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Abstract —Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they
are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image
misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled, and test images
are only loosely controlled. We propose a conceptually simple face recognition system that achieves a high degree of robustness and
stability to illumination variation, image misalignment, and partial occlusion. The system uses tools from sparse representation to align
a test face image to a set of frontal training images. The region of attraction of our alignment algorithm is computed empirically for
public face datasets such as Multi-PIE. We demonstrate how to capture a set of training images with enough illumination variation
that they span test images taken under uncontrolled illumination. In order to evaluate how our algorithms work under practical testing
conditions, we have implemented a complete face recognition system, including a projector-based training acquisition system. Our
system can efficiently and effectively recognize faces under a variety of realistic conditions, using only frontal images under the
proposed illuminations as training.

Index Terms —Face Recognition, Face Alignment, lllumination Variation, Occlusion and Corruption, Sparse Representation, Error
Correction, Validation and Outlier Rejection.
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1 INTRODUCTION

ACE recognition applications to date have fallen intgnuch less con.trolled_, allowing the access control system to
Froughly two categories. Face recognition has recently sef made less intrusive to the users of the system. To some
a lot of success in a family of less-demanding applicatioff&tent, the goal of this paper is to show how a reliable face
such as online image search and family photo album organi¥§¢09nition system can be built for this restricted, bull sti

tion (e.g. Google Picassa, Microsoft Photo Gallery, andlgpp/MPortant, scenario. . o
iPhoto). At the other end of the tractability spectrum there ~ VeTY few recognition systems specifically target applwasi

the terrorist watchlist and mass surveillance applicativrat Where many well- controlled training images are available.

have for the most part dominated the field of face recognitidi€Se; the classical holistic subspace-based face remgni
research. However, there are many face recognition appli@ethods [1], [2] are well known for their speed and simpjicit
tions that fall roughly between these extremes, where vigly h 2 well as for their ngtural extension to linear illuminatio
recognition performance is desired, but the users in tHergal Mdels. However, their performance has been shown to be
are still allies of the system rather than adversaries. @hd&tremely brittle not only to alignment variation, but toeev
applications include access control for secure facilifieg.,, MinOr occlusions caused by, say, a wisp of hair, a blinked eye
prisons, office buildings), computer systems, automopies ©" mouth that is slightly open. One promising recent diatti

automatic teller machines, where controlled gallery insagan €t forth in [3], casts the recognition problem as one of figdi
be obtained in advance. These applications are very itireges & SParse representation of the testimage in terms of tmertgai

due to their potential sociological impact. Since the gglle S€t @ @ whole, up to some sparse error due to occlusion.
subjects are allies, rather than opponents, of the redognit” SParse representation-based classificati(8RC) method
system, this creates the possibility of carefully coningiithe S then proposed for recognition. The main idea is that the
acquisition of the training data. While the same can be said fgParseé nonzero coefficients should concentrate on therigain
other biometrics such as fingerprints and iris recognitiaoe samples with the same class label as the test sample. SRC has

recognition has the potential of working with test data iisat d€monstrated striking recognition performance despierse
occlusion or corruption by solving a simple convex program.
A. Wagner, A. Ganesh, Z. Zhou, and Y. Ma are with the Dept.egftital and Unfprtunately, while t_he Wf)rk_ [3] achieves IMpressive re-
Computer Engineering at the University of lllinois at Ur@hampaign. H. sults, it does not deal with misalignment between the tedt an
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robustness to pose variation given a sufficiently accuréte 3
model, for access control applications where only moderate
l pose variation is present, the proposed method will be more
I than sufficient. Note that 2D images of faces under varying
oo WNNEOWNT«)Q illuminations already contain 3D shape-related inforoati
e R and this information can be leveraged by 2D algorithms for
0 alignment and recognition even if shape is not reconstducte
OaI I explicitly.
a In holistic recognition algorithms, correspondence betwe
[ T points in the test image and in the training must be achieved.
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A long line of research exists on using Active Appearance

s © D Models [6], and the closely related Active Shape Models
[7] to register images against a relatively high-dimenalon

I model of plausible face appearances, often leveraging face

o
@

o
°

specific contours. While these model-based techniques have

' i advantages in dealing with variations in expression an@,pos
T T they may add unnecessary complexity to applications where
v g o000 o00oloicogoooly subjects normally present a neutral face or only have meelera

- Sublects expression. We prefer to focus on deformations with far fewe
Fig. 1. Effects of registration and illumination on Recognition. In this degrees of freedom, i.e. similarity transformations, and t
example we iden;ifﬁf thengirltigﬁczﬂgv ﬁ;? f:?iz%ttsit g); ﬁgfggtlilgl%rg;si:pasfzte use the training images themselves as the appearance model.
;?hperez:s:;?l?tznsﬁm ?)rf Ithpeucoefficients ast)ociated with each subjgct ié lterative registration in this spirit dates at least backitie
plotted on the right. We also show the faces reconstructed with each ~ Lucas-Kanade algorithm [8].

subject’s training images weighted by the associated sparse coefficients. Whereas much of the ea”y work on image registration is
The red line (cross) corresponds to her true identity, subject 12. Top:

The input face is from Viola and Jones’ face detector (the black box) ~@imed at the problem of registering nearly identical images
and all 38 illuminations specified in Section 3 are used in the training. ~ say by minimizing a sum of squared distances or maximizing
Middle: The input face is well-aligned (the white box) with the training by ngrmalized correlation. here we must confront several ipbys

our algorithm specified in Section 2 but only 24 frontal illuminations are . T . . . L.

used in the training for recognition (see Section 3). Bottom: The input factors simultaneously: misalignment, illumination eions,

face is well aligned and a sufficient set (all 38) of illuminations are used ~ and corrupted pixels. As we discuss further below, illurtiora

in the training. Both are necessary for correct recognition using SRC. variation can be dealt by expressing the test image as a

N _ ) ) _ linear combination of an appropriate set of training images
an example in Figure 1. The task is to identify the girl amongimjjar representations have been exploited in illumrati

20 subjects. If the test face image, say obtained from_an offbust tracking (e.g., [9], [10]). For robustness to grasers,
the-shelf face detector, has even a small amount of refistra 1o y1_norm of the residual is a more appropriate objective
error against the training images (caused by mild poseesca|,tion than the classical>-norm. Its use here is loosely
or misalignment), the sparse representation obtaine@usé i ated by theoretical results due to Caacand Tao [11]

method of [3] is no longer informative, even if sufficientsee 4150 [12]). These two observations lead us to pose the
illuminations are present in the training, as shown in FeguLeqistration problem as the search for a set of transfoomsti
1(tc_)p). Addmonally, in order to_span the _|IIum.|naF|ons af and illumination coefficients that minimize t{é-norm of the
typical indoor (or outdoor) environment, illuminationsof representation error. We solve this problem using a geirethl
behind the subject are needed in the training set. Otherwige, ,«s.Newton method which solves a sequence of affine-
even for perfectly aligned test images, the sparse represggqiraineds!-norm minimization problems [13], [14]. Each

tation obtained using [3] will not necessarily be sparse @k hese problems can also be solved efficiently using récent
informative, as shown by the example in Figure 1(middie}e,e|oped first-order techniques fét-minimization, which
Clearly, both good alignment, as well as sufficient training,a reviewed in [15].

