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Dense Error Correction via `1-Minimization
John Wright, Member, and Yi Ma, Senior Member.

Abstract—This paper studies the problem of recovering a
sparse signal x ∈ Rn from highly corrupted linear measurements
y = Ax + e ∈ Rm, where e is an unknown error vector whose
nonzero entries may be unbounded. Motivated by an observation
from face recognition in computer vision, this paper proves that
for highly correlated (and possibly overcomplete) dictionaries A,
any sufficiently sparse signal x can be recovered by solving an
`1-minimization problem:

min ‖x‖1 + ‖e‖1 subject to y = Ax + e.

More precisely, if the fraction of the support of the error e is
bounded away from one and the support of x is a very small
fraction of the dimension m, then as m becomes large the above
`1-minimization succeeds for all signals x and almost all sign-
and-support patterns of e. This result suggests that accurate
recovery of sparse signals is possible and computationally feasible
even with nearly 100% of the observations corrupted. The proof
relies on a careful characterization of the faces of a convex
polytope spanned together by the standard crosspolytope and
a set of iid Gaussian vectors with nonzero mean and small
variance, dubbed the “cross-and-bouquet” model. Simulations
and experiments corroborate the findings, and suggest extensions
to the result.

Index Terms—Dense error correction, sparse signal recov-
ery, measure concentration, Gaussian matrices, `1-minimization,
polytope neighborliness.

I. INTRODUCTION

Recovery of high-dimensional sparse signals or errors has
been one of the fastest growing research areas in signal
processing in the past few years. At least two factors have
contributed to this explosive growth. On the theoretical side,
the progress has been propelled by powerful tools and results
from multiple mathematical areas such as measure concentra-
tion [1]–[3], statistics [4]–[6], combinatorics [7], and coding
theory [8]. On the practical side, a lot of excitement has been
generated by remarkable successes in real-world applications
in areas such as signal (image or speech) processing [9],
communications [10], computer vision and pattern recognition
[11]–[13] and more.

A. A motivating example

One notable, and somewhat surprising, successful applica-
tion of sparse representation is automatic face recognition. The
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basic setting of face recognition is as follows. For each person,
a set of training images are taken under different illuminations.
We can view each image as a vector by stacking its columns
and put all the training images as column vectors of a matrix,
say A ∈ Rm×n. Then, m is the number of pixels in an image
and n is the total number of images for all the subjects of
interest. Given a new query image, again we can stack it
as a vector y ∈ Rm. To identify which subject the image
belongs to, we can try to represent y as a linear combination
of all the images, i.e., y = Ax for some x ∈ Rn. Since in
practice n can potentially be larger than m, the equations can
be underdetermined and the solution x may not be unique.
In this context, it is natural to seek the sparsest solution for
x whose large non-zero coefficients then provide information
about the subject’s true identity. This can be done by solving
the typical `1-minimization problem:

min
x
‖x‖1 subject to y = Ax. (1)

The problem becomes more interesting if the query image
y is severely occluded or corrupted, as shown in Figure 1
left, column (a). In this case, one needs to solve a corrupted
set of linear equations y = Ax + e, where e ∈ Rm is
an unknown vector whose nonzero entries correspond to the
corrupted pixels. For sparse errors e and tall matrices A
(m > n), Candes and Tao [14] proposed to multiply the
equation y = Ax+e with a matrix B such that BA = 0, and
then use `1-minimization to recover the error vector e from
the new linear equation By = Be.

As we mentioned earlier, in face recognition (and many
other applications), n can be larger than m and the matrix A
can be full rank. One cannot directly apply the above technique
even if the error e is known to be very sparse. To resolve
this difficulty, in [11], the authors proposed to instead seek
[x, e] together as the sparsest solution to the extended equation
y = [A I]w with w = [ xe ] ∈ Rm+n, by solving the extended
`1-minimization problem:

min
x,e
‖x‖1 + ‖e‖1 subject to y = Ax+ e. (2)

This seemingly minor modification to the previous error
correction approach has drastic consequences for the perfor-
mance of robust face recognition. Solving the modified `1-
minimization enables almost perfect recognition even with
more than 60% of the pixels of the query image arbitrarily
corrupted (see Figure 1 for an example), far beyond the amount
of error that can theoretically be corrected by the previous
error correction method [14].

Although `1-minimization is expected to recover sufficiently
sparse solutions with overwhelming probability for general
systems of linear equations (see [16]), it is rather surprising
that it works for the equation y = Ax + e at all. In the
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Fig. 1. Face recognition under random corruption. Left: (a) Test images y with random corruption from the database presented in [15]. Top row: 30% of
pixels are corrupted, Middle row: 50% corrupted, Bottom row: 70% corrupted. (b) Estimated errors ê. (c) Estimated sparse coefficients x̂. (d) Reconstructed
images yr = Ax̂. The extended `1-minimization (2) correctly recovers and identifies all three corrupted face images. Right: The recognition rate across the
entire range of corruption for all the 38 subjects in the database. It performs almost perfectly upto 60% random corruption.

application described above, the columns of A are highly
correlated. As m becomes large (i.e., the resolution of the
image becomes high), the convex hull spanned by all face
images of all subjects is only an extremely tiny portion of the
unit sphere Sm−1. For example, the images in Figure 1 lie on
S8,063. The smallest inner product with their normalized mean
is 0.723; they are contained within a spherical cap of volume
≤ 1.47×10−229. These vectors are tightly bundled together as
a “bouquet,” whereas the vectors associated with the identity
matrix and its negative ±I together1 form a standard “cross”
in Rm, as illustrated in Figure 2. Notice that such a “cross-and-
bouquet” matrix [A I] is neither incoherent nor (restrictedly)
isometric, at least not uniformly. Also, the density of the
desired solution w is not uniform either. The x part of w
is usually a very sparse2 vector, but the e part can be very
dense. Existing results for recovering sparse signals suggest
that `1-minimization may have difficulty in dealing with such
signals, contrary to its empirical success in face recognition.

We have experimented with similar cross-and-bouquet type
models where the matrix A is a random matrix with highly
correlated column vectors. The simulation results in Section
IV indicate that what we have seen in face recognition is
not an isolated phenomenon. In fact, the simulations reveal
something even more striking and puzzling: As the dimension
m increases (and the sample size n grows in proportion), the
percentage of errors that the `1-minimization (2) can correct
seems to approach 100%. At first sight, this may seem rather
surprising, but this paper explains why this should be expected
when the space dimension is high.

B. Assumptions and the main result
Motivated by the face recognition example above, this paper

aims to resolve this apparent discrepancy between theory and

1Here, we allow the entries of the error e to assume either positive or
negative signs.

2Ideally, x is concentrated only on images of the same subject. In the
standard face recognition scenario where the number of subjects in the
database grows, but the number of images per subject is fixed, the desired
sparsity of x is actually a constant.

µ

Cross Polytope ±I

ai ∼ N (µ, σ2I)

0

Bouquet A+1

−1

Coherent Gaussian Vectors

Fig. 2. The “cross-and-bouquet” model. Left: the bouquet A and the
crosspolytope spanned by the matrix ±I. Right: the tip of the bouquet
magnified; it is a collection of i.i.d. Gaussian vectors with small variance
σ2 and common mean vector µ. The cross-and-bouquet polytope is spanned
by vertices from both the bouquet A and the cross ±I.

practice of `1-minimization. To this end, we need to give a
more careful characterization of its behavior in recovering a
sparse signal x0 ∈ Rn from highly corrupted linear measure-
ments y ∈ Rm:

y = Ax0 + e0,

where e0 ∈ Rm is a vector of errors of arbitrarily large
magnitude and support. We are interested in the situation when
[A, I] forms a cross-and-bouquet (CAB) model, for which we
give a precise definition below.

The model for A ∈ Rm×n should capture the idea that it
consists of small deviations about a mean, hence a “bouquet:”

Assumption 1 (Bouquet Model): We consider the case
where the columns of A are i.i.d. samples from a Gaussian
distribution: A = [a1, . . . ,an] ∈ Rm×n, with

ai ∼iid N
(
µ, ν

2

m Im
)
, ‖µ‖2 = 1, ‖µ‖∞ ≤ Cµm−1/2, (3)

for some constant Cµ ≥ 1.
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Together, the two conditions on the variance and mean
force the bouquet to remain both tight and incoherent with
the standard basis (or “cross”) as the dimension m increases.

We assume little prior knowledge in the signal x0 and error
e0 to be recovered. For ease of analysis, we assume:

Assumption 2 (Signs of x0 and e0): The signs σ of e0 are
chosen at random while the signs σx of x0 can be arbitrary.

Geometrically, for x0 and e0 to be recoverable from the `1

minimization (2), it would require vertices from the “bouquet”
A to “see” through the crosspolytope ±I to vertices of the
“negative bouquet” −A that are nearly antipodal to them.
In a low-dimensional space, it is difficult to imagine this is
even possible at all. However, our analysis will reveal that in
high-dimensional spaces, as long as x0 is sparse enough, this
seemingly-impossible event occurs with probability approach-
ing one.

We study the behavior of the solution to the `1-minimization
(2) in the following growth framework:

Assumption 3 (Proportional Growth): We say a sequence
of signal-error problems exhibits proportional growth with
parameters δ > 0, ρ ∈ (0, 1), α > 0 if

n = bδmc , ‖e0‖0 = bρmc , ‖x0‖0 = bαmc . (4)

In the above assumption, while the support size of the error
e can be any fraction ρ < 1 of the dimension m, the support
size of the sparse signal x is only a very small fraction of
m: ‖x‖0 = αm for some small constant α > 0 (which may
depend on δ and ρ). This condition differs from the typical
assumption in the sparse representation literature in the sense
that the signals of interest x and e have different support
density. Through the proof of the main result, one will see
why the support density α of the signal x can only be very
small while we allow the support density ρ of the error e to
be arbitrarily close to 1. In fact, α has to be a small fraction of
1−ρ. However small α is, such a linear growth of sparsity for
x is more than adequate for signals arising in many practical
problems where the support size x can often be bounded
or grows sublinearly in the dimension. For example in face
recognition, the support size of x is bounded by a constant –
the number of images per subject.

Under Assumptions 1, 2, and 3, we have the following
result:

Theorem 1 (Dense Error Correction with the CAB Model):
Fix any δ > 0, ρ < 1. Suppose that A is distributed according
to (3) with ν sufficiently small, that J ⊂ [m] is a uniform
random subset of size ρm, and that σ ∈ Rm with σJ
iid uniform ±1 (independent of J) and σJc = 0, and
that m is sufficiently large. Then with probability at least
1 − C exp(−ε?m) in A, J,σ, for all x0 with ‖x0‖0 ≤ α?m
and any e0 with signs and support (J,σ),

(x0, e0) = arg min ‖x‖1 + ‖e‖1 s.t. Ax+ e = Ax0 + e0,

and the minimizer is uniquely defined.
Here, C is numerical, α? and ε? are postive constants (wrt

m), which depend on δ, ρ, ν. By “ν sufficiently small” and “m
sufficiently large” we mean that 0 < ν < ν? and m > m?,
where ν?(δ, ρ) > 0 and m?(δ, ρ, ν) > 0 are constant wrt m.

Below, we comment further on the nature of the constants
in Theorem 1. We find it convenient to introduce one special
function, which is defined as follows. Let f : (0, 1/e) →
(0, 1/e) be defined by

f(x) = x log (1/x) .

It is easy to verify that f is strictly increasing on (0, 1/e), and
hence has a well-defined inverse. We let

Υ : (0, 1/e)→ (0, 1/e), Υ[t] = f−1(t)

denote this inverse.3 We note that because f is strictly
increasing, Υ is also strictly increasing. Moreover, for all
x ∈ (0, 1/e), f(x) ≥ x, and so

Υ[t] ≤ t ∀ t ∈ (0, 1/e). (5)

Finally, notice that for any fixed a and t < a/e,

x log(a/x) ≤ t ⇐⇒ x ≤ aΥ(t/a), (6)

a property that will be useful in taking union bounds.

