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Abstract—This paper presents a new approach to single-image
superresolution, based on sparse signal representation. Research
on image statistics suggests that image patches can be well-
represented as a sparse linear combination of elements from
an appropriately chosen over-complete dictionary. Inspired by
this observation, we seek a sparse representation for each patch
of the low-resolution input, and then use the coefficients of this
representation to generate the high-resolution output. Theoretical
results from compressed sensing suggest that under mild condi-
tions, the sparse representation can be correctly recovered from
the downsampled signals. By jointly training two dictionaries for
the low- and high-resolution image patches, we can enforce the
similarity of sparse representations between the low resolution
and high resolution image patch pair with respect to their
own dictionaries. Therefore, the sparse representation of a low
resolution image patch can be applied with the high resolution
image patch dictionary to generate a high resolution image patch.
The learned dictionary pair is a more compact representation
of the patch pairs, compared to previous approaches, which
simply sample a large amount of image patch pairs [1], reducing
the computational cost substantially. The effectiveness of such
a sparsity prior is demonstrated for both general image super-
resolution and the special case of face hallucination. In both
cases, our algorithm generates high-resolution images that are
competitive or even superior in quality to images produced by
other similar SR methods. In addition, the local sparse modeling
of our approach is naturally robust to noise, and therefore the
proposed algorithm can handle super-resolution with noisy inputs
in a more unified framework.

I. INTRODUCTION

Super-resolution (SR) image reconstruction is currently a
very active area of research, as it offers the promise of
overcoming some of the inherent resolution limitations of
low-cost imaging sensors (e.g. cell phone or surveillance
cameras) allowing better utilization of the growing capability
of high-resolution displays (e.g. high-definition LCDs). Such
resolution-enhancing technology may also prove to be essen-
tial in medical imaging and satellite imaging where diagnosis
or analysis from low-quality images can be extremely difficult.
Conventional approaches to generating a super-resolution im-
age normally require as input multiple low-resolution images
of the same scene, which are aligned with sub-pixel accuracy.
The SR task is cast as the inverse problem of recovering the
original high-resolution image by fusing the low-resolution
images, based on reasonable assumptions or prior knowledge
about the observation model that maps the high-resolution im-
age to the low-resolution ones. The fundamental reconstruction
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constraint for SR is that the recovered image, after applying the
same generation model, should reproduce the observed low-
resolution images. However, SR image reconstruction is gen-
erally a severely ill-posed problem because of the insufficient
number of low resolution images, ill-conditioned registration
and unknown blurring operators, and the solution from the
reconstruction constraint is not unique. Various regularization
methods have been proposed to further stabilize the inversion
of this ill-posed problem, such as [2], [3], [4].

However, the performance of these reconstruction-based
super-resolution algorithms degrades rapidly when the desired
magnification factor is large or the number of available input
images is small. In these cases, the result may be overly
smooth, lacking important high-frequency details [5]. Another
class of SR approach is based on interpolation [6], [7],
[8]. While simple interpolation methods such as Bilinear or
Bicubic interpolation tend to generate overly smooth images
with ringing and jagged artifacts, interpolation by exploiting
the natural image priors will generally produce more favorable
results. Dai et al. [7] represented the local image patches using
the background/foreground descriptors and reconstructed the
sharp discontinuity between the two. Sun et. al. [8] explored
the gradient profile prior for local image structures and ap-
plied it to super-resolution. Such approaches are effective in
preserving the edges in the zoomed image. However, they are
limited in modeling the visual complexity of the real images.
For natural images with fine textures or smooth shading, these
approaches tend to produce watercolor-like artifacts.

A third category of SR approach is based on ma-
chine learning techniques, which attempt to capture the co-
occurrence prior between low-resolution and high-resolution
image patches. [9] proposed an example-based learning strat-
egy that applies to generic images where the low-resolution
to high-resolution prediction is learned via a Markov Random
Field (MRF) solved by belief propagation. [10] extends this
approach by using the Primal Sketch priors to enhance blurred
edges, ridges and corners. Nevertheless, the above methods
typically require enormous databases of millions of high-
resolution and low-resolution patch pairs, and are therefore
computationally intensive. [11] adopts the philosophy of Lo-
cally Linear Embedding (LLE) [12] from manifold learning,
assuming similarity between the two manifolds in the high-
resolution and the low-resolution patch spaces. Their algorithm
maps the local geometry of the low-resolution patch space to
the high-resolution one, generating high-resolution patch as
a linear combination of neighbors. Using this strategy, more
patch patterns can be represented using a smaller training
database. However, using a fixed number K neighbors for
reconstruction often results in blurring effects, due to over- or
under-fitting. In our previous work [1], we proposed a method
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for adaptively choosing the most relevant reconstruction neigh-
bors based on sparse coding, avoiding over- or under-fitting of
[11] and producing superior results. However, sparse coding
over a large sampled image patch database directly is too time-
consuming.

