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Abstract

Data with low-dimensional nonlinear structure are ubiquitous in engineering and scientific problems.
We study a model problem with such structure—a binary classification task that uses a deep fully-connected
neural network to classify data drawn from two disjoint smooth curves on the unit sphere. Aside from
mild regularity conditions, we place no restrictions on the configuration of the curves. We prove that when
(i) the network depth is large relative to certain geometric properties that set the di�culty of the problem
and (ii) the network width and number of samples are polynomial in the depth, randomly-initialized
gradient descent quickly learns to correctly classify all points on the two curves with high probability. To
our knowledge, this is the first generalization guarantee for deep networks with nonlinear data that depends
only on intrinsic data properties. Our analysis proceeds by a reduction to dynamics in the neural tangent
kernel (NTK) regime, where the network depth plays the role of a fitting resource in solving the classification
problem. In particular, via fine-grained control of the decay properties of the NTK, we demonstrate that
when the network is su�ciently deep, the NTK can be locally approximated by a translationally invariant
operator on the manifolds and stably inverted over smooth functions, which guarantees convergence and
generalization.

1 Introduction
In applied machine learning, engineering, and the sciences, we are frequently confronted with the problem
of identifying low-dimensional structure in high-dimensional data. In certain well-structured data sets,
identifying a good low-dimensional model is the principal task: examples include convolutional sparse
models in microscopy [47] and neuroscience [13, 19], and low-rank models in collaborative filtering [8,
11]. Even more complicated datasets from problems such as image classification exhibit some form of
low-dimensionality: recent experiments estimate the e�ective dimension of CIFAR-10 as 26 and the e�ective
dimension of ImageNet as 43 [65]. The variability in these datasets can be thought of as comprising two
parts: a “probabilistic” variability induced by the distribution of geometries associated with a given class,
and a “geometric” variability associated with physical nuisances such as pose and illumination. The former
is challenging to model analytically; virtually all progress on this issue has come through the introduction of
large datasets and high-capacity learning machines. The latter induces a much cleaner analytical structure:
transformations of a given image lie near a low-dimensional submanifold of the image space (Figure 1).
The celebrated successes of convolutional neural networks in image classification seem to derive from their
ability to simultaneously handle both types of variability. Studying how neural networks compute with data
lying near a low-dimensional manifold is an essential step towards understanding how neural networks
achieve invariance to continuous transformations of the image domain, and towards the longer term goal
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of developing a more comprehensive mathematical understanding of how neural networks compute with
real data. At the same time, in some scientific and engineering problems, classifying manifold-structured
data is the goal—one example is in gravitational wave astronomy [25, 34], where the goal is to distinguish
true events from noise, and the events are generated by relatively simple physical systems with only a few
degrees of freedom.
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Figure 1: Low-dimensional structure in image data and the two curves problem. Left: Manifold structure in natural
images arises due to invariance of the label to continuous domain transformations such as translations and rotations.
Right: The two curve problem. We train a neural network to classify points sampled from a density ⇢ on the submanifolds
M+,M� of the unit sphere. We illustrate the angle injectivity radius� and curvature 1/. These parameters help to
control the di�culty of the problem: problems with smaller separation and larger curvature are more readily separated
with deeper networks.

Motivated by these long term goals, in this paper we study the multiple manifold problem (Figure 1),
a mathematical model problem in which we are presented with a finite set of labeled samples lying on
disjoint low-dimensional submanifolds of a high-dimensional space, and the goal is to correctly classify every

point on each of the submanifolds—a strong form of generalization. The central mathematical question is
how the structure of the data (properties of the manifolds such as dimension, curvature, and separation)
influences the resources (data samples, and network depth and width) required to guarantee generalization.
Our main contribution is the first end-to-end analysis of this problem for a nontrivial class of manifolds:
one-dimensional smooth curves that are non-intersecting, cusp-free, and without antipodal pairs of points.
Subject to these constraints, the curves can be oriented essentially arbitrarily (say, non-linearly-separably, as
in Figure 1), and the hypotheses of our results depend only on architectural resources and intrinsic geometric
properties of the data. To our knowledge, this is the first generalization result for training a deep nonlinear
network to classify structured data that makes no a-priori assumptions about the representation capacity of
the network or about properties of the network after training.

Our analysis proceeds in the neural tangent kernel (NTK) regime of training, where the network is wide
enough to guarantee that gradient descent can make large changes in the network output while making
relatively small changes to the network weights. This approach is inspired by the recent work [61], which
reduces the analysis of generalization in the one-dimensional multiple manifold problem to an auxiliary
problem called the certificate problem. Solving the certificate problem amounts to proving that the target
label function lies near the stable range of the NTK. The existence of certificates (and more generally, the
conditions under which practically-trained neural networks can fit structured data) is open, except for a few
very simple geometries which we will review below—in particular, [61] leaves this question completely open.
Our technical contribution is to show that setting the network depth su�ciently large relative to intrinsic
properties of the data guarantees the existence of a certificate (Theorem 3.1), resolving the one-dimensional
case of the multiple manifold problem for a broad class of curves (Theorem 3.2). This leads in turn to a
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novel perspective on the role of the network depth as a fitting resource in the classification problem, which is
inaccessible to shallow networks.

1.1 Related Work
Deep networks and low dimensional structure. Modern applications of deep neural networks include
numerous examples of low-dimensional manifold structure, including pose and illumination variations in
image classification [2, 6], as well as detection of structured signals such as electrocardiograms [17, 23],
gravitational waves [25, 34], audio signals [16], and solutions to the di�usion equation [52]. Conventionally,
to compute with such data one might begin by extracting a low-dimensional representation using nonlinear
dimensionality reduction (“manifold learning”) algorithms [3–5, 7, 15, 58, 60]. For supervised tasks, there is
also theoretical work on kernel regression over manifolds [12, 14, 22, 55]. These results rely on very general
Sobolev embedding theorems, which are not precise enough to specify the interplay between regularity of
the kernel and properties of the data need to obtain concrete resource tradeo�s in the two curve problem.
There is also a literature which studies the resource requirements associated with approximating functions
over low-dimensional manifolds [18, 33, 42, 48]: a typical result is that for a su�ciently smooth function
there exists an approximating network whose complexity is controlled by intrinsic properties such as the
dimension. In contrast, we seek algorithmic guarantees that prove that we can e�ciently train deep neural
networks for tasks with low-dimensional structure. This requires us to grapple with how the geometry of
the data influences the dynamics of optimization methods.

Neural networks and structured data—theory? Spurred by insights in asymptotic infinite width [26, 28]
and non-asymptotic [21, 24] settings, there has been a surge of recent theoretical work aimed at establishing
guarantees for neural network training and generalization [30–32, 38, 41, 44, 53, 59]. Here, our interest
is in end-to-end generalization guarantees, which are scarce in the literature: those that exist pertain to
unstructured data with general targets, in the regression setting [36, 40, 50, 63], and those that involve
low-dimensional structure consider only linear structure (i.e., spheres) [50]. For less general targets, there
exist numerous works that pertain to the teacher-student setting, where the target is implemented by a
neural network of suitable architecture with unstructured inputs [20, 37, 44, 53, 67]. Although adding this
extra structure to the target function allows one to establish interesting separations in terms of e.g. sample
complexity [35, 43, 53, 66] relative to the preceding analyses, which proceed in the “kernel regime”, we
leverage kernel regime techniques in our present work because they allow us to study the interactions between
deep networks and data with nonlinear low-dimensional structure, which is not possible with existing teacher-
student tools. Relaxing slightly from results with end-to-end guarantees, there exist ‘conditional’ guarantees
which require the existence of an e�cient representation of the target mapping in terms of a certain RKHS
associated to the neural network [38, 57, 61, 62]. In contrast, our present work obtains unconditional,
end-to-end generalization guarantees for a nontrivial class of low-dimensional data geometries.

2 Problem Formulation
Notation. We use bold notation x,A for vectors and matrices/operators (respectively). We write kxkp =
(
Pn

i=1|xi|p)1/p for the `p norm of x, hx,yi =
Pn

i=1 xiyi for the euclidean inner product, and for a measure
space (X,µ), kgkLp

µ
= (

R
X |g(x)|p dµ(x))1/p denotes the Lp

µ norm of a function g : X ! R. The unit sphere
in Rn is denoted Sn�1, and \(x,y) = cos-1(hx,yi) denotes the angle between unit vectors. For a kernel
K : X ⇥ X ! R, we write Kµ[g](x) =

R
X K(x, x0)g(x0) dµ(x0) for the action of the associated Fredholm

integral operator; an omitted subscript denotes Lebesgue measure. We write PS to denote the orthogonal
projection operator onto a (closed) subspace S. Full notation is provided in Appendix B.
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2.1 The Two Curve Problem1

A natural model problem for the tasks discussed in Section 1 is the classification of low-dimensional subman-
ifolds using a neural network. In this work, we study the one-dimensional, two-class case of this problem,
which we refer to as the two curve problem. To fix ideas, let n0 � 3 denote the ambient dimension, and let M+

andM� be two disjoint smooth regular simple closed curves taking values in Sn0�1, which represent the two
classes (Figure 1). In addition, we require that the curves lie in a spherical cap of radius ⇡/2: for example,
the intersection of the sphere and the nonnegative orthant {x 2 Rn0 |x � 0}.2 GivenN i.i.d. samples {xi}Ni=1

from a density ⇢ supported onM = M+ [M�, which is bounded above and below by positive constants
⇢max and ⇢min and has associated measure µ, as well as their corresponding±1 labels, we train a feedforward
neural network f✓ : Rn0 ! Rwith ReLU nonlinearities, uniform width n, and depth L (and parameters ✓)
by minimizing the empirical mean squared error using randomly-initialized gradient descent. Our goal is to
prove that this procedure yields a separator for the geometry given su�cient resources n, L, and N—i.e.,
that sign(f✓k) = 1 onM+ and �1 on M� at some iteration k of gradient descent.

To achieve this, we need an understanding of the progress of gradient descent. Let f? : M ! {±1} denote
the classification function for M+ and M� that generates our labels, write ⇣✓(x) = f✓(x) � f?(x) for the
network’s prediction error, and let ✓k+1 = ✓k � (⌧/N)

PN
i=1 ⇣✓k(xi)r✓f✓k(xi) denote the gradient descent

parameter sequence, where ⌧ > 0 is the step size and ✓0 represents our Gaussian initialization. Elementary
calculus then implies the error dynamics equation ⇣✓k+1 = ⇣✓k�(⌧/N)

PN
i=1 ⇥

N
k ( · ,xi)⇣✓k(xi) for k = 0, 1, . . . ,

where ⇥N
k : M ⇥ M ! R is a certain kernel. The precise expression for this kernel is not important for

our purposes: what matters is that (i) making the width n large relative to the depth L guarantees that
⇥N

k remains close throughout training to its ‘initial value’ ⇥NTK(x,x0) = hr✓f✓0(x),r✓f✓0(x
0)i, the neural

tangent kernel; and (ii) taking the sample size N to be su�ciently large relative to the depth L implies that
a nominal error evolution defined as ⇣k+1 = ⇣k � ⌧⇥NTK

µ [⇣k] with ⇣0 = ⇣✓0 uniformly approximates the
actual error ⇣✓k throughout training. In other words: to prove that gradient descent yields a neural network
classifier that separates the two manifolds, it su�ces to overparameterize, sample densely, and show that
the norm of ⇣k decays su�ciently rapidly with k. This constitutes the “NTK regime” approach to gradient
descent dynamics for neural network training [26].

The evolution of ⇣k is relatively straightforward: we have ⇣k+1 = (Id�⌧⇥NTK
µ )k[⇣0], and⇥NTK

µ is a positive,
compact operator, so there exist an orthonormal basis of L2

µ functions vi and eigenvalues �1 � �2 � · · · � 0

such that ⇣k+1 =
P1

i=1(1� ⌧�i)kh⇣0, viiL2
µ
vi. In particular, with bounded step size ⌧ < �

�1
1 , gradient descent

leads to rapid decrease of the error if and only if the initial error ⇣0 is well-aligned with the eigenvectors of
⇥NTK

µ corresponding to large eigenvalues. Arguing about this alignment explicitly is a challenging problem in
geometry: although closed-form expressions for the functions vi exist in cases whereM and µ are particularly
well-structured, no such expression is available for general nonlinear geometries, even in the one-dimensional case
we study here. However, this alignment can be guaranteed implicitly if one can show there exists a function
g : M ! R of small L2

µ norm such that ⇥NTK
µ [g] ⇡ ⇣0—in this situation, most of the energy of ⇣0 must be

concentrated on directions corresponding to large eigenvalues. We call the construction of such a function
the certificate problem [61, Eqn. (2.3)]:

Certificate Problem. Given a two curves problem instance (M, ⇢), find conditions on the architectural hyperparame-

ters (n, L) so that there exists g : M ! R satisfying k⇥NTK
µ [g]� ⇣0kL2

µ
. 1/L and kgkL2

µ
. 1/n, with constants

depending on the density ⇢ and logarithmic factors suppressed.

The construction of certificates demands a fine-grained understanding of the integral operator⇥NTK
µ and

its interactions with the geometryM. We therefore proceed by identifying those intrinsic properties ofM
that will play a role in our analysis and results.

1The content of this section follows the presentation of [61]; we reproduce it here for self-containedness. We omit some nonessential
definitions and derivations for concision; see Appendix C.1 for these details.

2The specific value ⇡/2 is immaterial to our arguments: this constraint is only to avoid technical issues that arise when antipodal
points are present inM, so any constant less than ⇡ would work just as well. This choice allows for some extra technical expediency,
and connects with natural modeling assumptions (e.g. data corresponding to image manifolds, with nonnegative pixel intensities).
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2.2 Key Geometric Properties
In the NTK regime described in Section 2.1, gradient descent makes rapid progress if there exists a small
certificate g satisfying ⇥NTK

µ [g] ⇡ ⇣0. The NTK is a function of the network width n and depth L—in
particular, wewill see that the depthL serves as a fitting resource, enabling the network to accommodatemore
complicated geometries. Our main analytical task is to establish relationships between these architectural
resources and the intrinsic geometric properties of the manifolds that guarantee existence of a certificate.

Intuitively, one would expect it to be harder to separate curves that are close together or oscillate wildly.
In this section, we formalize these intuitions in terms of the curves’ curvature, and quantities which we
term the angle injectivity radius andV-number, which control the separation between the curves and their
tendency to self-intersect. Given that the curves are regular, we may parameterize the two curves at unit
speed with respect to arc length: for � 2 {±}, we write len(M�) to denote the length of each curve, and use
x�(s) : [0, len(M�)] ! Sn0�1 to represent these parameterizations. We let x(i)

� (s) denote the i-th derivative of
x� with respect to arc length. Because our parameterization is unit speed, kx(1)

� (s)k2 = 1 for all x�(s) 2 M.
We provide full details regarding this parameterization in Appendix C.2.

Curvature andManifoldDerivatives. Our curvesM� are submanifolds of the sphere Sn0�1. The curvature
ofM� at a pointx�(s) is the norm kPx�(s)?x

(2)
� (s)k2 of the componentPx�(s)?x

(2)
� (s) of the second derivative

of x�(s) that lies tangent to the sphere Sn0�1 at x�(s). Geometrically, this measures the extent to which the
curve x�(s) deviates from a geodesic (great circle) on the sphere. Our technical results are phrased in terms
of the maximum curvature  = sup�,s{kPx�(s)?x

(2)
� (s)k2}. In stating results, we also use ̂ = max{, 2

⇡} to
simplify various dependencies on . When  is large, M� is highly curved, and we will require a larger
network depth L. In addition to the maximum curvature , our technical arguments require x�(s) to be five
times continuously di�erentiable, and use bounds Mi = sup�,s{kx

(i)
� (s)k2} on their higher order derivatives.

Angle Injectivity Radius. Another key geometric quantity that determines the hardness of the problem
is the separation between manifolds: the problem is more di�cult when M+ and M� are close together.
We measure closeness through the extrinsic distance (angle) \(x,x0) = cos�1 hx,x0i between x and x

0 over
the sphere. In contrast, we use dM(x,x0) to denote the intrinsic distance between x and x

0 on M, setting
dM(x,x0) = 1 if x and x

0 reside on di�erent components M+ andM�. We set

� = inf
x,x02M

{\(x,x0) | dM(x,x0) � ⌧1}, (2.1)

where ⌧1 = 1p
20̂

, and call this quantity the angle injectivity radius. In words, the angle injectivity radius is the
minimum angle between two points whose intrinsic distance exceeds ⌧1. The angle injectivity radius � (i)
lower bounds the distance between di�erent components M+ and M�, and (ii) accounts for the possibility
that a component will “loop back,” exhibiting points with large intrinsic distance but small angle. This
phenomenon is important to account for: the certificate problem is harder when one or both components of
M nearly self-intersect. At an intuitive level, this increases the di�culty of the certificate problem because
it introduces nonlocal correlations across the operator ⇥NTK

µ , hurting its conditioning. As we will see
in Section 4, increasing depth L makes ⇥NTK better localized; setting L su�ciently large relative to ��1

compensates for these correlations.

V-number The conditioning of⇥NTK
µ depends not only on how nearM comes to intersecting itself, which

is captured by�, but also on the number of times thatM can “loop back” to a particular point. IfM “loops
back” many times, ⇥NTK

µ can be highly correlated, leading to a hard certificate problem. TheV-number

(verbally, “clover number”) reflects the number of near self-intersections:

V(M) = sup
x2M

⇢
NM

✓
{x0 | dM(x,x0) � ⌧1,\(x,x0)  ⌧2},

1p
1 + 2

◆�
(2.2)
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with ⌧2 = 19
20

p
20̂

. The set {x0 | dM(x,x0) � ⌧1,\(x,x0)  ⌧2} is the union of looping pieces, namely points
that are close to x in extrinsic distance but far in intrinsic distance. NM(T, �) is the cardinality of a minimal �
covering of T ⇢ M in the intrinsic distance on the manifold, serving as a way to count the number of disjoint
looping pieces. TheV-number accounts for the maximal volume of the curve where the angle injectivity
radius � is active. It will generally be large if the manifolds nearly intersect multiple times, as illustrated in
Fig. 2. TheV-number is typically small, but can be large when the data are generated in a way that induces
certain near symmetries, as in the right panel of Fig. 2.

V = 4 V = 3

V = 2 V = 1

C
er
tifi

ca
te

N
or
m

V-Number

Figure 2: The V-number—theory and practice. Left: We generate a parametric family of space curves with fixed
maximum curvature and length, but decreasingV-number, by reflecting ‘petals’ of a clover about a circumscribing
square. We set M+ to be a fixed circle with large radius that crosses the center of the configurations, then rescale
and project the entire geometry onto the sphere to create a two curve problem instance. In the insets, we show a
two-dimensional projection of each of the blueM� curves as well as a base point x 2 M+ at the center (also highlighed
in the three-dimensional plots). The intersection ofM� with the neighborhood of x denoted in orange represents the
set whose covering number gives theV-number of the configuration (see (2.2)). Top right: We numerically generate a
certificate for each of the four geometries at left and plot its norm as a function ofV-number. The trend demonstrates
that increasingV-number correlates with increasing classification di�culty, measured through the certificate problem:
this is in line with the intuition we have discussed. Bottom right: t-SNE projection of MNIST images (top: a “four” digit;
bottom: a “one” digit) subject to rotations. Due to the approximate symmetry of the one digit under rotation by an angle
⇡, the projection appears to nearly intersect itself. This may lead to a higherV-number compared to the embedding of
the less-symmetric four digit. For experimental details for all panels, see Appendix A.

3 Main Results
Our main theorem establishes a set of su�cient resource requirements for the certificate problem under the
class of geometries we consider here—by the reductions detailed in Section 2.1, this implies that gradient
descent rapidly separates the two classes given a neural network of su�cient depth and width. First, we note
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a convenient aspect of the certificate problem, which is its amenability to approximate solutions: that is, if
we have a kernel ⇥ that approximates ⇥NTK in the sense that k⇥µ �⇥NTK

µ kL2
µ!L2

µ
. n/L, and a function ⇣

such that k⇣ � ⇣0kL2
µ
. 1/L, then by the triangle inequality and the Schwarz inequality, it su�ces to solve

the equation ⇥µ[g] ⇡ ⇣ instead. In our arguments, we will exploit the fact that the random kernel ⇥NTK

concentrates well for wide networks with n & L, choosing ⇥ as

⇥(x,x0) = (n/2)
L�1X

`=0

L�1Y

`0=`

⇣
1� (1/⇡)'[`0](\(x,x0)

⌘
, (3.1)

where'(t) = cos-1((1�t/⇡) cos t+(1/⇡) sin t) and'[`0] denotes `0-fold composition of'; as well as the fact that
for wide networks with n & L

5, depth ‘smooths out’ the initial error ⇣0, choosing ⇣ as the piecewise-constant
function ⇣(x) = �f?(x) +

R
M f✓0(x

0) dµ(x0). We reproduce high-probability concentration guarantees from
the literature that justify these approximations in Appendix G.

Theorem 3.1 (Approximate Certificates for Curves). Let M be two disjoint smooth, regular, simple closed curves,

satisfying \(x,x0)  ⇡/2 for all x,x
0 2 M. There exist absolute constants C,C

0
, C

00
, C

000
and a polynomial

P = poly(M3,M4,M5, len(M),��1) of degree at most 36, with degree at most 12 in (M3,M4,M5, len(M)) and
degree at most 24 in ��1

, such that when

L � max

(
exp(C 0 len(M)̂),

⇣
�
p

1 + 2
⌘�C00V(M)

, C
000
̂
10
, P, ⇢

12
max

)
,

there exists a certificate g with kgkL2
µ


Ck⇣kL2
µ

⇢minn logL such that k⇥µ[g]� ⇣kL2
µ
 k⇣kL1

L .

Theorem 3.1 is our main technical contribution: it provides a su�cient condition on the network depth
L to resolve the approximate certificate problem for the class of geometries we consider, with the required
resources depending only on the geometric properties we introduce in Section 2.2. Given the connection
between certificates and gradient descent, Theorem 3.1 demonstrates that deeper networks fit more complex

geometries, which shows that the network depth plays the role of a fitting resource in classifying the two
curves. We provide a numerical corroboration of the interaction between the network depth, the geometry,
and the size of the certificate in Figure 3. For any family of geometries with boundedV-number, Theorem 3.1
implies a polynomial dependence of the depth on the angle injectivity radius �, whereas we are unable to
avoid an exponential dependence of the depth on the curvature . Nevertheless, these dependences may
seem overly pessimistic in light of the existence of ‘easy’ two curve problem instances—say, linearly-separable
classes, each of which is a highly nonlinear manifold—for which one would expect gradient descent to
succeed without needing an unduly large depth. In fact, such geometries will not admit a small certificate
norm in general unless the depth is su�ciently large: intuitively, this is a consequence of the operator⇥µ

being ill-conditioned for such geometries.3
The proof of Theorem 3.1 is novel, both in the context of kernel regression on manifolds and in the context

of NTK-regime neural network training. We detail the key intuitions for the proof in Section 4. As suggested
above, applying Theorem 3.1 to construct a certificate is straightforward: given a suitable setting of L for a
two curve problem instance, we obtain an approximate certificate g via Theorem 3.1. Then with the triangle
inequality and the Schwarz inequality, we can bound

k⇥NTK
µ [g]� ⇣0kL2

µ
 k⇥NTK

µ �⇥µkL2
µ!L2

µ
kgkL2

µ
+ k⇣0 � ⇣kL2

µ
+ k⇥µ[g]� ⇣kL2

µ
,

and leveraging suitable probabilistic control (see Appendix G) of the approximation errors in the previous
expression, as well as on k⇣kL2

µ
, then yields bounds for the certificate problem. Applying the reductions

from gradient descent dynamics in the NTK regime to certificates discussed in Section 2.1, we then obtain an
end-to-end guarantee for the two curve problem.