Remark 2: One can give explicit expressions for the con-
stants in Theorem 1. We first introduce

τ = exp
(
−48−2δ−2ν−2

)
, (7)

Cs = Υ
[
2−17C−4

µ δ−2(1− ρ)
]
. (8)

One can then choose C = 31, and set
ν?δ,ρ = 2−12

√
Cs/δ,

ε?δ,ρ,ν = ν2(1− ρ)τ2/2,
α?δ,ρ,ν = ν2 Υ[ε?/δ],
m?
δ,ρ,ν = 217/ (1− ρ)Cs.

(9)

Above, we have added subscripts to emphasize the dependence
of these quantites on the properties of the bouquet (δ, ν)
and the density of the error, ρ. In calculations below, we
occasionally drop these constants for the sake of compactness;
e.g., α? will refer to α?δ,ρ,ν .

One immediately notices that the given constants are ex-
tremely small (or, in the case of m?, extremely large). We
did not attempt to obtain the best possible constants. Indeed,
it is reasonable to believe that the best constants that can
be obtained via our analysis will be quite pessimistic. Our
analysis uses linear algebraic manipulations to reduce the
quantity of interest to a function of sparse singular values and
then applies standard concentration results to argue that they
are well-behaved for all sparse vectors. This is reminiscent of
(and inspired by) the RIP analysis of the standard compressed
sensing setup. That analysis obtains, in a very clean and simple
manner, guarantees for sparse recovery that are order-optimal.
However, in a finite-m setting RIP results are pessimistic com-
pared to those obtained with tools from geometric functional
analysis [18] or combinatorics [19].

It should also be noted that if the support of x0 is sublinear
(i.e., ‖x0‖0 = o(m)), exact recovery holds for sufficiently
large m. In other words, as long as the bouquet is sufficiently

3One can futher write Υ[t] = exp(W−1(−t)), where W−1 is the negative
branch of the Lambert W function [17].
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tight, asymptotically `1-minimization recovers any sufficiently
sparse signal from almost any error with support fraction
bounded away from 100%. Notice that we makes no assump-
tion on the signal x, except that its support being extremely
small. Existing results in the sparse representation literature
typically either pertain to all sparse signals (i.e., the strong
threshold of [20]) or almost all sparse signals, in terms of
signs and support (i.e., the weak threshold of [20]). Our result
has a hybrid flavor: it holds for all signals x, but only for
almost all errors e, in terms of signs and support.

C. Relations to previous results

a) Restricted isometry and incoherence of the cross-and-
bouquet model: As mentioned earlier, typical results in the
literature for sparse signal recovery do not apply to equations
of the type y = Ax + e. The cross-and-bouquet matrix
[A I] is neither restrictedly isometric nor incoherent. As a
result, greedy algorithms such as Orthogonal Matching Pursuit
[21], [22] succeed only when the error e is very sparse (see
Section IV) for the simulation results and comparison with
our method). However, this does not mean that the restricted
isometry property is irrelevant to the new problem. On the
contrary, similar ideas play an important role in our proof.
Moreover, unlike the typical compressed sensing setting, the
solution [x, e] sought has very uneven density (or sparsity).
This is reminiscent of the block sparsity studied in [23].
However, as we will see, the special block structure of the
cross-and-bouquet model enables sparse recovery far beyond
the breakdown point for general sparse (or block sparse)
signals.

b) Error correction: From an error correction viewpoint,
the above result seems surprising: One can correctly solve a set
of linear equations with almost all the equations randomly and
arbitrarily corrupted. This is perhaps surprising considering
that the best error-correcting codes (in the binary domain Z2),
constructed based on expander graphs, normally correct a fixed
fraction of errors [24]–[26]. The exact counterpart of our result
in the binary domain is not clear.4 While there are superficial
similarities between our result and [25], [27] in the use of
linear programming for decoding and analysis via polytope
geometry, those works do not consider real valued signals. In
particular, the negative result of [27] for specific families of
binary codes admitting linear programming decoders does not
apply here.

We can, however, draw the following comparisons with ex-
isting error correction methods in the domain of real numbers:
• When n < m, the range of A is a subspace in Rm. In

such an overdetermined case, one could directly apply
the method of Candes and Tao [14] mentioned earlier.
However, the error vector e needs to be sparse for
that approach whereas our result suggests even dense
errors (with support far beyond 50%) can be corrected
by instead solving the extended `1-minimization (2).
Thus, even in the overdetermined case, solving (2) has
advantages for coherent matrices A, if the signal x to be

4It is possible that under an analogous growth model (see Section I-B), the
LP decoder of [25] could also correct large fractions of binary errors.

recovered is known to be sparse. This will be verified by
simulations in Section IV.

• The small linear growth of the support of x in m
is the best one can hope for in the regime of dense
errors. In general, we need at least ‖x‖0 uncorrupted
linear measurements to recover x uniquely. If a fraction
ρ < 1 of the m equations is totally corrupted by e,
the support of x has to be smaller than the number of
remaining (1 − ρ)m uncorrupted measurements. On the
other hand, the sparser the error e is, the larger support
x can be. Simulation results in Section IV also confirm
this phenomenon. However, in this paper, we are mainly
interested in how `1-minimization behaves with dense
errors, for ρ very close to 1.

• When n ≥ m, the matrix A is full rank and the method
of Candes and Tao [14] no longer applies.5 Our result
suggests that as long as A is highly correlated, the
extended `1-minimization (2) can still recover the sparse
signal x exactly even if almost all the equations might
be corrupted. This is verified by the simulation results in
Section IV.
c) Polytope geometry: The success of `1-minimization in

recovering sparse solutions x from underdetermined systems
of linear equations y = Ax can be viewed as a consequence
of a surprising property of high-dimensional polytopes. If
the column vectors of A are random samples from a zero-
mean Gaussian N (0, I), and m and n are allowed to grow
proportionally, then with overwhelming probability the convex
polytope spanned by the columns of A is highly centrally
symmetric neighborly [20], [28]. Neighborliness provides the
necessary and sufficient condition for uniform sparse recovery:
the `1-minimization (1) correctly recovers x if and only if the
columns associated with the nonzero entries of x span a face
of the polytope conv(A).

In our case, the columns of the matrix A are i.i.d. Gaussian
vectors with nonzero mean µ and small variance σ2, whereas
the vectors of the identity matrix I are completely fixed. To
characterize when the extended `1-minimization (2) is able to
recover the solution [x, e] correctly, we need to examine the
geometry of the peculiar centrally symmetric convex polytope
conv(±A,±I) spanned together by columns of A and I. In a
sense, our result implies that the “cross-and-bouquet” polytope
is neighborly6. Or in other words, the vertices associated with
the nonzero entries of x and e form a face of the polytope
with probability approaching one as the dimension m becomes
large. Precisely due to this kind of neighborliness of the cross-
and-bouquet polytope, the extended `1-minimization (2) is
able to correctly recover the desired solution, even though the

5One could choose to premultiply the equation y = Ax + e with an
“approximate orthogonal complement” of A, say the orthogonal complement
of the mean vector µ, which is an (m − 1) × m matrix B. This gives
By = Be + z where z = BAx. If the norm of x is bounded, then z is
a signal with small magnitude due to the near-orthogonality of B and A. In
this case, one can view z as a noise term and try to recover e as a sparse
signal via `1-minimization. However, the recovery will not be exact, and it is
then unclear how to subsequently recover the desired sparse signal x.

6Although, the precise notion of neighborliness is not the same - our result
can be viewed as a hybrid of the “weak” neighborliness of [28] (since the
signs and support of e are random) and “strong” (or central) neighborliness
[28] (since the signs and support of x are arbitrary).
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part of the solution corresponding to e might be dense.

D. Implications for applications
a) Robust reconstruction, classification, and source sepa-

ration: The new result about the cross-and-bouquet model has
strong implications for robust reconstruction, classification,
and separation of highly correlated classes of signals such
as faces or voices, despite severe corruption. It helps explain
the surprising performance of robust face recognition that
we discussed earlier. It further suggests that if the resolution
of the image increases in proportion with the size of the
database (say, due to the increasing number of subjects),
the `1-minimization would tolerate an even higher level of
corruption, far beyond the 60% at the 80 × 60 resolution
experimented with in [11]. Other applications where this kind
of model could be useful and effective include speech recogni-
tion/imputation, audio source separation, video segmentation,
or activity recognition from motion sensors.

b) Communication through an almost random channel:
The result suggests that we can use the cross-and-bouquet
model to accurately send information through a highly corrupt-
ing channel. Hypothetically, we can imagine a channel through
which we can send one real number at a time, say as one
packet of binary bits, and each packet has a high probability
ρ < 1 of being totally corrupted. One can use the sparse vector
x (or its support) to represent useful information, and use a set
of highly correlated high-dimensional vectors as the encoding
transformation A. The high correlation in A ensures that there
is sufficient redundancy built in the encoded message Ax so
that the information about x will not be lost even if most
entries of Ax can be corrupted while being sent through such
a channel (although the coding “rate” for x is pessimistically
small with the current estimates, roughly characterized by α
which is a small fraction of 1 − ρ). Our result suggests that
the decoding can be done correctly and efficiently using linear
programming.

c) Encryption and information hiding: One can poten-
tially use the cross-and-bouquet model for encryption. For
instance, if both the sender and receiver share the same
encoding matrix A (say a randomly chosen Gaussian matrix),
the sender can deliberately corrupt the message Ax with
arbitrary random errors e before sending it to the receiver. The
receiver can use linear programming to decode the information
x, whereas any eavesdropper will not be able to make much
sense out of the highly corrupted message y = Ax+ e. The
higher ρ is, the more “secured” the encrypted message would
be (in exchange for a lower coding rate for x). Of course, the
long-term security of such an encryption scheme relies on the
difficulty of learning the encoding matrix A after gathering
many instances of corrupted message. It is not even clear
whether it is easy to learn A from instances of uncorrupted
message y = Ax – existing algorithms do not guarantee global
optimality [9]. Presumably, in the presence of corruption the
problem becomes even more daunting.

II. ROADMAP OF PROOF

In this section, we will lay out the roadmap of the proof
for our main result. After introducing some basic notation,

we will prove two key lemmas. In subsection II-B, we
first introduce a certificate q whose existence guarantees the
uniqueness and optimality of (x0, e0). In subsection II-C,
the second lemma gives a set of sufficient conditions under
which the certificate of optimality can be constructed via a
simple iterative procedure. We postpone to Section III the
detailed probabilistic analysis that proves that these conditions
hold with overwhelming probability under the assumptions of
the theorem. The proof will borrow many standard measure
concentration results that are summarized in the appendix for
completeness. We put such technical details in a separate
section and the appendix so that the reader might want to
skip them in a first reading, and directly jump to Section IV
for empirical verification and experiments.

A. Notation

Before stating our main result, we fix some additional
notation. For any n ∈ Z+, [n] denotes the set {1, . . . , n}.
Let I = supp(x0) ⊂ [n], J = supp(e0) ⊂ [m]. Let k1 = |I|
be the support size of the signal x0 and k2 = |J | the support
size of the error e0, and let σ = sign(e0(J)) ∈ {±1}k2 .
For M ∈ Rm×n, Mi will denote the i-th row of M ; for
I ⊆ [m], MI will denote the submatrix of M containing the
rows indexed by I . To reduce confusion between the index set
I and the identity matrix, we use I to denote the latter.

We will use several norms on vectors and matrices. For
x ∈ Rm, ‖x‖1 =

∑
i |xi| is the `1-norm, ‖x‖ is the `2

norm. For matrices M , ‖M‖ = σmax(M) denotes the `2

operator norm, ‖M‖F =
√

tr[M∗M ] denotes the Frobenius
norm, ‖M‖2,∞ = maxi ‖Mi‖ denotes the `2 → `∞ oper-
ator norm. For an m × n matrix M with ordered singular
values σ1 ≥ σ2 ≥ . . . , we will use σmin(M) to denote
σmin{m,n}(M), i.e., the smallest singular value. For a linear
subspace V ⊆ Rn, PV ∈ Rn×n will denote the projection
operator onto V .