While the mentioned approaches above were proposed for
generic image super-resolution, specific image priors can be
incorporated when tailored to SR applications for specific
domains such as human faces. This face hallucination prob-
lem was addressed in the pioneering work of Baker and
Kanade [13]. However, the gradient pyramid-based prediction
introduced in [13] does not directly model the face prior, and
the pixels are predicted individually, causing discontinuities
and artifacts. Liu et al. [14] proposed a two-step statistical
approach integrating the global PCA model and a local patch
model. Although the algorithm yields good results, the holistic
PCA model tends to yield results like the mean face and the
probabilistic local patch model is complicated and compu-
tationally demanding. Wei Liu et al. [15] proposed a new
approach based on TensorPatches and residue compensation.
While this algorithm adds more details to the face, it also
introduces more artifacts.

This paper focuses on the problem of recovering the super-
resolution version of a given low-resolution image. Similar
to the aforementioned learning-based methods, we will rely
on patches from the input image. However, instead of work-
ing directly with the image patch pairs sampled from high-
and low-resolution images [1], we learn a compact repre-
sentation for these patch pairs to capture the co-occurrence
prior, significantly improving the speed of the algorithm.
Our approach is motivated by recent results in sparse signal
representation, which suggest that the linear relationships
among high-resolution signals can be accurately recovered
from their low-dimensional projections [16], [17]. Although
the super-resolution problem is very ill-posed, making precise
recovery impossible, the image patch sparse representation
demonstrates both effectiveness and robustness in regularizing
the inverse problem.

a) Basic Ideas: To be more precise, let D ∈ R
n×K

be an overcomplete dictionary of K atoms (K > n), and
suppose a signal x ∈ R

n can be represented as a sparse linear
combination with respect to D. That is, the signal x can be
written as x = Dα0 where where α0 ∈ R

K is a vector with
very few (� n) nonzero entries. In practice, we might only
observe a small set of measurements y of x:

y
.= Lx = LDα0, (1)

where L ∈ R
k×n with k < n is a projection matrix. In our

super-resolution context, x is a high-resolution image (patch),
while y is its low-resolution counter part (or features extracted
from it). If the dictionary D is overcomplete, the equation
x = Dα is underdetermined for the unknown coefficients α.
The equation y = LDα is even more dramatically under-
determined. Nevertheless, under mild conditions, the sparsest
solution α0 to this equation will be unique. Furthermore, if
D satisfies an appropriate near-isometry condition, then for
a wide variety of matrices L, any sufficiently sparse linear
representation of a high-resolution image patch x in terms

Fig. 1. Reconstruction of a raccoon face with magnification factor 2. Left:
result by our method. Right: the original image. There is little noticeable
difference visually even for such a complicated texture. The RMSE for the
reconstructed image is 5.92 (only the local patch model is employed).

of the D can be recovered (almost) perfectly from the low-
resolution image patch [17], [18].1 Fig. 1 shows an example
that demonstrates the capabilities of our method derived from
this principle. The image of the raccoon face is blurred and
downsampled to half of its original size in both dimensions.
Then we zoom the low-resolution image to the original size
using the proposed method. Even for such a complicated
texture, sparse representation recovers a visually appealing
reconstruction of the original signal.

Recently sparse representation has been successfully applied
to many other related inverse problems in image processing,
such as denoising [19] and restoration [20], often improving on
the state-of-the-art. For example in [19], the authors use the
K-SVD algorithm [21] to learn an overcomplete dictionary
from natural image patches and successfully apply it to the
image denoising problem. In our setting, we do not directly
compute the sparse representation of the high-resolution patch.
Instead, we will work with two coupled dictionaries, Dh for
high-resolution patches, and D l for low-resolution ones. The
sparse representation of a low-resolution patch in terms of
Dl will be directly used to recover the corresponding high-
resolution patch from Dh. We obtain a locally consistent
solution by allowing patches to overlap and demanding that the
reconstructed high-resolution patches agree on the overlapped
areas. In this paper, we try to learn the two overcomplete
dictionaries in a probabilistic model similar to [22]. To enforce
that the image patch pairs have the same sparse representations
with respect to Dh and Dl, we learn the two dictionaries
simultaneously by concatenating them with proper normal-
ization. The learned compact dictionaries will be applied to
both generic image super-resolution and face hallucination to
demonstrate their effectiveness.