3Again, the equivalence between the di�culty of the certificate problem and the progress of gradient descent on decreasing the
error is a consequence of our analysis proceeding in the kernel regime with the square loss—using alternate techniques to analyze the
dynamics can allow one to prove that neural networks continue to fit such ‘easy’ classification problems e�ciently (e.g. [38]).
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Figure 3: The e�ect of geometry and depth on the certificate. Left: The certificate g computed numerically from the
kernel ⇥ for depth L = 50 (defined in (3.1)) and the geometry from Figure 1 with a uniform density, graphed over the
manifolds. Control of the norm of the certificate implies rapid progress of gradient descent, as reflected in Theorem 3.2.
Comparing to Section 1, we note that the certificate has large magnitude near the point of minimum distance between
the two curves—this is suggestive of the way the geometry sets the di�culty of the fitting problem. Right: To visualize
the certificate norm more precisely, we graph the log-magnitude of the certificate for kernels ⇥ of varying depth L,
viewing them through the arc-length parameterizations x� for the curves (left: M+; right: M�). At a coarse scale, the
maximum magnitude decreases as the depth increases; at a finer scale, curvature-associated defects are ‘smoothed out’.
This indicates the role of depth as a fitting resource. See Appendix A for further experimental details.

Theorem 3.2 (Generalization). Let M be two disjoint smooth, regular, simple closed curves, satisfying \(x,x0) 
⇡/2 for all x,x

0 2 M. For any 0 < �  1/e, choose L so that

L � Kmax

8
<

:
1

�
�
p
1 + 2

�CV(M)
, Cµ log

9( 1� ) log
24(Cµn0 log(

1
� )), e

C0 max{len(M)̂,log(̂)}
, P

9
=

;

n = K
0
L
99 log9(1/�) log18(Ln0)

N � L
10
,

and fix ⌧ > 0 such that
C00

nL2  ⌧  c
nL . Then with probability at least 1 � �, the parameters obtained at iteration

bL39/44
/(n⌧)c of gradient descent on the finite sample loss yield a classifier that separates the two manifolds.

The constants c, C,C
0
, C

00
,K,K

0
> 0 are absolute, and the constant Cµ is equal to

max{⇢19min,⇢
�19
min }(1+⇢max)

12

(min {µ(M+),µ(M�)})11/2 . P

is a polynomial poly{M3,M4,M5, len(M),��1} of degree at most 36, with degree at most 12 when viewed as a

polynomial in M3,M4,M5 and len(M), and of degree at most 24 as a polynomial in ��1
.

Theorem 3.2 represents the first end-to-end guarantee for training a deep neural network to classify a
nontrivial class of low-dimensional nonlinear manifolds. We call attention to the fact that the hypotheses
of Theorem 3.2 are completely self-contained, making reference only to intrinsic properties of the data and
the architectural hyperparameters of the neural network (as well as poly(log n0)), and that the result is
algorithmic, as it applies to training the network via constant-stepping gradient descent on the empirical
square loss and guarantees generalization within L

2 iterations. Furthermore, Theorem 3.2 can be readily
extended to the more general setting of regression on curves, given that we have focused on training with
the square loss.

4 Proof Sketch
In this section, we provide an overview of the key elements of the proof of Theorem 3.1, where we show that
the equation⇥µ[g] ⇡ ⇣ admits a solution g (the certificate) of small norm. To solve the certificate problem
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forM, we require a fine-grained understanding of the kernel ⇥. The most natural approach is to formally set
g =

P1
i=1 �

�1
i h⇣, viiL2

µ
vi using the eigendecomposition of ⇥µ (just as constructed in Section 2.1 for⇥NTK

µ ),
and then argue that this formal expression converges by studying the rate of decay of �i and the alignment
of ⇣ with eigenvectors of⇥µ; this is the standard approach in the literature [50, 57]. However, as discussed
in Section 2.1, the nonlinear structure ofMmakes obtaining a full diagonalization for⇥µ intractable, and
simple asymptotic characterizations of its spectrum are insu�cient to prove that the solution g has small
norm. Our approach will therefore be more direct: we will study the ‘spatial’ properties of the kernel ⇥
itself, in particular its rate of decay away from x = x

0, and thereby use the network depth L as a resource to
reduce the study of the operator ⇥µ to a simpler, localized operator whose invertibility can be proved using
harmonic analysis. We will then use di�erentiability properties of ⇥ to transfer the solution obtained by
inverting this auxiliary operator back to the operator ⇥µ. We refer readers to Appendix E for the full proof.

We simplify the proceedings using two basic reductions. First, with a small amount of auxiliary argu-
mentation, we can reduce from the study of the operator-with-density ⇥µ to the density-free operator ⇥.
Second, the kernel ⇥(x,x0) is a function of the angle \(x,x0), and hence is rotationally invariant. This kernel
is maximized at \(x,x0) = 0 and decreases monotonically as the angle increases, reaching its minimum
value at \(x,x0) = ⇡. If we subtract this minimum value, it should not a�ect our ability to fit functions, and
we obtain a rotationally invariant kernel ⇥�(x,x0) =  

�(\(x,x0)) that is concentrated around angle 0. In
the following, we focus on certificate construction for the kernel ⇥�. Both simplifications are justified in
Appendix E.3.

4.1 The Importance of Depth: Localization of the Neural Tangent Kernel
The first problem one encounters when attempting to directly establish (a property like) invertibility of the
operator ⇥� is its action across connected components of M: the operator ⇥� acts by integrating against
functions defined on M = M+ [M�, and although it is intuitive that most of its image’s values on each
component will be due to integration of the input over the same component, there will always be some
‘cross-talk’ corresponding to integration over the opposite component that interferes with our ability to apply
harmonic analysis tools. To work around this basic issue (as well as others we will see below), our argument
proceeds via a localization approach: we will exploit the fact that as the depth L increases, the kernel ⇥�

sharpens and concentrates around its value at x = x
0, to the extent that we can neglect its action across

components of M and even pass to the analysis of an auxiliary localized operator. This reduction is enabled
by new sharp estimates for the decay of the angle function  � that we establish in Appendix F.3. Moreover,
the perspective of using the network depth as a resource to localize the kernel ⇥� and exploiting this to solve
the classification problem appears to be new: this localization is typically presented as a deficiency in the
literature (e.g. [51]).

At a more formal level, when the network is deep enough compared to geometric properties of the curves,
for each point x, the majority of the mass of the kernel ⇥�(x,x0) is taken within a small neighborhood
dM(x,x0)  r of x. When dM(x,x0) is small relative to , we have dM(x,x0) ⇡ \(x,x0). This allows us to
approximate the local component by the following invariant operator:

cM [f ](x�(s)) =

Z s+r

s0=s�r
 
�(|s� s

0|)f(x�(s0))ds0. (4.1)

This approximation has two main benefits: (i) the operator cM is defined by intrinsic distance s0 � s, and
(ii) it is highly localized. In fact, (4.1) takes the form of a convolution over the arc length parameter s. This
implies that cM diagonalizes in the Fourier basis, giving an explicit characterization of its eigenvalues and
eigenvectors. Moreover, because cM is localized, the eigenvalues corresponding to slowly oscillating Fourier
basis functions are large, and cM is stably invertible over such functions. Both of these benefits can be seen
as consequences of depth: depth leads to localization, which facilitates approximation by cM , and renders
that approximation invertible over low-frequency functions. In our proofs, we will work with a subspace S
spanned by low-frequency basis functions that are nearly constant over a length 2r interval (this subspace
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ends up having dimension proportional to 1/r; see Appendix C.3 for a formal definition), and use Fourier
arguments to prove invertibility of cM over S (see Lemma E.6).

4.2 Stable Inversion over Smooth Functions
Our remaining task is to leverage the invertibility of cM over S to argue that ⇥ is also invertible. In doing so,
we need to account for the residual ⇥� cM . We accomplish this directly, using a Neumann series argument:
when setting r . L

�1/2 and the dimension of the subspace S proportional to 1/r, the minimum eigenvalue
of cM over S exceeds the norm of the residual operator⇥� � cM (Lemma E.2). This argument leverages a
decomposition of the domain into “near”, “far” and “winding” pieces, whose contribution to⇥� is controlled
using the curvature, angle injectivity radius andV-number (Lemma E.8, Lemma E.9, Lemma E.10). This
guarantees the strict invertibility of⇥� over the subspace S, and yields a unique solution gS to the restricted
equation PS⇥�[gS ] = ⇣ (Theorem E.1).

This does not yet solve the certificate problem, which demands near solutions to the unrestricted equation
⇥�[g] = ⇣. To complete the argument, we set g = gS and use harmonic analysis considerations to show
that ⇥�[g] is very close to S. The subspace S contains functions that do not oscillate rapidly, and hence
whose derivatives are small relative to their norm (Lemma E.23). We prove that ⇥�[g] is close to S by
controlling the first three derivatives of⇥�[g], which introduces dependencies onM1, · · · ,M5 in the final
statement of our results (Lemma E.27). In controlling these derivatives, we leverage the assumption that
supx,x02M \(x,x0)  ⇡/2 to avoid issues that arise at antipodal points—we believe the removal of this
constraint is purely technical, given our sharp characterization of the decay of  � and its derivatives. Finally,
we move from ⇥� back to ⇥ by combining near solutions to ⇥�[g] = ⇣ and ⇥�[g1] = 1, and iterating the
construction to reduce the approximation error to an acceptable level (Appendix E.3).

5 Discussion
A role for depth. In the setting of fitting functions on the sphere Sn0�1 in the NTK regimewith unstructured
(e.g., uniformly random) data, it is well-known that there is very little marginal benefit to using a deeper
network: for example, [36, 50, 63] show that the risk lower bound for RKHS methods is nearly met by kernel
regression with a 2-layer network’s NTK in an asymptotic (n0 ! 1) setting, and results for fitting degree-1
functions in the nonasymptotic setting [56] are suggestive of a similar phenomenon. In a similar vein, fitting
in the NTK regime with a deeper network does not change the kernel’s RKHS [45, 46, 49], and in a certain
“infinite-depth” limit, the corresponding NTK for networks with ReLU activations, as we consider here, is
a spike, guaranteeing that it fails to generalize [51, 54]. Our results are certainly not in contradiction to
these facts—we consider a setting where the data are highly structured, and our proofs only show that
an appropriate choice of the depth relative to this structure is su�cient to guarantee generalization, not
necessary—but they nonetheless highlight an important role for the network depth in the NTK regime that
has not been explored in the existing literature. In particular, the localization phenomenon exhibited by the
deep NTK is completely inaccessible by fixed-depth networks, and simultaneously essential to our arguments
to proving Theorem 3.2, as we have described in Section 4. It is an interesting open problem to determine
whether there exist low-dimensional geometries that cannot be e�ciently separated without a deep NTK, or
whether the essential su�ciency of the depth-two NTK persists.

Closing the gap to real networks and data. Theorem 3.2 represents an initial step towards understanding
the interaction between neural networks and data with low-dimensional structure, and identifying network
resource requirements su�cient to guarantee generalization. There are several important avenues for future
work. First, although the resource requirements in Theorem 3.1, and by extension Theorem 3.2, reflect
only intrinsic properties of the data, the rates are far from optimal—improvements here will demand a
more refined harmonic analysis argument beyond the localization approach we take in Section 4.1. A more
fundamental advance would consist of extending the analysis to the setting of a model for image data, such as
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cartoon articulationmanifolds, and the NTK of a convolutional neural network with architectural settings that
impose translation invariance [29, 39]—recent results show asymptotic statistical e�ciency guarantees with
the NTK of a simple convolutional architecture, but only in the context of generic data [64]. The approach
to certificate construction we develop in Theorem 3.1 will be of use in establishing guarantees analogous
to Theorem 3.2 here, as our approach does not require an explicit diagonalization of the NTK. In addition,
extending our certificate construction approach to smooth manifolds of dimension larger than one is a natural
next step. We believe our localization argument generalizes to this setting: as our bounds for the kernel  are
sharp with respect to depth and independent of the manifold dimension, one could seek to prove guarantees
analogous to Theorem 3.1 with a similar subspace-restriction argument for su�ciently regular manifolds,
such as manifolds di�eomorphic to spheres, where the geometric parameters of Section 2.2 have natural
extensions. Such a generalization would incur at best an exponential dependence of the network on the
manifold dimension for localization in high dimensions.

More broadly, the localization phenomena at the core of our argument appear to be relevant beyond the
regime in which the hypotheses of Theorem 3.2 hold: we provide a preliminary numerical experiment to
this end in Appendix A.3. Training fully-connected networks with gradient descent on a simple manifold
classification task, low training error appears to be easily achievable only when the decay scale of the kernel
is small relative to the inter-manifold distance even at moderate depth and width, and this decay scale is
controlled by the depth of the network.
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A Details of Figures
A.1 Figure 2

V-number experiment. In each panel, the two curves are projection of curves x+ : [0, 2⇡] ! S3 and
x� : [0, 2⇡] ! S3. We actually generate the curves as shown in the figure (i.e., in a three-dimensional
space), then map them to the sphere using the map (u, v, w) 7! (u, v, w,

p
1� u2 � v2 � w2). In this three-

dimensional space, the top left panel’s blue curve (denoted x� henceforth) and each panel’s red curve
(denoted x+ henceforth, and which is the same for all panels) are defined by the parametric equations

0

@
x�,1(t)
x�,2(t)
x�,3(t)

1

A =

0

@
cos(4t)

cos
�
⇡
8

�
cos(t) (sin(4t) + 1 + �) + sin

�
⇡
8

�
sin(t) (sin(4t) + 1 + �)

� sin
�
⇡
8

�
cos(t) (sin(4t) + 1 + �) + cos

�
⇡
8

�
sin(t) (sin(4t) + 1 + �)

1

A

0

@
x+,1(t)
x+,2(t)
x+,3(t)

1

A =

0

@
4 sin(t)

4 (cos(t)� 1)
0

1

A ,

where � sets the separation between the manifolds and is set here to � = 0.05. We then rescale both curves by
a factor .01: the scale of the curves is chosen such that the curvature of the sphere has a negligible e�ect on
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 V = 1

V = 2

V = 3

V = 4

M+

Figure 4: The two curve geometry described in Appendix A.1. The di�erent choices of M� that lead to di�erent
V-number are overlapping. The legend indicates theV-number of the two curves problem obtained by considering the
same M+ but a di�erentM� as indicated by the color.

the curvature of the manifolds (since the chart mapping we use here distorts the curves more nearer to the
boundary of the unit disk {(u, v, w) | u2 + v

2 + w
2  1}).4

From here, we use an “unfolding” process to obtain the blue curves in the other three panels from x�. To
do this, points where |dx�,2

dt | = |dx�,3

dt | are found numerically. There are 8 such points in total, and parts of the
curve between pairs of these points are reflected across the line defined by such a pair in the (x2, x3) plane.
This can be done for any number of pairs between 1 and 4, generating the curves shown. This procedure
ensures that aside from the set of 8 points, the curvature at every point along the curve is preserved and
there is no discontinuity in the first derivative, while making the geometries loop back to the common center
point more. For an additional visualization of the geometry, see Figure 4.5

Given these geometries, in order to compute the certificate norm for the experiment in the top-right panel,
we evaluate the resulting curves at 200 points each, chosen by picking equally spaced points in [0, 2⇡] and
evaluating the parametric equations. The certificate itself is evaluated numerically as in Appendix A.2.

RotatedMNIST digits. We rotate anMNIST image around its center by i⇤⇡/100 for integer i between 0 and
199. We then apply t-SNE [9] using the scikit-learn package with perplexity 20 to generate the embeddings.

A.2 Figure 3
We give full implementation details for this figure here, mixed with conceptual ideas that underlie the
implementation. The manifolds M+ and M� are defined by parametric equations x+ : [0, 1] ! S2 and
x� : [0, 1] ! S2; it is not practical to obtain unit-speed parameterizations of general curves, so we also have
parametric equations for their derivatives ẋ� : [0, 1] ! R2. These are important in our setting since for

4Although this adds a minor confounding e�ect to our experiments with certificate norm in the top-right panel, it is suppressed by
setting the scale su�ciently small, and it can be removed in principle by using an isometric chart for the upper hemisphere instead of
the map given above.

5For a three-dimensional interactive visualization, see https://colab.research.google.com/drive/1xmpYeLK606DtXOkJEt_

apAniEB9fARRv?usp=sharing.
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non-unit-speed curves, the chain rule gives for the integral of a function (say) f : M+ ! R
Z

M+

f(x) dx =

Z

[0,1]
(f � x+(t))kẋ+(t)k2 dt.

In particular, in our experiments, we want to work with a uniform density ⇢ = (⇢+, ⇢�) on the manifolds,
where the classes are balanced. To achieve this, use the previous equation to get that we require

1 =

Z

M+

⇢+(x) dx+

Z

M�

⇢�(x) dx

=

Z

M+

(⇢+ � x+)(t)kẋ+(t)k2 dt+
Z

M�

(⇢� � x�)(t)kẋ�(t)k2 dt.

A uniform density on M is not a constant value—rather, it is characterized by being translation-invariant. It
follows that ⇢� should be defined by

⇢� � x�(t) =
1

2kẋ�(t)k2
.

For the experiment, we solve a discretization of the certificate problem, for which the above ideas will be
useful. Consider ⇥ in (3.1) for a fixed depth L (and n = 2, since width is essentially irrelevant here). By the
above discussion, the certificate problem in this setting is to solve for the certificate g = (g+, g�)

f? =
1

2

 Z

[0,1]
⇥( · ,x+(t))g+ � x+(t) dt+

Z

[0,1]
⇥( · ,x�(t))g� � x�(t) dt

!
.

Here, we have eliminated the initial random neural network output f✓0 from the RHS. Aside from making
computation easier, this is motivated by fact that the network output is approximately piecewise constant for
large depth L, and we therefore expect it not to play much of a role here. LetM 2 N denote the discretization
size. Then a finite-dimensional approximation of the previous integral equation is given by the linear system

f? � x�(ti) =
1

2M

0

@
MX

j=1

⇥(x�(ti),x+(tj))g+ � x+(tj) +
MX

j=1

⇥(x�(ti),x�(tj))g� � x�(tj)

1

A (A.1)

for all i 2 [M ] and � 2 {±1}, and where ti = (i� 1)/M . Of course, f? � x�(t) = �, so the equation simplifies
further, and because the kernel ⇥ and this target f? are smooth, there is a convergence of the data in this
linear system in a precise sense to the data in the original integral equation as M ! 1. In particular, define
a matrix T

+ by T
+
ij = ⇥(x+(ti),x+(tj)), define a matrix T

� by T
�
ij = ⇥(x�(ti),x�(tj)), and define a matrix

T
± by T

±
ij = ⇥(x+(ti),x�(tj)), all of size M ⇥M . Then the 2M ⇥ 2M linear system


1
�1

�
=

1

2M


T

+
T

±

(T±)
⇤

T
�

� 
g+

g�

�
(A.2)

is equivalent to the discretization in (A.1). We implement and solve the system in (A.2) using the definitions
we have given above, using the pseudoinverse of the 2M ⇥ 2M matrix appearing in this expression to obtain
[g+, g�]⇤, and plot the results in Figure 3, in particular interpreting (g�)i as the sampled point g� �x�(ti) as in
(A.1) when we plot in the left panel of Figure 3. Evidently, it would be immediate to modify the experiment
to replace the LHS of (A.1) by the error f✓0 � f?: the same protocol given above would work, but there would
be an element of randomness added to the experiments.

Specifically, in Figure 3 we set M = 900. When plotting the solution to (A.2), i.e. the vector [g+, g�]⇤, we
moreover scale the vector by a factor of 0.3 to facilitate visualization.
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Log
Training

Error

 
� Decay Scale

Figure 5: The decay properties of the NTK are predictive of trainability on a toy dataset. We plot the log training
error of networks of varying depth that are trained to classify two curves with varying separation. The insets show a
projection of the geometry onto the plane for separation values 0.3 and 0.9. For each depth L, the characteristic decay
scale of the DC-subtracted NTK ( �) is computed numerically and plotted in green. We find that small training loss is
only achievable if the decay scale of the kernel is small compared to the inter-manifold distance, hence the decay scale is
predictive of trainability.

A.3 Kernel Decay Scale and Trainability of Realisting Networks: Empirical Evidence
One of the main insights into the manifold classification problem that is utilized to obtain Theorem 3.2 is that
(roughly speaking) the depth of a fully-connected network controls the decay properties of the network’s
NTK, and that fitting can be guaranteed once the decay occurs on a spatial scale that is small relative to
certain geometric properties of the data. Here we provide empirical evidence that this phenomenon holds
beyond the regime in which our main theorems hold, and in fact is relevant for networks of moderate width
and depth as well.

We draw 400 samples each from a uniform distribution over a union of two curves that are related by a
rotation by a geodesic angle that is varied from 0.2 to 1.0 in increments of 0.1. The curves are not linearly
separable even for large angle (see insets in Fig. 5). These curves are embedded in Sn0�1 for n0 = 128 and
subjected to a rotation drawn uniformly from the Haar measure. We then train a fully-connected network
to classify the curves using `2 loss. The network has width n = 256 and we vary the depth from L = 2 to
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L = 10, and train using full-batch gradient descent for 105 iterations with learning rate ⌧ = 1/(4nL) (so that
the total e�ective "training time" is independent of depth). We plot the log training error after training as a
function of depth and the inter-manifold distance. For each depth L, we estimate an e�ective “decay scale”
of the DC-subtracted skeleton  � by determining the point s? such that  �(s?) =  �(0)

2 .
The results are presented in Fig. 5. We observe that the network convergences to small training loss

only when the depth is large comparable to the inverse of the manifold separation. As the depth represents
the decay rate of the NTK, this indicates that a deeper network generates a localized NTK, allowing faster
decay of the training error and making the classification problem easy. Notice that since the geometry of the
dataset and network architecture do not satisfy all the assumptions of Theorem 3.2, the experiment provides
evidence that the underlying phenomena regarding the role of the depth hold in greater generality. This
preliminary result also suggests that the connection between the network architecture and the data geometry,
as expressed through the decay properties of the NTK, can have a dramatic e�ect on the training process
even for fully-connected networks.