We will make extensive use of the shrinkage operator S
with threshold 1/2, defined for scalars t as

S[t] = sign(t) max{t− 1/2, 0}, (10)

and extended to vectors by applying it elementwise.
Below, wherever the symbol C occurs with no subscript, it

should be read as “some constant” (with respect to dimension
m). When used in different sections, it need not refer to the
same constant.

B. Optimality conditions

Lemma 1: Fix x0 ∈ Rn and e0 ∈ Rm. Let I = supp(x0),
σx = sign(x0(I)), J = supp(e0), σ = sign(e0(J)). Suppose
that µJc 6= 0, that the following system of equations has a
solution q ∈ Rm−k2+n−k1 with ‖q‖∞ < 1:

[
ν(ZJc,Ic)∗ I
ν(ZJc,I)∗ 0

]
q =

[
−ν(ZJ,Ic)∗σ
σx − ν(ZJ,I)∗σ

]
,

〈µJc , q1...m−k2
〉 = −〈µJ ,σ〉,

(11)

and that
AJc,I has full rank k1. (12)
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Then (x0, e0) is the unique optimal solution to

min ‖x‖1 + ‖e‖1 subject to Ax+ e = Ax0 + e0. (13)

Proof: Duality (e.g., Theorem 4 of [29]) shows that if
there exists h ∈ Rm satisfying{

(A∗)I h = σx, hJ = σ,
‖(A∗)Ic h‖∞ < 1, ‖hJc‖∞ < 1, (14)

and

B
.=
[
A[m],I (I)[m],J

]
∈ Rm×(k1+k2) has full rank k1 + k2,

(15)
then (x0, e0) is the unique optimal solution to (13).

Notice that rank(B) = k2 + rank(AJc,I), and so (12)
implies (15). Consider the system[

(AJc,Ic)∗ I
(AJc,I)∗ 0

]
q =

[
−(AJ,Ic)∗σ
σx − (AJ,I)∗σ

]
, ‖q‖∞ < 1, (16)

in unknown q ∈ Rm+n−k1−k2 . If there exists q satisfying (16),
then setting hJ = σ and hJc = q1...m−k2

gives a dual vector
h satisfying (14). Since any q satisfying (11) also satisfies
(16), this completes the proof.

Thus, we merely need to construct a vector q of small `∞

norm satisfying (11). It will be convenient to rescale (11) and
introduce notation for its various components. To this end, let
U

.= (ZJc,Ic)∗ ∈ R(n−k1)×(m−k2),

W
.=
[
(1− ρ)−1/2(ZJc,I)∗

‖µJc‖−1µ∗Jc

]
, R

.=

−(ZJ,Ic)∗

0
0

 ,
T
.=

 0
−(1− ρ)−1/2(ZJ,I)∗

−‖µJc‖−1µ∗J

 , z .=

 0
(1− ρ)−1/2ν−1σx

0

 ,
and further set

Φ .=
[
νU I
W 0

]
. (17)

Then q is a solution to (11) if and only if q satisfies

Φq = νRσ + Tσ + z. (18)

C. Iterative construction of separator

The following lemma allows us to relax our requirements on
q: rather than directly producing a solution with ‖q‖∞ < 1,
we can instead produce a solution of small `2 norm that does
not too severely violate the `∞ constraint, in the sense that
‖S[q]‖2 is small. For simplicity we often write S[q] as Sq.

Lemma 2: Consider an underdetermined system of equa-
tions Φq = w. Let PΦ denote the projection operator onto
range(Φ∗), and let ξs(Φ) denote the norm PΦ, restricted to
sparse vectors:

ξs(Φ) .= sup
‖x‖0≤s,
‖x‖2≤1

‖PΦx‖2. (19)

Suppose ξs(Φ) < 1 and there exists a solution q0 with Φq0 =
w satisfying

‖q0‖+
ξs(Φ)

1− ξs(Φ)
‖Sq0‖ ≤

√
s/2. (20)

Then there exists a solution q? satisfying ‖q?‖∞ ≤ 1/2.
Proof: We construct a convergent sequence of vectors

q0, q1, . . . whose limit q? satisfies Φq? = w, ‖q?‖∞ ≤ 1/2.
Set

qi = qi−1 − (I− PΦ)S[qi−1], (21)

and notice that for all i, Φqi = Φq0 = w.
We will show by induction on i that the sequence (qi) obeys

the following estimates

(i) ‖qi‖ ≤ ‖q0‖+ ‖Sq0‖
∑i
j=1 ξs(Φ)j ,

(ii) ‖Sqi‖ ≤ ξs(Φ)i‖Sq0‖,
(iii) ‖Sqi‖0 ≤ s.

For the base case i = 0, (i),(ii) hold trivially. For (iii), notice
that since each nonzero element of S[q0] corresponds to an
element of q0 of size at least 1/2, ‖S[q0]‖0 × 1/4 ≤ ‖q0‖2.
By (20), ‖q0‖2 ≤ s/4, establishing (iii).

Now, suppose (i)-(iii) hold for 0, . . . , i − 1. For any scalar
t, |t− S(t)| ≤ |t|, ‖qi−1 − S[qi−1]‖ ≤ ‖qi−1‖. Hence, using
that S[qi−1] is s-sparse,

‖qi‖ = ‖qi−1 − S[qi−1] + PΦS[qi−1]‖,
≤ ‖qi−1 − S[qi−1]‖+ ‖PΦS[qi−1]‖,
≤ ‖qi−1‖+ ξs(Φ)‖S[qi−1]‖,

≤ ‖q0‖+ ‖S[q0]‖
i∑

j=1

ξs(Φ)j ,

and so (i) holds for i. Bounding the summation by∑∞
j=1 ξs(Φ)j = ξs

1−ξs
and applying (20), ‖qi‖2 ≤ s/4, and

hence ‖S[qi]‖0 ≤ s, establishing (iii) for i.
Finally, notice that for any vectors p, q,

‖S[q + p]‖ ≤ ‖S[q]‖+ ‖p‖,
and further, that S[q − S[q]] = 0. Hence,

‖S[qi]‖ = ‖S[qi−1 − S[qi−1] + PΦS[qi−1]]‖
≤ ‖S[qi−1 − S[qi−1]]‖+ ‖PΦS[qi−1]‖
≤ ξs(Φ)‖S[qi−1]‖.

Applying the inductive hypothesis establishes (ii), and so the
three conditions hold for all i.

Since ‖qi − qi−1‖ ≤ ‖S[qi−1]‖ ≤ ξis‖S[q0]‖, the se-
quence (qi) converges to limit q?. Moreover, ‖S[q?]‖ =
limi→∞ ‖S[qi]‖ = 0, and hence S[q?] = 0 and so all of
the elements of q? have magnitude ≤ 1/2.

D. Ideas for the remainder of the proof.

Lemmas 1 and 2 have shown that to verify that a given
x0, e0 with sign-and-support triplet (I, J,σ) is the optimal
solution to the `1-minimization (2), it is sufficient to show
that (20) holds.7 This reduces the problem of verifying `1-
recoverability to analyzing three quantities: the restricted op-
erator norm ξs, the norm of the initial guess ‖q0‖2, and the
norm of the initial violations ‖Sq0‖2. In the next section,

7Notice that the condition (20) depends on the random matrix A and the
random sign-and-support (I, J,σ) of x0 and e0, through the construction of
the matrix Φ.
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taking q0 as the least `2-norm solution to the equation (18),
we will bound these quantities, and show that as m→∞, for
any sequence of signal supports I , (20) holds with probability
approaching one in the random matrix A and error (J,σ). As
we will formally establish in Section III-D, the probability
of failure for a given I will be small enough to allow a
union bound over all I , establishing our main Theorem 1.
Readers who are less interested in the details can skip the next
section in the first reading, and directly jump to the empirical
verification in Section IV.

III. PROBABILISTIC ANALYSIS AND FINAL PROOF

In this section, we complete the proof of the main result, by
showing that the condition in (20) is satisfied with overwhelm-
ing probability. To do so, we must bound three quantities: the
norm PΦ restricted to s-sparse vectors (i.e., ξs(Φ)), the norm
of the least squares solution ‖q0‖, and the norm of the soft-
thresholded least squares solution ‖Sq0‖.

A. Tools and preliminaries

Our probabilistic analysis depends on measure concentra-
tion results for Lipschitz functions of random matrices, in
particular their norms and singular values. In the following,
let M be an am× bm, a > b, random matrix with entries iid
N (0, 1/m). Then by [30]

P[‖M‖ > √a+
√
b+
√

2ε] ≤ exp(−εm), (22)

P[σmin(A) <
√
a−
√
b−
√

2ε] ≤ exp(−εm). (23)

Similarly (e.g., via [3] Equation (2.35))

P[‖M‖F >
√
abm+

√
2ε] ≤ exp(−εm). (24)

We will be interested in the action of random matrices on
sparse vectors, which can be studied using the following
extremal submatrix singular values8:

βs(M) .= sup
‖x‖2≤1, ‖x‖0≤s

‖Mx‖2,

γs(M) .= inf
‖x‖2=1, ‖x‖0≤s

‖Mx‖2,

φs(M) .= sup
‖x‖2≤1, ‖x‖0≤s
‖y‖2≤1, ‖y‖0≤s

x∗My.

Now let a > 0 be arbitrary and suppose that c < min(a, b).
Since

(
m
k

)
< (me/k)k, the am × bm matrix M has

(
bm
cm

)
≤

exp
(
mc log b

c

)
submatrices of MI of size am × cm. Union

8The quantities β, γ, φ have a strong relationship to the restricted isometry
property of the matrices in question. In particular, our argument suggests the
possibility of a deterministic analogue of Theorem 1 under RIP-like conditions
on the matrix Z

bounds then show that

P
[
βcm(M) ≥ √a+

√
c+

√
2c log

(
b
c

)
+ 2ε

]
< exp(−εm).

(25)

P
[
γcm(M) ≤ √a−√c−

√
2c log

(
b
c

)
+ 2ε

]
< exp(−εm).

(26)

P
[
φcm(M) ≥ 2

√
c+

√
2c log

(
a
c

)
+ 2c log

(
b
c

)
+ 2ε

]
< exp(−εm). (27)

We also note that if S is (possibly random) subspace of di-
mension a′m < am that is probabilistically independent of M ,
then by the rotational invariance of the Gaussian distribution,
the above estimates hold for PSM , with a replaced by a′.
We will apply the above lemmas to bound the norms of the
components of (11).

B. Projection of sparse vectors
We next show that sparse vectors cannot be too aligned with

the range of Φ∗:
Lemma 3: Fix any δ ≥ 1, ρ ≥ 15/16, and suppose that

ν ≤ ν?ρ,δ , and that m > m?
ρ,δ,ν . Fix any support I ⊂ [n] of

size no larger than

|I| ≤ α?δ,ρ,νm, (28)

and suppose that J is chosen uniformly at random. Construct
the matrix Φ according to (17). Then for

s = Cs(δ, ρ)m, (29)

the restricted norm ξs(Φ) satisfies

1− ξs(Φ) ≥ ν4δ(1− ρ)/512, (30)

with probability at least 1−10 exp(−2 ε?ρ,δ,νm) in Z, J . Here,
Cs(δ, ρ) > 0 does not depend on m or ν (and is given
explicitly in (8)).

To avoid the possibility for confusion, please notice that the
quantity s = Csm in Lemma 3 represents our bound on the
number of elements of S[q] (i.e., the number of violations of
the box constraint), rather than the sparsity of the signal x
itself.