images are needed to ensure success of the sparsity-basgge
recognition method proposed by [3]. In this paper, we examirﬂlumi
how to handle alignment and illumination simultaneously iR/h
the sparse representation framework, bringing the methmg
proposed in [3] closer to practical use.
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searchers have tried various techniques to deal with
nation variation. In almost all recognition algdrins
ere only a single gallery image is available per individua
mination effects are regarded as a nuisance that must be
removed before the algorithm can continue. This is typycall
11 Related Work done by ma!<ing statistical gssumptions about how illunndmat
affects the image, and using those assumptions to extract a
We briefly review existing techniques for recognition, ireagnew representation that is claimed to be illumination irasa
registration, and handling of illumination variation. Gaystem Recent examples include [16] and [17]. However, despite

is based purely on 2D techniques. This fact immediatefijese efforts, truly illumination-invariant features afigficult
distinguishes our approach from systems that either requir

3D Qata as an input,.or attempt to e.Stimate a 3D mOdeI fromy |, principle, one can recover the 3D shape of the face frorttiptes
2D input [4], [5]. While these techniques can achieve bettéiuminations using photometric stereo.



to obtain from a single input image. We argue that if onsuggest a sufficient set of 38 training illuminations. Exfee

has the luxury of designing the acquisition system and tles&periments on a large-scale public database and on our own
application demands a high recognition rate, it is then gsawidatabase are conducted in Section 4 and Section 5, respec-
to limit the gallery to a single image per person. We therefotively, to verify the proposed system. Section 6 concludas o
take the strategy of sampling many gallery images of eawrk with discussion of promising future directions.

individual under varying illuminations. These images asedl

as the basis for either a convex cone model [18], [19], or & RoBUST ALIGNMENT

subspace model [20]. Images are captured using a simple-to-d din Fi 1 h i limitati f1h
construct projector based light stage. While similar sys’terﬁ‘S emonstrated in Figure 1(top), the main limitation of the

have been used for other applications, to our knowledge, wearse represe_ntation f"md classificat(ﬂ_ RC) algorithm of [|3]
are the first to use projectors to indirectly illuminate ajeats IS the assumpt|on.o_f p|xel—accgrate ahgnmgnt between ¢
face for the purpose of face recognition. image and the training set. This leads to brittleness undse p

and misalignment, making it inappropriate for deployment
1.2 Contributions outside a laboratory setting. In this section, we show hdw th
weakness can be rectified while still preserving the conzgpt

In this paper, we show how registration and illumination ban simplicity and good recognition performance of SRC.

simultaneously addressed within arot_)usts_parse repe&'mmt. SRC assumes access to a database of multiple registered
fram'ework. We show that face reg|stra}tlon, a Cha"eng”}gaining images per subject, taken under varying illumaora.
nonlinear problem, can be solved by a series of linear prograL, images of subjedt, stacked as vectors, form a matrix

that iteratively minimize the sparsity of the registratiemor. A; € R™*m Taken together, all of the images form a large

This leads to an efficient and effective alignment algorithm® . .

) 9 gorit matrix A = [A; | Ay | -+ | Ax] € R™*™. As argued in [3],
for face images that works for a large range of variation . .
. . . a_well-aligned test imageg, can be represented as a sparse
in translation, rotation, and scale, even when the face Is S . i

. - linear combinationdx, of all of the images in the databade,
only partially visible due to eyeglasses, closed eyes amth op lus a sparse erroe. due to corrupted pixels. The sparse
mouth, sensor saturation, etc. We also propose a sufficient P 0 P P ) P

of training illuminations that is capable of linearly repeating representation can be recovered by minimizing thaworrf

typical indoor and outdoor lighting, along with a practica?
hardware system for capturing them. min ||z||; + |le]|; subjto y,= Az + e. (1)
We then demonstrate the effectiveness of the proposed new z.e
methods with a complete face recognition system that ow suppose thay, is subject to some pose or misalignment,
simple, stable, and scalabl€he proposed system performs roso that instead of observing,, we observe the warped image
bust automatic recognition of subjects from loosely cdigtb o = y, o 7—!, for some transformation € 7' where T is
probe images taken both indoors and outdoors, using a galler finite-dimensional group of transformations acting on the
of frontal views of the subjects’ faces under the proposeéghage domain. The transformed imageno longer has a
illuminations. An off-the-shelf face detectois used to detect sparse representation of the fown= Ax, + eg, and naively
faces in the test images. applying the algorithm of [3] is no longer appropriate, asrse
We conduct extensive experiments on the proposed systenigure 1(top).
with both public databases and a face database that is teallec
by our own acquisition system. Our experimental results ¢hl Batch and Individual Alignment

large-scale public face databases show that our algorithihe true deformation-—' can be found, then we can apply
indeed achieves very good performance on these databagesnverser to the test image and it again becomes possible to
exceeding or competing with the state-of-the-art algargh find a sparse representation of the resulting image; @s =
Additionally, our experimental results on our own databasgz, + e,.> This sparsity provides a strong cue for finding the
clearly demonstrate that our system not only works well witkorrect deformatiorr: conceptually, one would like to seek a
images taken under controlled laboratory conditions, but fransformationr that allows the sparsest representation, via
capable of handling practical indoor and outdoor illumioas _

as well. 7 =argmin [zlli + el subjto yor=Az+e. (2)
Organization of this papertn Section 2, we derive our robust o

registration and recognition algorithm within the sparsgre- For fixed 7, this problem is jointly convex inz and e.
sentation framework. We elaborate on algorithmic implemehiowever, as a simultaneous optimization over the coeffisien
tation issues, conduct region of attraction experimentth wi: €rror representatioa, and transformatiom, it is a difficult,
respect to both 2D in-plane deformation and 3D pose variatidonconvex optimization problem. One source of difficulty is
and discuss its relationship to existing work. Section 3 [§€ presence of multiple faces in the matfix(2) has many lo-
dedicated to our training acquisition system. Using thistesy, cal minima that correspond to aligningto different subjects.
we investigate empirically how many training illuminatsn
are required to handle practical illumination variatioasd

f x ande:

3. We assume the training illuminations are sufficient. We adliiress how
to ensure illumination sufficiency in the next section.
4. The¢!-norm of a vector, denoted by ||1, is the sum of absolute values
2. We use the OpenCV implementation of the Viola and Jones'datector ~ of its entries.
[21]. 5. In the terminology of [22], this formulation is “Forward Attigte”.



In this sense, the misaligned recognition problem diffeosnf
the well-aligned version studied in [3]. For the well-alegh
case, it is possible to directly solve for a global represton,
with no concern for local minima. With possible misalignrhen
it is more appropriate to seek the best alignment of the teSl
face with each subjeat

7, =argmin |lel; subjto yor,=Ax+e  (3)
xz,e,, €T

We no longer penalizéx||;, sinceA; consists of only images

of subject: and sox is no longer expected to be sparse.