B Notation
We use bold lowercase x for vectors and uppercase A for matrices and operators. We generally use non-bold
notation to represent scalars and scalar-valued functions. R,C,Z are used for the real numbers, complex
numbers and integers, respectively. N0 represents non-negative integers, and N represents the natural
numbers. Rn represents n-dimensional Euclidean space, Cn represents the space of complex n-tuples (as
a n-dimensional vector space over C) and Sn�1 ⇢ Rn represents the n� 1 dimensional sphere centered at
zero with unit radius. For a complex number z = x + iy (or a complex-valued function), |z| =

p
x2 + y2

denotes the complex modulus, and z = x � iy denotes the complex conjugate. For x,y 2 Cn, we denote
kxkp = (

Pn
i=1|xi|p)

1/p as the p-norm and hx,yi =
Pn

i=1 xiyi as the standard (second-argument-linear) inner
product. We use x⇤ and A

⇤ to represent the conjugate transpose of vectors or matrices of complex numbers
(so e.g. x⇤

y = hx,yi). We use PS to represent the orthogonal projection operator onto a closed subspace S
of a normed vector space (typically a Hilbert space).

For a Borel measure space (X,µ) and any measurable function f : X ! C, we use kfkLp
µ

=

(
R
x2X |f(x)|pdµ(x))1/p to represent the Lp norm of f for 0 < p < 1. We omit the measure from the notation

when it is clear from context. For p = 1, we use kfkL1
µ

= inf{C � 0 | |f(x)|  C for µ-almost every x} to
represent its essential supremum. We denote the Lp space of (X,µ) by L

p
µ(X) (or simply L

p
µ when the space

is clear from context), which is formed by all complex-valued measurable functions with finite L
p
µ norm.

For another space (Y, ⌫) and a (linear) operator T : Lp
µ(X) ! L

q
⌫(Y ), we represent its Lp

µ ! L
q
⌫ operator

norm as kT kLp
µ!Lq

⌫
= supkfkL

p
µ
=1kT [f ]kLq

⌫
. When X = Y , µ = ⌫, and p = q = 2 (and (X,µ) is su�ciently

regular), we have a Hilbert space; we write hf, giL2
µ
=
R
X f̄(x)g(x) dµ(x) for the inner product, and T

⇤ to
denote the associated adjoint of an operator T (so e.g. f⇤ = hf, · i denotes the corresponding dual element
of a function f). We use Id : Lp

µ(X) ! L
p
µ(X) to denote the identity operator, i.e. Id[f ] = f for every f 2 L

p
µ.

For S ⇢ X , we use S to represent the indicator function S(x) = 1, 8x 2 S and 0 otherwise; we will write
to denote X . For a map ' : X ! X and i 2 N , we use '[i] to denote its i-th fold iterated composition of
itself, i.e. '[i](x) = '

�
'
(i�1)(x)

�
. For i 2 N , f (i) is normally used to represent a function of a real variable

f ’s i-th order derivatives. For example, when the space is a two curve problem instanceM, if h : M ! Cn,
we define its derivatives h(i) in (C.5); for a kernel ⇥ : M⇥M ! R, we define its derivatives along the curve
in Definition E.11.

For a Borel measure space (X,µ), a kernel K is a mapping K : X ⇥ X ! R. We use K for its as-
sociated Fredholm integral operator. In other words, for measurable function f we have Kµ[g](x) =R
x02X K(x,x0)f(x0) dµ(x0). When X is a Riemannian manifold, an omitted subscript/measure will always
denote the Riemannian measure.

We use both lowercase and uppercase letters c, C for absolute constants whose value are independent
of all parameters and c⌧ , C⌧ for numbers whose value only depend on some parameter ⌧ . Throughout the
text, c is used to represent numbers whose value should be small while C is for those whose value should be
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large. We use C1, C2, . . . for constants whose values are fixed within a proof while values of C,C 0
, C

00
, . . .

may change from line to line.

C Key Definitions
C.1 Problem Formulation
The contents of this section will mirror Section 2.1, but provide additional technical details that were omitted
there for the sake of concision and clarity of exposition. In this sense, we will focus on a rigorous formulation
of the problem here, rather than on intuition: we encourage the reader to consult Section 2.1 for a more
conceptually-oriented problem formulation. As in Section 2.1, we acknowledge that much of this material
follows the technical exposition of [61].

Adopting the model proposed in [61], we let M+,M�, denote two class manifolds, each a smooth,
regular, simple closed curve in Sn0�1, with ambient dimension n0 � 3. We further assume M precludes
antipodal points by asking

\(x,x0)  ⇡/2, 8x,x0 2 M. (C.1)

We denoteM = M+ [M�, and the data measure supported onM as µ. We assume that µ admits a density
⇢ with respect to the Riemannian measure on M, and that this density is bounded from below by some
⇢min > 0. We will also write ⇢max = supx2M ⇢(x). For background on curves and manifolds, we refer the
reader to to [10, 27].

GivenN i.i.d. samples (x1, · · · ,xN ) from µ and their labels, given by the labeling function f? : M ! {±1}
defined by

f?(x) =

(
+1 x 2 M+

�1 x 2 M�,

we train a fully-connected network with ReLU activations and L hidden layers of width n and scalar output.
We will write ✓ = (W 1

, . . . ,W
L+1) to denote an abstract set of admissible parameters for such a network;

concretely, the features at layer ` 2 {1, 2, . . . , L} with parameters ✓ and input x are written as ↵`✓(x) =⇥
W

`
↵
`�1
✓ (x)

⇤
+
, where [x]+ = max{x, 0} denotes the ReLU (and we adopt in general the convention of

writing [x]+ to denote application of the scalar function [ · ]+ to each entry of the vector x), with boundary
condition ↵

0
✓(x) = x, and the network output on an input x is written f✓(x) = W

L+1
↵

L
✓ (x). We will also

write ⇣✓(x) = f✓(x)� f?(x) to denote the fitting error. We use Gaussian initialization: if ` 2 {1, 2, . . . , L}, the
weights are initialized as W `

ij ⇠i.i.d. N (0, 2
n ), and the top level weights are initialized as WL+1

i ⇠i.i.d. N (0, 1)

in order to preserve the expected feature norm.6 In the sequel, we will write ✓0 to denote the collection of
these initial random parameters, and therefore f✓0 to denote the initial random network.

We will employ a convenient “empirical measure” notation to concisely represent finite-sample and
population quantities in the analysis. Let µN = 1

N

PN
i=1 �{xi} denote the empirical measure associated to

our i.i.d. random sample from the population measure µ, where �p denotes a Dirac measure at a point
p. We train on the square loss LµN (✓) = (1/2)

R
M (⇣✓(x))

2 dµN (x) (of course one simply has LµN (✓) =

1/(2N)
PN

i=1 (⇣✓(xi))
2), which we minimize using randomly-initialized “gradient descent” starting at ✓0

with constant step size ⌧ > 0. We put gradient descent in quotations here because the loss LµN is only
almost-everywhere di�erentiable, due to the nondi�erentiability of the ReLU activation [ · ]+: in this sense
our algorithm for minimization is ‘gradient-like’, in that it corresponds to a gradient descent iteration at
almost all values of the parameters. Concretely, we define

�
`
✓(x) =

�
W

L+1
PIL(x)W

L
PIL�1(x) . . .W

`+2
PI`+1(x)

�⇤

6This initialization style is common in practice (it might be referred to as “fan-out initialization” in that context), but less common in
the theoretical literature on kernel regime training of deep neural networks, where a less-natural “NTK parameterization” is typically
employed. A detailed discussion of these di�erences, and how to translate results for one parameterization into those for another, can
be found (for example) in [61, §A.3].
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for ` = 0, 1, . . . , L� 1, where

I`(x) =
�
i 2 [n]

�� ⌦ei,↵`✓(x)
↵
> 0

 
, PI`(x) =

X

i2I`(x)

eie
⇤
i

denotes the orthogonal projection onto the set of coordinates where the `-th activation at input x is positive
(above, ei denotes the i-th canonical basis vector, having its j-th entry equal to 1 if j = i and 0 otherwise).
Then we define ‘formal gradients’ of the network output with respect to the parameters (denoted by an
operator er) by

erW `f✓(x) = �
`�1
✓ (x)↵`�1

✓ (x)⇤

for ` 2 [L], and
erWL+1f✓(x) = ↵

L
✓ (x)

⇤
.

As stated above, these expressions agree with the actual gradients at points of di�erentiability (to see this,
apply the chain rule). We then define a formal gradient of LµN by

erLµN (✓) =

Z

M
erf✓(x)⇣✓(x) dµ

N (x).

Thus, our gradient-like algorithm we study here is given by the sequence of parameters ✓k+1 = ✓k �
⌧ erLµN (✓k), with ✓0 given by the Gaussian initialization we describe above.

Our study of this gradient-like iteration is facilitated by using kernel regime techniques, which we will
describe now. Formally, the gradient descent iteration implies the following “error dynamics” equation:

⇣✓N
k+1

(x) = ⇣✓N
k
(x)� ⌧

Z

M
⇥N

k (x,x0)⇣✓N
k
(x0) dµN (x0),

where ⇥N
k (x,x0) =

R 1
0 herf✓N

k
(x0), erf✓N

k �t⌧ erLµN (✓N
k )(x)i dt. For a proof of this claim, see [61, Lemma B.8].

As we describe in Section 2.1, under suitable conditions on the network width, depth, and the number of
samples, this error dynamics update is well-approximated by a “nominal dynamics” update equation defined
by ⇣k+1 =

�
Id�⌧⇥NTK

µ

�
[⇣k] with boundary condition ⇣0 = ⇣✓0 , where ⇥NTK(x,x0) = herf✓0(x), erf✓0(x

0)i
is the “neural tangent kernel”. The analysis of this nominal evolution leads us to the certificate problem that
we have posed in Section 2.1, and which we resolve for the two curve problem in this work.

In the remainder of this section, we introduce several notations for quantities related to the certificate
problem which we will refer to throughout these appendices. We let ⇥ denote the following approximation
to the neural tangent kernel:

⇥(x,x0) =
n

2

L�1X

`=0

L�1Y

`0=`

 
1� '

[`0](\(x,x0))

⇡

!
, (C.2)

where '[`] denotes the `-fold composition of the angle evolution function '(t) = cos�1
�
(1� t

⇡ ) cos t+
sin t
⇡

�
.

We let ⇣ denote the following piecewise constant approximation to ⇣0:

⇣(x) = �f?(x) +

Z

M
f✓0(x

0) dµ(x0). (C.3)

We also use the notation

⇠`(t) =
L�1Y

`0=`

 
1� '

[`0](t)

⇡

!

 (t) =
n

2

L�1X

`=0

⇠`(t)
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for convenience. We find it convenient in our analysis to consider  and its “DC component”, i.e., its value
at ⇡, separately. To this end, we write  � =  �  (⇡). We also write the subtracted approximate NTK as
⇥�(x,x0) =  

�(\(x,x0)). As a consequence, we have

 
�(\(x,x0)) = ⇥�(x,x0) = ⇥(x,x0)�  (⇡). (C.4)

We use⇥µ to represent the integral operator with

⇥µ[g](x) =

Z

M
⇥(x,x0)g(x0) dµ(x0),

and similarly for⇥�
µ. An omitted subscript/measure will denote the Riemannian measure on M.

C.2 Geometric Properties
We assume our data manifoldM = M+ [M�, whereM+ andM� each is a smooth, regular, simple closed
curve on the unit sphere Sn0�1. Because the curves are regular, it is without loss of generality to assume
they are unit-speed and parameterized with respect to arc length s, giving parameterizations as maps from
[0, len(M�)] to Sn0�1, as we have defined them in Section 2.2 of the main body. Throughout the appendices,
we will find it convenient to consider periodic extensions of these arc-length parameterizations, which are
smooth and well-defined by the fact that our manifolds are smooth, closed curves: for � 2 {±}, we use
x�(s) : R ! Sn0�1 to represent these parameterizations of the two manifolds.7 We require that the two
curves are disjoint. Notice that as the two curves do not self intersect, we have x�(s) = x�0(s0) if and only if
� = �

0 and s
0 = s+ k len(M�) for some k 2 Z. Precisely, our arguments will require our curves to have ‘five

orders’ of smoothness, in other words x�(s) must be five times continuously di�erentiable for � 2 {+,�}.
For a di�erentiable function h : M ! Cp with p 2 N, we define its derivative d

dsh as

d

ds
h(x) =


d

dt

���
s
h
�
x�(t)

��
�����
x�(s)=x

=


lim
t!0

1

t
(h(x�(s+ t))� h(x�(s)))

������
x�(s)=x

. (C.5)

We call attention to the “restriction” bar used in this notation: it should be read as “let s and � be such that
x�(s) = x” in the definition’s context. This leads to a valid definition in (C.5) because our curves are simple
and disjoint, so for any choice s, s0 with x�(s) = x�(s0) = x, we have x�(s+ t) = x�(s0 + t) for all t. We will
use this notation systematically throughout these appendices. We further denote its i-th order derivative
by h

(i)(x). For i 2 N, we use Ci(M) to represent the collection of real-valued functions h : M ! Rwhose
derivatives h(1)

, . . . , h
(i) exist and are continuous.

In particular, consider the inclusion map ◆ : M ! Rn0 , which is the identification ◆(x) = x. Following
the definition as above, we have

◆
(i+1)(x) =


lim
t!0

1

t
(◆(i)(x�(s+ t))� ◆

(i)(x�(s)))

������
x�(s)=x

. (C.6)

In the sequel, with abuse of notation we will use x
(i) to represent ◆(i)(x). For example, we will write

expressions such as supx2Mkx(2)k2 to denote the quantity supx2Mk◆(2)(x)k2. This notation will enable
increased concision, and it is benign, in the sense that it is essentially an identification. We call attention to it

7We clarify an abuse of notation we will commit with these parameterizations throughout the analysis, which stems from the fact
that the curves are closed (i.e. topologically circles). That is, there is no preferred basepoint (i.e. the points x�(0)) for the arc length
parameterizations (the curves are only defined up to translation): because our primary use for these parameterizations is in the analysis
of extrinsic distances between points on the curves, the basepoint will be irrelevant.
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specifically to note a possible conflict with our notation for the parameterizations and their derivatives x(i)
� ,

which are maps from R to Rn0 (say), rather than maps defined onM. In this context, we also use ẋ and ẍ

to represent first and second derivatives x(1) and x
(2) for brevity. We have kxk2 = kẋk2 = 1 from the fact

thatM ⇢ Sn0�1 and that we have a unit-speed parameterization. This and associated facts are collected in
Lemma E.3.

For any real or complex-valued function h, the integral operator over manifold can be written as
Z

x2M
h(x)dµ(x) =

X

�=±

Z len(M�)

s=0
h(x�(s))⇢(x�(s))ds,

Z

x2M
h(x)dx =

X

�=±

Z len(M�)

s=0
h(x�(s))ds.

We have defined key geometric properties in the main body, in Section 2.2. Our arguments will require
slightly more technical definitions of these quantities, however. In the remainder of this section, we introduce
the same definition of angle injectivity radius andV-number with a variable scale, which helps us in proofs
in Appendix E.

First, we give a precise definition for the intrinsic distance dM on the curves. To separate the notions
of “close over the sphere” and “close over the manifold”, we use the extrinsic distance (angle) \(x,x0) =
cos-1 hx,x0i to measures closeness between two points x, x0 over the sphere. The distance over the manifold
is measured through the intrinsic distance dM(x,x0), which takes 1 when x and x

0 reside on di�erent
componentsM+ andM� and the length of the shortest curve on the manifold connecting the two points
when they belong to the same component. More formally, we have

dM(x,x0) =

(
inf{|s� s

0| : x�(s) = x, x�(s0) = x
0} f?(x) = f?(x0),

+1 otherwise,
(C.7)

where the infimum is taken over all valid � 2 {+,�} and (s, s0) 2 R2. Notice that as the curvesM� do not
intersect themselves, one has x�(s1) = x�(s2) if and only if s1 = s2 + k len(M�) for some k 2 Z. Thus for
any two points x,x0 that belong to the same component M� , the above infimum is attained: there exist s, s0
such that x�(s) = x,x�(s0) = x

0, and dM(x,x0) = |s� s
0|.

Angle Injectivity Radius For " 2 (0, 1) we define the angle injectivity radius of scale " as

�" = min

⇢p
"

̂
, inf
x,x02M

⇢
\(x,x0)

���� dM(x,x0) �
p
"

̂

��
, (C.8)

which is the smallest extrinsic distance between two points whose intrinsic distance exceeds
p
"
̂ with

̂ = max

⇢
,

2

⇡

�
. (C.9)

Observe that for any scale ", �" is smaller than inter manifold separation minx2M+,x02M� \(x,x0).

V-number For " 2 (0, 1), � 2 (0, (1� ")], we defineV-number of scale ", � as

V",�(M) = sup
x2M

NM

✓⇢
x
0
���� dM(x,x0) �

p
"

̂
and \(x,x0)  �

p
"

̂

�
,

1p
1 + 2

◆
. (C.10)

Here, NM(T, ") is the size of a minimal " covering of T in the intrinsic distance on the manifold. We call the
set

n
x
0
��� dM(x,x0) �

p
"
̂ , \(x,x0)  �

p
"

̂

o
appearing in this definition the winding piece of scale " and �: it

contains points that are far away in intrinsic distance but close in extrinsic distance. We will give it a formal
definition in (E.6), where it will play a key role in our arguments.

In the sequel, we denote �,V(M) to be the angle injectivity radius andV-number with the specific
instantiations " = 1

20 and � = 1� ". These are key geometric features used in Theorem 3.1 and Theorem 3.2.
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C.3 Subspace of Smooth Functions and Kernel Derivatives
As the behavior of the kernel and its approximation is easier to understand when constrained in a low
frequency subspace, we first introduce the notion of low-frequency subspace formed by the Fourier basis on
the two curves.

Fourier Basis and Subspace of Smooth Functions We define a Fourier basis of functions over the manifold
as

��,k(x�0(s)) =

8
<

:

1p
len(M�)

exp
⇣

i2⇡ks
len(M�)

⌘
, �

0 = �

0, �
0 6= �

(C.11)

for each k = 0, 1, . . . , and further define a subspace of low frequency functions

SK+,K� = spanC{�+,0,�+,�1,�+,1, . . . ,�+,�K+ ,�+,K+ ,��,0, . . . ,��,K�} (C.12)

for K+,K� � 0. Using the fact that our curves are unit-speed, one can see that indeed (C.11) defines an
orthonormal basis for L2 functions on M.

D Main Results
Theorem D.1 (Generalization). Let M be two disjoint smooth, regular, simple closed curves, satisfying \(x,x0) 
⇡/2 for all x,x

0 2 M. For any 0 < �  1/e, choose L so that

L � Kmax

(
1

(�(1 + 2))CV(M)
, Cµ log

9( 1� ) log
24(Cµn0 log(

1
� )), e

C0 max{len(M)̂,log(̂)}
, P

)

n = K
0
L
99 log9(1/�) log18(Ln0)

N � L
10
,

and fix ⌧ > 0 such that
C00

nL2  ⌧  c
nL . Then with probability at least 1 � �, the parameters obtained at iteration

bL39/44
/(n⌧)c of gradient descent on the finite sample loss yield a classifier that separates the two manifolds.

The constants c, C,C
0
, C

00
,K,K

0
> 0 are absolute, and the constant Cµ is equal to

max{⇢19min,⇢
�19
min }(1+⇢max)

12

(min {µ(M+),µ(M�)})11/2 . P

is a polynomial poly{M3,M4,M5, len(M),��1} of degree at most 36, with degree at most 12 when viewed as a

polynomial in M3,M4,M5 and len(M), and of degree at most 24 as a polynomial in ��1
.

Proof. The proof is an application of Theorem G.1; we note that the conditions on n, L, �, N , and ⌧ imply all
hypotheses of this theorem, except for the certificate condition. We will complete the proof by showing that
the certificate condition is also satisfied, under the additional hypotheses on L and with a suitable choice of
qcert.

First, we navigate a di�erence in the formulation of the two curves’ regularity properties between our
work and [61], from which Theorem G.1 is drawn. Theorem G.1 includes a condition L � C

2
extC� for some

absolute constant C, where 2ext = supx2Mkẍk22 is a bound on the extrinsic curvature (we will discuss C�
momentarily). In our context, we have M2 = ext, and following Lemma E.3 (using that our curves are
unit-speed spherical curves), we get that it su�ces to require L & (1 + 

2)C� instead. In turn, we can pass
to ̂: since this constant is lower-bounded by a positive number and is larger than , it su�ces to require
L & ̂

2
C�. As forC�, this is a constant related to the angle injectivity radius�, and is defined byC� = K

2
�/c

2
�,

where these two constants satisfy

8s 2 (0, c�/ext] , (x,x
0) 2 M? ⇥M?, ? 2 {+,�} : \(x,x0)  s ) dM(x,x0)  K�s.
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We will relate this constant to constants in our formulation. Consider any x,x
0 2 M. If \(x,x0)  �

2 then
from the definition of � we have dM(x,x0) 

p
"
̂ and hence by (E.31) we find dM(x,x0)  \(x,x0). If on

the other hand \(x,x0) > �
2 , then a trivial bound gives

dM(x,x0)  len(M) =
2len(M)

�

�

2
<

2len(M)

�
\(x,x0). (D.1)

We can thus choose c� = 1,K� = max
n
1, 2len(M)

�

o
to satisfy (D.1), givingC� = max

n
1, 4len2(M)

�2

o
. Thus the

requirement L > C
2
extC� of Theorem G.1 is automatically satisfied if L & max{P, eC len(M)̂} for a suitable

exponent C, where P is the polynomial in the hypotheses of our result, and so our hypotheses imply this
condition.

Next, we establish the certificate claim. The proof will follow closely the argument of [61, Proposition B.4].
Write⇥NTK for the network’s neural tangent kernel, as defined in Appendix C.1, and⇥NTK

µ for the associated
Fredholm integral operator on L

2
µ. In addition, write ⇣0 = f✓0 � f? for the initial random network error.

Because we have modified some exponents in the constant Cµ, and added conditions on L, all hypotheses of
Theorem D.2 are satisfied: invoking it, we have that there exists g : M ! R satisfying

kgkL2
µ
 C

k⇣kL2
µ

⇢minn

and
k⇥µ[g]� ⇣kL2

µ
 k⇣kL1

L
.