Proof: (of Lemma 3) The proof has two parts: we first
reduce the quantity of interest to a function of the singular
values of several submatrices of U and W , and then apply
Gaussian measure concentration to bound these quantities.

a) Lower bounding 1− ξ: Notice that

1− ξs(Φ) ≥ 1
2 (1− ξs(Φ)2) = 1

2

(
1− sup

‖w‖≤1,
‖w‖0≤s

‖PΦw‖2
)

= 1
2

(
1− sup

‖w‖≤1,
‖w‖0≤s

‖w‖2 − ‖w − PΦw‖2
)

= 1
2

(
1− sup

‖w‖=1,
‖w‖0≤s

1− ‖w − PΦw‖2
)

= 1
2 inf
‖w‖=1,
‖w‖0≤s

‖w − PΦw‖2 = 1
2 inf
‖w‖=1,
‖w‖0≤s

min
r
‖w − Φ∗r‖2.
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We can write this more explicitly as

1
2 inf
‖w1‖2+‖w2‖2=1
‖w1‖0+‖w2‖0≤s

min
r

∥∥∥∥[w1

w2

]
−
[
νU∗ W ∗

I 0

] [
r1

r2

]∥∥∥∥2

= 1
2 inf
w1,w2

min
u1,u2

∥∥∥∥[w1

w2

]
−
[
νU∗ W ∗

I 0

] [
u1 +w2

u2

]∥∥∥∥2

,

= 1
2 inf
w

min
u
‖w1 − νU∗u1 − νU∗w2 −W ∗u2‖2 + ‖u1‖2.

(31)

Notice that W ∈ R(k1+1)×(1−ρ)m has a nontrivial nullspace;
let Γ ⊂ R(1−ρ)m = null(W ), let PΓ denote the projection
onto Γ, and PW denote the projection onto range(W ∗), so
that

PW + PΓ = I, PWPΓ = 0, and PΓW
∗ = 0.

Then in terms of these operators, the first term in (III-B0a)
can be written as

‖w1 − νU∗u1 − νU∗w2 −W ∗u2‖2
= ‖PΓ(w1 − νU∗u1 − νU∗w2 −W ∗u2)‖2

+ ‖PW (w1 − νU∗u1 − νU∗w2 −W ∗u2)‖2,
≥ ‖PΓ(w1 − νU∗u1 − νU∗w2 −W ∗u2)‖2,
= ‖νPΓU

∗u1 − (PΓw1 − νPΓU
∗w2)‖2.

Plugging into (III-B0a), we find that 1 − ξ(Φ) is bounded
below by

1
2 inf
w1,w2

min
u1
‖νPΓU

∗u1 − (PΓw1 − νPΓU
∗w2)‖2 + ‖u1‖2.

(32)
For any matrix M and vector and y, the unique solution to

min
x
‖Mx− y‖2 + ‖x‖2

is given by x?(y) = (I + M∗M)−1M∗y. Hence, in (32),
for any w = [w∗1, w

∗
2]∗, the optimizer u?1(w) has the explicit

form

û?1(w) = ν(I + ν2UPΓU
∗)−1UPΓ(w1 − νU∗w2)

= ν
(
I + ν2UPΓU

∗)−1
UΨw, (33)

where we have used Ψ for the matrix [PΓ | −νPΓU
∗]. Notice

that for any w,

‖u?(w)‖ ≥ ν σmin(U)
‖I + ν2UPΓU∗‖

‖Ψw‖ ≥ ν σmin(U)
1 + ν2‖U‖2 ‖Ψw‖.

Hence, for any w satisfying ‖w‖ = 1 and ‖w‖0 ≤ s,

‖u?(w)‖ ≥ ν σmin(U)
1 + ν2‖U‖2 γs(Ψ). (34)

Applying (32), we have that

1− ξs(Φ) ≥ 1
2

inf
‖w‖=1
‖w‖0≤s

‖u?(w)‖2 ≥ ν2 σ2
min(U)

2 (1 + ν2‖U‖2)2
γ2
s (Ψ).

(35)
We apply a sequence of straightfoward algebraic manipula-
tions to lower bound γs(Ψ) in terms of the singular values of

submatrices of U and W . Each step below should be intuitive;
their correctness is proved in Lemmas 6-9 of the appendix:

γs(Ψ) ≥ νγs ([PΓ | PΓU
∗]) , by (59),

= νγs ([I− PW | (I− PW )U∗]) ,
≥ ν (γs ([I U∗])− βs(PW )− βs(PWU∗)) by (60),

≥ ν

(
γs ([I U∗])− βs(W )

σmin(W )
− βs(PWU∗)

)
, by (62).

Finally, by (63),

γs ([I U∗]) ≥
√

min{1, γ2
s (U∗)} − φs(U∗).

b) Concentration of measure: For convenience, below
we write ε = 2 ε?δ,ρ,ν . We will prove that when Cs is chosen
according to (8), the following bounds hold:

(i) ‖U‖ ≤ 3
√
δ w.p. ≥ 1− exp(−εm),

(ii) σmin(U) ≥
√
δ/2 w.p. ≥ 1− exp(−εm),

(iii) γs(U∗) ≥
√

(1− ρ)/2 w.p. ≥ 1− exp(−εm),

(iv) φs(U∗) ≤
1− ρ

4
w.p. ≥ 1− exp(−εm),

(v) βs(PWU∗) ≤
√

1− ρ
8

w.p. ≥ 1− exp(−εm),

(vi) σmin(W ) ≥ 1/4 w.p. ≥ 1− 3 exp(−εm),

(vii) βs(W ) ≤
√

1− ρ
32

w.p. ≥ 1− 2 exp(−εm).

When each of the above bounds holds, then

γs(Ψ) ≥ ν
√

1− ρ
4

,

and by (35)

1− ξs(Φ) ≥ ν2δ

8(1 + 9ν2δ)2
γ2
s (Ψ) ≥ ν2δ

32
γ2
s (Ψ),

where we have used that ν < 1/3
√
δ. Combining the two

bounds establishes that 1 − ξ ≥ ν4δ(1 − ρ)/512 on this
intersection of events; summing the failure probabilities shows
that the bound holds with probability at least 1−10 exp(−εm).

We conclude the proof by establishing the probabilistic
bounds (i)-(vii). It is convenient to note that since Υ(t) ≤ t,
the choice of Cs in (8) and the fact that Cµ ≥ 1 imply that√

Cs ≤ Cµ
√
Cs ≤ 2−8(1− ρ). (36)

Furthermore, using (6) and the fact that Cµ, δ ≥ 1,

Cs log
(
δ
Cs

)
≤ 2−17C−2

µ δ−1(1− ρ)2 ≤ 2−17(1− ρ)2

and so √
2Cs log

(
δ
Cs

)
≤ 2−8(1− ρ). (37)

We note three remaining bounds of interest. First, notice from
(9) that m? = 217/(1− ρ)Cs, and so using (36),

m? ≥ 233(1− ρ)−2. (38)

Furthermore, from (9), and (36)

ν? ≤
√

2−24δ−1Cs ≤ 2−20(1− ρ),
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where we have used δ ≥ 1 to drop the δ−1 term. Since in
(9), ε? ≤ ν2, we have that ε? ≤ 2−40(1 − ρ)2. In (9), α? =
Υ[ε?/δ] ≤ ε?/δ ≤ ε?. Hence, α? ≤ 2−40(1−ρ)2, and for any
m ≥ m?,√

α? + 1
m ≤

√
α? +

√
1
m?

≤ 2−33/2(1− ρ) + 2−20(1− ρ) ≤ 2−8(1− ρ). (39)

Using that ε = 2ε?, it is convenient to record the weak bound
√

2ε ≤ 2−8(1− ρ). (40)

(i). Notice that U is an (n − k1) × (m − k2) iid N (0, 1/m)
matrix. Applying (22), with probability at least 1−exp(−εm),

‖U‖ ≤
√
δ − α? +

√
1− ρ+

√
2ε.

Since
√

1− ρ < 1 ≤
√
δ and (applying (40))

√
2ε ≤ 2−8(1−

ρ)� 1 ≤
√
δ, on the above good event ‖U‖ ≤ 3

√
δ.

(ii). Similarly, with probability at least 1− exp(−εm),

σmin(U) ≥
√
δ − α? −

√
1− ρ−

√
2ε

≥
√
δ −
√
α? −

√
1− ρ−

√
2ε

Since ρ ≥ 15/16,
√

1− ρ ≤ 1/4 ≤
√
δ/4. Similarly,

√
2ε ≤

2−8(1− ρ) ≤ 2−8
√
δ. Finally, by (39),

√
α? ≤ 2−8 ≤ 2−8

√
δ

and so on the above good event,

σmin(U) ≥
√
δ × (1− 2−8 − 1/4− 2−8) >

√
δ/2.

(iii). Similarly, applying (26) to U∗ gives that with probability
at least 1− exp(−εm),

γs(U∗) ≥
√

1− ρ−
√
Cs −

√
2Cs log

(
δ
Cs

)
−
√

2ε,

≥
√

1− ρ− 3× 2−8 × (1− ρ),

≥ (1− 3× 2−8)
√

1− ρ >
√

(1− ρ)/2,

where above we have used (36), (37) and (40).

(iv). Using (27), with probability at least 1− exp(−εm),

φs(U∗) ≤ 2
√
Cs +

√
2Cs log

(
δ
Cs

)
+ 2Cs log

(
1−ρ
Cs

)
+ 2ε,

< 2
√
Cs + 2

√
2Cs log

(
δ
Cs

)
+
√

2ε,

≤ 5× 2−8(1− ρ) < (1− ρ)/4.

Above we have used log
(

1−ρ
Cs

)
≤ log

(
δ
Cs

)
(which follows

since δ ≥ 1 > 1− ρ), and have applied (36), (37) and (40).

(v). Next consider the term PWU
∗. The matrix PW projects

the columns of U∗ onto the independent k1 + 1-dimensional
subspace range(W ∗). Since W and U are probabilistically
independent, βs(PWU∗) is distributed as βs(M), where M
is a (k1 + 1)× (n− k1) iid N (0, 1/m) matrix. In particular,
using (25), with probability at least 1− exp(−εm),

βs(PWU∗) ≤
√

k1+1
m +

√
s
m +

√
2 s
m log

(
n−k1
s

)
+ 2ε,

≤
√
α? + 1

m +
√
Cs +

√
2Cs log

(
δ
Cs

)
+
√

2ε,

≤ 4× 2−8(1− ρ) < 2−6(1− ρ) < 2−3
√

1− ρ,

where we have used (39), (36), (37) and (40) to bound the
four terms.

(vi). Lemma 11, proved in the appendix, shows that with
probability at least 1− 3 exp(−εm), σmin(W ) > 1/4.

(vii). Using the definition of W and (61),

βs(W ) ≤ βs ((ZJc,I)∗)√
1− ρ +

βs(µ∗Jc)
‖µJc‖ . (41)

With probability at least 1− exp(−εm),

βs((ZJc,I)∗) ≤
√

k1
m +

√
s
m +

√
2s
m log

(
(1−ρ)m

s

)
+ 2ε,

≤
√
α? +

√
Cs +

√
2Cs log

(
1−ρ
m

)
+
√

2ε,

≤ 4× 2−8(1− ρ) = 2−6(1− ρ).

For the second term in (41), notice that µ∗Jc is simply a row
vector of length m− k2, and so βs(µ∗Jc) is simply the largest
Euclidean norm of any vector formed from s elements of µJc :

βs(µ∗Jc) ≤ βs(µ∗) = sup
|L|≤s

‖µL‖ = Cµ
√
s/m

= Cµ
√
Cs ≤ 2−8(1− ρ),

where we have used that ‖µ‖∞ ≤ Cµm−1/2, and invoked (36)
to bound Cµ

√
Cs. Lemma 10 shows that with probability at

least 1− exp(−εm),

‖µJc‖−1 ≤ 2 (1− ρ)−1/2.

Hence, with overall probability at least 1− 2 exp(−εm),

βs(W ) ≤ 2−6
√

1− ρ+ 2−7
√

1− ρ < 2−5
√

1− ρ.
This completes the proof.