.

ol
(b) (d)

(@)
Fig. 2. Comparing alignment of a subject wearing sunglasses by!

) ’ > M and ¢2 minimization. Top: alignment result of minimizing ||e||1; Bottom:
interest in face recognition, a good initial guess for thesult of minimizing ||e||2. (a) Green (dotted): Initial face boundary given

transformation is ava”able’ e.g., from the Output of a fad.‘g the face detector, Red (solid): Alignment result shown on the same

©

2.2 Alignment via Sequential  ¢!-Minimization
While the problem (3) is still nonconvex, for cases of praadtic

face; (b) warped testing image using the estimated transformation y;

detector. We can refine this initialization to an estimatéhef ;)" econstructed face A,z using the training; (d) image of error e.

true transformation by repeatedly linearizing about theent

estimate ofr, and seeking representations of the form: imagey o T as the algorithm runs. Without normalization, the

yor+ JAT=Ax +e. (4) algorithm may fall into a degenerate global minimum corre-
sponding to zooming in on a dark region of the test image.
Normalization is done by replacing the linearizationyo® 7
with a linearization of the normalized versigrir) = ‘y”

Here, J = a%y o 7 is the Jacobian ofy o 7 with respect to
the transformation parametersand Ar is the step inr. The
llyorl

above ?qtéat'onb'.ts undeArtdtehtermmedtﬁ \Il_ve a||OV\; the reglsmtatt The proposed alignment algorithm can be easily extended to
errore 1o be arbitrary. € correct alighment we expec h\(/?‘/ork in amultiscalefashion, with benefits both in convergence

test image to differ fromA,a only for the minority of the behavior and computational cost. The alignment algorithm i

p;xelzco&ruﬂ)ed tby OCC!?_S'OTE ' Thu_s,t W? seek a detformatl f?nply run to completion on progressively less downsampled
siepAr that best sparsities the registration ereonn 1erms o sions of the training and testing images, using the resul

bt _
of its £*-norm: one level to initialize the next.
A7y =argmin_|lell; subjto yor+ JAT= Az +e.

z,e,ATET ) 2.3 Robust Recognition by Sparse Representation

This is different from the popular choice that minimizes th®nce the best transformatian has been computed for each

¢2-norm of the registration error: subjecti, the training setsA; can be aligned tay, and a
Aty —argmin _|lefs Subjto yor+ JAT = A +e, global sparse repres_enta_lthn p_roblem of the form_ (1) can be
z.e,ATET solved to obtain a discriminative representation in terrhs o

(6) the entire training set. Moreover, the per-subject aligmime
which is also equivalent to finding the deformation SteResiduals||e|; can be used to prune unpromising candidates
AT by solving the least-square problemiing a- [y © 7+ from the global optimization, leaving a much smaller and
JAT — A;z|>. Empirically, we find that if there is only small more efficiently solvable problem. The complete optimiaati
noise betweery, and A;z, both (5) and (6) have similar procedure is summarized as Algorithm 1. The paraméter
performance. However, if there are occlusionginsequential oyr algorithm is the number of subjects considered together
¢'-minimization (5) is significantly better than sequenti3l provide a sparse representation for the test imags. # 1,
minimization (6). Figure 2 shows an example. the algorithm reduces to classification by registratiororrr

The scheme (5) can be viewed as a generalized Gausgr considering the test image might be an invalid subjeet, w
Newton method for minimizing the composition of a NONStypically chooseS = 10. Since valid images have a sparse
mooth objective function (thé'-norm) with a differentiable representation in terms of this larger set, we can rejeclihv
mapping from transformation parameters to transformed ifsst images using theparsity concentration indegroposed
ages. Such algorithms date at least back to the 1970's [28]3]. The functions;(x) in Algorithm 1 selects coefficients
[14], and continue to attract attention today [24]. While@Pa from the vectorz corresponding to subject
precludes a detailed discussion of their properties, weilldho
ir:etﬂgor?etigitbtgics)gzeg?z@ I'iclg:Og:)?i::ucr;)n;etrggr?;ﬁjr?gcaélass of Qef_ormationéf. In our experiments, we typically

' use 2D similarity transformations]’ = SE(2) x R.®, for

practice, this means that 10 to 15 iterations suffice to reach . i . ¢ 2D
the desired solution. We refer the interested reader to, [1‘rﬁmovmg alignment error incurred by face detector, or

[13] and the references therein.

In add't'on_tq n_ormallzmg the tra|n_|ng images (which !S 6. Here, SE stands for Special Euclidean, i.e., 2D rigid si@mations.
done once), it is important to normalize the warped testire R, accounts for the scale.

Another important free parameter in Algorithm 1 is the



2.4 System Implementation

projective transformations]’ = GI(3)’, for handling some The runtime of Algorithm 1 is dominated by the time spent
pose variation. solving two qualitatively similar¢; minimization problems.

In Algorithm 1, we also implement a simple heuristic whiclye have developed custom solvers for this purpose based on
improves the performance of our system, based on the obs®ligmented Lagrange MultipliefALM) algorithm. We have
vation that the face detector output may be poorly centergdiected this algorithm because it strikes the best balance
on the face, and may contain a significant amount of thftween speed, accuracy, and scalability for our problem
background. Therefore, before the recognition stageeaust out of many algorithms that we have tested. We refer the
of aligning the training sets to the origingldirectly obtained reader to our supplementary materials for a more in-depth
from the face detector, we compute an average transformatiiscussion of our solvers. For a more detailed discussion of
7 from 7y, , 7, , ..., T, Of the topS classes, which is believed competing approaches, we refer the interested reader o [15
to be better centered, and updageaccording to7. For the On a Mac Pro with Dual-Core 2.66GHz Xeon processors and
2D similarity transformations, which are used in our syste@GB memory, running on our database containing images size
when initialized by the face detector, a transformatiosan 80 x 60 pixels from 109 subjects under 38 illuminations, our
be parameterized as = (r',7%,7°,7%), where7" and 7>  C implementation of Algorithm 1 takes about 0.60 seconds
represent the translations in and y-axis, 7° represents the per subject for alignment and about 2.0 seconds for global
rotation angle and* represents the scale. Then the averagecognition. Compared to the highly customized interionpo
transformation is simply obtained by taking the componentethod used in the conference version of this paper [25], thi

wise mean: new algorithm is only slightly faster for per subject aligemt.
» : : . ‘ However, it is much simpler to implement and it achieves a
= (TR, F Thy o+ TE)/S i =1,2,3,4. speedup of more than a factor of 1@ global recognition!
Finally, the training sets are aligned to the ngw 2.5 Experiments on Region of Attraction