By these bounds, the triangle inequality, theMinkowski inequality, and the fact that µ is a probability measure,
we have

��⇥NTK
µ [g]� ⇣0

��
L2

µ
 k⇥�⇥NTKkL1(M⇥M)kgkL2

µ
+ k⇥µ[g]� ⇣kL2

µ
+ k⇣ � ⇣0kL2

µ

 Ck⇥�⇥NTKkL1(M⇥M)
k⇣kL1(M)

n⇢min
+

k⇣kL1

L
+ k⇣ � ⇣0kL1(M). (D.2)

An application of Theorem G.2 gives that on an event of probability at least 1� e
�cd

k⇥�⇥NTKkL1(M⇥M)  Cn/L

if d � K log(nn0 len(M)) and n � K
0
d
4
L
5. In translating this result from [61], we use that in the context

of the two curve problem, the covering constant CM appearing in [61, Theorem B.2] is bounded by a
constant multiple of len(M) (this is how we obtain Theorem G.2 and some other results in Appendix G). An
application of Lemma G.3 gives

P
"
k⇣0 � ⇣kL1(M) 

p
2d

L

#
� 1� e

�cd

and
P
h
k⇣0kL1(M) 

p
d

i
� 1� e

�cd

as long as n � Kd
4
L
5 and d � K

0 log(nn0 len(M)), where we use these conditions to simplify the residual
that appears in Lemma G.3. In particular, combining the previous two bounds with the triangle inequality
and a union bound and then rescaling d, which worsens the constant c and the absolute constants in the
preceding conditions, gives

P
h
k⇣kL1(M) 

p
d

i
� 1� 2e�cd

.
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Combining these bounds using a union bound and substituting into (D.2), we get that under the preceding
conditions, on an event of probability at least 1� 3e�cd we have

��⇥NTK
µ [g]� ⇣0

��
L2

µ
 C

p
d

L

✓
2 +

1

⇢min

◆

 C
p
d

L
max{⇢min, ⇢

�1
min}, (D.3)

where we worst-case the density constant in the second line, and in addition, on the same event, we have by
the norm bound on the certificate g

kgkL2
µ
 C

p
d

n⇢min
. (D.4)

To conclude, we simplify the preceding conditions on n and turn the parameter d into a parameter � > 0
in order to obtain the form of the result necessary to apply Theorem G.1. We have in this one-dimensional
setting

len(M)  len(M+)

µ(M+)
+

len(M�)

µ(M�)
 2

⇢min
 2max{⇢min, ⇢

�1
min},

where the second inequality here uses simply

µ(M+) =

Z

M+

⇢+(x) dx � len(M+)⇢min

(say). Because n � 1 and n0 � 3 and max{⇢min, ⇢
�1
min} � 1, it therefore su�ces to instead enforce the

condition on d as d � K log(nn0Cµ), where Cµ is the constant defined in the lemma statement. But note from
our hypotheses here that we have n � L and L � Cµ; so in particular it su�ces to enforce d � K log(nn0)
for an adjusted absolute constant. Choosing d � (1/c) log(1/�), we obtain that the previous two bounds
(D.3) and (D.4) hold on an event of probability at least 1 � 3�. When �  1/e, given that n0 � 3 we have
nn0 � e and max{log(1/�), log(nn0)}  log(1/�) log(nn0), so that it su�ces to enforce the requirement
d � K log(1/�) log(nn0) for a certain absolute constant K > 0. We can then substitute this lower bound
on d into the two certificate bounds above to obtain the form claimed in (G.1) in Theorem G.1 with the
instantiation qcert = 1, and this setting of qcert matches the choice of Cµ that we have enforced in our
hypotheses here. For the hypothesis on n, we substitute this lower bound on d into the condition on n

to obtain the su�cient condition n � K
0
L
5 log4(1/�) log4(nn0). Using a standard log-factor reduction

(e.g. [61, Lemma B.15]) and possibly worsening absolute constants, we then get that it su�ces to enforce
n � K

0
L
5 log4(1/�) log4(Ln0 log(1/�)), which is redundant with the (much larger) condition on n that we

have enforced here. This completes the proof.

Theorem D.2 (Certificates). Let M be two disjoint smooth, regular, simple closed curves, satisfying

\(x,x0)  ⇡/2 for all x,x
0 2 M. There exist constants C,C

0
, C

00
, C

000
and a polynomial

P = poly(M3,M4,M5, len(M),��1) of degree at most 36, with degree at most 12 in (M3,M4,M5, len(M)) and
degree at most 24 in ��1

, such that when

L � max

(
exp(C 0 len(M)̂),

✓
1

�
p
1 + 2

◆C00V(M)

, C
000
̂
10
, P, ⇢

12
max

)
,

then for ⇣ defined in (C.3), there exists a certificate g : M ! R with

kgkL2
µ


Ck⇣kL2
µ

⇢minn logL

such that

k⇥µ[g]� ⇣kL2
µ
 k⇣kL1L

�1
.
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Proof. This is a direct consequence of Lemma E.33. Notice that ⇣ in (C.3) is a real, piecewise constant
function over the manifolds, and therefore has its higher order derivatives vanish. This makes it directly
belong to �(k⇣kL2 ,

1
20 ) defined in Definition E.24 and satisfy the condition in Lemma E.33 with K = 1.

E Proof for the Certificate Problem
The goal of this section is to prove Lemma E.33, a generalized version of Theorem D.2. Instead of showing the
certificate exists for the particular piecewise constant function ⇣ defined in (C.3), as claimed in Theorem D.2,
Lemma E.33 claims that for any reasonably ⇣ with bounded higher order derivatives, there exists a small
norm certificate g such that⇥µ[g] ⇡ ⇣. There are two main technical di�culties in establishing this result.
First, ⇥ contains a very large constant term: ⇥ = ⇥� +  (⇡) ⇤. This renders the operator ⇥ somewhat
ill-conditioned. Second, the eigenvalues of ⇥� are not bounded away from zero: because the kernel is
su�ciently regular, it is possible to demonstrate high-frequency functions h for which k⇥�[h]kL2 ⌧ khkL2 .

Our proof handles these technical challenges sequentially: in Appendix E.1, we restrict attention to the
DC subtracted kernel ⇥� and a subspace S containing low-frequency functions, and show that the restriction
PS⇥�

PS to S is stably invertible over S. In Appendix E.2, we argue that the solution g to PS⇥�[g] = ⇣ is
regularized enough that⇥�[g] ⇡ ⇣ , i.e., the restriction to S can be dropped. Finally, in Appendix E.3 we move
from theDC subtracted kernel⇥� without density to the full kernel⇥µ. Thismove entails additional technical
complexity; to maintain accuracy of approximation, we develop an iterative construction that successively
applies the results of Appendix E.1–Appendix E.2 to whittle away approximation errors, yielding a complete
proof of Lemma E.33.

E.1 Invertibility Over a Subspace of Smooth Functions
Proof Sketch and Organization. In this section, we solve a restricted version of the certificate problem for
DC subtracted kernel⇥�, over a subspace S of low-frequency functions defined in (C.12). Namely, for ⇣ 2 S,
we demonstrate the existence of a small norm solution g 2 S to the equation

PS⇥
�[g] = ⇣. (E.1)

This equation involves the integral operator ⇥�, which acts via

⇥�[g](x) =

Z

x02M
⇥�(x,x0)g(x0)dx0

. (E.2)

We argue that this operator is invertible over S, by decomposing this integral into four pieces, which we call
the Local, Near, Far, and Winding components. The formal definitions of these four components follow: for
parameters 0 < " < 1, r > 0, and � > 0, we define

[Local] : Lr(x) = {x0 2 M| dM(x,x0) < r} , (E.3)

[Near] : Nr,"(x) =

⇢
x
0 2 M

���� r  dM(x,x0) 
p
"

̂

�
, (E.4)

[Far] : F",�(x) =

⇢
x
0 2 M

���� dM(x,x0) �
p
"

̂
, \(x,x0) >

�
p
"

̂

�
, (E.5)

[Winding] : W",�(x) =

⇢
x
0 2 M

���� dM(x,x0) �
p
"

̂
, \(x,x0)  �

p
"

̂

�
. (E.6)

It is easy to verify that for any choice of these parameters and any x 2 M, these four pieces cover M: i.e.,
Lr(x) [ Nr,"(x) [ F",�(x) [ W",�(x) = M. Intuitively, the Local and Near pieces contain points that are
close to x, in the intrinsic distance on M. The Far component contains points that are far from x in intrinsic
distance, and far in the extrinsic distance (angle). The Winding component contains portions of M that are
far in intrinsic distance, but close in extrinsic distance. Intuitively, this component captures parts ofM that
“loop back” into the vicinity of x.
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Parameter choice. The specific parameters r, ", � will be chosen with an eye towards the properties of both
M and⇥�. The parameter " 2 (0, 3

4 ) is a scale parameter, which controls r = r" such that

1. r is large enough to enable the local component Lr(x) to dominate the kernel’s behavior;

2. r is not too large, so the kernel stays sharp and localized over the local component Lr(x).

Specifically, we choose

a" = (1� ")3(1� "/12), (E.7)
r" = 6⇡L� a"

a"+1 . (E.8)

Notice that when " & 0, we have r" ⇡ L
�1/2. So with a smaller choice of " we may get a larger local

component with the price of a larger constant dependence.
We further choose � to ensure that theNear and Far components overlap. To see that this is possible, note

that at the boundary of the Near component, dM(x,x0) =
p
"/̂; from Lemma E.4, we have

\(x,x0) � dM(x,x0)� ̂
2
d
3
M(x,x0), (E.9)

so at this point \(x,x0) � (1� ")
p
"/̂. Thus as long as � < 1� ", Near and Far overlap.

Kernel as main and residual. The kernel ⇥�(x,x0) is a decreasing function of \(x,x0): ⇥� is largest over
the Local component, smaller over theNear andWinding components, and smallest over the Far component.
By choosing the scale parameter r" as in (E.8), we define an operator M" which captures the contribution of
the Local component to the kernel:

M"[f ](x) =

Z

x02Lr" (x)
 
�(\(x,x0))f(x0)dx0

. (E.10)

Because \(x,x0) is small over Lr"(x)when r" is chosen to be small compared to inverse curvature 1/̂, on
this component, dM(x,x0) ⇡ \(x,x0) (which we formalize in Lemma E.4). We will use this property to
argue that M" can be approximated by a self-adjoint convolution operator, defined as

cM"[f ](x) =

Z s+r"

s0=s�r"

 
�(|s� s

0|)f(x�(s0))ds0
�����
x�(s)=x

. (E.11)

The restriction is valid because for any choice of � and s such that x�(s) = x, the RHS has the same value.
On the other hand, given that we require 0 < " <

3
4 , (E.7) and (E.8) show that when L is chosen larger than

a certain absolute constant, we have r✏  ⇡, assuring |s0 � s| falls in the domain of  �, which makes this
operator well-defined. We will always assume such a choice has been made in the sequel, and in particular
include it as a hypothesis in our results.

Notice that cM" is an invariant operator: it commutes with the natural translation action on M. As a result,
it diagonalizes in the Fourier basis defined in (C.11) (i.e., each of these functions is an eigenfunction of cM").
See Lemma E.6 and its proof for the precise formulation of these properties. This enables us to study its
spectrum on the subspace of smooth functions defined in (C.12) at the specific scale ", defined as

S" = SK",+,K",� (E.12)

withK",� =
j
"1/2len(M�)

2⇡r"

k
for � 2 {+,�}.8 In this way, we will establish that cM" is stably invertible on S".

8Notice that although⇥ and ⇣ are real objects, our subspace S" contains complex-valued functions. In the remainder of Appendix E,
we will work with complex objects for convenience, which means our constructed certificate candidates can be complex-valued. This will
not a�ect our result because (intuitively) the fact that⇥ and ⇣ are real makes the imaginary component of the certificate is redundant,
and removing it with a projection onto the subspace of real-valued functions will give us the same norm and residual guarantees for the
certificate problem. We make this claim rigorous and guarantee the existence of a real certificate in Lemma E.33, which is invoked in the
proof of our main result on certificates, Theorem D.2.
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In the remainder of the section, we show the diagonalizability and restricted invertibility of cM" in
Lemma E.6, and control the L2 to L

2 operator norm of all four components of ⇥� in Lemma E.7, Lemma E.8,
Lemma E.9 and Lemma E.10. Then we show ⇥� is stably invertible using these results by a Neumann series
construction (Lemma E.2) and finally prove the main theorem for this section in Theorem E.1.

Theorem E.1. For any " 2 (0, 3
4 ), � 2 (0, 1 � "], there exist an absolute constant C and constants C", C

0
",�, C

00
"

depending only on the subscripted parameters such that if

L � max

(
exp

⇣
C

0
",� len(M)̂

⌘
,

✓
1 +

1

�"

p
1 + 2

◆C00
"V",�(M)

,

⇣
"
�1/212⇡̂

⌘ a"+1
a"

, C"

)
,

where a", r" as in (E.7) and (E.8) and we set subspace S" and the invariant operator cM" as in (E.12) and (E.11), we
have PS"

cM"PS" is invertible over S", and

����
⇣
PS"

cM"PS"

⌘�1
PS"

⇣
⇥� � cM"

⌘
PS"

����
L2!L2

 1� ".

Moreover, for any ⇣ 2 S", the equation PS"⇥
�[g] = ⇣ has a unique solution g"[⇣] 2 S" given by the convergent

Neumann series

g"[⇣] =
1X

`=0

(�1)`
✓⇣

PS"
cM"PS"

⌘�1
PS"(⇥

� � cM")PS"

◆` ⇣
PS"

cM"PS"

⌘�1
⇣, (E.13)

which satisfies

kg"[⇣]kL2  Ck⇣kL2

"n logL
. (E.14)

Proof. We construct g 2 S" satisfying PS"⇥
�[g] = ⇣ by equivalently writing

PS"⇥
�[g] =

⇣
PS"

cM"PS" + PS"

⇣
⇥� � cM"

⌘
PS"

⌘
[g].

Under our hypotheses, Lemma E.2 implies the invertibility of PS"
cM"PS" with

�min

⇣
PS"

cM"PS"

⌘
� 1

1� "

���⇥� � cM"

���
L2!L2

, (E.15)

where �min

⇣
PS"

cM"PS"

⌘
is the minimum eigenvalue of the self-adjoint operator PS"

cM"PS" : S" ! S" as

shown in Lemma E.6. In particular, PS"
cM"PS" is invertible, and the system we seek to solve can be written

equivalently as
⇣
PS"

cM"PS"

⌘�1
⇣ =

✓
IdS" +

⇣
PS"

cM"PS"

⌘�1
PS"

⇣
⇥� � cM"

⌘
PS"

◆
[g],

where the LHS of the last system is in S". Next, we argue that the operator that remains on the RHS of the
last equation is invertible. Noting that

����
⇣
PS"

cM"PS"

⌘�1
PS"

⇣
⇥� � cM"

⌘
PS"

����
L2!L2


����
⇣
PS"

cM"PS"

⌘�1
����
L2!L2

���PS"

⇣
⇥� � cM"

⌘
PS"

���
L2!L2

 �min

⇣
PS"

cM"PS"

⌘�1 ���⇥� � cM"

���
L2!L2
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 1� " (E.16)

using both Lemma E.6 and (E.15), we have by the Neumann series that
✓
IdS" +

⇣
PS"

cM"PS"

⌘�1
PS"

⇣
⇥� � cM"

⌘
PS"

◆�1

=
1X

i=0

(�1)i
✓⇣

PS"
cM"PS"

⌘�1
PS"

⇣
⇥� � cM"

⌘
PS"

◆i

.

Thus we know g"[⇣] in (E.13) serves as the solution to the equation PS"⇥
�[g] = ⇣.

Furthermore, from Lemma E.6 when L � C", we have
����
⇣
PS"

cM"PS"

⌘�1
⇣

����
L2

 �min

⇣
PS"

cM"PS"

⌘�1
k⇣kL2

 1

cn logL
k⇣kL2 .

Combining this bound with (E.16) and the triangle inequality in the series representation (E.13), we obtain
the claimed norm bound in (E.14):

kg"[⇣]kL2 
1X

`=0

(1� ")`
����
⇣
PS"

cM"PS"

⌘�1
⇣

����
L2

 Ck⇣kL2

"n logL
.

Lemma E.2. Let " 2 (0, 3
4 ), � 2 (0, 1 � "], and let a",

cM" and S" be as in (E.7), (E.11) and (E.12). There are
constants C", C

0
",�, C

00
" depending only on the subscripted parameters such that if

L � max

(
exp

⇣
C

0
",� len(M)̂

⌘
,

✓
1 +

1

�"

p
1 + 2

◆C00
"V",�(M)

,

⇣
"
�1/212⇡̂

⌘ a"+1
a"

, C"

)
,

we have PS"
cM"PS" is invertible over S" with

�min

⇣
PS"

cM"PS"

⌘
� 1

1� "

���⇥� � cM"

���
L2!L2

where �min

⇣
PS"

cM"PS"

⌘
is defined in Lemma E.6.

Proof. From triangle inequality for the L2 ! L
2 operator norm, we have

���⇥� � cM"

���
L2!L2

 k⇥� �M"kL2!L2 +
���M" � cM"

���
L2!L2

.

To bound the first term, we define

M"(x,x
0) = dM(x,x0)<r" 

�(\(x,x0)).

Then it is a bounded symmetric kernelM⇥M ! R, and following (E.10),M" is its associated Fredholm
integral operator. We can thus apply Lemma E.5 and get

k⇥� �M"kL2!L2  sup
x2M

Z

x02M
|⇥�(x,x0)�M"(x,x

0)|dx0

= sup
x2M

Z

x02M\Lr" (x)
|⇥�(x,x0)|dx0

.
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Because the Near, Far andWinding pieces cover M\ Lr"(x), we have
Z

x02M\Lr" (x)
|⇥�(x,x0)|dx0 

Z

x02Nr","(x)
|⇥�(x,x0)|dx0 +

Z

x02W",�(x)
|⇥�(x,x0)|dx0

+

Z

x02F",�(x)
|⇥�(x,x0)|dx0

From Lemma E.7, Lemma E.8, Lemma E.9 and Lemma E.10, we know that there exist constants C2, C3, C4

and for any "00  1 exist numbers C"00 , C 0
"00 such that when L � C"00 and L �

�
"
�1/212⇡̂

� a"+1
a" , we have
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���
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4(1� ")
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00) log
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◆
+ C

0
"00n

+ C2 len(M)n
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p
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+ C3V",�(M)n log
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1p
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+ C4 (1� ")�2
̂
2
nr

2
" . (E.17)

Meanwhile, from Lemma E.6 there exists constant C", C1 such that when L � C"

(1� ")�min

⇣
PS"

cM"PS"

⌘
� (1� ")2

3⇡n

4
log

✓
1 +

L� 2

3⇡
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◆
� C1(1� ")nr" log

2
L. (E.18)

We will treat all named constants appearing in the previous two equations as fixed for the remainder of the
proof. We argue that the first term in this expression is large enough to dominate each of the terms in (E.17)
and the residual term in (E.18).

Set "0 = "
24 . We will choose "00 = "0

1�2"0 < 1, so that both "0 and "
00 depend only on ". Then, since

r" = 6⇡L� a"
a"+1 , when L > 4, we have

L� 2

3⇡
r" = 2(L� 2)L� a"

a"+1 > L
1

a"+1 . (E.19)

Since moreover a" = (1 � ")3(1 � "
12 ) = (1 � ")3(1 � 2"0), we have a""

00 = "
0(1 � ")3, and therefore

(1 + "
00)a" = (1� "

0)(1� ")3. Thus

(1� "
0)(1� ")2
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4
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00) log
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◆
, (E.20)

where in the last bound we use
p
"̂

�1  6⇡, given that " < 1 and ̂  ⇡/2. The RHS at the end of this chain
of inequalities is the first term of the RHS of the last bound in (E.17). Since the LHS has a leading coe�cient
of (1� "

0), we can conclude provided we can split the remaining "0 across the remaining terms.
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Next, we will cover the negative term in (E.18) and the second and fifth terms in (E.17). Using (E.19), we
have

"
0

3
(1� ")2

3⇡n

4
log

✓
1 +

L� 2

3⇡
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◆
� "

0

3
(1� ")2

3⇡n

4

1
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log(L). (E.21)

There exists a constant C" such that when L � C", we have for the RHS

"
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3
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0
"00)n.

In particular, we can take

C" � exp
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.

Next, there exists another constant C" > 0 such that when L � C", we have r" log
2
L  1, whence by the

previous bound
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Finally, notice that when L �
�
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a" , we have
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p
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,

so r"̂ 
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"/2, and since " 2 (0, 3/4), we have
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where we used that " 7! "(1� ")�2 is increasing. Combining our previous bounds, this gives
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as desired.
For the remaining two terms, define

C
0
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.

We will use the estimate (E.21) as our base. Then when

L � max
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we have
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Combining (E.20), (E.22), (E.23), (E.24) completes the proof.
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Lemma E.3. For any x 2 M, we have

hx, ẋi = hẋ, ẍi =
D
x,x

(3)
E
= 0, (E.25)

hx, ẍi = �1, (E.26)
D
x,x

(4)
E
= �

D
ẋ,x

(3)
E
= kẍk22,

D
ẍ,x

(3)
E
= �1

3

D
ẋ,x

(4)
E
,

kPx? ẍk22 = kẍk22 � 1,

M2 =
p
1 + 2  M4, (E.27)

M2 < 2̂, (E.28)
1

̂
 min{len(M�), len(M+)}, (E.29)

where we use above the notation introduced near (C.6).

Proof. As our curve is defined over sphere and has unit speed, we have

kxk22 = kẋk22 = 1.

Taking derivatives on both sides, we get

hx, ẋi = hẋ, ẍi = 0.

Continuing to take higher derivatives, we get the following relationships:

kẋk22 + hx, ẍi = 0,

3 hẋ, ẍi+
D
x,x

(3)
E
= 0,

3kẍk22 + 4
D
ẋ,x

(3)
E
+
D
x,x

(4)
E
= 0,

kẍk22 +
D
ẋ,x

(3)
E
= 0,

3
D
ẍ,x

(3)
E
+
D
ẋ,x

(4)
E
= 0.

which gives us by plugging in the previous constraints

hx, ẍi = �1,
D
x,x

(3)
E
= 0,

D
ẋ,x
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E
= �kẍk22,

D
x,x

(4)
E
= kẍk22,

D
ẍ,x

(3)
E
= �1

3

D
ẋ,x

(4)
E
.

As a consequence, the intrinsic curvature kPx? ẍk2 and extrinsic curvature kẍk2 are related by

kPx? ẍk22 =
���
⇣
I � xx

⇤
⌘
ẍ

���
2

2

= hx, ẍi2 + hẍ, ẍi � 2 hx, ẍi2
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= kẍk22 � 1.

Thus we know

M2 = sup
x2M

kẍk2

= sup
x2M

q
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=
r
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x2M
{kPx? ẍk2}2

=
p
1 + 2
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2
̂

⌘2
+ 2
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Furthermore, the above shows that M2 � 1, so we have

M2  M
2
2 = sup

x2M
kẍk22

= sup
x2M

D
x,x

(4)
E

 M4,

using one of our previously-derived relationships in the second line and Cauchy-Schwarz in the third. Finally,
for any point x = x�(s), as x�(s+ len(M�)) = x�(s), we have

0 = x�(s+ len(M�))� x�(s) =

Z s+len(M�)

s0=s
ẋ�(s

0)ds0

= len(M�)ẋ�(s) +
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=

�����

Z s+len(M�)

s0=s

Z s0

s00=s
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Z s0
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M2ds

00
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0

=
len(M�)2

2
M2 < len(M�)

2
̂,

completing the proof, where the first line uses the unit-speed property, the second uses the previous relation,
the third uses Jensen’s inequality (given that k · k2 is convex and 1-homogeneous), and the last line comes
from (E.28).

Lemma E.4. Let ̂ = max
�
,

2
⇡

 
. For � 2 {±} and |s0 � s|  1

̂ , we have

|s� s
0|� ̂

2|s� s
0|3  \

�
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0)
�
 |s� s

0|. (E.30)

As a consequence, for |s� s
0| 

p
"
̂ ,

(1� ")|s� s
0|  \

�
x�(s),x�(s

0)
�
 |s� s

0|. (E.31)
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In particular, for any two points x,x
0 2 M�, choosing s, s

0
such that x�(s) = x, x�(s0) = x

0
, and |s � s

0| =
dM(x,x0), we have when dM(x,x0) 

p
"
̂

(1� ")dM(x,x0)  \
�
x,x

0�  dM(x,x0).