C. Initial certificate

In this section, we analyze the initial separator q0, obtained
as the minimum `2-norm solution to the equation (18). We
upper bound both ‖q0‖2 and ‖Sq0‖2. These bounds provide
the second half of the conditions needed in Lemma 2 to show
that q0 can be refined by alternating projections to give a
certificate of optimality.

Lemma 4: Fix any δ ≥ 1, ρ < 1. Suppose that ν < ν?δ,ρ
and m > m?

δ,ρ,ν . Fix any subset I ⊂ [n] of size

|I| ≤ α?δ,ρ,νm. (42)

Then the minimum `2-norm solution q0 to the system of
equations (18) satisfies

‖q0‖2 ≤ Cν
√
δm + O(1).

‖Sq0‖2 ≤ Cν
√
δm exp(−C ′δ−1ν−2) + O(1).

(43)

simultaneously for all x0 with supp(x0) ⊆ I , with probability
at least 1− 21 exp(−2ε?δ,ρ,νm) in Z, J, σ.

Here, C and C ′ are numerical constants. In particular, the
result holds with C = 312 and C ′ = 1/482. With these
choices, the O(1) term is upper bounded by 48(1− ρ)−1/2.
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The proof of Lemma 4 is largely based on the following
general concentration lemma for functions of iid Rademacher
sequences. Its proof is straightforward; we delay it to the
appendix.

Lemma 5: Fix any matrix M ∈ Rm×n and let σ =
(σ1, . . . , σn) be a sequence of iid Rademacher random vari-
ables. Let S denote the shrinkage operator. Then for any ε > 0,

P
[
‖Mσ‖ > 2‖M‖F + 4‖M‖√εn

]
< 4 exp (−εn) . (44)

P
[
‖S[Mσ]‖ > 2‖M‖F exp

(
−1/4‖M‖22,∞

)
+ 4‖M‖√εn

]
< 4 exp (−εn) . (45)

With Lemma 5 in hand, to establish Lemma 4 we need only
estimate the relevant norms for our system of equations:

Proof: (of Lemma 4) Below, we will let

ε
.= 2 ε?δ,ρ,ν = ν2τ2(1− ρ), (46)

where in the second step we have used (9). It is further
convenient to note that by (9), α? = ν2Υ[ε?/δ] ≤ ν2ε?/δ ≤
1
2ν

4τ2(1− ρ)/δ, where we have used that Υ[t] ≤ t for all t.
Using that δ ≥ 1, we record the slightly weaker bound

α?δ,ρ,ν ≤ ν4τ2(1− ρ). (47)

Of course, it is easy to see that α? and
√

2ε are both much
smaller than one.

Conditioning of Φ. Whenever ΦΦ∗ is invertible, the pseu-
doinverse operator

Φ† .= Φ∗(ΦΦ∗)−1

is well-defined, and ‖Φ†‖ = 1/σmin(Φ). We will let EΦ
denote the event

EΦ =
{

ΦΦ∗ is invertible, and ‖Φ†‖ ≤ 8
}
.

Notice that

σmin(Φ) ≥ min(1, σmin(W ))− ν‖U‖.

Lemma 11, proved in the appendix, shows that with probability
at least 1 − 3 exp(−εm), σmin(W ) ≥ 1/4. Applying (22) to
U shows that with probability 1− exp(−εm),

ν‖U‖ ≤ ν(
√
δ +

√
1− ρ+

√
2ε) ≤ 3ν

√
δ ≤ 1/8,

where we have used that

ν? < 1/24
√
δ.

So, with probability at least 1−4 exp(−εm), σmin(Φ) ≥ 1/8,
and

P[EΦ] ≥ 1− 4 exp(−εm).

Bounding the solution. Hence, on EΦ, the minimum `2 norm
solution q0 to (18) is given by

q0 = νΦ†Rσ + Φ†Tσ + Φ†z.

We define four bad events, three of which involve the norms of
the elements of q0 deviating above their expectations, and the

one of which involves the norm of a soft-thresholded version
of the first component deviating above its expectation:

E1 =
{
σmin(Φ) = 0, or ‖νΦ†Rσ‖ > 128ν

√
δm
}
,

E2 =
{
σmin(Φ) = 0, or ‖S[νΦ†Rσ]‖ > 128ντ

√
δm
}
,

E3 =
{
σmin(Φ) = 0, or ‖Φ†Tσ‖ > 176ντ

√
δm+

48√
1− ρ

}
,

E4 =
{
σmin(Φ) = 0, or ‖Φ†z‖ > 8ντ

√
δm
}
.

We will see below that the forms of the bounds in these
events arise naturally from the structure of (18); the numerical
constants however are pessimistic. On ∩iEci , using that τ ≤ 1

‖q0‖ ≤ ‖νΦ†Rσ‖+ ‖Φ†Tσ‖+ ‖Φ†z‖
≤ 312 ν

√
δm+O(1).

Similarly, noting that for any vectors x,y ‖S[x − y]‖ ≤
‖S[x]‖+ ‖y‖, on ∩iEci ,

‖S[q0]‖ ≤ ‖S[νΦ†Rσ]‖+ ‖Φ†Tσ‖+ ‖Φ†z‖
≤ 312 ντ

√
δm+O(1).

We next bound the probability of these four bad events.

E1: bounding ‖νΦ†Rσ‖. With probability at least 1 −
2 exp(−εm), the following two bounds hold:

‖R‖ ≤
√
δ +
√
ρ+
√

2ε ≤ 3
√
δ, (48)

‖R‖F ≤
√
δρm+

√
2ε ≤ 2

√
δm, (49)

where we have used the weak bound
√

2ε < 1 ≤
√
δ (which

is a consequence, e.g., of (46)) and
√
ρ ≤ 1 ≤

√
δ. Let ER

denote the event that (48)-(49) hold. On EΦ ∩ ER,

2 ‖νΦ†R‖F + 4 ‖νΦ†R‖√εm
≤ 2ν‖Φ†‖‖R‖F + 4ν‖Φ†‖‖R‖√εm
≤ 32ν

√
δm+ 96ν

√
δεm ≤ 128ν

√
δm,

where again we have used that ε < 1. Then,

P[E1] = P[E1 | EΦ ∩ ER] P[EΦ ∩ ER]
+ P[E1 | (EΦ ∩ ER)c] P[(EΦ ∩ ER)c]

≤ P[E1 | EΦ ∩ ER] + P[EcΦ ∪ EcR]
≤ sup
Z0,J0∈EΦ∩ER

P[E1 | Z0, J0] + P[EcΦ] + P[EcR]

≤ sup
Z0,J0∈EΦ∩ER

P[E1 | Z0, J0] + 5 exp(−εm). (50)

For any (Z0, J0) ∈ EΦ ∩ ER, applying Lemma 5 with Φ†R
fixed gives

P[E1 | Z0, J0] = P
[
‖νΦ†Rσ‖ > 128ν

√
δm | Z0, J0

]
≤ P

[
‖νΦ†Rσ‖ > 2‖νΦ†R‖F + 4‖νΦ†R‖√εm | Z0, J0

]
≤ exp(−εm),

and P[E1] ≤ 6 exp(−εm).

E2: bounding ‖S[νΦ†Rσ]‖. By the same calculation as (50)

P[E2] ≤ sup
Z0,J0∈EΦ∩ER

P[E2 | Z0, J0] + 5 exp(−εm).
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Since
‖νΦ†R‖2,∞ ≤ ‖νΦ†R‖ ≤ ν‖Φ†‖‖R‖,

for any fixed Z0, J0 ∈ EΦ ∩ ER,

exp

(
− 1

4‖νΦ†R‖22,∞

)
≤ exp

(
− 1

4ν2‖Φ‖2‖R‖2
)

≤ exp
(
− 1

482δν2

)
= τ,

and further

2‖νΦ†R‖F exp

(
− 1

4‖νΦ†R‖22,∞

)
+ 4‖νΦ†R‖√εm

≤ 32ντ
√
δm+ 96ν

√
δεm ≤ 128ντ

√
δm,

where in the last step we have used that ε < τ2 (see (46)).
Applying Lemma 5,

P[E2 | Z0, J0] = P[‖S[νΦ†Rσ]‖ > 128ντ
√
δm | Z0, J0]

≤ P

[
‖S[νΦ†Rσ]‖ >

(
2‖νΦ†R‖F e

− 1
4‖νΦ†R‖22,∞

+ 4‖νΦ†R‖√ερm

)
| Z0, J0

]
≤ exp(−εm).

We conclude that P[E2] < 6 exp(−εm).

E3: bounding ‖Φ†Tσ‖. Notice that if ‖ · ‖♦ is either the
Frobenius or operator norm,

‖T‖♦ ≤
‖ZJ,I‖♦√

1− ρ +
‖µJ‖
‖µJc‖ .

Lemma 10 shows that with probability at least 1−exp(−εm),

‖µJc‖2 > (1− ρ)/4,

and so with the same probability

‖µJ‖/‖µJc‖ ≤ 1/‖µJc‖ ≤ 2 (1− ρ)−1/2.

Notice further that with probability at least 1− 2 exp(−εm),

‖ZJ,I‖ ≤ √
ρ+
√
α? +

√
2ε ≤ 3,

‖ZJ,I‖F ≤ √
α?ρm+

√
2ε ≤

√
α?m+ 1.

The final bounds above are loose, but only impact the numer-
ical constants below. Since (47) implies that α? ≤ ν2τ2, with
probability at least 1− 3 exp(−εm),

‖T‖ ≤ ‖ZJ,I‖√
1− ρ +

‖µJ‖
‖µJc‖ ≤ 5√

1− ρ , (51)

‖T‖F ≤
‖ZJ,I‖F√

1− ρ +
‖µJ‖
‖µJc‖ ≤ ντ

√
m+

3√
1− ρ . (52)

Let ET denote the event that (51)-(52) hold. On ET ∩ EΦ,

2‖Φ†T‖F + 4‖Φ†T‖√εm
≤ 2‖Φ†‖‖T‖F + 4‖Φ†‖‖T‖√εm
≤ 16ντ

√
m+ 48(1− ρ)−1/2 + 160(1− ρ)−1/2

√
εm,

≤ 176ντ
√
δm+ 48(1− ρ)−1/2,

where we have used (46) to bound ε ≤ ν2τ2(1− ρ). Then,

P[E3] ≤ sup
Z0,J0∈EΦ∩ET

P[E3 | Z0, J0] + P[EcΦ] + P[EcT ]

≤ sup
Z0,J0∈EΦ∩ET

P[E3 | Z0, J0] + 6 exp(−εm).

Applying Lemma 5 with Φ†T fixed,

P [E3 | Z0, J0]
≤ P

[
‖Φ†Tσ‖ ≥ 2‖Φ†T‖F + 4‖Φ†T‖√εm | Z0, J0

]
≤ exp(−εm).

and P[E3] ≤ 7 exp(−εm).

E4: bounding ‖Φ†z‖. Finally, on EΦ,

‖Φ†z‖ ≤ ‖Φ†‖‖z‖ ≤ 8
ν

√
α?m

1− ρ ≤ 8ντ
√
m.

Here we have used that by (47), α? ≤ ν4τ2(1 − ρ). So,
P [E4] ≤ P [EcΦ] ≤ 4 exp(−εm). Summing the failure prob-
abilities establishes the lemma.

D. Proof of Theorem 1

Proof: We first prove our result under the assumption
that the matrix A is wide (δ ≥ 1) and the error e is not too
sparse (ρ ≥ 15/16). We then show that this more difficult case
implies the result for arbitrary δ, ρ.

c) Underdetermined A, dense errors.: Fix any δ ≥ 1
and ρ ≥ 15/16. Fix any ν ≤ ν?δ,ρ, and set α?, ε?,m? as
specified in Remark 2. Set k1 = bα?mc and choose Cs(δ, ρ) >
0 according to (8) and set s = bCsmc. This choice of constants
is consistent with assumptions and conclusions of Lemmas 3
and 4.