_ We will now present three experimental results demonsigati
Algorithm 1 (Deformable Sparse Recovery and Classifica- the effectiveness of the individual alignment proceduré ou

tion for Face Recognition) lined in the previous section. They show the sufficiency of
1: Input: Training images{A; € R™*™}X | for K subjects, a the region of attraction, verify effectiveness of the nadéle
test imagey € R™ and a deformation group'. extension, and show stability to small pose variations. We
2: for e<g‘)0h subject, delay large-scale recognition experiments to Sectionsd an
3 T I . 5, after we have discussed the issue of illumination in the
4:  while not convergedj = 1,2,...) do .
: §r) T 25000 next section. _ _ _
6: Ar = argmin ||e|1 subj tog + JAT = Az + e. 1) 2D Deformation.We first verify the effectiveness of our
7 7O O 4 AT alignment algorithm with images from the CMU Multi-PIE
8:  end while Database [26]. We select all the subjects in Session 1, use
9: end ) _ ) 7 illuminations per person from Session 1 for training, and
10: Keep the topS candidates, .. ., ks with the smallest residuals test on one new illumination from Sessiorf Ve manually
11: ‘(|:f)|l111bute an average transformatiorfrom 7y, , 7y . . ., Ths. select eye corners in both training and tegting as the ground
12: Updatey < yo7 andr; < 7 -7 ' for i = ki, ..., ks. truth for registration. We downsample the imagest@ox 60
13: SetA + [Ay, oT,;ll | Ak, oTk;l |- | Agg or,;sl}. pixels® and the distance between the two outer eye corners
14: Solve the/'-minimization problem: & = argmins. ||z|1 + iS normalized to be 50 pixels for each person. We introduce
eflr subjtoy= Az +e. artificial deformation to the testing image with a combina-

15: Compute residuals;(y) = ||y —Ai 6:(2)||2 fori = ki, ..., ks.

A tion of translation, rotation and scaling. We further use th
16: Output: identity(y) = arg min; r;(y).

alignment error||e||; as an indicator of success. Lej be
The transformationr defines a mapping between the cothe alignment error obtained by aligning a test image to the
ordinates of pixels in the large original image and a smallénaining images without any artificial perturbation. Whese th
(un)warped image. The pixels of the small image are stackex$t image is artificially perturbed and aligned, resulting
into a vector. To prevent aliasing artifacts in the downslaehp an alignment error, we consider the alignment successful if
image, one should apply a smoothing filter to the originagt —ro| < 0.01ry. Figure 3 shows the percentage of successful
image. For a simple implementation, a rectangular windorggistrations for all subjects for each artificial deforimat The
with regular sampling can used, but in general, the smad#isults suggest that our algorithm works extremely welhwit
image need not be regularly sampled in pixel coordinates. Reanslation up to 20% of the eye distance (or 10 pixels) in all
example, the sample locations could be arbitrarily setectdirections and up t80° in-plane rotation. We have also tested
from within a “face shaped” area. We will discuss howour alignment algorithm with scale variation and it can Hand
choosing different windows can affect the performance of oup to 15% change in scale.
algorithm in Section 4.

8. The training are illumination§0, 1, 7,13, 14,16, 18} of [26], and the
testing is the illumination 10.

7. Here, GL stands for General Linear. This class of tramsfions is able 9. Unless otherwise stated, this will be the default resmuat which we
to represent distortion in a perspective image of a planazabbj prepare all our training and testing datasets.
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Fig. 3. Region of attraction. Fraction of subjects for which the algorithm successfully aligns a synthetically perturbed test image. The amount of
translation is expressed as a fraction of the distance between the outer eye corners, and the amount of in-plane rotation in degrees. Top row: (a)
Simultaneous translation in = and y directions. (b) Simultaneous translation in y direction and in-plane rotation. (c) Simultaneous translation in y
direction and scale variation. Bottom row: (d) Translation in x direction only. (e) Translation in y direction only. (f) In-plane rotation only. (g) Scale
variation only.

We have gathered the statistics of the Viola and Jones’ fa —#scales=1
---#scales=2

detector on the Multi-PIE dataset. For 4,600 frontal image
of 230 subjects under 20 different illuminations, using oren
registration as the ground truth, the average misalignmeat

of the detected faces is about 6 pixels and the averageivariat
in scale is 8%. This falls safely inside the region of ati@act

- #scales=3

Success Rate [%]

for our alignment algorithm. 0.6/ 1
2) Multiscale ImplementatiorPerforming alignment in a mul-

tiscale faghlon has two beneflts: first, it prowdesalarggrdn 055 02 04 06 08 1 12 12 16 18 2
of attraction, and second, it reduces overall computation o

cost. Here, we further investigate the convergence behavigy 4. multiscale alignment. This figure shows the average success rate
of the algorithm as a function of the standard deviation of alignment over all possible perturbations. A smaller blur kernel can be
of the Gaussian smoothing filter and the number of scal@¥lied to achieve certain level of performance when more scales are
considered. We use the same 7 illuminations in Session’
as training, and all 20 illuminations in the same session as
testing. We introduce artificial deformation in bothand y
directions up to 16 pixels in th80 x 60 frame, with a step
size of 4 pixels, i.e.(Az, Ay) € {-16,-12,...,12,16} x
{-16,-12,...,12,16}. We consider an alignment successful
if the estimated coordinates of the eye-corners are within 1
pixel from the ground truth in the original image. In Figure
4, we report the alignment success rate, averaged over the (f) (2) (h) ) 0]
artificially perturbed initial deformations, as a functiohthe ) , o

. . . Fig. 5. 2D Alignment of test images with different poses to frontal
standard deviation of the Gaussian kermefor three choices 4iing images. (a) to (i): plausible alignment for pose from —45° to
of the number of scales. As one can see, using multiscalese. (j): a case when the algorithm fails for an extreme pose (> 45°).
indeed improves the performance, and when 3 scales are used,
a smaller convolution kernel can achieve a similar perforcea lighting condition at pose ranging from90° to +90° with
compared to a much larger kernel when only 2 scales are uss@dp size 5.625 a total of 33 poses. We use Viola and Jones’

face detector to initialize our alignment algorithm. Figus

3) 3D Pose VariationAs densely sampled pose and illumishows that our algorithm works reasonably well with poses
nation face images are not available in any of the publigo to+45°. Note that this level of out-of-plane pose variation
databases, including Multi-PIE, we have collected our owf beyond what we intend to handle with our formulation.
dataset using our own system (to be introduced in the next ) )
section). We use frontal face images of a subject under th& Comparison with Related Work
38 illuminations proposed in the next section as training. FOur modification to SRC roots solidly in the tradition of
testing, we collect images of the subject under a typicabémd adding deformation-robustness to face recognition algms

\ \




[6], [27], [28]. However, the only previous work to invesditg larities, self-shadowing, and inter-reflections all dréoaly

face alignment in the context of sparse signal representatiaffect the appearance of face images, and they all do so in

and SRC is the work of [29]. They consider the case wheaeway that violates the modeling assumptions of the Basri

the training images themselves are misaligned and allow caealysis.

