74] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—online stochastic gradient for tensor decomposition,” in Proceedings

of The 28th Conference on Learning Theory, 2015, pp. 797–842.
[75] F. Rendl and H. Wolkowicz, “A semidefinite framework for trust region subproblems with applications to large scale minimization,”

Mathematical Programming, vol. 77, no. 1, pp. 273–299, 1997.
[76] Y. Ye and S. Zhang, “New results on quadratic minimization,” SIAM Journal on Optimization, vol. 14, no. 1, pp. 245–267, 2003.
[77] C. Fortin and H. Wolkowicz, “The trust region subproblem and semidefinite programming,” Optimization methods and software, vol. 19,

no. 1, pp. 41–67, 2004.
[78] E. Hazan and T. Koren, “A linear-time algorithm for trust region problems,” arXiv preprint arXiv:1401.6757, 2014.
[79] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University Press, 2004.
[80] K. G. Murty and S. N. Kabadi, “Some np-complete problems in quadratic and nonlinear programming,” Mathematical programming,

vol. 39, no. 2, pp. 117–129, 1987.
[81] D. A. Spielman, H. Wang, and J. Wright, “Exact recovery of sparsely-used dictionaries,” in Proceedings of the 25th Annual Conference

on Learning Theory, 2012.
[82] R. Adamczak, “A note on the sample complexity of the er-spud algorithm by spielman, wang and wright for exact recovery of sparsely

used dictionaries,” arXiv preprint arXiv:1601.02049, 2016.
[83] K. Luh and V. Vu, “Dictionary learning with few samples and matrix concentration,” arXiv preprint arXiv:1503.08854, 2015.
[84] G. W. Stewart and J.-g. Sun, Matrix Perturbation Theory. Academic press, 1990.
[85] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Springer, 2013.
[86] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations of Computational Mathematics, vol. 12, no. 4, pp.

389–434, 2012.


	Introduction
	Prior Arts and Connections
	Notations, and Reproducible Research

	Finding One Local Minimizer via the Riemannian Trust-Region Method
	Some Basic Facts about the Sphere and f
	The Geometric Results from sun2015completea
	The Riemannian Trust-Region Algorithm over the Sphere
	Main Convergence Results
	Sketch of Proof for Orthogonal Dictionaries
	Extending to Convergence for Complete Dictionaries

	Complete Algorithm Pipeline and Main Results
	Recovering Orthogonal Dictionaries
	Recovering Complete Dictionaries

	Simulations
	Practical TRM Implementation
	Simulated Data
	Image Data Again

	Discussion
	Proof of Convergence for the Trust-Region Algorithm
	Proof of Lemma II.5
	Proof of Lemma II.6
	Proof of Lemma II.7
	Proof of Lemma II.8
	Proof of Lemma II.10
	Proof of Lemma II.11
	Proof of Lemma II.13
	Proof of Lemma II.14
	Proof of Lemma II.16

	Proofs of Technical Results for Section III
	Proof of Lemma III.2
	Proof of Lemma III.4
	Proof of Lemma III.5

	Appendix A: Technical Tools and Basic Facts Used in Proofs
	Appendix B: Auxillary Results for Proofs
	References