For each subset I ∈
(

[n]
k1

)
, let EI be the event that the

two bounds in Lemma 3 and 4 hold simulatneously. The two
lemmas imply that

∀ I ∈
(

[n]
α?m

)
, P[EcI ] ≤ 31 exp(−2ε?m). (53)

Notice that on EI ,

‖q0‖+
‖Sq0‖

1− ξs(Φ)
< 312ν

√
δm

(
1 +

512τ
ν4δ(1− ρ)

)
+

48√
1− ρ .

Below, we show that for any ν < ν?,

(i).
512τ

ν4δ(1− ρ)
≤ 1,

(ii). 2 · 312 · ν
√
δm ≤ 1

4

√
Csm,

(iii). 48√
1−ρ <

1
4

√
Csm.

Hence, on EI ,

‖q0‖+
‖Sq0‖

1− ξs(Φ)
<
√
Csm/2 =

√
s/2, (54)

and so, by Lemmas 1 and 2, on EI , for any x0 with
supp(x0) ⊆ I and any e0 with supp(e0) = J and sign(e0) =
σ, (x0, e0) is the unique solution to

min ‖x‖1 + ‖e‖1 subject to Ax+ e = Ax0 + e0.



IEEE TRANS. ON INFORMATION THEORY, 2009. 12

Now, further notice that by our choice of α? in (9),

α? ≤ Υ[ε?/δ] ≤ δΥ[ε?/δ].

Hence, by (6)
α? log(δ/α?) ≤ ε?,

and

P[∩IEI ] ≥ 1−
∑
I

P[EcI ],

≥ 1−#
(
n

k1

)
× 31 exp(−2ε?m),

≥ 1− 31 exp (α? log(δ/α?)m− 2ε?m) ,
≥ 1− 31 exp(−ε?m),

Hence, to establish the result for δ ≥ 1 and ρ ∈ (15/16, 1), it
just remains to prove (i)-(iii).

(i). We establish (i) by proving two intermediate bounds (55)
and (56) below hold whenever ν ≤ ν?.
• √

τ ≤ ν4. (55)

To show (55), it is enough to argue that ν−1τ1/8 ≤ 1.
Now,

τ1/8 = exp(−8−148−2δ−1ν−2).

By (9), for ν < ν?,

ν ≤ 2−12
√
Cs/δ < 2−12δ−1 < 8−148−2δ−1,

where in the second inequality, we have used that Υ[t] ≤
t, and so by (9), Cs ≤ 2−17C−2

µ δ−2(1 − ρ) � δ−1. So
τ1/8 ≤ exp(−ν−1) and

ν−1τ1/8 ≤ ν−1 exp
(
−ν−1

) .= g(ν).

Since

dg/dν = ν−2 exp(−ν−1)(ν−1 − 1),

g is strictly increasing for ν < 1. Hence, it is enough to
show that g(ν̃) ≤ 1 for some ν̃ satisfying ν? ≤ ν̃ < 1.
Notice that ν? ≤ 2−12. It is easy to verify that g(2−12) =
212 exp(−212)� 1, which establishes (55).

• √
τ ≤ δ(1− ρ)

512
. (56)

To show this, notice that
√
τ ≤ exp(−2−13δ−1ν−2)
≤ exp(−215/Cs) ≤ exp(−232/(1− ρ)),

where we have used (9) and the fact that Cs ≤ 2−17(1−
ρ). Consider

h(x) .= 512x exp(−232x).

Since dh/dx = (512−232x) exp(−232x), h is decreasing
for x > 512/232, and for all x > 1, h(x) < h(1) � 1.
Notice that for any ρ > 0,

512
1− ρ

√
τ ≤ h

(
1

1−ρ

)
< h(1) � 1 <

√
δ,

establishing (56).

(ii). For ν ≤ ν?, by (9),

2 · 312 · ν
√
δm ≤ 624 · 2−12

√
Csm ≤ 1

4

√
Csm. (57)

(iii). For m ≥ m?, by (9),

1
4

√
Csm ≥ 1

4

√
217

1− ρ � 48√
1− ρ .

This establishes the theorem for δ ≥ 1, ρ ∈ (15/16, 1).

d) Extension to arbitrary δ > 0, ρ ∈ (0, 1): Now, fix
any δ > 0. Replace δ in the above choice of constants with
max(δ, 1). Generate

Ã = µ1∗ + νZ̃ ∈ Rm×m

according to the bouquet model. Then with overwhelming
probability in Z̃, J,σ for any e0 with signs and support J,σ
and any sufficiently sparse x̃0,

(x̃0, e0) = arg min ‖x̃‖1 + ‖e‖1 s.t. Ãx̃+ e = Ãx̃0 + e0.
(58)

and the minimizer is uniquely defined. Form A ∈ Rm×δm by
selecting the first δm columns of Ã. Clearly, A is distributed
according to the bouquet model. Lemma 12 shows that for
any x0 ∈ Rδm, if [x∗0 0 . . . 0]∗, e0 exactly recovered by (58),
(x0, e0) is the unique optimal solution to

min ‖x‖1 + ‖e‖1 s.t. Ãx+ e = Ãx̃0 + e0,

and so with at least the same large probability, `1-minimization
in the reduced system Ax+e = y recovers all sparse x0 from
a random error e0.

Finally, a straightforward argument given in Lemma 13
shows if `1-minimization uniquely recovers (x0, ẽ0), then for
any e0 with J

.= supp(e0) ⊆ supp(ẽ0) and sign(e0(J)) =
sign(ẽ0(J)), then `1-minimization uniquely recovers (x0, e0).
Fix any ρ ∈ (0, 1). Choose constants as above, but with
ρ replaced by max{ρ, 15/16}. For ρ < 15/16, generate
the signs and support of e0 as follows: generate a random
subset J̃ ⊂ [m] of size 15m/16, and a random sign pattern
σ̃ with σ̃(J̃c) = 0, and σ̃(J̃) iid Rademacher. Then with
overwhelming probability, `1 minimization uniquely recovers
(x0, ẽ0) for all sufficiently sparse x0. Generate J as a random
subset of J ′ of size ρm, and let σ = σ̃(J). By Lemma
13, `1-minimization, with the same overwhelmingly large
probability `1-minimization also uniquely recovers (x0, e0)
for all sufficiently sparse x0.

IV. SIMULATIONS AND EXPERIMENTS

In this section, we perform simulations verifying the con-
clusions of Theorem 1, and investigating the effect of various
model parameters on the error correction capability of the
`1-minimization (2). In the simulations below we use the
publicly available `1-magic package [31], except for one
(higher-dimensional) face recognition example, which requires
a customized interior point method. Since `1-recoverability
depends only on the signs and support of (x0, e0), in the
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simulations below we choose x0(i) ∈ {0, 1} and e0(i) ∈
{−1, 0, 1}. We will judge an output (x̂, ê) to be correct if
max(‖x̂− x0‖∞, ‖ê− e0‖∞) < 0.01.

a) Comparison with alternative approaches: We first
compare the performance of the extended `1-minimization

min ‖x‖1 + ‖e‖1 subject to y = Ax+ e

to two alternative approaches. The first is the error correction
approach of [14], which multiplies by a full rank matrix B
such that BA = 0,9 solves

min ‖e‖1 subject to Be = By,

and then subsequently recovers x from the clean system
of equations Ax = y − e. The second is the Regularized
Orthogonal Matching Pursuit (ROMP) algorithm [32], a state-
of-the-art greedy method for recovering sparse signals.10 For
this algorithm, we use the implementation from http://math.
ucdavis.edu/∼dneedell/.
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Fig. 3. Comparison with alternative approaches. Here, we fix m =
500, δ = 0.25, ν = 0.05, and k1 = 15, and compare three approaches
to recovering the sparse signal x0 from error e0. The first, denoted “L1 −
[A I]” solves the extended `1 minimization advocated in this work. The
second, denoted “L1− ⊥ comp” premultiplies by the orthogonal complement
of A, and then solves an underdetermined system of linear equations for the
sparse error e [14]. The final approach is the greedy Regularized Orthogonal
Matching Pursuit (ROMP) [32].

For this experiment, the ambient dimension is m = 500;
the parameters of the CAB model are ν = 0.05 and δ =
0.25. We fix the signal support to be k1 = 15, and vary the
fraction of errors from 0 to 0.95. For each error fraction, we
generate 500 independent problems. Figure 3 plots the fraction
of successes for each of the three algorithms, as a function of
error density ρ. There the extended `1-minimization is denoted
“L1 − [A I]” (red curve), while the alternative approach of
[14] is denoted “L1− ⊥ comp” (blue curve). Whereas both
ROMP and the `1 approach of [14] break down around 40%
corruption, the extended `1-minimization continues to succeed
with high probability even beyond 60% corruption.

b) Error correction capacity: While the previous ex-
periment demonstrates the advantages of the extended `1-
minimization (2) for the CAB model, Theorem 1 suggests that
more is true: If the support of x is a diminishing fraction of the

9This comparison requires n � m although our method is not limited to
this case.

10For the models considered here, less sophisticated greedy methods such
as the standard orthogonal matching pursuit fail even for small error fractions.

dimension, as the dimension increases, the fraction of errors
that the extended `1-minimization can correct should approach
one. We generate problem instances with δ = 0.25, ν = 0.05,
for varying m = 100, 200, 400, 800, 1600. For each problem
size, and for each error fraction ρ = 0.05, 0.1, . . . , 0.95, we
generate 500 random problems, and plot the fraction of correct
recoveries in Figure 4. At left, we fix k1 = 1, while at right,
k1 grows as k1 = m1/2. In both cases, as m increases, the
fraction of errors that can be corrected also increases, with no
sign of stopping anywhere before ρ = 1.
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Fig. 4. Error correction for x with sublinear support. We fix δ = 0.25,
ν = 0.05, and plot the fraction of successful recoveries as a function of the
error density ρ, for each m = 100, 200, 400, 800, 1600. At left, k1 is fixed
at 1; at right, k1 = m1/2. In both cases, as m increases, the fraction of
errors that can be corrected approaches 1.

c) Varying model parameters: We next investigate the
effect of varying δ (Figure 5 left) and ν (Figure 5 right). We
first fix m = 400, ν = .3, and consider different bouquet sizes
n = 100, 200, 300, 400, 500. Figure 5 left plots the fraction of
correct trials for varying error densities ρ, for each of these
bouquet sizes. For this fixed m, the error correction capability
decreases only slightly as n increases.
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Effect of varying ν.
Fig. 5. Effect of varying n and ν. At left, we fix m = 400, ν = .3, and
consider varying n = 100, 200, . . . , 500. For each of these model settings,
we plot the fraction of correct recoveries as a function of the fraction of
errors. Notice that the error correction capacity decreases only slightly as n
increases. At right, we fix m = 400, n = 200, and vary ν from .1 to .9.
Again, we plot the fraction of correct recoveries for each error fraction. As
expected from Theorem 1, as ν decreases, the error correction capacity of `1
increases.