deformation per training image. They linearize the tragnin Fortunately, even with these effects, for most materiags th

rather than the test, which is computationally more cossly @elationship between illumination and image is still linéa

it effectively triples the size of the training set. In adhiit, provided the sensor has a linear response ctfrf@r a more

as they align the test image to all subjects simultaneoitslyin-depth study of the relationship between illuminatiordan

potentially is more prone to local minima when the number dfages, we refer the reader to [19]. While the relationship

subjects increases, as we will see in the following expertale between illuminations and images is linear, only positive

comparisons. weights are allowed; the space of all images of an object with

1) Extended Yale BlIn this experiment, we have usedfixed pose and varying illumination is a convex cone lying in
the same experimental settings as in [29]. 20 subjedt positive orthant. The question becomes, how many images
are selected and each has 32 frontal images (selectgs it take to do a good job of representing images sampled
at random) as training and another 32 for testing. Afiom this cone?
artificial translation of 10 pixels (in both: and y It has been observed in various empirical studies that one
directions) is introduced to the test image. For ouran get away with using a small number of frontal illumina-
algorithm we downsample all the images&®x 80 for tions to linearly represent a wide range of new frontal illu-
memory reasons, whereas the work of [29] uses randomninations, when they are all taken under the same laboratory
projections. Note that the use of cropped images oonditions [18]. This is the case for many public face datse
this experiment introduces image boundary effects. Ouncluding AR, ORL, PIE, and Multi-PIE. Unfortunately, we
algorithm achieves the recognition rate 93.7%, comparbddve found that in practice, a training database consisting
to 89.1% recognition rate reported in [29]. purely of frontal illuminations is not sufficient to linegrl
2) CMU Multi-PIE. In this experiment, we choose allrepresent images of a faces taken under typical indoor or

subjects from the CMU Multi-PIE database, 7 trainingutdoor conditions (see the experiment conducted in Sectio
images from Session 1 and 1 test image from Sessibh As illustrated by the example in Figure 1, an insufficient
2 per person. The setting is exactly the same as thamber of training illuminations can result in recognition
previous experiment on 2D deformation. We again workailure. To ensure our algorithm works in practice, we need
with downsampled images of siZ&) x 60 pixels. An to find a set of training illuminations that are indesdfficient
artificial translation of 5 pixels (in botk andy direc- to linearly represent a wide variety of practical indoor and
tions) was induced in the test image. The algorithm afutdoor illuminations.

[29] achieves a recognition rate of 67.3%while ours
achieves 92.2%. 3.2 Projector-based lllumination System

We have designed a system that can acquire frontal images of a

3 HANDLING ILLUMINATION VARIATION subject while simultaneously illuminating the subjectnfrall
m@ctions above horizontal. A sketch of the system is shiown

test image, although taken under some arbitrary illumamati Flgure_ 6: The iI_Iumina_tion system consists of four prc_>jesto
can be linearly represented by a finite number of trainifj@t display various bright patterns onto the three whitdsva
iiluminations. Under what conditions is this a reasonablf the comer of a dark room. The light reflects off of the

assumption to make? What can we say from first principldé@!ls and illuminates the user's head indirectly. Afteritak
about how the training images should be chosen? the frontal illuminations we rotate the chair by 180 degraes

take pictures from the opposite direction. Having two camer
3.1 The lllumination Model speeds the process since only the chair needs to be moved

The strongest theoretical results so far regarding theioala in between frontal and rear illuminations. Our prOjegtaseq )
ship between illumination and the resulting sets of images §YStem has several advantages over flash-based illuminatio
due to Basri and Jacobs [20]. The main result of this paper%)éStems for face recognition:

that for convex Lambertian objects, distant illuminatioasd o The illuminations can be modified in software, rather than
fixed pose, all images of the object can be well approximated hardware.

by linear combinations of nine (properly chosen) basis iesag « Itis easy to capture many different illuminations quickly.
The basis images have mixed sign, and their illuminations

consist of the lowest frequency spherical harmonics. While11. materials that break this assumption include fluoresoeaterials and
this is a very important result for understanding the imaglee photochromic (“Transition”) lenses in some eyeglassesstMnaterials

formation process, the direct application of this resultriast &Mt ight in proportion to their incident light. .
12. Proper handling of gamma encoding is an important congidera

practical systems is misguided for several reasons. Spegliiyractitioners. Most cameras apply a non-linear and oftedocumented
response curve to captured images. A slight degradationrédrpgance will
10. That algorithm has two free parameters and d, which govern the occur if gamma compressed images are treated as if they were. livea
tradeoff between accuracy and run-time. For this experimenthose =1 recommend the use of cameras with well documented responses diate
andd = 514. can be inverted when the image file is loaded.

In the above section, we have made the assumption that
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(a) Coverage Experiment (b) Chosen Illumination Patterns

Fig. 7. lllumination Patterns. The cells are illuminated in sequence.
For rear illuminations the sequence is reversed. In the chosen pattern’s
rear illumination, the cells 1-5 and 7-11 are omitted for a total of
38 illuminations. The four rectangular regions correspond to the four

Fig. 6. Training acquisition system: Four projectors and two cameras
controlled by one computer.

o Good coverage and distant illumination can be achieved
simultaneously.

o There is no need to mount anything on the walls or
construct a large dome.

o The system can be assembled from off-the-shelf hard-
ware.

With our projector system, our choice of illuminations i
constrained only by the need to achieve a good $i&;oid
saturation, and achieve a reasonably short acquisition. ti
Two simplifying assumptions that we make are that everylpi
is either turned fully on or off in every illumination, andah
the illuminated regions do not overlap.

Assuming that each pixel is fully on or off enables us tas

guarantee that each illumination image has the same ove{)"’floriginal (directional) illuminations

intensity, merely by guaranteeing that we illuminate theaa

Fig.
residual versus different illumination training sets.

projectors.
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8. Study of sufficient illuminations. The average ¢! registration

.[33] for 3D reconstruction, but this is very disturbing toeth
ser. Y. Schechner [34] studies techniques for multipkgxin
illumination that can dramatically reduce the noise of tee d
rTrlnultiplexed images for certain classes of objects and casner
*/nile these technigues have not been incorporated into the
current system, they fit elegantly into our framework and wil
likely be used in future implementations. We stress that use

Ithis multiplexing technique is independent from the ckoi

number of pixels in each imadé Since our algorithm depends3.3 Choice of lllumination Patterns

only on the linearity between the illuminations and the iesg Wi
and not on the relative intensities of the illuminationse thf
designer has the freedom to choose the overall intensitlyeof t
illuminations to prevent saturation or low SNR, in a sort of
offline exposure control.

Assuming that the sequentially illuminated regions do not

overlap results in a set of training images that span a larger

cone than a similar number of overlapping regions. Thisltesu

in training images that require fewer negative coefficiemts

to represent test images under natural illuminations. Tleete

of negative coefficients iz appears to depend partly on how

the test images are taken and is still under study.
Relationship to existing workMost light stages used for

face recognition have been constructed for the purpose of

creating public data sets to study illumination invariafit@],

[26]. Many other light stages have been used for computer
graphics purposes [30], [31]. The light source can be moved
around manually [32], but this may result in poor consisgenc
of illuminations between users. Structured light appiaa
use projectors to directly illuminate the face (or othereah)

13. Since illuminations with more pixels illuminated will hazéetter SNR
(provided they don't saturate), there is an engineerinden# between the
SNR and the number of training images.