Proof. We prove (E.30) first.
The upper bound is direct from the fact that M is a pair of paths in the sphere and \(x,x0) is the length

of a path in the sphere of minimum distance between points x, x0, and then using the fact that the distance
|s0 � s| � dM(x�(s),x�(s0)) from (C.7).

The lower bound requires some additional estimates. We fix s, s
0 satisfying our assumptions; as both

|s � s
0| and \(x�(s),x�(s0)) are symmetric functions of (s, s0), it su�ces to assume that s0 � s. Define

t = s
0 � s, then by assumption we have 0  t  1

̂  ⇡
2 . As cos-1 is strictly decreasing on [�1, 1], we only need

to show that
hx�(s),x�(s+ t)i  cos(t� ̂

2
t
3). (E.32)

Using the second order Taylor expansion at s, we have

x�(s+ t) = x�(s) + ẋ�(s) +

Z s+t
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ẍ�(b)db da

�

= 1 +

Z s+t

a=s

Z a

b=s
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where we use properties established in Lemma E.3, in particular (E.25) in the last line. Take second order
Taylor expansion at b for x�(s), we have similarly

x�(s) = x�(b) + ẋ�(b) +

Z b

c=s

Z b

d=c
ẍ�(d)dd dc.

From (E.25) and (E.26), we have hx�(b), ẍ�(b)i = �1 and hẋ�(b), ẍ�(b)i = 0. Thus uniformly for b 2 [s, s+ t]
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where in the third line we use Cauchy-Schwarz. Plugging this last bound into (E.33), it follows

hx�(s),x�(s+ t)i  1 +

Z s+t

a=s

Z a
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with an application of Lemma E.3 in the final equality. To conclude, we derive a suitable estimate for
cos(t� ̂

2
t
3). Because 0  t  ̂

�1, we have that t�1(t� ̂
2
t
3) 2 [0, 1], and because t  ̂

�1  ⇡/2, we can
apply concavity of cos on [0,⇡/2] to obtain
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Next, the estimate cos(x) � 1� x2

2 + x4

4! �
x6

6! for all x, a consequence of Taylor expansion, gives
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after distributing. Because ̂ � , we can split terms and write

t
4
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2

4!
t
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4
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and then grouping terms in the preceding estimates gives

cos(t� ̂
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By way of (E.34) and (E.32), we will therefore be done if we can show that

1

4
�
✓
1

4!
+

1

6!̂2

◆
t
2 +

t
4

6!
� 0.

This is not hard to obtain: for example, we can prove the weaker but su�cient bound

1� 1

3!

✓
1 +

1

30̂2

◆
t
2 � 0

by noticing that because t  ̂
�1, it su�ces to show

1

̂2

✓
1 +

1

30̂2

◆
 6,

and because the LHS of the previous line is an increasing function of ̂�1 and moreover ̂�1  ⇡/2, this
bound follows by verifying that indeed (⇡/2)2(1 + (1/30)(⇡/2)2)  6. Because s, s0 were arbitrary we have
thus proved (E.30).

For the remaining claims, (E.31) follows naturally from the fact that when |s � s
0| 

p
"
̂ , we have

|s� s
0|� ̂

2|s� s
0|3 � (1� ")|s� s

0|. The final claim is a restatement of (E.31) under the additional stated
hypotheses.
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Invertibility of cM over S.
Lemma E.5 (Young’s inequality for Fredholm operators). LetK : M⇥M ! R satisfyK(x,x0) = K(x0

,x)
for all (x,x0) 2 M ⇥M and sup(x,x0)2M⇥M|K(x,x0)| < +1, and let K denote its Fredholm integral operator

(defined as g 7! K[g] =
R
M K( · ,x0)g(x0)dx0

). For any 1  p  +1, we have

kKkLp!Lp  sup
x2M

Z

x02M
|K(x,x0)|dx0

.

Proof. The proof uses the M. Riesz convexity theorem for interpolation of operators [1, §V, Theorem 1.3],
which we need here in the form of a special case: it states that for all 1  p  +1, one has

kKkLp!Lp  kKk1/pL1!L1kKk1�1/p
L1!L1 . (E.35)

To proceed, we will bound the two operator norm terms on the RHS. We have
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|K(x,x0)| dx0

. (E.36)

The first inequality above uses the triangle inequality for the integral. In the third line, we rearrange the
order of integration using Fubini’s theorem, given that g is integrable and K is bounded on M⇥M. In the
fourth line, we use L1-L1 control of the integrand (i.e., Hölder’s inequality), and in the final line we use that
kgkL1 = 1 along with symmetry ofK and nonnegativity of the integrand to to re-index and remove the outer
absolute value. On the other hand, L1-L1 control and the triangle inequality give immediately

kKkL1!L1 = sup
x2M, kgkL1=1

����
Z

x02M
K(x,x0)g(x0)dx0

����

 sup
x2M

Z

x02M
|K(x,x0)|dx0

.

These two bounds are equal; plugging them into (E.35) thus proves the claim.

Lemma E.6. Let " 2 (0, 3
4 ), r", S" and

cM" be as defined in (E.8), (C.12) and (E.11). Then cM" diagonalizes

in the Fourier orthonormal basis (C.11). Write �min

⇣
PS"

cM"PS"

⌘
for the minimum eigenvalue of the operator

PS"
cM"PS" : S" ! S". Then there exist constants c, C and a constant C" such that when L � C", we have
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As a consequence, PS"
cM"PS" is invertible over S", and
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cM"PS"

⌘
.
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Proof. Choose L & 1 to guarantee that cM" is well-defined. We use  � to denote the DC subtracted skeleton,
as defined in (C.4), and (��,k)�,k the (intrinsic) Fourier basis onM, as defined in (C.11). For any Fourier
basis function ��,k, we have

cM"[��,k](x�(s)) =

Z s+r"

s0=s�r"

 
�(|s� s

0|)��,k (x�(s0)) ds0

=

Z r"

s0=�r"

 
�(|s0|) exp

✓
i2⇡ks0
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◆
ds

0
��,k(x�(s))

= ��,k(x�(s))

Z r"

s0=�r"

 
�(|s0|) cos

✓
2⇡ks0

len(M�)

◆
ds

0
,

which shows that each Fourier basis function is an eigenfunction of cM"; because these functions form an
orthonormal basis for L2(M) (by classical results from Fourier analysis on the circle), cM" diagonalizes in
this basis. Moreover, because S" is the span of Fourier basis functions, PS" also diagonalizes in this basis,
and hence so does PS"

cM"PS" . Because cM" is self-adjoint and PS" is an orthogonal projection, PS"
cM"PS" is

self-adjoint; and because dim(S") < +1, the operator PS"
cM"PS" has finite rank, and therefore has a well-

defined minimum eigenvalue, which we denote as in the statement of the lemma. As K",� = b "
1/2 len(M�)

2⇡r"
c,

we have for any |k�|  K",� and any |s0|  r",
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Then for � 2 {+,�} and |k|  K",±,

cM"[��,k](x�(s)) = ��,k(x�(s))
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and so
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From Lemma F.7, we have if L & 1
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In particular, as r" = 6⇡L� a"
a"+1 , there exists a constant C" such that when L � C
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and thus
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> 0,

where we used L & 1 in the second inequality, and " < 3/4 and a"  1 in the third inequality. So PS"
cM"PS"

is invertible over S", with

⇣
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�,kh. (E.37)

The final claim is a consequence of the fact that PS"
cM"PS" is self-adjoint and finite-rank.

Lemma E.7. Let " 2 (0, 3
4 ), a", r",M" and

cM" be as defined in (E.7), (E.8), (E.10) and (E.11). There exist constants
C,C

0
, such that when L � C and L �

�
"
�1/212⇡̂

� a"+1
a" , we have

���M" � cM"

���
L2!L2

 (1� ")�2
C

0
̂
2
nr

2
" .

Proof. We choose L & 1 to guarantee that cM" is well-defined for all 0 < " < 3/4. We would like to use
Lemma E.5 to bound kM" � cM"kL2!L2 , and thus we define two (suggestively-named) bounded symmetric
kernels M⇥M ! R:

M"(x,x
0) = dM(x,x0)<r" 

�(\(x,x0))

and
cM"(x,x

0) = dM(x,x0)<r" 
�(dM(x,x0)).

From (E.10), M" is indeed M"’s associated Fredholm integral operator. To show that under our constraints
for L, cM" is also cM"’s associated integral operator, we first notice that following (C.7), for any x,x

0 2 M,
dM(x,x0) < r" if and only if there exist �, s and s

0 such that x = x�(s), x0 = x�(s0) and |s0 � s| < r". This
means for any fixedx, if we let � and s be chosen such thatx = x�(s), thenLr"(x) = {x�(s0)||s0�s| < r"}. Fur-
thermore, as L �

�
"
�1/212⇡̂

� a"+1
a" , by (E.29) in Lemma E.3 we have r" 

p
"

2̂ < min{len(M+), len(M�)}/2.
Under this condition, we can unambiguously express the intrinsic distance dM in terms of arc length at
the local scale: for any x

0 2 Lr"(x), there is a unique s
0 such that |s0 � s|  r". To see this, note that for

any other parameter choice that attains the infimum in (C.7) s00 = s
0 + k len(M�) with integer k 6= 0, the

triangle inequality implies |s00 � s| � |r✏ � k len(M�)|, and one has |r✏ � k len(M�)| > r✏ for every k 6= 0
if 0 < r✏ < len(M�)/2. Then for x0 2 Lr"(x) and any s

0 2 [s � r", s + r"] such that x�(s0) = x
0, we have

dM(x,x0) = |s � s
0|. Combining all these points, cM"’s associated Fredholm integral operator H can be

written as:
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which means cM" is indeed cM✏’s associated integral kernel.
We can now apply Lemma E.5 and and get

kM" � cM"kL2!L2  sup
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0|)
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Here, we recall that r✏ < ⇡/4 (because ̂  ⇡/2), so there is no issue with these evaluations and the domain
of  � being [0,⇡]. Note that from (E.30), when |s� s

0|  r" 
p
"
̂ , we have

\ (x�(s),x�(s
0)) � |s� s

0|� ̂
2|s� s

0|3

� (1� ")|s� s
0|. (E.39)

As  � is nonnegtive, strictly decreasing and convex by Lemma G.5, we know both  � and | ̇�| are decreasing.
Also, by the upper bound in Lemma E.4, we have that  �(\(x�(s),x�(s0)))�  

�(|s� s
0|) � 0, so we can

essentially ignore the absolute value in the integrand in (E.38). We can then calculate
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Above, the first line comes from (E.39) and the the fact that  � is strictly decreasing, the fourth and fifth line
comes from the fact that | ̇�| is decreasing and (E.39). The last line uses symmetry and a linear transformation.
Note that from (E.39) we always have |t|� ̂

2|t3| nonnegative when |t|  r" and thus all above formulas are
well defined. From Lemma F.10, we know that there exists C,C 0 such that when L � C, we have

Z (1�")r"

0
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and plugging all bounds back to (E.38) we get
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as claimed.

Lemma E.8. Let " 2 (0, 3
4 ), r" and Nr"," as defined in (E.8) and (E.4). For any 0 < "

00  1, there exist numbers
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Proof. For x 2 M, assume the parameters are chosen such that the corresponding near piece is nonempty,
for otherwise the claim is immediate. Recalling (E.4), for any x

0 2 Nr","(x), we have dM(x,x0) 
p
"/̂.

From Lemma E.4, this implies \(x,x0) � (1 � ")dM(x,x0). Let �, s be such that x�(s) = x. Notice by the
discussion following the definition of the intrinsic distance in (C.7) that the near component Nr","(x) is
contained in the set {x�(s0) | |s0 � s| 2 [r",

p
"/̂]}. And from Lemma G.5,  � is strictly decreasing, thus we

have
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where in the last line we apply a linear change of variables. We also note that in the above integrals
|s0 � s|  ̂

�1  ⇡/2, so there are no issues above with the domain of  � being [0,⇡]. From Lemma F.9, for
any 0 < "

00  1, there exist numbers C"00 , C 0
"00 such that if L � C"00 , then r" satisfies the condition in (F.12)

and we have
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Lemma E.9. Let " 2 (0, 3
4 ), � 2 (0, 1� "]. Let W",� as in (E.6). There exist constants C,C 0

such that when L � C,

for any x 2 M,
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�
x,x

0�
⌘
ds
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n log
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.

Proof. To bound the integral, we rely on the observation that for each ‘curve segment’ inside the winding
component, the angle \(x,x0) cannot stay small for the whole segment, and thus we can avoid worst
case control for the angle as we have employed for the far component in Lemma E.10.9 We will begin by
constructing a specific finite cover of curve segments for the winding component, then we will bound the
integral over each curve segment by providing a lower bound for the angle function.

9Within the lemma, a curve segment means {x�(s)|s 2 [s1, s2]} ✓ M� for certain �, s1 and s2 with |s1 � s2| < len(M�), and we
call |s1 � s2| the length of the curve segment.
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AsM is compact with bounded length, from the definition in (C.10) we knowV✏,�(M) is a finite number
for any choice of ", �. From the definition of the winding component (E.6), for any point x 2 M, we can
cover W",�(x) by at mostV✏,�(M) closed balls in the intrinsic distance on the manifold with radii no larger
than 1/

p
1 + 2. Topologically, each ball in the intrinsic distance of radii r is a curve segment of length

2r; thus, W",�(x) can be covered by at most 2V✏,�(M) curve segments, each with length no larger than
1/
p
1 + 2. Formally, this implies that for each x 2 M, there exists a number N(x)  2V",�(M) and for

each i 2 {1, · · · , N(x)}, there exist a sign �i(x) 2 {±} and a nonempty interval Ii(x) = [s1,i(x), s2,i(x)]with
length no greater than 1p

1+2 and strictly less than len(M�i(x)) such that

W",�(x) ✓
N(x)[

i=1

Xi(x)

whereXi(x) = {x�i(x)(s) | s 2 Ii(x)} ⇢ MwithXi(x)\W",�(x) 6= ?. For the purpose ofminimumcoverage,
we can further assumewithout loss of generality that for eachx and each i, the boundary pointsx�i(x)(s1,i(x))
and x�i(x)(s2,i(x)) belong to W",�(x): we can always set p1,i(x) = inf{s | s 2 [s1,i(x), s2,i(x)],x�i(x)(s) 2
W",�(x)} and p2,i(x) = sup{s|s 2 [s1,i(x), s2,i(x)],x�i(x)(s) 2 W",�(x)}, then the curve segment associated
with �i(x) and interval [p1,i(x), p2,i(x)] still covers Xi(x) \ W",�(x). As W",�(x) is closed, we have the
boundary points x�i(x)(p1,i(x)),x�i(x)(p2,i(x)) 2 W",�(x) and asXi(x) intersect withW",�(x), the definition
above is well defined.

We will next increase the number of sets in these coverings, so that they are guaranteed not to fall into
any of the “local pieces” at x: although by the definitions (E.3) and (E.6) the local and winding pieces at any
x are disjoint, it may be the case that when we pass to the covering sets (Xi(x))i2[N(x)], we overlap with the
local piece. In particular, consider a “local piece” Lp

"/̂(x) defined as in (E.3), which from the definition
does not intersect with W",�(x). For each i, as the boundary points of Xi(x) fall in W",�(x), these boundary
points do not belong to Lp

"/̂(x). And as Lp
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We next derive additional properties of the piecesX 0
i(x) that will allow us to obtain suitable estimates for

the integrals on the RHS of (E.40). As each X
0
i(x) is a compact set, we let
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also maximizes hx,x�0
i
(s)i. For any s 2 I

0
i(x), from the second order Taylor expansion of x�0
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we have
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with the last line following from Cauchy-Schwarz. In the previous equations, we are of course using the
convention that for a real-valued function f and numbers a < b, the notation

R a
b f(x) dx denotes the integral

�
R b
a f(x) dx. We are going to use this bound to reprove a classical first-order optimality condition for interval-

constrained problems. We split into cases depending on where the point s⇤i lies: if s⇤i is not the right end
point s02,i, by taking s approaching s

⇤
i from above, we would have hx, ẋ⇤

i i  0. Similarly, if s⇤i is not the left
end point s01,i, by taking s approaching s
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i i is

8
><

>:

 0 s
⇤
i = s2,i

� 0 s
⇤
i = s1,i

= 0 o.w.

which implies

(s� s
⇤
i ) hx, ẋ⇤
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We use again the Taylor expansion at s⇤i and get
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with an application of (E.27) in the last line. Moreover, we have
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where the first line is a trigonometric identity, the first inequality uses \(x,x⇤
i ) < ⇡/2 together with the fact

that sin function is concave from 0 to ⇡ and thus sin(at) � a sin(t) for a 2 [0, 1] and t 2 [0,⇡] (applied to
a = \(x,x⇤

i )/(⇡/2) and t = ⇡/4), and the last line follows directly from the definition of�" in (C.8). Making
use of the preceding estimates, for any s 2 I

0
i(x) we can finally calculate
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Above, the second line uses the triangle inequality, the third line uses the parallelogram identity plus
Lemma E.3 (first term) and (E.42) (second term), the fourth line comes from (E.43) and (E.41), and the
fifth line comes from our construction that the length of each interval I 0i(x) is no greater than 1/

p
1 + 2 and

therefore the same is true of |s� s
⇤
i |. The last line is an application of inequality of arithmetic and geometric

means. Additionally, for any x,x
0 of unit norm, one has
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= kx� x
0k2.

Combining this and (E.44), for all s 2 I
0
i(x) we have

\(x�0
i
(s),x) � kx�0

i
(s)� xk2 � 2

⇡
�" +

p
3

2
p
2
|s� s

⇤
i |

� 1p
3
�" +

1p
3
|s� s

⇤
i |,

where the last line just worst-cases constants for simplicity. From Lemma G.5,  � is nonnegative and strictly
decreasing, so

Z

s2I0
i(x)

 
�
⇣
\
�
x,x�0

i
(s)

�⌘
ds =

Z s02,i(x)

s=s⇤i

 
�
⇣
\
�
x,x�0

i
(s)

�⌘
ds+

Z s⇤i

s=s01,i(x)
 
�
⇣
\
�
x,x�0

i
(s)

�⌘
ds


Z s02,i(x)

s=s⇤i

 
�
✓

1p
3
�" +

1p
3
|s� s

⇤
i |
◆
ds

+

Z s⇤i

s=s01,i(x)
 
�
✓

1p
3
�" +

1p
3
|s� s

⇤
i |
◆
ds

 2

Z 1p
1+2

s=0
 
�
✓

1p
3
�" +

1p
3
s

◆
ds

= 2
p
3

Z 1p
3
�"+ 1p

3
p

1+2

t= 1p
3
�"

 
�(t)dt

where again, the second to third line comes from the fact that our intervals has length at most 1/
p
1 + 2.

From (F.11) in Lemma F.9 and a summation over all N 0(x)  4V",�(M) segments in the covering, there
exists constant C 0 such that when L � C,

N 0(x)X

i=1

Z

s2I0
i(x)

 
�
⇣
\(x,x�0

i
(s))

⌘
ds V",�(M)C 0

n log

0

@
1 + (L� 3)

⇣
1p
3
�" +

1p
3
p
1+2

⌘
/(3⇡)

1 + (L� 3) 1p
3
�"/(3⇡)

1

A
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V",�(M)C 0
n log

 
1 +

1p
1+2

�"

!
.

Recalling our bound (E.40), we can thus take a supremum over x 2 M and conclude.

Lemma E.10. Let " 2 (0, 1), � 2 (0, 1� "]. Let F",� as in (E.5). There exist constants C,C 0
such that when L � C,

we have for any x 2 M, Z

x02F",�(x)
 
�
⇣
\
�
x,x

0�
⌘
ds

0  C
0len(M)n

̂

�
p
"
.

Proof. We have the simple bound from Lemma F.8 and decreasingness of  � from Lemma G.5, that there
exists constant C 0, with

Z

x02F",�(x)
 
�
⇣
\
�
x,x

0�
⌘
ds

0  len(M) �
✓
�
p
"

̂

◆

 len(M)C 0
n

L� 3

1 + (L� 3) �
p
"

̂ /(3⇡)

 len(M)C 0
n

̂

�
p
"
,

as claimed.

E.2 Certificates for the DC-Subtracted Kernel
Proof Sketch and Organization In Appendix E.1, we constructed a certificate for the DC subtracted kernel
⇥� over the subspace S". In this section, we show that the certificate g = g"[⇣] defined in Theorem E.1 can
also be viewed as the certificate without subspace constraints, satisfying

⇥�[g"[⇣]] ⇡ ⇣.

As PS"⇥
�[g"[⇣]] = ⇣, we only need PS?

"
⇥�[g"[⇣]] to be small. The subspace S" is formed by all Fourier basis

with low frequency, and thus contains functions that do not oscillate rapidly, in the sense that for any function
h and integer k

kPS?
"
hkL2 . k dk

dsk hkL2

dim(S")k
.

This argument is made rigorous in Lemma E.23; by choosing k = 3 and extracting the dimension of the
subspace from (E.12), we obtain the estimate we are looking for. This leaves us to show the derivatives of
⇥�[g"[⇣]] are small compared to its norm.

The remainder of this subsection is organized as follows. We define a relevant notion of derivatives for
the kernel ⇥� in Definition E.11. These derivatives can be represented as a function of the higher order
derivatives of  and that of the angle function (Lemma E.13). We bound the derivatives of the angle by higher
order curvatures in Lemmas E.15 to E.17, and borrow results in Lemmas F.10 to F.12 that  ’s higher order
derivatives decrease rapidly since  is localized when the network is deep enough. These bounds together
allow us to control the L2 to L

2 operator norm of operators corresponding to the i-th order derivatives of
⇥� in Lemmas E.18 to E.20 by geometric parameters of the manifoldM, including higher order regularity
constants Mi and the angle injectivity radius �". In Lemma E.22, we show that the projection operator
PS" and main invariant operator cM" commute with di�erential operators on functions on M, and thus
the “low oscillation” property of the target function ⇣ can be transferred to the “low oscillation” of g"[⇣]
and further down to that of ⇥[g"[⇣]]. To simplify the language, we introduce Definition E.24 to represent
the required regularity property, and prove that g"[⇣] and⇥�[g"[⇣]] satisfy such regularity in Lemmas E.25
and E.27. Finally, we get control of PS?

"
⇥�[g"[⇣]] in Lemma E.28.
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Definition E.11. For any x,x
0 2 M, let �,�

0 2 {±1} denote the class memberships of x and x
0
, let s, s

0 2 R be

such that x�(s) = x, x�0(s0) = x
0
, and write ⇥(0)(x,x0) = ⇥�(x,x0) =  

�(\(x,x0)). We consider higher order

derivatives of the kernel with respect to a “simultaneous advance”. For i = 1, 2, 3, define inductively

⇥(i)(x,x0) =


d

dt

���
0
⇥(i�1)

�
x�(s+ t),x�0(s0 + t)

��
�����
x�(s)=x,x�0 (s0)=x0

.