We next fix m = 400, n = 200, and consider the effect
of varying ν. Figure 5 plots the result for ν = .1, .3, .5, .7, .9.
Notice that as ν decreases (i.e., the bouquet becomes tighter),
the error correction capacity increases: for any fixed fraction
of successful trials, the fraction of error that can be corrected
increases by approximately 15% as ν decreases from .9 to .5.

d) Phase transition in proportional growth: Theorem
1 claims that for any ρ < 1, the `1-minimization works
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even when the signal support k1 grows proportionally to m:
k1 ≤ αm. However, it gives rather pessimistic estimate on
how large the fraction can be. Based on intuition from more
homogeneous polytopes (especially the work of Donoho and
Tanner on Gaussian matrices [20]), we might expect that when
k1 exhibits proportional growth, an asymptotically sharp phase
transition between guaranteed recovery and guaranteed failure
will occur at some critical error fraction ρ∗ ∈ (0, 1). We
investigate this empirically here by again setting δ = 0.25,
ν = 0.05, but this time allowing k1 = 0.05m. Figure 6 plots
the fraction of correct recovery for varying error fractions ρ, as
m grows: m = 100, 200, 400, 800, 1600. In this proportional
growth setting, we see an increasingly sharp phase transition,
near ρ = 0.6.
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Fig. 6. Phase transition in proportional growth. When the signal support
grows in proportion to the dimension (k1/m→ α ∈ (0, 1)), we observe an
asymptotically sharp phase transition in the probability of correct recovery,
similar to that investigated in [20]. Here, for δ = 0.25, ν = 0.05, k1 =
0.05m, we indeed see a sharp phase transition at ρ = 0.6.

e) Error correction with real face images: Finally, we
return to the motivating example of face recognition under
varying illumination and random corruption. For this experi-
ment, we use the Extended Yale B face database [15], which
tests illumination sensitivity of face recognition algorithms. As
in [11], we form the matrix A from images in Subsets 1 and 2,
which contain mild-to-moderate illumination variations. Each
column of the matrix A is a w × h face image, stacked as a
vector in Rm (m = w×h). Here, the weak proportional growth
setting corresponds to the case when the total number of image
pixels grows proportionally to the number n of face images.
Since the number of images per subject is fixed, this is the
same as the total image resolution growing proportionally to
the number of subjects. We vary the image resolutions through
the range 34 × 30, 48 × 42, 68 × 60, 96 × 84.11 The matrix
A is formed from images of 4, 9, 19, 38 subjects, respectively,
corresponding to δ ≈ 0.09. Here, ν ≈ 0.3. In face recognition,
the sublinear growth of ‖x0‖0 comes from the fact that the
observation should ideally be a linear combination of only
images of the same subject. Various estimates of the required
number of images, k1, appear in the literature, ranging from 5
to 9. Here, we fix k1 = 7, and generate the (clean) test image
synthetically as a linear combination of k1 training images
from a single subject. The reason for using synthetic linear

11Thus, the total dimension m = 1020, 2016, 4080, 8064 grows roughly
by a factor of 2 from one curve to the next, similar to the simulations above.

combinations as opposed to real test images is simply that it
allows us to verify whether x0 was correctly recovered; in the
real data experiments of the introduction of this work and of
[11], success could only be judged in terms of the recognition
rate of the entire classification pipeline.

For each resolution considered, and for each error fraction,
we generate 75 trials. Figure 7 (left) plots the fraction of
successes as a function of the fraction of corruption. Notice
that as predicted by Theorem 1, the fraction of errors that can
be corrected again approaches 1 as the data size increases.
Figure 7 (right) gives a visual demonstration of the algorithm’s
capability. In the test images in Figure 7 (right, top), the
amount of corruption is chosen to correspond to a 50%
probability of success according to the plots in Figure 7 (left).
Below each corrupted test image, the “clean” image recovered
by our method is shown.
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Fig. 7. Error correction with real face images. We simulate weak
proportional growth in the Extended Yale B face database, with the resolution
of the images growing in proportion to the number of subjects. Left: fraction
of correct recoveries for varying levels of occlusion. Right: examples of
correct recovery for each resolution considered. Top: corrupted test image.
The fraction of corruption is chosen so that the probability of correct recovery
is 50%. Bottom: clean image, from correctly recovered x0.

V. DISCUSSIONS AND FUTURE WORK

a) Compressed sensing for signals with varying sparsity:
In the conventional setting for recovering a sparse signal, one
often implicitly assumes that each entry of the signal has an
equal probability of being nonzero. As a result, one typically
requires that the incoherence (or coherence) of the dictionary
is somewhat uniform. In this paper, we saw quite a different
example. If we view both x and e as the signal that we want
to recover, then the sparsity or density of the combined signal
is quite uneven – x is very sparse but e can be very dense.
Nevertheless, our result suggests that if the incoherence of
the dictionary is adaptive to the distribution of the density
– more coherent for the sparse part and less for the dense
part, then `1-minimization will be able to recover such uneven
signals even if bounds based on the even sparsity assumption
suggest otherwise. Thus, if one has some prior knowledge
about which part of the signal is likely to be more sparse or
more dense, one can achieve much better performance with `1-
minimization by using a dictionary with matching incoherence.
More generally, for any given distribution of sparsity, one may
ask the question whether there exists an optimal dictionary
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with matching incoherence such that `1-minimization has the
highest chance of success.

b) Stability with respect to noise: Although in our model
we do not explicitly consider any noise, say y = Ax+e+z,
where z adds small Gaussian noise to each entry, we have
observed empirically in our simulations and also in experi-
ments with face images that the `1-minimization (2) for the
cross-and-bouquet model is surprisingly stable with respect to
measurement or numerical noise. In fact, as the method is
able to deal with dense errors regardless of their magnitude,
large noisy entries in z might be treated like errors and be
absorbed into e. This is especially the case if the signal x is
extremely sparse – in the case of face recognition, the support
of x is nearly constant. Nevertheless, for less sparse signals x,
the noise tolerance can likely be further improved by relaxing
the equality constraint in (2), in a similar spirit to the Lasso
[4]–[6], [33] or Dantzig selector [34]:

min
x,e
‖x‖1 + ‖e‖1 subject to ‖y −Ax+ e‖ ≤ ε2.

To our best knowledge, a more precise characterization of
the effect of entry-wise small noise or perturbation z on the
estimate of x and e through the above convex program remains
an open problem.

c) Neighborliness of polytopes: As we have seen in this
paper, a precise characterization of the performance of `1-
minimization requires us to analyze the geometry of polytopes
associated with the specific dictionaries in question. In prac-
tice, we often use `1-minimization for purposes other than
signal reconstruction or error correction. For instance, using
machine learning techniques, we can learn from exemplars a
dictionary that is optimal for certain tasks such as data classi-
fication [13]. The polytope associated with such a dictionary
may be very different from those that are normally studied in
signal processing or coding theory or error correction, leading
to qualitatively different behavior of the `1-minimization.
Thus, we should expect that in the coming years, many
new classes of high-dimensional polytopes with even more
interesting properties may arise from other applications and
practical problems.

d) Dense error correction for low-rank matrices: Recent
studies of low-rank matrix completion have shown that it
is possible to exactly complete a low-rank matrix A from
knowing only a diminishing fraction of its entries [35]. Our
recent work has shown that one can exactly recover a low-
rank matrix A with grossly corrupted entries M = A+E by
solving a similar convex program:

min ‖A‖∗ + λ‖E‖1 subject to M = A+ E,

as long as the matrix E is sufficiently sparse [36]. Moreover,
empirically one can observe a similar dense error correction
phenomenon: when the rank of the matrix A is sublinear
in its dimension, as the dimension increases, the fraction of
entries corrupted by random errors with random signs that
the convex program can correct also approaches to 100%. As
an extension to the analysis of [35], one can prove this is
indeed the case if the signs of the errors in E are chosen at
random [37]. It seems that the dense error correction property

discovered in this work may be an instance of a more general
property of error correction problems involving structured
high-dimensional signals and errors with random support and
signs.

e) Modifications of the error model: In our model, we
have assumed the support and signs of the error e0 are both
random, which plays a crucial role in the proof of the main
theorem. In many practical applications, the errors may not
be completely random and have additional structures. For
instance, the signs of the error can even be adversarial. To
reduce the randomness in our error model, one can invoke
similar derandomization arguments of [35] (Theorem 2.3) and
show that Theorem 1 holds for any error e0 with arbitrary
signs but with support strictly less than 50%. Then the only
randomness left would be the support of the errors. In many
applications, we may also have certain prior knowledge about
the support of the errors. For example, in image processing,
corruption incurred by occlusion normally has a spatially
contiguous support. Recent empirical studies in face recog-
nition [38] have demonstrated that if such prior knowledge
can be properly harnessed, one can significantly boost the
error correction capability of the `1-minimization. However,
a rigorous mathematical justification for such success remains
an open problem.
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APPENDIX
TECHNICAL LEMMAS

This appendix summarizes a few results from measure
concentration and proves several lemmas used in the main
text.

OBSERVATIONS ON SUBMATRIX SINGULAR VALUES

Lemma 6: For any block matrix [M N ], and scalar t with
|t| ≤ 1,

γs([M | tN ]) ≥ |t|γs([M N ]). (59)
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Proof:

γs ([M tN ]) = inf
‖x‖2+‖y‖2≥1
‖x‖0+‖y‖0≤s

∥∥∥∥[M tN ]
[
x
y

]∥∥∥∥
= inf

‖x‖2+‖y‖2≥1,
‖x‖0+‖y‖0≤s.

∥∥∥∥[M N ]
[
x
ty

]∥∥∥∥
= inf

‖tx‖2+‖y‖2≥1,
‖x‖0+‖y‖0≤s.

∥∥∥∥[M N ]
[
tx
ty

]∥∥∥∥
≥ |t| inf

‖x‖2+‖y‖2≥1,
‖x‖0+‖y‖0≤s.

∥∥∥∥[M N ]
[
x
y

]∥∥∥∥ = |t|γs([M N ]).

Lemma 7: For any matrices M ,N ,

γs(M +N) ≥ γs(M)− βs(N), (60)
and βs(M +N) ≤ βs(M) + βs(N). (61)

Proof: Notice that

γs(M +N) = inf
‖x‖=1,‖x‖0≤s

‖Mx+Nx‖

≥ inf
‖x‖=1,‖x‖0≤s

(‖Mx‖ − ‖Nx‖)

≥ inf
‖x‖=1,‖x‖0≤s

‖Mx‖ − sup
‖y‖=1,‖y‖0≤s

‖Ny‖

= γs(M)− βs(N).

The calculation for (61) is identical.
Lemma 8: Let W ∈ Rm×n, (m < n) be any matrix with

full row rank m, and let PW ∈ Rn×n denote projection
operator onto the range of W ∗. Then

βs(PW ) ≤ βs(W )/σmin(W ). (62)

Proof:

βs(PW ) = sup
‖x‖≤1,‖x‖0≤s

‖W ∗(WW ∗)−1Wx‖

≤ ‖W ∗(WW ∗)−1‖ sup
‖x‖≤1,
‖x‖0≤s

‖Wx‖ = σ−1
min(W )βs(W ).

Lemma 9: For any matrix M

γ2
s ([IM ]) ≥ min{1, γ2

s (M)} − φs(M). (63)

Proof:

γ2
s ([IM ]) = inf

‖x‖2+‖y‖2=1
‖x‖0+‖y‖0≤s

‖x+My‖2

= inf
x,y
‖x‖2 + ‖My‖2 + 2x∗My

≥ inf
x,y
‖x‖2 + γ2

s (M)‖y‖2 − 2‖x‖‖y‖φs(M)

≥ inf
x,y

min{1, γ2
s (M)}(‖x‖2 + ‖y‖2)− φs(M)

= min{1, γ2
s (M)} − φs(M),

where we have used that for t ∈ [0, 1],
√
t(1− t) ≤ 1/2.

TWO CONCENTRATION RESULTS

Lemma 10: Suppose µ ∈ Rm ‖µ‖∞ ≤ Cµm
−1/2, ‖µ‖ =

1, and let J ⊂ [m] be uniformly distributed amongst all subsets
of size ρm. Then for any ε > 0, with probability at least
1− exp(−εm) in J ,

‖µJc‖2 ≥ 1− ρ− 4C2
µ

√
2ε. (64)

In particular, if δ ≥ 1 then with probability at least 1 −
exp(−2 ε?δ,ρ,νm),

‖µJc‖2 ≥ (1− ρ)/4, (65)

where ε?δ,ρ,ν is specified in (9).
Proof: Consider the group of permutations of [m] with

distance d(π1, π2) = m−1#{i | π1(i) 6= π2(i)}. Let π
be a random permutation sampled according to the uni-
form measure. Then random variable ‖µJc‖2 is equal in
distribution to f(π) =

∑(1−ρ)m
i=1 µ(π(i))2. Since ‖µ‖∞ <

Cµm
−1/2, |f(π1) − f(π2)| ≤ 2C2

µm
−1#{π1(i) 6= π2(i)} =

2C2
µd(π1, π2). Corollary 4.3 of [3] shows that

P [f(π) ≤ Ef(π)− t] < exp(−mt2/32C4
µ).