14. Since DLP projectors may have dramatically different oesp curves
depending on the mode they are in, it is not advisable to simptynalize
each illumination image by its mean.

e
or our large-scale experiments:

2

ran two experiments to guide our choice of illuminations

1) Coverage Experimenin the first experiment we attempt
to determine what coverage of the sphere is required to
achieve good interpolation for test images. The subject
was illuminated by 100 (50 front, 50 back) illuminations
arranged in concentric rings centered at the front camera.
Subsets of the training images were chosen, starting at
the front camera and adding a ring at a time. Each time
a ring was added to the training illumination set, the
average/! registration error (residual) for a set of test
images taken under sunlight was computed and plotted
in Figure 7(a). The more rings of training illuminations
are added, the lower the representation error becomes,
with diminishing returns.

Granularity Experimentin the second experiment we
attempt to determine how finely divided the illumination
sphere should be. At the first granularity level, the
projectors illuminate the covered area uniformly. At each
subsequent granularity level each illuminated cell is di-
vided in two along its longer side but intensity doubled.
For each granularity level the averagé registration
error is computed as in the coverage experiment and
shown in Figure 8(b). Again, diminishing returns are
observed as more illuminations are added.

)
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TABLE 1
Recognition rates on the Multi-PIE database for

In the plot for the coverage experiment, Figure 8(a), we .
P g P J (@ Algorithm 1 and [35]

clearly see two plateau regions: one is after 4 rings and ®ne i

after 10 rings. The first four rings represent the typicahfed Recognition rate Session 2] Session 3] Session 4
illuminations, which are present in most public face datgse Alg. 1,5=1 90.7% 89.6% 87.5%
however, we see that the residual stabilizes after 10 rings __Alg. 1 _ 93.9% 93.8% 92.3%
hich includ il inati f the back of th bi Alg. 1 with improved window| 95.0% 96.3% 97.3%
which include some illuminations from the back of the subjec [35] 95 % 934% 95 1%

This suggests that although the frontal illuminations acto

for most of the illumination on the face, some illumination :

from the back are needed in the training set to representdmal ¥~ 5 g &

with illumination coming from all directions. In the plot fo [« v QP Rt | :

the granularity experiment, Figure 8(b), we observe that t : : I ’ o |

residual reaches a plateau after four divisions, corredipgn ¥ .g! -

to a total of 32 illuminations. Based on the results from bo | b | )

experiments, we decide to partition the area covered byrste fi  (a) (b) (c) (@) (e) ®

19 rings into a total of 38 cells, WhOS.e layout is explained ilrgig 9. Representative failures from Multi-PIE. Top: training from

Figure 7(b). For our large-scale experiments, we have deite Session 1; Bottom: test images from Session 2. Due to éhanges in hair,

those illuminations for all our subjects. glasses, beard, or pose, our alignment fails on these subjects regardless
See below for the 38 training images of one subject: ~ of testimage illumination.

B
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over a period of several months. The dataset is challenging

due to the large number of subjects, and due to natural

4 T = D variation in subject appearance over time. Table 1 shows the
ESTS ON FUBLIC DATABASES result of our algorithm on each of the 3 testing sessions.

In this section and the next section, we conduct comprehedur algorithm achieves recognition rates ab®é& for all

sive experiments on large-scale face databases to ve#fy three sessions. For the test images, our iterative alighmen

performance of our algorithm and system. We first test on thgs initialized automatically via the Viola and Jones’ face

largest public face database available that is suitableeting detector. To demonstrate that the sparse representatisd ba

our algorithm, the CMU Multi-PIE. One shortcoming of therecognition step is indeed beneficial even when there are no

CMU Multi-PIE database for our purposes is that there is nmpostors, we include results for recognition based only on

separate set of test images taken under natural illumimgtiothe alignment error residuals (i.8.= 1), shown in row 1.

we are left to choose which sets of images to use for testing

and training. To challenge our algorithm, we choose only4l Improving the Sampling Window

small set of illuminations for the training set, yet we inddu o, algorithm’s errors are mostly caused by a few subjects
all illuminations in the testing set. In the following sesti we \yno significantly change their appearances between sassion
will test our algorithm on a face dataset that is collecte@byy (such as hair, facial hair, and eyeglasses). Some repatisent
own system. The goal for that experiment will be to show th@lamples are shown in Figure 9. For those subjects, align-
with a sufficient set of training illuminations for each se, ment and recognition fail on almost all test illuminations.
our algorithm indeed works stably and robustly with praaitic \jeanwhile, this observation also suggests that we might be
illumination, misalignment, pose, and occlusion, as @lyeaapje to improve the performance of our method by carefully
indicated by our experiment shown in Figure 1(bottom).  choosing a face region which is less affected by the above
CMU Multi-PIE provides the most extensive test set amongctors for recognition. In particular, since the foreheagion
public datasets. This database contains images of 337 Sféb1ike|y to be affected by the change of hair style, we
jects across simultaneous variation in pose, expressiuah, &y replacing the previous0 x 60 canonical frame with a
illumination. Of these 337 subjects, we use all of the 248a\y window that better excludes the forehead. We adjust the
subjects present in Session 1 as the training set. The rémainesolution of the window to keep. approximately constant. In
88 subjects are treated as “impostors”, or invalid images. Faqdition, we cut off two lower corners of th# x 60 canonical

each of the 249 training subjects, we include frontal imag@gme, motivated by the observation that in many cases the
of 7 frontal illuminations'® taken with neutral expression. As

suggested by the work of [18], we choose these extreme fronta
illuminations in the hope that they would linearly represen
other frontal illuminations well. For the test set, we usk al
20 illuminations from Sessions 2-4, which were recorded

15. It is possible that with further experimentation a reduceet of
illuminations can be found that performs as well or better.

16. They are illuminationg0, 1,7, 13, 14, 16, 18} of [26]. For each direc-
tional illumination, we subtract the ambient-illuminated irea

Fig. 10. Choosing different sampling windows.
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TABLE 2
Recognition rates on the Multi-PIE database for different pairings of alignment and recognition stages.

Align.

Rec. Face Detector Manual Iterative Alignment
Session— 2 3 4 2 3 4 2 3 4
NS 30.8% | 29.4% | 24.6% | 77.6% | 74.3% | 73.4% | 84.5% | 82.3% | 81.4%
NN 26.4% | 24.7% | 21.9% | 67.3% | 66.2% | 62.8% | 73.5% | 69.6% | 69.3%
LDA 51% | 59% | 43% | 49.4% | 44.3% | 47.9% | 91.0% | 89.9% | 88.1%
LBP 39.9% | 38.1% | 33.9% | 93.3% | 91.2% | 92.9% | 95.2% | 94.7% | 93.5%
SRC — — — — — — 93.9% | 93.8% | 92.3%

corners actually contain background. An example of the newWe also compare our result to Local Binary Patterns (LBP)
window is shown in Figure 10. [37], a local appearance descriptor which is able to caginee
Table 1 shows that the recognition rates on Multi-PIE indeatttails of facial appearance and texture. Due to its rolegstn
increase with this new window. In addition, Figure 9(a),, (b}o variations in illumination, facial expression, aginglasther
and (c) illustrate three representative subjects for whieh changes, LBP has achieved the state-of-the-art face régimogn
recognition rates of our algorithm are significantly bodsteperformance in the scenario when only one sample per person
with the new window. However, we should mention that this used for training [38]. In this paper, we follow the sanegpst
best choice of the window is problem-specific and there &s in [37] to construct an LBP descriptor for each training an
not a simple guideline to follow. For example, although thtesting sample. Th&80 x 60 face region is first divided into a
new window performs better on Multi-PIE, the same windowegular10 x 10 grid of cells, each of siz8 x 6 pixels. Within
does not help at all on our own database, which will beach cell, the histogram of 59 uniform binary patterns i:mthe
introduced in the next section. This is because most of thbemputed, where the patterns are generated by thresholding
training and testing images in our database are taken on &aeighboring pixels in a circle of radius 2 using the central
same day so the variation in hair style is very small. Hencpixel value. Finally, the local histograms are concateshdte
excluding the forehead part may actually result in loss g@foduce the global descriptor vector. As suggested in [Bé],

useful discriminative information. recognition is performed using a nearest neighbor classifie
. o with Chi square distance as the distance measure and we repor
4.2 Comparison to Existing Work the recognition rates with the same three types of input as