Let ⇥(i)
denote the Fredholm integral operator associated to ⇥(i)

:

⇥(i)[h](x) =

Z

x02M
⇥(i)(x,x0)h(x0)dx0

.

It is clear that these definitions do not depend on the choice of s, s
0 2 R among ‘equivalent’ points (c.f. (C.5) and

surrounding discussion).

Remark E.12. For the moment, we have elided the issue that due to di�erentiability issues with the angle function

(x,x0) 7! \(x,x0), the kernels ⇥(i)
defined in Definition E.11 may not be well-defined on all ofM⇥M. This issue is

resolved in Lemma E.13.

Lemma E.13. Let

�0(x,x
0) = \(x,x0)

�i+1(x,x
0) =


d

dt

���
0
�i(x�(s+ t),x�0(s0 + t))

������
x�(s)=x,x�0 (s0)=x0

=

✓
@

@s
+

@

@s0

◆
�i(x�(s),x�0(s0))

������
x�(s)=x,x�0 (s0)=x0

, i = 0, 1, 2.

denote derivatives of the angle function with respect to a “simultaneous advance”. Then when the parameterizations x�

are five times continuously di�erentiable (as required in Appendix C.1), these functions are well-defined on M⇥M.

In addition, the kernels ⇥(i)
defined in Definition E.11 are well-defined on M⇥M and can be expressed in terms

of the derivatives of  and the functions �i as

⇥(0)(x,x0) =  
�(\(x,x0))

⇥(1)(x,x0) =  ̇(\(x,x0))�1(x,x
0)

⇥(2)(x,x0) =  ̈(\(x,x0))�21(x,x
0) +  ̇(\(x,x0))�2(x,x

0)

⇥(3)(x,x0) = ˙̇ ̇(\(x,x0))�31(x,x
0) + 3 ̈(\(x,x0))�2(x,x

0)�1(x,x
0)

+  ̇(\(x,x0))�3(x,x
0),

where  ̇,  ̈, ˙̇ ̇ denote the first three derivatives of  
�
.

Proof. Because the function t 7! cos-1(t) is infinitely di�erentiable except at {�1, 1} ⇢ [�1,+1] and  is
3 times continuously di�erentiable on [0,⇡] (Lemma G.5), and given the di�erentiability assumption on
the curves and the fact that (C.1) precludes M from containing any antipodal points, the claim follows
immediately by the chain rule except on the diagonal {(x,x) | x 2 M}. Here, suppose s, s

0 are such that
x�(s) = x�(s0). Then we have x�(s+ t) = x�(s0+ t) for every t 2 R. In particular, \(x�(s+ t),x�(s0+ t)) = 0
for all t 2 R, which implies that �i(x,x) = 0 for all i. A similar argument implies well-definedness of
⇥(i)(x,x) for all i, which establishes the claimed formulas on all of M⇥M.
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Lemma E.14. For points x,x0 2 M and " 2 (0, 1) we have

p
1� (x⇤x0)2 �

(
dM(x,x0)

3 dM(x,x0)  1
̂

2
⇡�" dM(x,x0) �

p
"
̂

Proof. When dM(x,x0) �
p
"
̂ , from definition of the angle injectivity radius in (C.8) we have \(x,x0) � �".

From (C.1) we also have \(x,x0)  ⇡/2, then
p
1� (x⇤x0)2 = sin(\(x,x0))

� sin(�")

� 2

⇡
�", (E.45)

where the first inequality comes from the monotonicity of sin(t) from 0 to ⇡/2. The second inequality uses
concavity of sin to get sin(t) � (2/⇡)t for 0  t  ⇡/2, and the fact that " < 1 and hence �"  ⇡/2.

When dM(x,x0)  1
̂  ⇡

2 , assume x,x
0 are parameterized by x�(s),x�(s0) separately with |s � s

0| =
dM(x,x0), then |s0 � s|  1

̂ . Assuming without loss of generality that s0 � s, using a second-order Taylor
expansion and properties from Lemma E.3 gives

x�(s)
⇤
x�(s

0) = x�(s)
⇤

 
x�(s) + (s0 � s)ẋ�(s) +

Z s0

a=s

Z a

b=s
ẍ�(b) db da

!

= 1 +

Z s0

a=s

Z a

b=s
hx�(s), ẍ�(b)i db da

= 1 +

Z s0

a=s

Z a

b=s

⌧
x�(b) + (s� b)ẋ�(b) +

Z s

c=b

Z c

d=b
ẍ�(d) dd dc, ẍ�(b)

�
db da

= 1� (s0 � s)2

2
+

Z s0

a=s

Z a

b=s

Z s

c=b

Z c

d=b
ẍ�(d)

⇤
ẍ�(b) dd dc db da,

with a Taylor expansion at b used in the third line, and using the convention that for a real-valued function
f and numbers a < b, the notation

R a
b f(x) dx denotes the integral �

R b
a f(x) dx. As ̂ = max{, 2

⇡}, we can
use the previous expression (with a bound of the integrand in the last line by M2, and Lemma E.3 again) to
obtain after an integration

|x�(s)⇤x�(s0)� 1 + 1
2 (s

0 � s)2|  (s0 � s)4

4!
(1 + 

2)

 (s0 � s)2

4!

1 + 
2

̂2

 (s0 � s)2

4!
(
⇡
2

4
+ 1)

<
(s0 � s)2

6
,

and thus
p

1� (x�(s)⇤x�(s0))2 =
p
1 + x�(s)⇤x�(s0)

p
1� x�(s)⇤x�(s0)

�

s✓
1 +

✓
1� 1

2
(s0 � s)2 � 1

6
(s0 � s)2

◆◆✓
1
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6
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◆
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3
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3
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2� 2

3

⇣
⇡

2

⌘2
◆

(s0 � s)2

3

>
|s0 � s|

3
.

Lemma E.15. For any x,x
0 2 M, we have

|�1(x,x0)| 
(

7dM(x,x0)3

12 M4 dM(x,x0)  1
̂

2 8x,x0 2 M.

Proof. Let s, s0 be such that x = x�(s) and x
0 = x�0(s0), with |s� s

0| = dM(x,x0) when in addition � = �
0.

As \(x,x0) = cos-1 (x⇤
x
0),

�1(x,x
0) =

@

@s
\(x�(s),x�0(s0)) +

@

@s0
\(x�(s),x�0(s0))

= � ẋ
⇤
x
0 + ẋ

0⇤
xp

1� (x⇤x0)2
. (E.46)

Notice that
p
1� (x⇤x0)2 = k(I � xx

⇤)x0k2, and therefore by Lemma E.3 and Cauchy-Schwarz
�����

ẋ
⇤
x
0

p
1� (x⇤x0)2

����� =
����

⌧
ẋ,

(I � xx
⇤)x0

k(I � xx⇤)x0k2

�����  1,

and thus |�1(x,x0)|  2 by symmetry.
When dM(x,x0)  1

̂ , we have � = �
0, (as above) |s0 � s|  1

̂ . By symmetry, we may assume s
0 � s.

From Lemma E.3, we have ẋ⇤
x = ẋ

⇤
ẍ = 0, ẋ⇤

ẋ = 1, ẍ⇤
x
(3) = � 1

3 ẋ
⇤
x
(4). In the remainder of the proof, with

an abuse of notation we will write ẋ = ẋ�(s), ẋ0 = ẋ�(s0), and so on for the higher derivatives to represent
the specific points of interest concisely. Thus by a fourth-order Taylor expansion (respectively, of x0 = x�(s0)
at s, and of x = x�(s) at s0)

|ẋ⇤
x
0 + ẋ

0⇤
x|

=

�����ẋ
⇤

 
x+ (s0 � s)ẋ+

(s0 � s)2

2
ẍ+

(s0 � s)3

3!
x
(3) +

Z s0

a=s

Z a

b=s

Z b

c=s

Z c

d=s
x
(4)
� (d)dd dc db da

!

+ ẋ
0⇤

 
x
0 � (s0 � s)ẋ0 +
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2
ẍ
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x
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Z s0
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d=c
x
(4)
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!�����
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x
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Z c

d=s
x
(4)
� (d) dd dc db da

!

� (s0 � s) + ẋ
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x
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Z s0
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Z s0
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Z s0
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x
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|ẋ0⇤

x
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⇤
x
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M4
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36
M4(s

0 � s)4. (E.47)

Above, the first inequality uses the triangle inequality and Cauchy-Schwarz; the second inequality Taylor
expands the first term in the di�erence at s (which leads to a cancellation with the second term) and uses the
triangle inequality to move the absolute value inside the integral; the following line rewrites using Lemma E.3;
and then the final line uses Cauchy-Schwarz, integrates and collects constants. Using Lemma E.14, we obtain
that when dM(x,x0)  1

̂ ,

|�1(x,x0)|  7d3M(x,x0)

12
M4.

Lemma E.16. There exists an absolute constant C such that for any " 2 (0, 1) and x,x
0 2 M we have

|�2(x,x0)| 
(
C(M2

4 +M5)dM(x,x0)3, dM(x,x0)  1
̂

⇡
4�

�1
" + 2M2, dM(x,x0) >

p
"
̂

. (E.48)

Proof. Let s, s0 be such that x = x�(s) and x
0 = x�0(s0), with |s� s

0| = dM(x,x0) when in addition � = �
0.

From (E.46),

�2(x,x
0) =
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0
�1(x�(s+ t),x�0(s0 + t))
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x
0
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ẋ
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ẋp

1� (x⇤x0)2
. (E.49)

First consider the case where dM(x,x0) >
p
"
̂ . As

p
1� (x⇤x0)2 = k(I � xx

⇤)x0k2, we can write

ẍ
⇤
x
0

p
1� (x⇤x0)2
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⌧
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⇤)x0
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ẍ
⇤
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�
� x

⇤
x
0

k(I � xx⇤)x0k2

using Lemma E.3. Thus following (E.46) and (E.45) and Lemmas E.3, E.14 and E.15,
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✓
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◆�1

+ 2M2
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⇡

4
��1
" + 2M2.

When dM(x,x0)  1
̂ , we have � = �

0 and |s0 � s|  1
̂ . By symmetry, we may assume s0 � s. Following

Lemma E.3, we have ẋ⇤
ẍ = 0, x⇤

ẍ = �1. In the remainder of the proof, with an abuse of notation we will
write ẋ = ẋ�(s), ẋ0 = ẋ�(s0), and so on for the higher derivatives to represent the specific points of interest
concisely. We can calculate by Taylor expansion and Lemma E.3
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Z c

d=s
x
(4)
� (d) dd dc db da

!

49
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⇤
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, (E.50)
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, (E.51)
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(E.52)

= 1 + ẋ
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. (E.53)

In addition

|ẋ⇤
x
(4) � ẋ

0⇤
x
0(4)| =

������
Z s0

a=s
ẍ(a)⇤x(4)(a) + ẋ(a)⇤x(5)(a)da

����� ,

 |s0 � s|(M2M4 +M5) (E.54)

by Taylor expansion of the first term in the di�erence on the LHS at s0. From Lemma E.3, ẍ⇤
x
(3) = � 1

3 ẋ
⇤
x
(4),

ẍ
⇤
ẍ = �ẋ

⇤
x
(3). Whence adding (E.50), (E.51), (E.52), (E.53) and applying (E.54) we get
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From Lemma E.3,M2  M4. Plugging (E.55) and (E.47) into the bound (E.49) and using Lemma E.14, we
obtain that when dM(x,x0)  1
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Proof.
Let s, s0 be such that x = x�(s) and x
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When dM(x,x0)  1
̂ , we have � = �
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̂ . By symmetry, we may assume s0 � s. Following
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(3). In the remainder of the proof, with an abuse of notation we will

write ẋ = ẋ�(s), ẋ0 = ẋ�(s0), and so on for the higher derivatives to represent the specific points of interest
concisely. Because we can reuse bounds for lower-order �i terms to bound the first three terms in (E.56), we
will focus on controlling the last term. We can calculate by Taylor expansion
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We expand the first term by successive Taylor expansion
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Above, in the fourth equality we rewrite the preceding integrals by switching the limits of integration; the
fifth equality then just integrates over a. As 2b � s � s
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We use Taylor expansion again for the second term of (E.58)
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Plug (E.59) and (E.60) back to (E.58) and we conclude that
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As from Lemma E.3M2  M4, when |s0 � s|  1
̂  ⇡

2 , plugging (E.47), (E.55), (E.61), and Lemma E.14 into
(E.56), we have
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where the last line uses the fact that we can adjust constants to keep only the lowest-order term involving the
distance, given that the distance is bounded.

Lemma E.18. For " 2 (0, 3
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for some constant C 0.
For the integral over nearby piece, let s,� be such that x = x�(s). Follow Lemma E.4 we have
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for some constant C 00, where the fourth line comes from " <
3
4 and the last line comes from ̂ � 2

⇡ from
definition. Plugging (E.63) and (E.64) back in (E.62) proves the claim.
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for some constant C 0.
For nearby piece, let �, s be such that x = x�(s). Follow Lemma E.4 we have \(x,x�(s0)) � (1� ")|s� s
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combining (E.65) and (E.66) directly proves the claim.
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k⇥(3)kL2!L2 = sup
x2M

Z

x02M
|⇥(3)(x,x0)|dx0

.

From Lemma E.13, we know

|⇥(3)(x,x0)|

= | ˙̇ ̇(\(x,x0))�31(x,x
0) + 3 ̈(\(x,x0))�2(x,x

0)�1(x,x
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 | ˙̇ ̇(\(x,x0))||�31(x,x0)|+ |3 ̈(\(x,x0))||�2(x,x0)||�1(x,x0)|
+ | ̇(\(x,x0))||�3(x,x0)|

From Lemmas F.10 to F.12, there exist constants C,C1, C2, C3, such that when L > C, we have
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.

To get lower bound for the angle \(x,x0), for a fixed point x 2 M, we decompose the integral into a
nearby piece N (x) = {x0 2 M| dM(x,x0) 

p
"
̂ } and a faraway piece F(x) = {x0 2 M| dM(x,x0) >

p
"
̂ }.

When dM(x,x0) >
p
"
̂ , we have \(x,x0) � �" with �" 

p
"
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2 . From Lemmas E.15 to E.17, there exist
constants c, C 0 such that
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for some constant C 0.
For the nearby piece, let �, s be such that x = x�(s). From Lemma E.4, when |s � s

0| 
p
"
̂ we have

\(x,x�(s0)) � (1� ")|s� s
0|. From Lemmas E.15 to E.17 there exists constant c0, c00, C 00 such that

Z
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4 +M5)|s0 � s|3
��
����
7|s0 � s|3

12
M4

����

+
C1n

(1� ")2|s0 � s|2 c
00(M3
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where the last line comes from the fact that
R s�

p
"

̂

s0=s�
p

"
̂

|s� s
0|ids0 < 2̂�i�1  2(2/⇡)�i�1. Combining (E.67)

and (E.68) directly proves the claim.

Lemma E.21. For i = 0, 1, 2 and any di�erentiable h : M ! C, we have

d

ds
⇥(i)[h](x) = ⇥(i)


d

ds
h

�
(x) +⇥(i+1)[h](x),

where we recall the notation defined in (C.5).

Proof. Let s be such that x�(s) = x. We have

d

ds
⇥(i)[h](x�(s)) =

@

@t

����
t=0

Z

x02M
⇥(i)(x�(s+ t),x0)h(x0)dx0

=
@

@t

����
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X

�0

Z

s0
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1

t
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�
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Z

s0
⇥(i)(x�(s),x�(s

0)) [h(x�0(s0 + t))� h(x�0(s0))] ds0
#
.

Above, the domain of each of the s0 integrals is a fundamental domain for the circles R/(len(M�) · Z) (by
periodicity of the parameterizations, the specific fundamental domain is irrelevant). For i = 0, 1, 2 we have
by the mean value theorem

����
⇥(i)(x�(s+ t),x�0(s0 + t))�⇥(i)(x�(s),x�0(s0))

t
h(x�0(s0 + t))

����

=
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���

 sup
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��� sup
x32M

|h(x3)|

for some |t0|  |t|. AsM is closed with bounded length and h is di�erentiable, supx32M h(x3) is bounded.
By the formulas in Lemma E.13, the fact that  is C3 by Lemma G.5, and Lemmas E.15 to E.17, it follows that
the former supremum is finite as well. From the dominated convergence theorem, we then have
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1
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Z
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=
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⇥(i+1)(x�(s),x�0(s0))h(x�0(s0))ds0 (E.69)

Similarly, as ess supx2M
�� d
dsh(x)

�� is finite andM is compact, from the dominated convergence theorem we
also have

X
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Z

s0
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=
X

�0

Z

s0
⇥(i)(x�(s),x�(s

0))
d

ds
h(x�0(s0))ds0 (E.70)

Summing (E.69) and (E.70) shows the claim.

Lemma E.22. There is an absolute constant C > 0 such that for all L � C, any di�erentiable h : M ! C and any

" 2 (0, 3
4 ), if the operator

cM" and the subspace S" are as defined in (E.11) and (E.12), then we have

d

ds
PS" [h] = PS"


d

ds
h

�
,

d

ds

cM"PS" [h] = cM"PS"


d

ds
h

�
.

Also, suppose the hypotheses of Lemma E.6 are satisfied, so that PS"
cM"PS" is invertible over S". Then one has in

particular

d
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⇣
PS"

cM"PS"

⌘�1
[h] =

⇣
PS"

cM"PS"

⌘�1

d

ds
h

�
.

Proof. The condition on L implies that cM" is well-defined. For any operator T that diagonalizes in the
Fourier basis for S", i.e. for any h 2 L

2(M), T satisfies

T [h] =
X

�2{±}

K",�X

k=�K",�

m�,k��,k�
⇤
�,kh (E.71)

for some coe�cientsm�,k 2 C independent of h,10 we have

d

ds
T [h] =

X
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K",�X
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=
X
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m�,k
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len(M�)
��,k�

⇤
�,kh,

where we recall the definition of the Fourier basis functions from (C.11) for the second equality. Now fix
h di�erentiable as in the statement of the lemma. On the other hand, since �⇤�,kh is simply some complex
number, which does not depend on s, we have

✓
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ds
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and so
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10Here and in the sequel, we recall that we are using the notation �⇤
�,kh = h�⇤

�,k, hi =
R
M ��,k(x)h(x) dx for the standard inner

product on complex-valued functions onM.
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=
d

ds
T [h].

The operators cM" and PS" both diagonalize in the Fourier basis for S", following the arguments in the proof
of Lemma E.6. By the same token, (PS"

cM"PS")
�1 also diagonalizes in the Fourier basis for S" when it is well

defined (recall (E.37)), which concludes the proof.

Lemma E.23. There is an absolute constant C > 0 such that if L � C, and for any " 2 (0, 3
4 ) if a", r", S" defined as

in (E.7), (E.8), and (E.12), respectively, then when in addition
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Proof. The condition on L guarantees that cM" is well-defined. From (E.12), S" = SK",+,K",� withK",� =j
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k
for � 2 {+,�}, then by orthonormality of the Fourier basis functions (C.11), we have
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Above, the inequality follows because |k|  K",� implies 2⇡|k|/ len(M�) 
p
"/r", and because the Fourier

basis functions are mutually orthogonal (and kfk2L2 = hf, fi). This establishes the first claim.
For the second claim, we have
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as claimed. Above, the first equality entails an interchange of limit processes—a formal justification for the
validity of this interchange follows from the assumed di�erentiability of f (which implies that its coe�cients
�
⇤
�,kf have a faster rate of decay o(|k|�3/2)) and a dominated convergence argument, where the di�erence

quotient involving ��,k is bounded by O(|k|), which together with the extra smoothness of f leads to an
integrable upper bound.

Definition E.24. For any " 2 (0, 3
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as defined in Lemmas E.18 to E.20. We let �(C⇣ , ") for some constant C⇣ � 0 denote
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"0 . As P1, P2, P3 have positive coe�cients, ⇣ 2 �(C⇣ , ") implies
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0
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. (E.72)

Proof. Following Lemma E.22 and Lemma E.21, we have that

g
(1)
" [⇣]

=
1X

`=1

(�1)`
`�1X

a=0

✓⇣
PS"

cM"PS"

⌘�1
PS"(⇥

� � cM")PS"

◆a ⇣
PS"

cM"PS"

⌘�1
PS"⇥

(1)
PS"

⇥
✓⇣

PS"
cM"PS"

⌘�1
PS"(⇥

� � cM")PS"

◆`�a�1 ⇣
PS"

cM"PS"

⌘�1
⇣

+ g"[⇣
(1)].
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d
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constant c such that
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From Lemma E.6, there exists C, c0 > 0 such that when L � C,
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Under the conditions of Theorem E.1, we have
����
⇣
PS"

cM"PS"

⌘�1
PS"(⇥

� � cM")PS"

����
L2!L2

 1� ".

Let P1 = P1

⇣
M4, len(M),��1

"

⌘
, P2 = P2

⇣
M4,M5, len(M),��1

"

⌘
, P3 = P3

⇣
M3,M4,M5, len(M),��1

"

⌘
be

the polynomials in Lemmas E.18 to E.20. From Lemma E.18 , we have
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From the fact that ⇣ 2 �(C⇣ , "), we further obtain
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For the second derivative, we have
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+ 2g(1)" [⇣(1)] � g"[⇣
(2)].

From (E.73), as ⇣(1), ⇣(2) 2 S" we have
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Again as ⇣ 2 �(C⇣ , ") we have
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For third derivative, we have
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Plug in bounds for norms of ⇣(1), ⇣(2) and ⇣(3) we get
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Combined with zero’s order condition of g"[⇣], which follows directly from Theorem E.1, and we know that
there exists C" such that g 2 �( C"C⇣

n logL , ").

Lemma E.26. For " 2 (0, 3
4 ), when L satisfies conditions in Theorem E.1, there exists positive constant C such that
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Proof. As cM" in (E.11) is invariant in Fourier basis as shown in Lemma E.6, we have kPS"
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Lemma E.4 we have
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for some constant C, which concludes the claim.

Lemma E.27. For any " 2 (0, 3
4 ), there exists constant C � 0 such that for any g 2 �(Cg, "), under the conditions of

Theorem E.1, we have
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Proof. From Lemma E.26 we have k⇥�kL2!L2  Cn log(L) for some constant C. Let P1, P2, P3 be the
polynomials in Lemmas E.18 to E.20. Following Lemmas E.18 to E.21 and the fact that g 2 �(Cg, "), we have
following control for derivatives of ⇥�[g]:
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which leads to⇥�[g] 2 �((C+3)Cgn logL, ") and finish the claim. The other part of the claim follows directly
from Lemma E.25 as g"[⇣] 2 �
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.

Lemma E.28. Let " 2 (0, 3
4 ), a", r", S" be as in (E.7), (E.8) and (E.12). There exist numbers C", C
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where P1, P2, P3 are the polynomials from Lemmas E.18 to E.20 respectively.