Noticing that Ef = 1− ρ establishes (64).
For (65), notice that by (9),
√
ε? ≤ ν

√
1− ρ ≤ 2−12

√
Cs(1− ρ)/δ

≤ 2−12
√

2−17C−4
µ δ−3(1− ρ)2

≤ 2−20C−2
µ (1− ρ),

where in the last step we have used that δ ≥ 1. Hence,
4C2

µ

√
2× 2ε? ≤ 2−17(1−ρ)� 3(1−ρ)/4, and by (64) with

probability at least 1− exp(−2ε?m), ‖µJc‖2 ≥ (1− ρ)/4.

Lemma 11: Let ε?δ,ρ,ν be defined as in (9). With probability
at least 1 − 3 exp(−2ε?δ,ρ,νm), µJc 6= 0 and the matrix W
defined by

W ∗ =
[

µJc

‖µJc‖
ZJc,I√

1−ρ

]
∈ R(m−k2)×(k1+1)

satisfies
σmin(W ) ≥ 1/4. (66)

Proof: For compactness, let

ϑ =
{
µJc/‖µJc‖, µJc 6= 0,
0, else,

and let Pϑ = ϑϑ∗ be the matrix that projects onto the span
of ϑ. Let Q ∈ R(m−k2)×(k1+1) be defined by

Q
.=
[
ϑ

ZJc,I√
1−ρ

]
.

Let E1 denote the event

E1 = {µJc = 0},

and notice that on Ec1 , W is well defined and σmin(W ) =
σk+1(Q). Furthermore,

Q =
[
ϑ (I− Pϑ) ZJc,I√

1−ρ

]
+
[

0 Pϑ
ZJc,I√

1−ρ

]
,
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and so

σk1+1(Q) ≥ σk1+1

[
ϑ (I− Pϑ) ZJc,I√

1−ρ

]
−
∥∥∥∥Pϑ ZJc,I√

1− ρ

∥∥∥∥ .
For any matrix M = [A B] ∈ Rp×(q1+q2) with A ∈
Rp×q1 and B ∈ Rp×q2 and A∗B = 0, σq1+q2(M) =
min{σq1(A), σq2(B)}. Since ‖PϑZJc,I‖ = ‖ϑ∗ZJc,I‖,

σmin(Q) ≥ min
{
‖ϑ‖, σk1[(I− Pϑ)ZJc,I ]√

1− ρ

}
− ‖ϑ

∗ZJc,I‖√
1− ρ

≥ min
{
‖ϑ‖, σk1 [ZJc,I ]√

1− ρ

}
− 2
‖ϑ∗ZJc,I‖√

1− ρ .

Further define the events

E2 =
{
‖ϑ∗ZJc,I‖ >

√
α? +

√
4ε?

}
,

E3 =
{
σk1 [(I− Pϑ)ZJc,I ] <

√
1− ρ− 1

m −
√
α? −

√
4ε?
}
.

On ∩3
i=1Eci , µJc 6= 0, ‖ϑ‖ = 1, W is well-defined,

σmin(W ) = σk1+1(Q), and

σk1+1(Q) ≥
√

1− 1
(1−ρ)m? − 3

√
α? − 6

√
ε?.

From (9), m? = 217(1−ρ)−1C−1
s > 217(1−ρ)−1 (where we

have used that Cs < 1. Moreover, from (9), α? ≤ ν2 < 2−24,
and similarly, ε? ≤ ν2 < 2−24. Plugging in to the above, on
∩3
i=1Ei,

σk1+1(Q) ≥
√

1− 2−17 − 9 · 2−12 > 1/4.

It remains to be shown that P[∩3
i=1Eci ] is large. By Lemma

10, with probability at least 1− exp(−2 ε?m),

‖µJc‖2 ≥ (1− ρ)/4 > 0,

and so P[E1] ≤ exp(−2 ε?m). Now, on E1, ‖ϑ∗ZJc,I‖ = 0.
On Ec1 , for any fixed J (and hence any fixed ϑ, the conditional
joint distribution of the k1-dimensional vector ϑ∗ZJc,I is
simply iid N (0, 1/m). Hence, by (24), for any J0 ∈ Ec1 ,

P[‖ϑ∗ZJc,I‖ >
√
α∗ +

√
4ε?] ≤ exp(−2ε?m), (67)

and

P[E2] = P[E2 | E1] P[E1] + P[E2 | Ec1 ] P[Ec1 ]
≤ 0 + P[E2 | Ec1 ]

≤ sup
J0∈Ec

1

P
[
‖ϑ∗ZJc,I‖ >

√
α∗ +

√
4ε? | J0

]
≤ exp(−2ε?m).

Similarly, on E1, (I − Pϑ)ZJc,I = ZJc,I is simply a (1 −
ρ)m× k1 matrix, and so (23) gives that ∀J0 ∈ E1,

P
[
σmin(ZJc,I) <

√
1− ρ−

√
α? −

√
4ε? | J0

]
≤ exp(−2ε?m).

Similarly, on Ec1 , (I−Pϑ) projects the columns of ZJc,I onto
a subspace of dimension (1 − ρ)m − 1. From the rotational
invariance of the Gaussian distribution, for any fixed J0 ∈ Ec1 ,
the first (1 − ρ)m − 1 singular values of (I − Pϑ)ZJc,I are
equal in distribution to the first (1−ρ)m−1 singular values of

an iid Gaussian matrix of size (1−ρ)m−1×k1. In particular,
for any fixed J0 ∈ Ec1 , by (23)

P
[
σmin[(I − Pϑ)ZJc,I ] <

√
1− ρ− 1

m−
√
α?−
√

4ε? | J0

]
≤ exp(−2ε?m).

Hence,

P[E3] ≤ sup
J0

P[E3 | J = J0] ≤ exp(−2ε?m).

Summing, we find that

P[∩3
i=1Eci ] ≥ 1−

3∑
i=1

P[Ei] ≥ 1− 3 exp(−2ε?m),

establishing the result.

PROOF OF LEMMA 5

Proof: The lemma is an application of a concentration
result on the cube due to Talagrand [39]. We use the version
stated in Corollary 4.10 and Equation (4.10) of [3]. The result
states that if σ ∈ Rn is distributed according to any product
measure on [−1, 1]n, f : Rn → R is a convex, ‖f‖lip-
Lipschitz function, and mf is any median of f , then

P [|f(σ)−mf | ≥ t] ≤ 4 exp
(
−t2/16‖f‖2lip

)
. (68)

To show (44), notice that

E
[
‖Mσ‖2

]
= E

[∑
i

(∑
j

Mijσj
)2]

=
∑
i

E
[∑
j,k

MijMikσjσk

]
=
∑
i

∑
j

M2
ij = ‖M‖2F .

So, E‖Mσ‖ ≤
√

E[‖Mσ‖2] ≤ ‖M‖F . Since f(·) .= ‖M ·
‖ is nonnegative, by the Markov inequality, f has a median
no larger than 2Ef ≤ 2‖M‖F . Since f is ‖M‖-Lipschitz,
plugging into (68) completes the proof of (44).

For (45), let g : R → R with g(t) = |S(t)| =
max(t − 1/2,−t − 1/2, 0). As the pointwise maximum of
three linear functions, g is convex. Let h : Rn → R
as h(x1, . . . , xn) = ‖(g(x1), . . . , g(xn))‖. Notice that g is
nonnegative, and futher that for nonnegative z, ‖z‖ is nonde-
creasing in each zi. Hence, h(αx+(1−α)y) = ‖(g(αx1+(1−
α)y1), . . . , g(αx2 + (1 − α)yn))‖ ≤ ‖α(g(x1), . . . , g(xn)) +
(1 − α)(g(y1), . . . , g(yn))‖ ≤ αh(x) + (1 − α)h(y). Thus
h is a convex function. f(σ) .= ‖S[Mσ]‖ = h(Mσ) is the
composition of a convex function with a linear function and
hence is also convex.

Moreover, since for any scalars a, b, |S(a)−S(b)| ≤ |a−b|,
for vectors x,y, ‖S(x) − S(y)‖ ≤ ‖x − y‖, and so g is 1-
Lipschitz. As the composition of a 1-Lipschitz function with
an ‖M‖-Lipschitz function, f is ‖M‖-Lipschitz. Hence, (68)
applies, (again noticing that there is a median no larger that
2Ef ), giving

P
[
‖S[Mσ]‖ > 2E‖S[Mσ]‖+ 4‖M‖√εn

]
< 4 exp(−εn).

(69)
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It remains to estimate the expectation. Notice that (Mσ)i =
Miσ =

∑
jMijσj is a sum of independent, bounded random

variables. Applying Hoeffding’s inequality,

P[|(Mσ)i| > t] < 2 exp
(
− 2t2/‖Mi‖2

)
. (70)

To simplify notation, let X be an arbitrary random variable
satisfying a normal tail bound P[|X| > t] < C1 exp(−C2t

2).
Then

E[S[X]2] = 2
∫ ∞
t=0

tP[|S[X]| > t] dt

= 2
∫ ∞
t=1/2

(t− 1/2)P[|X| > t] dt

≤ C1

∫ ∞
t=1/2

2t exp(−C2t
2) dt = C1

C2
exp(−C2/4).

Hence,

E[‖S[Mσ]‖2] =
∑
i

E[S[Miσ]2]

≤
∑
i

‖Mi‖2 exp(−1/2‖Mi‖2)

≤ exp(−1/2 max
i
‖Mi‖2)

∑
i

‖Mi‖2

= exp(−1/2‖M‖22,∞)‖M‖2F .

Bounding E[f ] by
√

E[f2] and plugging in to (69) completes
the proof.

REDUCTION TO LARGE ERROR FRACTIONS

Lemma 12: Let A ∈ Rm×n, and suppose (x0, e0) is the
unique optimal solution to

min ‖x‖1 + ‖e‖1 subject to Ax+ e = Ax0 + e0. (71)

Then if supp(x0) ⊆ I , then (x0(I), e0) is the unique optimal
solution to

min ‖x′‖1+‖e‖1 subject to AIx′+e = AIx0(I)+e0. (72)

Proof: Any solution (x′, e) to AIx′+e = AIx0(I)+e0

corresponds to a solution (x, e) to Ax+ e = AIx0 + e0, by
setting x(I) = x′, x(Ic) = 0. If (x0(I), e0) is not unique or
optimal for (72), then (x0, e0) is not unique or optimal for
(71).

This lemma mimics [36]:
Lemma 13: Suppose that (x0, e0) is the unique optimal

solution to

min ‖x‖1 + ‖e‖1 subject to Ax+ e = Ax0 + e0. (73)

Let J = supp(e0), and suppose J ′ ⊂ J , and that e′0 is
constructed by setting e′0(J ′) = e0(J ′), e′0(J ′c) = 0. Then
(x0, e

′
0) is the unique optimal solution to

min ‖x‖1 + ‖e‖1 subject to Ax+ e = Ax0 + e′0. (74)

Proof: Suppose on the contrary, that there exist x̃, ẽ
satisfying Ax̃+ ẽ = Ax0 + e′0 and

‖x̃‖1 + ‖ẽ‖1 ≤ ‖x0‖1 + ‖e′0‖1.

Set h = e0 − e′0. Notice that Ax̃ + ẽ + h = Ax0 + e0, and
so (x̃, ẽ+ h) is feasible for (73). But

‖x0‖1 + ‖e0‖1 = ‖x0‖1 + ‖e′0‖1 + ‖h‖1
≥ ‖x̃‖1 + ‖ẽ‖1 + ‖h‖1 ≥ ‖x̃‖1 + ‖ẽ+ h‖1.

Since the optimizer to (73) is unique, we conclude that x̃ =
x0, ẽ = e′0.
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