We first compare our result to the recent work [35]. Noticbefore.
that in [35], the initial registration is obtained from maatiy

, . _As shown in Table 2, although LBP achieves competi-
selected outer eye corners. Then, a supervised hierafchiga, recognition rates given manually aligned training and
sparse coding model based on local image descriptors

. . . - N - . té§ting samples, demonstrating its robustness to moderate
tra_uned, which enjoys certain trgnslat|on Invariant progs. misalignment, it still benefits from using the output of our
With the same training and testing sets, [35] is able to haa ative alignment algorithm as the input. In additiokelthe
dle the remaining mlsallgnment and achieves S‘tate'oame'other classical algorithms, the performance of LBP degrade
performance on the CMU Multi-PIE database. Table 1 Sho"fﬂi’:lmatically if it is applied directly to the output of a face

that our algorithm achieves similar or better performance Qetector. This is notable given that LBP is often applied

different sessions of Multi-PIE. _ . without any special alignment in practice. Finally, we iatite
To better examine the effectiveness of our iterative allglgﬁe improvement in performance of LBP over SRC in this

ment a_lgorithm, Wwe next compare our result to bas_eline "ne%xperiment to its robustness to illumination componeng th
projection-based algorithms, such as Nearest Neighbo),(NN, ot be linearly interpolated by the training set.
Nearest Subspace (NS) [36], and Linear Discriminant Angalys

(LDA) [2].Y7 Since these algorithms assume pixel-accurate!n aQQition, although. our algo_rithm is not designed for
alignment, they are not expected to work well if the tesfcognition when there is only a single gallery image per,use
image is not well aligned with the training. In Table 2, wéVeé compare its perfo_rmance_wnh LBP within this setting for
report the results of these classical algorithms with thré@mpleteness. For this experiment, we use the FERET dataset
types of testing image alignment: 1. alignment from the &iol[39], which contains five standard partitions: ‘fa’ is thellgey

and Jones’ detector, 2. alignment via manually selectedrou¢ontaining 1196 frontal images of 1196 subjects, and ‘fio’, *

eye cornerd® and 3. the output of our iterative alignmentdupl’ and ‘dup2’ are four sets of probe images. The testing
algorithm. The performance drop of the LDA algorithm ors€ts differ from the training in facial expression (‘fb’)lumi-
Multi-PIE reported here seems to agree with that report&@tion (c’), aging (‘dupl’) and long aging (‘dup2’). In &,
already in [26]. All of the classical algorithms benefit gtga €xcept for ‘fb’, we notice significant changes of illumirai

from being paired with our iterative alignment algorithm. in all the other three test sets. For the training, we agaip cr
and normalize the face region from each original image to an
17. We do not list results on PCA [1] as its performance is atvagiow 80 x 60 window using manually marked eye coordinates [40].
that of Nearest Subspace. _ - , __In Table 3, we report the performance of our algorithm on the
18. Two manually clicked points are sufficient to define a sirtila f ith i di | btained f he Violad
transformation. All of the experiments in this section areriedr out with our test sets, with input directly obtained from the Violada

similarity transformations. Jones’ detector. We also report the performance of LBP with
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TABLE 3 1 1
Performance on single gallery image FERET dataset 08 os
Recognition rate %| fb fc | dupl | dup2 08 08
LBP, 54.8 | 10.3 | 29.8 | 19.8 go7 207
LBP,, 96.6 | 58.8 | 716 | 615 < o6 € o6
LBP; 945 | 428 | 465 | 21.1 £ 05 £ 05
Alg. 1 952 | 284 | 461 | 20.3 8 04 2 o
ol ()
2 oafs ——NS 2 03
. NN
the same three types of input as before: we use letiés “ ©3: e 0z
“m”, and “” to indicate face detector, manual alignment, an *' — L1450 ol
our iterative alignment algorithm, respectively. o 02 o4 06 08 I 0o 02 04 06 08 1
. False Positive Rate False Positive Rate
As expected, our algorithm does not perform well except for (2) (b)

fb’, in which the illumination is similar to the training & ., 11 roc curvesfor subject validation on Multi-PIE database, (a) for
the mere variation in facial expression is handled well By thialigorithms with iterative alignment, and (b) for the classical algorithms
sparse error model. For the other three test sets, our #igori with manual alignment (indicated by a subscript “m").

fails because the illumination changes and other variation
seriously violate the assumptions of our method. This alf
explains why LBP performs worse with our iterative alignme \
algorithm, compared to manual alignment. On the other har_
while LBP achieves the best recognition rates given mayuall

aligned training and testing samples, its performanceattsgr Fig. 12. Recognition under varying level of random block occlusionThe
drasiically when the input is obtained directly from thedaci’ovSo ST91s Sample of ccclded est mages wth oooliion eve
detector. It is also worth noting that similar poor perfono@ 30% occlusion:

of LBP, as well as other descriptors, has been observed ontf&srcent occluded 10% | 20% | 30% | 40% | 50%

Labeled Face in the Wild (LFW) database, where the trainingRecognition rate| 99.6% | 94.9% | 79.6% | 46.5% | 19.8%
is uncontrolled and limited and the input is directly ob&n

from the face detector [41]. approach significantly outperforms the other algorithnms, i

All of these experimental results confirm that both iIIumiduding LBP, even when all algorithms are coupled with our
nation and alignment need to be simultaneously handled wWgthposed iterative alignment. In the right plot we again see
in order to achieve accurate face recognition, even whene thghat classical algorithms, and even LBP, are very sensitive
is no obvious occlusion or corruption in the test. to alignment. Similar contrasts between our algorithm and
baseline algorithms were also observed for SRC in [3], thoug
on much smaller datasets.