As a consequence, for ⇣ 2 S" \ �(C⇣ , "), letting g"[⇣] be as in Theorem E.1, we have
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for some C
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" > 0.
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As ⇣ 2 �(C⇣ , "), from Lemma E.27 we get ⇥�[g]� ⇣ 2 �(C 0
"C⇣ , ") for some C 0

" > 0. The rest follows from the
fact that PS" [⇥

�[g]� ⇣] = 0 and thus k⇥[g"[⇣]]� ⇣kL2 = kPS?
"
[⇥�[g]� ⇣]kL2 .

E.3 Certificates with Density and DC
Proof Sketch and Organization. In this section, we leverage the calculations in the previous sections to
prove Theorem D.2, which gives a near solution to the equation

⇥µ[g](x) =

Z
⇥(x,x0)g(x0)⇢(x0)dx0 = ⇣(x).

To accomplish this, we need to account for two factors: the presence of a constant (DC) term in ⇥(x,x0) =
⇥�(x,x0) +  (⇡), and the presence of the data density ⇢ in⇥µ.

Our approach is conceptually straightforward: since⇥ = ⇥� +  (⇡) ⇤, we produce near solutions to
two equations

⇥�[g](x) = ⇣(x),

⇥�[g1](x) = 1,

and then combine them to nearly solve ⇥[h] = ⇣, by setting h = g + ↵g1 for an appropriate choice of ↵,

↵ = �  (⇡) [g]

 (⇡) [g1] + 1
. (E.75)

Here and in the rest of this section, we write [g] to denote ⇤
g.

The statement of Theorem D.2 makes two demands on h: small approximation error k⇥[h]� ⇣kL2 and
small size khkL2 . These demands introduce a tension, which forces us to work with DC subtracted solutions
g✏[⇣] defined in (E.13) at multiple scales ". We will set g = g"0 [⇣] with "0 small, which ensures that both
k⇥�[g]� ⇣kL2 and kgkL2 are small. We would like to similarly set g1 = g"1 [⇣1], with ⇣1 ⌘ 1. In order to ensure
that h is small, we need to ensure that the coe�cient ↵ defined in (E.75) is also small, which in turn requires
a lower bound on [g1]. This is straightforward if g1 is (pointwise) nonnegative, but challenging if g1 can
take on arbitrary signs. The function g1 is defined by the Neumann series

g1 = g"1 [⇣1]

=
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Although this expression is complicated, the first (` = 0) summand is always nonnegative. If we choose "1
large, this expression will be dominated by the first term, providing the necessary control on [g1]. So, we
will use two di�erent scales, "0 < "1 in constructing g and g1, respectively.

The issue introduced by the use of a large scale "1 is that the approximation error k⇥�[g1]� ⇣1kL2 is not
su�ciently small for our purposes. To address this issue, we introduce an iterative construction, which
produces a sequence of increasingly accurate solutions h(i), each of which removes some portion of the
approximation error in the previous solution. This sequence converges to our promised certificate h.

More concretely, we will set "0 = 1
20 and "1 = 51

100 . For parameters a", r" defined in (E.7) and (E.8), these
choices of " ensure that a"0 >

4
5 and a"1 >

1
9 , and so

r"0 < 6⇡L� 4
9 ,
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r"1 < 6⇡L� 1
10 .

We further choose �0 = 1� "0 and �1 = �0
p
"0/

p
"1 < 1� "1. This setting satisfies �0

p
"0 = �1

p
"1 and

thus allows
V(M) =V"0,�0(M) �V"1,�1(M). (E.76)

In the remainder of this section, we carry out the argument described above. Lemma E.29 constructs
the aforementioned certificate g1 for the constant function ⇣1. Lemma E.31 combines this construction with
a certificate g for ⇣ to give a (loose) approximate certificate, for the kernel⇥. Theorem E.32 amplifies this
construction to reduce the approximation error to an appropriate level. Finally, we finish by incorporating
the density ⇢(x) to prove our main result on certificates, Theorem D.2.

Lemma E.29. Let ⇣1 ⌘ 1 denote the constant function overM. When L > C and the conditions of Theorem E.1 are

satisfied for " = "1 = 51
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where C,C
0
, C

00
and C

000
are positive numerical constants.

Proof. Applying Theorem E.1, as conditions of Theorem E.1 for " = "1 is satisfied, we know PS"1
cM"1PS"1

is invertible over S"1 . Noting that ⇣1 is a constant function and thus ⇣1 2 S"1 , we set
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Since ⇣1 is a constant function, all its derivatives are zero and thus ⇣1 2 � (k⇣1kL2 , "1). Applying Lemma E.25,
we have that
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To control [g1], notice that because PS"1
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and from Lemma E.2, we have
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The first inequality comes from the equivalence of norms, and the last two lines come from the fact that bg1 is
a positive constant function. Thus, following Lemma F.9, there exist constants C,C 0 such that
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as claimed.

Lemma E.30. Suppose that the conditions of Theorem E.1 are satisfied for both " = "0 = 1
20 and " = "1 = 51

100 , and

let g1, ⇣1 be as in Lemma E.29. Let ⇣ 2 S"0 , and g = g"0 [⇣]. Then
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where C is a numerical constant.
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again, we have
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where in the penultimate inequality, we have used Lemma E.6. Applying the previous lemma, we obtain
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where in the final equation we have used that the constant function ⇣1 satisfies k⇣1kL1 =
p

len(M)k⇣1kL2 .

Lemma E.31. Suppose that the conditions of Theorem E.1 are satisfied for both " = "0 = 1
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100 , and
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where P is a polynomial poly{M3,M4,M5, len(M),��1
" } of degree  9, with degree  3 inM3,M4,M5 len(M),

and degree  6 in ��1
" . Furthermore, we have
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Proof. Recall that ⇥ = ⇥� +  (⇡) , and let g1 denote the solution for ⇣1 ⌘ 1 as in Lemma E.29. Set
h = g + ↵g1, where g = g"0 [⇣], and

↵ = �  (⇡) [g]

 (⇡) [g1] + 1
.

Using Theorem E.1 to control the norms of g and g1, and using Lemma E.30 to control |↵|, we have
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establishing (E.78).
From our choice of ↵,
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Using Lemma E.28 and the fact that ⇣1 2 �(k⇣1k, "1) we have
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Further using Lemma E.30 to bound ↵k⇣1kL2  C
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for some absolute constant C 0
> 0. Notice that from Lemma E.3 M2 < 2̂  2��2
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where P
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M3,M4,M5, len(M),��1

"0

⌘
is a polynomial of M3,M4,M5, len(M),��1

" of degree  9, with de-
gree  3 in M3,M4,M5 len(M), and degree  6 in ��1

" . Here P1, P2 and P3 are polynomials defined in
Lemma E.18, Lemma E.19 and Lemma E.20. This together with (E.83) give us (E.79).
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To obtain the tighter bound (E.80) onPS?
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for certain C
0
"0 , C

0
"1 > 0. Using ⇥[h]� ⇣ = ⇥�[g]� ⇣ + ↵(⇥�[g1]� ⇣1), we have
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Applying Lemma E.28 with w = ⇥[h]� ⇣ and simplifying with (E.84) we obtain
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(E.80) follows from r"0 < 6⇡L�4/9, which implies that r3"0/ logL  L
�4/3 whenL is larger than an appropriate

numerical constant.
Finally, since PS"0
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From Lemma E.22, PS"0
commutes with di�erentiation, and so for any i-times di�erentiable w,
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Applying this with i = 0, 1, 2, 3, we see that for any w 2 �(Cw, "), PS"0
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observation to (E.85), we have
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Combining with (E.87), we have
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which is (E.81). Here, we have used the bound on ↵ from the previous lemma. This completes the proof.

Theorem E.32 (Certificates for DC kernel). Suppose that the conditions of Theorem E.1 are satisfied for both
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then for any ⇣ 2 S"0 \ �(Kk⇣kL2 , "0) there exists a certificate h satisfying
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with
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In (E.88), P is the polynomial defined in Lemma E.31.
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Proof. Let ⇣(0) = ⇣, and iteratively define
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We use these relationships to control k⇣(i)kL2 . As r"1  6⇡L�1/10, there exists a constant C such that when
L � CK

4
P

4, C2K
Pr3"1
logL  ⌧ = 1

2 and C2C1
Pr3"1
logL  ⌧

2. We argue by induction that
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This is true by construction for i = 0, while for i = 1 it follows from (E.91). Finally, for i � 2, using (E.90)
and inductive hypothesis, we have
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as claimed.
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as claimed.
We next verify that ⇥[h] is an accurate approximation to ⇣:
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We can further require this g to be a real function over the manifold. To see this, notice that for any x,x
0 2 M,

both the kernel ⇥(x,x0) and ⇣(x) are real, thus if we take the real component of g as bg = (g + g)/2, then we
have kbgkL2  kgkL2 and further by the triangle inequality
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and (E.93).
To include the density, define gµ(x) = g(x)/⇢(x). We get
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On the other hand, we have
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As P in Lemma E.31 is a polynomial poly{M3,M4,M5, len(M),��1} of degree  9, with degree  3 in
M2,M4,M5 len(M), and degree 6 in��1, we have P 04 is of the right degree requirement as in the statement
of the theorem.

F Bounds for the Skeleton Function  
In this section, we are going to provide sharp bounds on the “skeleton” function  and its higher-order
derivatives. We recall that the angle evolution function is defined as

'(t) = arccos

✓✓
1� t

⇡

◆
cos t+

1

⇡
sin t

◆
, t 2 [0,⇡].

Define '[0] = Id, '[`] as '’s `-fold composition with itself (which will be referred to as the iterated angle

evolution function). Then the skeleton is defined as

 (t) =
n

2

L�1X

`=0

⇠`(t),

where

⇠`(t) =
L�1Y

`0=`

✓
1� 1

⇡
'
[`0](t)

◆
, ` = 0, · · · , L� 1.

To analyze the function  , we will establish in this section several “sharp-modulo-constants” estimates that
connect  to a much simpler function, derived using the local behavior of ' at 0 and its consequences for the
iterated compositions '[`] that appear in the definition of  . In particular, let us define b' : [0,⇡] ! [0,⇡] by
b'(t) = t/(1 + t/(3⇡)), so that

b'[`](t) =
t

1 + `t/(3⇡)
,

and moreover define
b⇠`(t) =

L�1Y

`0=`

 
1� b'[`0](t)

⇡

!
, b (t) = n

2

L�1X

`=0

b⇠`(t).

We will prove that b'[`] provides a sharp approximation to '[`] (Lemmas F.2 and F.3), and then work out a
corresponding sharp approximation of b to  (Lemmas F.7 and F.9). We will then derive estimates for the
low-order derivatives of  in Appendix F.4. Unfortunately, it is impossible to obtain L

1 estimates for  in
terms of b that are sharp enough to facilitate operator norm bounds for⇥µ, which would let us construct
certificates for an operator with kernel b rather than the NTK ⇥µ; but the estimates we derive in this section
will be nonetheless su�cient to enable our localization and certificate construction arguments in Appendix E.

We note that bounds similar to a subset of the bounds in this section have been developed in an L-
asymptotic, large-angle setting by [51]. The bounds we develop here are non-asymptotic and hold for all
angles, and are established using elementary arguments that we believe are slightly more transparent. We
reuse (and restate in Appendix G) some estimates from [61, Section C] here, but the majority of our estimates
will be fundamentally improved (a representative example is Lemma F.3).

Throughout this section, we use '̇, '̈, ˙̇'̇ to represent first, second and third derivatives of ' (see
Lemma G.5 for basic regularity assertions for this function and its iterated compositions) and likewise
for ⇠ and  . In particular, for example, in our notation the function '̇[`] refers to the derivative of '[`], not the
`-fold iterated composition of '̇. Although this leads to an abuse of notation, the concision it enables in our
proofs will be of use.
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F.1 Sharp Lower Bound for the Iterated Angle Evolution Function
Lemma F.1. One has

'(t)  t

1 + t/(3⇡)
, t 2 [0,⇡].

Proof. As cos is monotonically decreasing in [0,⇡), it is the same as proving

(1� t

⇡
) cos(t) +

sin t

⇡
� cos

t

1 + t
3⇡

� 0

We have the gradient as

� (1� t

⇡
) sin t+ sin(

t

1 + t/(3⇡)
)

1

(1 + t/(3⇡))2

� �(1� t

⇡
) sin t+ sin t

1

(1 + t/(3⇡))3

� (�(1� t

⇡
) +

1

(1 + t
3⇡ )

3
) sin t

� 0

For the first inequality, we use the estimate

sin(ax) � x sin a; 0  x  1, 0  a  ⇡, (F.1)

which is easily established using concavity of sin on [0,⇡] and the secant line characterization, and for the final
inequality, we use the estimate 1�3a  1

(1+a)3 for any a > �1, which follows from convexity of a 7! (1+a)�3

on this domain and the tangent line characterization (at a = 0). Since at t = 0, we have the inequality holds,
we know it holds for the whole interval [0,⇡] by the mean value theorem.

Lemma F.2 (Corollary of [61, Lemma C.12]). If ` 2 N0, one has the "fluid" estimate for the iterated angle evolution

function

'
[`](t)  t
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.

Proof. Follow the argument of [61, Lemma C.12], but use Lemma F.1 as the basis for the argument instead
of Lemma G.4.

Lemma F.3. There exists an absolute constant C0 > 0 such that for all ` 2 N
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and if L � 3

 (t)  b (t) + 4ne6C0 log2 L.

77



Proof. Fix L 2 N arbitrary. We prove (F.2) first, then use it to derive the remaining estimates. The main tool
is an inductive decomposition: start by writing

b'[L](t)� '
[L](t) = b' � b'[L�1](t)� ' � '[L�1](t)
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manipulation) to
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where for concision we write (b'�')(t) = b'(t)�'(t). Note that all the product coe�cients in this expression
are nonnegative numbers. Denoting by C̃1 the constant attached to t

3 in the result Lemma F.13 and defining
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To prove (F.2), we will use a two-stage approach:

1. (First pass) First, we will control only the first factor in the product term in (F.4) using Lemma F.13,
given that ' � 0 allows us to upper bound by the product term without the second factor. The resulting
bound on the LHS of (F.4) will be weaker (in terms of its dependence on L) than (F.2).

2. (Second pass) After completing this control, we will have obtained a lower bound on '[L]; we can then
return to (F.4) and use this lower bound to get control of both factors in the product term, which will
allow us to sharpen our previous analysis and establish the claimed bound (F.2).

First pass. We have
L�1Y

`0=`+1

1�
1 + 1

3⇡ b'[`0](t)
� =

1 + (`+1)t
3⇡

1 + Lt
3⇡

.

Tossing the product term involving '[`0] and applying Lemma F.2 in (F.4), we thus have a bound

b'[L](t)� '
[L](t)  C1

1 + Lt
3⇡

L�1X

`=0

t
3

�
1 + `t
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L�1X

`=0

t
3

�
1 + `t

3⇡

�3 .

For the first term in this expression, we calculate using an estimate from the integral test
L�1X

`=0

t
3

�
1 + `t

3⇡

�2  t
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0

t
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�
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�2 d`
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= t
3 + 3⇡t2

 
1� 1
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!
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3 +

Lt
3
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,

and for the second term, we calculate similarly
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t
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Combining these results gives
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. (F.5)

This bound gives us a nontrivial estimate as far out as t = ⇡, but the result is weaker there than what we
need. We can proceed with a bootstrapping approach to improve our result for large angles. To begin, we
have shown via (F.5)

'
[L](t) � b'[L](t)� 16⇡2

C1t

L
.

Let us write t0 = C/
p
L, where C > 0 is a constant we will optimize below, and define

'

V

L(t) =

(
b'[L](t)� 16C1⇡

2t
L 0  t  t0

b'[L](t0)� 16C1⇡
2t0

L t0  t  ⇡.

The notation here is justified by noticing that'[L] is concave and nondecreasing, so that our previous estimates
imply '[L] � '

V

L. It follows
b'[L] � '

[L]  b'[L] � '

V

L.

Our previous bound (F.5) is an increasing function of t, and su�cient for 0  t  t0. For t � t0, we have

b'[L](t)� '

V

L(t) 
16C1⇡

2
t0

L
+ b'[L](t)� b'[L](t0),

and we can calculate using increasingness of b'[L]
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 9⇡2
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,

whence the bound

b'[L] � '
[L]  ⇡

L3/2

✓
16⇡C1C +

9⇡

C

◆

 24⇡2
p
C1

L3/2
(F.6)

valid on the entire interval [0,⇡]; the final inequality corresponds to the choice C = 3
4
p
C1

.

Second pass. To start, with an eye toward the unused product term in (F.4), we have from (F.6)

1 +
1

3⇡
'
[L](t) � 1 +

1

3⇡
b'[L](t)� 8⇡

p
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.

Using the numerical inequality e
�2x  1� x, valid for 0  x  1/2 at least, we have if L �
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Applying this bound to terms in the second product term in (F.4) with index ` �
l�
256⇡2

C1

�1/3m ⌘ r(C1),
we therefore have 11
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Now, since '  b', we have
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3
,

11Although it has a di�erent meaning in our argument at large, here and in some subsequent bounds ⇣(x) =
P1

n=1 n
�x denotes the

Riemann zeta function. In this setting, we have ⇣(3/2)  e.
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and
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whence
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In the final line, we are simply shu�ing constants using t  ⇡. This completes the proof of (F.2).

Derived estimates. The remaining claims can be derived from the main claim we have just established;
we will do so now. Below, we write C0 = 54⇡3

C1(2 + r(C1)2)e16⇡
p
C1⇣(3/2). We will also assume ` � 1.

We prove the claim about ⇠` first. First, notice that for nonnegative numbers a, b, one has 1�a+b  e
2b(1�a)

provided a  1/2. Since '  ⇡/2, we have for each ` > 0
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By the integral test estimate, we have for ` > 0
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where we applied log(1 + x)  x for all x > �1, whence for ` > 0

⇠`(t)  e
6C0 log(1+`)/`b⇠`(t).

In particular, using the fact that log(1 + `)/`  1 and the estimate ecx  1 + xe
c for x 2 [0, 1] (by convexity of

the exponential function), we obtain

⇠`(t) 
✓
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6C0
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`

◆
b⇠`(t), (F.7)
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as claimed. The proof of the second inequality is very similar: first, repeated application of the chain rule
gives

'̇
[L] =

L�1Y

`=0

'̇ � '[`]
.

Using the expression

'̇(t) =
(1� t/⇡) sin t

sin'(t)
,

we can exploit a telescopic cancellation in the preceding expression for '̇[L], obtaining
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◆
.

As the form of this upper bound is identical to the one we controlled for ⇠`, only with a di�erent constant
factor, we can now apply the first part of that argument to the present setting, obtaining a bound
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where in simplifying we also used that '[0] = b'[0]. To proceed, we split the first sum, obtaining for any index
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✓
t+

1
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◆
,

where in the second line the bound on the first sum used (F.5), and the second used the estimate we proved
in the previous section and the integral test estimate above; in the third line we estimated the harmonic series
with the integral test; and in the fourth line we worst-cased. Next, for any t  1/`?, we have by the above

L�1X

`=1

b'[`] � '
[`]  C log(1 + `?)/`?,

and because the RHS approaches 0 as `? ! 1, for any 0 < "  1 there is an integerN(") > 0 such that for all
`? � N we have

L�1X
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b'[`] � '
[`]  log(1 + ").

In particular, obtaining a lower bound for the RHS by concavity of log, it is su�cient to take `? � C"
�2

for a suitably large absolute constant C > 0. To ensure there exists such a value of `?, it su�ces to choose
L � C"

�2 and therefore t  C
0
"
2. In particular, plugging this estimate into our previous bound, we have

shown that for any " > 0, if L � C
0
"
�2 then for all all t  C"

2 we have
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We then calculate by an estimate from the integral test
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�
Z L

0

t

1 + `t/(3⇡)
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which establishes under the previous conditions on L and t that
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To conclude, we need to simplify the sin ratio term. Using Lemma F.4, for any 0 < "
0  1/2, we have for

0  t  C"
0 that

sin t

sin'[L](t)
 (1 + 2"0)(1 + Lt/(3⇡)),

which su�ces to prove the claim for small t after noting (1 + 2"0)(1 + ") = 1 + 2"0 + " + 2"0", choosing
whichever is smaller, and adjusting the preceding conditions on t and L (i.e. the absolute constants in the
previous bounds may grow/shrink as necessary). To show the claimed bound on the entire interval [0,⇡],
we can follow exactly the argument above, but instead of partitioning the sum of errors b'[`] � '

[`] as above
we simply use bound the sum of errors as in the bound on b⇠` previously to obtain a large constant in the
numerator; the sin ratio is controlled in this case using the first conclusion in Lemma F.4, which is valid on
the whole interval [0,⇡].

Finally, we obtain the estimate on  by calculating using the estimate involving ⇠` and b⇠` that we proved
earlier. First, we note that although we required ` > 0 above, the fact that b'[0] = '

[0] implies that we have an
estimate ⇠0  (1 + log(2)e6C0)b⇠0. We therefore have
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where the final bound requires L � 3.

Lemma F.4. For ` 2 N0, one has for t 2 [0,⇡]

sin(t)

sin('[`](t))
 3(1 + `t/(3⇡))

83



and there exists an absolute constant C > 0 such that for any 0 < "  1/2, if 0  t  C" one has

sin(t)

sin('[`](t))
 (1 + 2")(1 + `t/(3⇡)).

Proof. We prove the bound on [0,⇡] first. Because t 7! t
�1 sin t is decreasing on [0,⇡], we apply Lemma G.6

to get
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Now fix 0 < ✏  1/2. We claim that there is an absolute constant C > 0 such that if t  C✏, we have
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which is enough to conclude after rescaling. Now we want to show the claim. Let C0 = max {1, C1}where
C1 denotes the constant on t

3 in Lemma F.13. We first notice that
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We are going to proceed with an induction-like approach. Put ✏1 = 4C0t
2
/3, and choose t 

p
3/(4C0) so

that 1� ✏1 � 0. Supposing that it holds '[`�1] � (1� ✏`�1)b'[`�1](t) for a positive ✏`�1 such that 1� ✏`�1 � 0
(we have shown there is such "1 and controlled it), we have by some applications of the induction hypothesis,
Lemma F.1, and the previous small-t estimate (we use below that t 
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This shows that we can take ✏` = ✏`�1 + (4C0/3)t2/(1 + (`� 1)t/(3⇡))2 as long as this term is not larger than
1. Unraveling inductively to check, we get
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In particular, the induction is consistent as long as t  3/(16⇡C0). Note as well that since C0 � 1 we havep
3/(4C0) � 3/(16⇡C0). Thus by induction, we know that when 0 < ✏ < 1 and t  3C0✏

16⇡ , we have

'
[`](t) � (1� ✏)b'[`](t)

as claimed.