4.3 Subject Validation

We test the algorithms’ ability to reject invalid images bét

88 subjects not appearing in the training database. As mén4 Recognition with Synthetic Random Block Oc-

tioned before, thesparsity concentration inde¢SCl) is used clusion

as the outlier rejection rule. Given the sparse repredentatyye further test the robustness of diirnorm based algorithm
x of a test image with respect ¥ training classes, the SClg synthetic occlusion. We simulate various levels of osicin
measures how concentrated the coefficients are on a singin 10% to 50% by replacing a randomly located block

class in the dataset and is defined as in [3]: of the face image with an image of a baboon, as shown in
K - max; ||6;(x)||1 /||| — 1 Figure 12.In this experiment, to avoid any other factors tha

SCl(z) = 1 €10,1]. may contribute to extra occlusion of the face (such as the
_ ) ) ~ change of hair style), we choose illumination 10 from Sessio

It is easy to see that if SCt) = 1, the test image is 120 a5 testing. The rest of the experimental setting remains

represented using images from one single subject classyichanged. The table in Figure 12 shows that our algorithm is
SCl(z) = 0, the coefficients are spread evenly over all classgfdeed capable of handling a moderate amount of occlusion.
Thus, we can choose a threshald [0,1] for the proposed For example, at 20% occlusion, our algorithm still achieves
method and accept a test image as valid if @FI> ¢, and  94.9% recognition rate.

otherwise reject it as invalid. We compare this classifier to

classifiers based on thresholding the error residuals of N5 Recognition with Pose and Expression

NS, LDA, and LBP. _ _ o We now run tests of our algorithm on a subset of the images
Figure 11 plots the receiver operating characteristic (ROGom Multi-PIE with pose and expression variation in the
curves, which are generated by sweeping the thresholdest set, although we do not model these variations exlicit

through the entire range of possible values for each alggsing the same training set as above, we test our algorithm on
rithm.** On the left we can see that the SCI based recognitigiages in Session 2 withs° pose, for all 20 illuminations.

As expected, the recognition rate drops to 78.0%. We algo tes

19. Rejecting invalid images not in the entire database is mmuche our algorithm on images in Session 3 with smile, again for all

difficult than deciding if two face images are the same subjegure 11
should not be confused with typical ROC curves for face sirtylae.g.,
[42]. 20. This is the same session as the training set.
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practical illuminations and conditions. We have manually
partitioned the test images into four main categories:

C1l: 310indoorimages of 72 subjects without eyeglasses,

by - = frontal view (Fig. 13, row 1).

- PESE LW CLl S C2: 168 outdoor images of 48 subjects without eye-
glasses, frontal view (Fig. 13, row 2).

C3: 211 images of 32 subjects widyeglassegFig. 13,
row 3).

C4: 246 images of 56 subjects wisluinglasseg¢Fig. 14).

We apply Viola and Jones’ face detector on these images and
directly use the detected faces as the input to our algorithm
Table 4 reports the performance of our algorithm on each
category. Since our focus is on face recognition, the errors
Fig. 14. Representative examples of category C4op row: successfulex-  do not include failures of the face detector on some of the
amples with our method using overlapping blocks. Bottom row: failures hall . . A | ith
with our method using overlapping blocks. mor_e cha _englng Images. As On_e_ can see, our ago_rlt m
) o - ) ~achieves higher than 95% recognition rates on categories 1-
20 illuminations. The recognition rate is 64.8%. Of coutige, 3. Fyrthermore, using the full set of 38 illuminations indee
is reasonable to expect that the performance of our methgehroves the performance of our system under practical illu
will be significantly improved if pose and expression da® amjnation conditions compared to only using a small subset of

Fig. 13. Representative examples of categories C1-C®ne row for each
category.

G

available in the training. 7 illuminations. However, the performance dramaticallgpd
when the faces are occluded by various types of sunglasses,
5 TESTS ON OUR OWN DATABASE which could cover up to 40% of the entire face. Given the

Using the training acquisition system we described in Sacti Previous experimental results on synthetic random block oc
3, and shown in Figure 6, we have collected the frontal view §tUSions, and given that the illuminations are more chaileg,
109 subjectsvithout eyeglassesnder 38 illuminations shown the result is not surprising. In the next subsection, we will
in Figure 7. For testing our algorithm, we have also takeHow h_o_w additional assumptions can be used to improve the
935 images of these subjects with a different camera undefe&0gnition performance.

variety of practical conditions. TABLE 4

5.1 Necessity of Rear llluminations Recognition rates on our own database.
To see how training illuminations affect the performance of

our algorithm in practice, we now compare how well a few [ TestCategory | CI | C2 [ C3 [ C4 |
frontal illuminations can linearly represent: 1. other rfral [ Recognition Rate[ 98.4% | 95.8% [ 95.1% [ 40.9% |

|Ilum|n_at|ons taken under the s_ame_lab_oratory °°r1d'“‘3‘"“* 5.3 Improving the Performance with Occlusion us-
2. typical indoor and outdoor illuminations. To this end, we Overlapping Blocks
use the face database acquired by our system and use97

illuminations per subject as training. The illuminationse a A traditional approach to improve the performance of face
chosen to be similar to the 7 illuminations used in the presio "ecognition under severe occlusion is to use subregiomsads
experiment on Multi-PIE! We then test our algorithm onthe entire face as a whole. This idea has been explored in
the remaining24 — 7 = 17 frontal illuminations for all the Many earlier works; see [43], [3] for examples. Since in most
subjects. The recognition rate #.8%, nearly perfect. We real world cases the occlusion is contiguous, it is readenab
also test our algorithm on 310 indoor images and 168 outdd8r argue that a minority of the subregions are likely to be
images of these subjects taken under a variety of lightifgfected by the occlusion. In this paper, we adopt the sae id
conditions (category 1 and 2 specified below), similar to tfd partition the face into four overlapping blocks to bette
one shown in Figure 1, and the recognition rates for indodr aRandle sunglasses. This scheme is illustrated in Figure 15.
outdoor images drop down ®1.2% and89.2%, respectively. Notice that in this example three out of the four blocks are
This is a strong indication that frontal illuminations take Partially or almost completely occluded. In our experiment
under laboratory conditions are insufficient for represent €ach block is of siz&0 x 48 and covers about two-fifths of
test images under typical indoor and outdoor illuminations the entire face. The testing and training sets are parétion
5.2 Large-Scale Test with Sufficient Training lllumi- in the same way. We then independently apply Algorithm 1
nations and compute a sparse representation after registraticeaftr

block independently with respect to the training set. The

Now we use all 109 subjects and 38 illuminations in thf.oanition results for individual blocks are then aggteda
training and test on 935 images taken under a variety Bflvoting.

21. We use the illumination§s, 9, 12, 13, 18, 21, 22} shown in Figure 7(b) In this e.Xpe_”ment' we found that thle usmg tbpars}ty
to mimic the illuminations{0, 1, 6,7, 13, 14, 18} in Multi-PIE. concentration indeXSCI) scores for voting achieves higher




I

(b) (©) (d)
Fig. 15. Using overlapping blocks to tackle contiguous occlusior(a) The
test image, occluded by sunglasses. (b) The four overlapping blocks. (c)
The sparse representation is calculated after alignment for each block

independently. The red lines correspond to his true identity. (d) The true
identity is successfully recovered by voting based on the SCI scores.

/

—

~

AN

(a)

recognition rate than the residual measure used in Alguorith
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recognition in the presence of contiguous occlusion remain
an open problem.
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