F.2 Sharp Lower Bound for  
Lemma F.5. There is an absolute constant C0 > 0 such that
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Proof. Following Lemma F.3 (worsening constants slightly for convenience), we directly have
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(F.8)
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and
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(F.9)

From the second to the fourth line above, we used a telescopic series cancellation trick to sum. Then we get
the claim as
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In the third and fourth lines above, we used a splitting and cancellation trick to sum similar to what we used
in Lemma F.5. In moving from the seventh to the eighth line, we used the inequality (x � 1)(x + 1)  x

2

after splitting o� a term that can be negative for large t0. In moving from the eighth to the ninth line, we used
nonnegativity of the third summand and upper bounded the numerator of the term in the second summand.
(In both of the previous simplifications, we are using that t0  1/3.) The remaining simplifications obtain a
common denominator in the second term and then cancel. Integrating, we thus find
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Lemma F.7. There exists an absolute constant C > 0 such that when L � 2, we have for any r > 0
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Proof. Following Lemma F.6 and Lemma F.5, we directly get
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F.3 Nearly-Matching Upper Bound
Lemma F.8. There exist absolute constants C,C

0
> 0 and absolute constants K,K

0
> 0 such that for any 0 < "  1,

if L � K"
�3

then for any 0  t  K
0
"
3
one has
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and for any 0  t  ⇡ one has
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0
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.

Proof. We try to control the DC subtracted skeleton  (t)�  (⇡) by its derivative  ̇(t), which would require
us to control the derivatives ⇠̇`(t) and further '̇[`](t). Fix 0 < "  1/2. When L � C0"

�2 for some constant
C0 > 0, Lemma F.3 provides sharp bound for '̇[`](t) with
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with absolute constants C 0
, C1 > 0 and c = 1/(3⇡). For notation convenience, define t1 = C

0
"
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(
1 + " 0  t  t1

C1 otherwise.

We can compactly write the previous two bounds together as
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.

This allows us to separate  (t)�  (⇡) into two components  (t)�  (t1) and  (t1)�  (⇡), where we get the
correct constant 1 + ✏ in the first component and control the second component by the fact that  becomes
sharp when L is large, making the di�erence between  (t1) and  (⇡) negligible
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Let c1,` = 1 + e
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` . (F.3) and (F.8) provide control for ⇠`(t) and we have
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In moving from the fifth to the sixth line, we used that (1+ c(`� 3)t)(1+ c(`)t) = 1+ c(2`� 3)t+ c
2(`� 3)`t2

� 1 + c(2`� 4)t+ c
2(`2 � 4`+ 4)t2 = (1 + c(`� 2)t)2 provided ` � 4 and subsequently the integral test. In

the splitting in the last line, we used that Mt is always bounded by a (very large) absolute constant, and
worst-cased (as this term will be sub-leading in L).

To control derivatives of  , we need to control sums of the derivatives above. We will derive some further
estimates for this purpose. First, we calculate
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If L � 4, we can simplify a term in the last line of the previous expression as
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Applying the upper bound frombefore and adding some terms to the sum (because all terms are nonnegative),
we get
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From Lemma G.9, for ` = {0, 1, 2, 3}, we can bound ⇠`(t)  1+`t/⇡
1+Lt/⇡ . Using that ⇠` is decreasing for all ` � 0

and nonnegative, for t, t0 2 [0,⇡], t0 � t, we are now able to control the DC subtracted skeleton as
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From the second to the third line, we use the fact that M⌫ is nondecreasing in ⌫. Thus we have
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In moving from the second to the third line, we simplified/rearranged and used that C1 � 1. In moving from
the fourth to the fifth line, we replace the numerator of L in the leading term with L� 3 + 3, then expand
and simplify. In particular we have
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This inequality holds for all t because when t � t1, the left hand side is negative. Notice that when t 
✏
3
/(2C1C
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Thus when L � C1C
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Combining the results and notice that we can absorb the factor of 2 into constants by defining "0 = 2" would
give us the claim.

Lemma F.9. There exist absolute constants C,C
0
> 0 andK,K

0
> 0 such that for any 0 < "  1, if L � K"
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And if r > 0 satisfies r  K
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, one further has
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Proof. (F.11) follows directly from Lemma F.8 and integration. To achieve an upper bound for integral
from r to b, we cut the integral at t1 = K

0
"
3 and apply bounds from Lemma F.8 separately. Specifically, set

b
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(F.12) then follows by setting L � K✏
�3 for someK > 0.
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F.4 Higher Order Derivatives of  
Lemma F.10. There exist absolute constants C,C

0
such that when L � C, we have for any r 2 [0,⇡],
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and we can control the integration
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Proof. From (F.10) (we control Mt  C for an absolute constant C > 0 in this context, so that we do not
need to deal with the conditions on " that appear there) and Lemma G.10, we have
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This directly get us (F.13) and (F.14).

Lemma F.11. There exist absolute constants C,C
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such that when L � C, we have for any r > 0
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Proof. Following Lemmas G.8, G.10 and G.11, we have
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'̈
[`](t) as

'̈
[`] =

⇣
'̇
[`�1]

⌘2
'̈ � '[`�1] + '̈

[`�1]
'̇ � '[`�1]

and thus
'̈
[`]

'̇[`]
= '̇

[`�1] '̈

'̇
� '[`�1] +

'̈
[`�1]

'̇[`�1]

=
`�1X

`0=0

'̇
[`0] '̈

'̇
� '[`0]

,

which gives
���'̈[`]

��� =

�����'̇
[`]

`�1X

`0=0

'̇
[`0] '̈

'̇
� '[`0]

�����.

From Lemma F.14, we have |'̈|  c1 = 4 on t 2 [0,⇡] and '̇ � c2 = 1
2 on [0, ⇡2 ]. As when ` > 0, we have

'
[`](t)  ⇡

2 , we separate the case when ` = 0. From Lemma F.16 we get
1X

`0=0

'̇
[`0](t)  C

t
.

Using the chain rule to get the expression for '̇[`], and concavity of' to get that'(t) � t/2, and decreasingness
of '̇, we have

���'̈[`](t)
���  |'̈(t)|

`�1Y

`0=1

'̇ � '[`0](t) +
c1

c2
'̇
[`](t)

`�1X

`0=1

'̇
[`0](t)

 c1

`�1Y

`0=1

'̇ � '[`0](t) +
c1

c2
'̇
[`](t)

`�1X

`0=1

'̇
[`0](t)

 c1

`�2Y

`0=0

'̇ � '[`0] � '(t) + C

t
'̇
[`](t)

 c1

`�2Y

`0=0

'̇ � '[`0] (t/2) +
C

t
'̇
[`](t)

 2c1

`�1Y

`0=0

'̇ � '[`0] (t/2) +
C

t
'̇
[`](t/2)

 8'̇[`](t/2) +
C

t
'̇
[`](t/2)

 C

t
'̇
[`](t/2). (F.17)

From Lemma G.5, we know ⇠` is monotonically decreasing, so ⇠`(t)  ⇠`(t/2). Thus (proceeding from our
previous bound)

������
⇠`(t)

⇡

L�1X

`0=max{1,`}

'̈
[`0](t)

1� '[`0](t)/⇡

������
 C

t

������
⇠`(t/2)

⇡

L�1X

`0=max{1,`}

'̇
[`0](t/2)

1� '[`0](t)/⇡

������
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 2C

t

������
⇠`(t/2)

⇡

L�1X

`0=max{1,`}

'̇
[`0](t/2)

1� '[`0](t/2)/⇡

������
,

where in the second line we used that 1/2  1 � '
(`0)(t)/⇡  1 and the t/2 term is no smaller. Similarly,

applying Lemma F.16 again, we get
�����
2⇠1(t)

⇡2 `=0

L�1X

`0=1

'̇
[`0](t)

1� '[`0](t)/⇡

����� 
C

t

⇠1(t)

⇡
`=0  C

t

⇠1(t/2)

⇡
`=0

and

⇠`(t)

⇡2

0

@
L�1X

`0=max{1,`}

'̇
[`0](t)

1� '[`0](t)/⇡

1

A
2

 ⇠`(t)

✓
C

t

1

1 + `t/(3⇡)

◆2

 C⇠`(t)

t2
(1 + `t/(3⇡))�2

Combining all these bounds and applying Lemma G.9, we have obtained
���⇠̈`(t)

��� 
C

t

���⇠̇`(t/2)
���+

C
0

t2

1

1 + Lt/⇡

. 1

t

���⇠̇`(t/2)
���+

1

Lt3
.

Note this holds for all ` = 0, · · · , L�1, so we directly get | ̈(t)|  C
t | ̇(t/2)|+

nL
2

C0

Lt3 . Thus from Lemma F.10,
there exists constant C,C 0

1, C
00
1 , when L � C, we have

max
t�r

��� ̈(t)
���  max

t�r

✓
C

00

t

��� ̇(t/2)
���+

nL

2

C
0

Lt3

◆

 1

r

C
0
1

(r/2)2
n+ C

0 n

r3
,

which provides the bound for L1 control. For L1 control, we have
Z ⇡

t=r
t
6
��� ̈(t)

���dt 
Z ⇡

t=0
t
6

✓
C

t

��� ̇(t)
���+

nL

2

C
0

Lt3

◆
dt

 C

Z ⇡

t=r
t
3
��� ̇(t/2)

���dt+ C
0
n

 Cn,

which finishes the proof.

Lemma F.12. There exist absolute constants C,C
0
such that when L � C we have for any r > 0

max
t�r

��� ˙̇ ̇(t)
��� 

C
0
n

r4
(F.18)

and

Z ⇡

t=0
t
9
��� ˙̇ ̇(t)

���dt  C
0
n.
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Proof. We calculate with the chain rule starting from the representation in Lemma G.8 (and use the triangle
inequality)

���˙̇ ˙⇠`
��� 

������
⇠`

⇡

L�1X

`0=max{1,`}

˙̇'̇[`0]

1� '[`0]/⇡

������
+ 3

��������

⇠`

⇡2

L�1X

`0,`00=max{1,`}
`0 6=`00

'̈
[`0]
'̇
[`00]

(1� '[`0]/⇡)(1� '[`00]/⇡)

��������

+

��������
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⇡3
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`0 6=`00,`0 6=`000,`00 6=`000

'̇
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'̇
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'̇
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��������

+

��������

⇠1

⇡3 `=0

L�1X

`0,`00=1
`0 6=`00

'̇
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'̇
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(1� '[`0]/⇡)(1� '[`00]/⇡)

��������
+

�����
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'̈
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⇡
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˙̇'̇[`0]
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+
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L�1X
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+
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0

@
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1

A
3

+
⇠1

⇡3 `=0

L�1X
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���'̇[`0]
���

1� '[`0]/⇡
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3⇠1
⇡2 `=0

L�1X

`0=1

'̈
[`0]

1� '[`0]/⇡

�����. (F.19)

Following (F.17) and Lemma F.16, we have

L�1X

`0=1

���'̈[`0](t)
��� 

L�1X

`0=1

���'̈[`0](t)
���

1� '[`0](t)/⇡
 2C

t

L�1X

`0=1

|'̇(t/2)|  C/t
2
, (F.20)

which leaves the main unresolved term in (F.19) to be ˙̇'̇. On the other hand, we have from the chain rule

˙̇'̇[`] = 3'̇[`�1]
'̈
[`�1]('̈ � '[`�1]) +

⇣
'̇
[`�1]

⌘3 ⇣
˙̇'̇ � '[`�1]

⌘
+ ˙̇'̇[`�1]

⇣
'̇ � '[`�1]

⌘
.

Using the product expression '̇[`] = '̇
[`�1]

'̇ � '[`�1] and the triangle inequality, we have
����
˙̇'̇[`]

'̇[`]

����  3

����'̈
[`�1] '̈

'̇
� '[`�1]

����+
⇣
'̇
[`�1]

⌘2
����
˙̇'̇

'̇
� '[`�1]

����+
����
˙̇'̇[`�1]

'̇[`�1]

����


`�1X

`0=1

✓
3

����'̈
[`0] '̈

'̇
� '[`0]

����+
⇣
'̇
[`0]
⌘2

����
˙̇'̇

'̇
� '[`0]

����

◆
+

����
˙̇'̇

'̇

����

where the second line uses induction. From Lemmas F.14 and F.15, we have |'̈|  c1 = 4, | ˙̇'̇|  c4 on t 2 [0,⇡]
and '̇ � c2 = 1

2 , '̈  �c3 on [0, ⇡2 ], Again, for ` > 0, we have '[`](t)  ⇡
2 . Applying (F.20) and Lemma F.16,

we get
����
˙̇'̇[`] (t)

'̇[`](t)

����  3
c1

c2

LX

`0=1

���'̈[`0]
���+

c4

c2

LX

`0=1

⇣
'̇
[`0](t)

⌘2
+

c4

'̇(t)
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 C/t
2 +

c4

'̇(t)
.

Multiplying both side with '̇[`], we get the bound

��� ˙̇'̇[`](t)
��� 

C

t2
'̇
[`](t) + c4

`�1Y
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'̇ � '[`0](t)

 C
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 C

t2
'̇
[`](t/2),

where the justifications for this argument are very similar to those used in the proof of Lemma F.14.
Plugging bounds we have here back to (F.19). From Lemma F.16 and monotonicity of ⇠` in Lemma G.5,

we get
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where from the second to third line we also use the fact that 1/2  1� '
[`](t)/⇡  1 for all ` � 1 and the last

line follows from the formula of ⇠̇` in (F.16).
From our bounds of  ̇(t) in (F.13), this leads to
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��� ˙̇ ̇(t)
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���dt
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 Cn,

as claimed.

F.5 Additional Proofs for Some Bounds
Lemma F.13. There exists an absolute constant C1 > 0 such that

b'(t)� '(t)  C1t
3
.

Proof. From Lemma G.4, ' is 3 times continuously di�erentiable on (0,⇡), and

'(0) = 0, '̇(0) = 1, '̈(0) = � 2

3⇡
.

It is easy to check that
b'(0) = 0, ḃ'(0) = 1, b̈'(0) = � 2

3⇡
.

Since the Taylor expansions of these two functions around 0 agree to third order, and both are 3 times
continuously di�erentiable on (0,⇡), we obtain by Lagrange’s remainder theorem that for any t 2 [0,⇡),

b'(t)� '(t) =

tZ

0

⇣
˙̇ḃ'(s)� ˙̇'̇(s)

⌘
s
2

2
ds  C1t

3

for some finite constant C1 = sup
t2[0,⇡)

��� ˙̇ḃ'(t)� ˙̇'̇(t)
���. At t = ⇡ we have b'(⇡)� '(⇡) = ⇡

1+⇡/3 � ⇡
2  0 hence the

same bound holds for t 2 [0,⇡].

Lemma F.14. One has

'̇(t) � 1

2
, t 2 [0,

⇡

2
]

|'̈(t)|  4, t 2 [0,⇡]

Proof. We know ' is monotonically increasing and concave on [0,⇡], thus for t 2 [0,⇡/2],

'̇(t) � '̇(
⇡

2
)

=
1/2

sin('(⇡/2))

� 1

2
.

Using Lemma G.6 we also have for t 2 [0,⇡], '̇(t)  '̇(0) = 1,

'(t) � t

1 + t/⇡
� t

2
,

and the first bound here can be used to obtain

t� '(t)  t
2
/⇡

1 + t/⇡
 t

2
/⇡.
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Thus since '  ⇡/2

cos t sin'(t)� '̇(t) sin t cos'(t) � cos t sin'(t)� sin t cos'(t)

� � sin(t� '(t)),

and in particular, using the expression for '̈ from Lemma G.4

�'̈(t) = �(1� t

⇡
)
cos t sin'(t)� '̇(t) sin t cos'(t)

sin2 '(t)
+

sin t

⇡ sin('(t))

 (1� t

⇡
)
sin(t� '(t))

sin2 '(t)
+

2

⇡

 t
2
/⇡

sin2(t/2)
+

2

⇡

 t
2
/⇡

(t/⇡)2
+

2

⇡

 4.

Lemma F.15. There exist constants c3, c4 > 0 such that '̈(t) < �c3 for t 2 [0, ⇡2 ] and | ˙̇'̇|  c4 for t 2 [0,⇡].

Proof. The existence of c3 follows from Lemma G.4 directly. The existence of c4 follows from smoothness of
' on (0,⇡) and the fact that ˙̇'̇(0) = � 1

3⇡2 , ˙̇'̇(⇡) = 2
⇡ both exist.

Lemma F.16. There exists an absolute constant C > 0 such that for any 0 < t  ⇡ and ` 2 N0, one has

1X

`0=`

'̇
[`0](t)  C

t

1

1 + `t/(3⇡)

Proof. Using Lemma F.3, we have
'̇
[`](t)  C

(1 + `t/(3⇡))2
.

We can then calculate
1X

`0=`

'̇
[`0](t)  C

1X

`0=`

1

(1 + `0t/(3⇡))2
 C

✓
1

1 + `t/(3⇡)
+

Z 1

`0=`

1

(1 + `0t/(3⇡))2
d`0

◆

 C

✓
1

1 + `t/(3⇡)
+

3⇡/t

1 + `t/(3⇡)

◆

 C

t

1

1 + `t/(3⇡)
,

as claimed.

G Auxiliary Results
Results in this section are reproduced from the literature for self-containedness, and for the most part are
presented without proofs.
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G.1 Certificates Imply Generalization
Theorem G.1 ([61, Theorem B.1], specialized slightly). Let M be a two curve problem instance. For any

0 < �  1/e, choose L so that

L � C1 max
�
Cµ log

9(1/�) log24 (Cµn0 log(1/�)) ,
2
C�

 
,

let N � L
10
, set n = C2L

99 log9(1/�) log18(Ln0), and fix ⌧ > 0 such that

C3

nL2
 ⌧  C4

nL
.

Then if there exists a function g 2 L
2
µ1(M) such that

��⇥NTK
µ [g]� ⇣0

��
L2

µ1 (M)
 C5

p
log(1/�) log(nn0)

Lmin
�
⇢
qcert
min , ⇢

�qcert
min

 ; kgkL2
µ1 (M)  C6

p
log(1/�) log(nn0)

n⇢
qcert
min

, (G.1)

with probability at least 1� � over the random initialization of the network and the i.i.d. sample from µ, the parameters

obtained at iteration bL39/44
/(n⌧)c of gradient descent on the finite sample loss LµN yield a classifier that separates the

two manifolds.

The constants C1, . . . , C4 > 0 depend only on the constants qcert, C5, C6 > 0, the constants , C� are respectively

the extrinsic curvature constant and the global regularity constant defined in [61, §2.1], and the constant Cµ is defined

as max{⇢qmin, ⇢
�q
min}(1 + ⇢max)6 (min {µ(M+), µ(M�)})�11/2

, where q = 11 + 8qcert.

G.2 Concentration of the Initial Random Network and Its Gradients
Theorem G.2 (Corollary of [61, Theorem B.2, Lemma C.11]). LetM be a two curve problem instance. For any

d � K log(nn0 len(M)), if n � K
0
d
4
L
5
then one has on an event of probability at least 1� e

�cd

k⇥�⇥NTKkL1(M⇥M)  Cn/L,

where c, C,K,K
0
> 0 are absolute constants.

Lemma G.3 ([61, Lemma D.11]). There are absolute constants K,K
0
> 0 such that if d � K log(nn0 len(M))

and n � K
0
d
4
L, then

P
h
kf✓0kL1 

p
d

i
� 1� e

�cd
,

P
h
k⇣0kL1 

p
d

i
� 1� e

�cd
.

Define

⇣(x) = �f?(x) +

Z

M

f✓0(x
0)dµ(x0).

Then under the same assumptions

P

2

4k⇣0 � ⇣kL1 

s
d

L2
+ d5/2

r
L

n

3

5 � 1� e
�cd

for some numerical constant c.
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G.3 Basic Estimates for the Infinite-Width Neural Tangent Kernel
Lemma G.4 ([61, Lemma E.5]). One has

1. ' 2 C
1(0,⇡), and '̇, '̈, and ˙̇'̇ extend to continuous functions on [0,⇡];

2. '(0) = 0 and '(⇡) = ⇡/2; '̇(0) = 1, '̈(0) = �2/(3⇡), and ˙̇'̇(0) = �1/(3⇡2); and '̇(⇡) = '̈(⇡) = 0;

3. ' is concave and strictly increasing on [0,⇡] (strictly concave in the interior);

4. '̈ < �c < 0 for an absolute constant c > 0 on [0,⇡/2];

5. 0 < '̇ < 1 and 0 > '̈ � �C on (0,⇡) for some absolute constant C > 0;

6. ⌫(1� C1⌫)  '(⌫)  ⌫(1� c1⌫) on [0,⇡] for some absolute constants C1, c1 > 0.

Proof. Combine the results in [61, Lemma E.5] with Lemma F.15 to obtain the conclusion.

Lemma G.5 (Corollaries of Lemma G.4, stated in [61, Lemma C.10]). One has:

1. The function ' is smooth on (0,⇡), and (at least) C3
on [0,⇡].

2. For each ` = 0, 1, · · · , L, the functions '[`]
are nonnegative, strictly increasing, and concave (positive and strictly

concave on (0,⇡)).

3. If 0  ` < L, the functions ⇠` are nonnegative, strictly decreasing, and convex (positive and strictly convex on

(0,⇡)).

4. The function  is smooth on (0,⇡), C3
on [0,⇡], and is nonnegative, strictly decreasing, and convex.

Lemma G.6 ([61, Lemma C.13]). If ` 2 N0, the iterated angle evolution function satisfies the estimate

'
[`](t) � t

1 + `t/⇡
,

Lemma G.7 ([61, Lemma C.17]). One has for every ` 2 {0, 1, · · · , L}

'
[`](0) = 0; '̇

[`](0) = 1; '̈
[`](0) = � 2`

3⇡
,

and for ` 2 [L],

'̇
[`](⇡) = '̈

[`](⇡) = 0.

Finally, we have '̇
[0](⇡) = 1 and '̈[0](⇡) = 0.

Lemma G.8 ([61, Lemma C.18]). For first and second derivatives of ⇠`, one has

⇠̇` = �⇡�1
L�1X
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'̇
[`0]

L�1Y

`00=`
`00 6=`0

�
1� ⇡

�1
'
[`00]

�
,
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⇠̈`

=
�1

⇡

L�1X
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2

664'̈
[`0]

L�1Y

`00=`
`00 6=`0

�
1� ⇡

�1
'
[`00]

�
� ⇡

�1
'̇
[`0]

L�1X

`00=`
`00 6=`0

'̇
[`00]

L�1Y

`000=`
`000 6=`0,`000 6=`00

�
1� ⇡

�1
'
[`000]

�

3

775 ,
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where empty sums are interpreted as zero, and empty products as 1. In particular, one calculates

⇠`(0) = 1; ⇠̇`(0) = �L� `

⇡
; ⇠̈`(0) =

(L� `)(L� `� 1)

⇡2
+

L(L� 1)� `(`� 1)

3⇡2
,

and

⇠0(⇡) = 0; ⇠̇`(⇡) = � 1

⇡
⇠1(⇡) `=0; ⇠̈`(⇡) = 0.

Lemma G.9 ([61, Lemma C.20]). For all ` 2 {0, 1, . . . , L� 1}, one has

⇠`(t) 
1 + `t/⇡

1 + Lt/⇡

Lemma G.10 ([61, Lemma C.21]). One has

|⇠̇`(t)|  3
L� `

1 + Lt/⇡
.

Lemma G.11 ([61, Lemma C.23]). There are absolute constants c, C > 0 such that for all ` 2 {0, . . . , L� 1}, one
has ���⇠̈`

���  C
L(L� `)(1 + `⌫/⇡)

(1 + cL⌫)2
+ C

(L� `)2

(1 + cL⌫)(1 + c`⌫)
.
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