Compared with the aforementioned learning-based methods,
our algorithm requires only two compact learned dictionaries,
instead of a large training patch database. The computation,
mainly based on linear programming or convex optimization,
is much more efficient and scalable, compared with [9], [10],
[11]. The online recovery of the sparse representation uses the
low-resolution dictionary only – the high-resolution dictionary

1Even though the structured projection matrix defined by blurring and
downsampling in our SR context does not guarantee exact recovery of α0,
empirical experiments indeed demonstrate the effectiveness of such a sparse
prior for our SR tasks.
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is used to calculate the final high-resolution image. The
computed sparse representation adaptively selects the most
relevant patch bases in the dictionary to best represent each
patch of the given low-resolution image. This leads to superior
performance, both qualitatively and quantitatively, compared
to the method described in [11], which uses a fixed number
of nearest neighbors, generating sharper edges and clearer
textures. In addition, the sparse representation is robust to
noise as suggested in [19], and thus our algorithm is more
robust to noise in the test image, while most other methods
cannot perform denoising and super-resolution simultaneously.

b) Organization of the Paper: The remainder of this
paper is organized as follows. Section II details our formula-
tion and solution to the image super-resolution problem based
on sparse representation. Specifically, we study how to apply
sparse representation for both generic image super-resolution
and face hallucination. In Section III, we discuss how to
learn the two dictionaries for the high- and low-resolution
image patches respectively. Various experimental results in
Section IV demonstrate the efficacy of sparsity as a prior for
regularizing image super-resolution.

c) Notations: X and Y denote the high- and low-
resolution images respectively, and x and y denote the high-
and low-resolution image patches respectively. We use bold
uppercase D to denote the dictionary for sparse coding,
specifically we use Dh and Dl to denote the dictionaries
for high- and low-resolution image patches respectively. Bold
lowercase letters denote vectors. Plain uppercase letters denote
regular matrices, i.e., S is used as a downsampling operation
in matrix form. Plain lowercase letters are used as scalars.

II. IMAGE SUPER-RESOLUTION FROM SPARSITY

The single-image super-resolution problem asks: given a
low-resolution image Y , recover a higher-resolution image X
of the same scene. Two constraints are modeled in this work
to solve this ill-posed problem: 1) reconstruction constraint,
which requires that the recovered X should be consistent with
the input Y with respect to the image observation model;
and 2) sparsity prior, which assumes that the high resolution
patches can be sparsely represented in an appropriately chosen
overcomplete dictionary, and that their sparse representations
can be recovered from the low resolution observation.

1) Reconstruction constraint: The observed low-resolution
image Y is a blurred and downsampled version of the high
resolution image X:

Y = SHX (2)

Here, H represents a blurring filter, and S the downsampling
operator.

Super-resolution remains extremely ill-posed, since for a
given low-resolution input Y , infinitely many high-resolution
images X satisfy the above reconstruction constraint. We
further regularize the problem via the following prior on small
patches x of X:

2) Sparsity prior: The patches x of the high-resolution
image X can be represented as a sparse linear combination in
a dictionary Dh trained from high-resolution patches sampled

from training images:

x ≈Dhα for some α ∈ R
K with ‖α‖0 � K. (3)

The sparse representation α will be recovered by representing
patches y of the input image Y , with respect to a low
resolution dictionary D l co-trained with Dh. The dictionary
training process will be discussed in Section III.

We apply our approach to both generic images and face
images. For generic image super-resolution, we divide the
problem into two steps. First, as suggested by the sparsity
prior (3), we find the sparse representation for each local
patch, respecting spatial compatibility between neighbors.
Next, using the result from this local sparse representation,
we further regularize and refine the entire image using the
reconstruction constraint (2). In this strategy, a local model
from the sparsity prior is used to recover lost high-frequency
for local details. The global model from the reconstruction
constraint is then applied to remove possible artifacts from
the first step and make the image more consistent and natural.
The face images differ from the generic images in that the face
images have more regular structure and thus reconstruction
constraints in the face subspace can be more effective. For
face image super-resolution, we reverse the above two steps
to make better use of the global face structure as a regularizer.
We first find a suitable subspace for human faces, and apply
the reconstruction constraints to recover a medium resolution
image. We then recover the local details using the sparsity
prior for image patches.

The remainder of this section is organized as follows: in
Section II-A, we discuss super-resolution for generic images.
We will introduce the local model based on sparse represen-
tation and global model based on reconstruction constraints.
In Section II-B we discuss how to introduce the global face
structure into this framework to achieve more accurate and
visually appealing super-resolution for face images.

A. Generic Image Super-Resolution from Sparsity

1) Local model from sparse representation: Similar to
the patch-based methods mentioned previously, our algorithm
tries to infer the high-resolution image patch for each low-
resolution image patch from the input. For this local model,
we have two dictionaries Dh and Dl, which are trained to
have the same sparse representations for each high-resolution
and low-resolution image patch pair. We subtract the mean
pixel value for each patch, so that the dictionary represents
image textures rather than absolute intensities. In the recovery
process, the mean value for each high-resolution image patch
is then predicted by its low-resolution version.

For each input low-resolution patch y, we find a sparse
representation with respect to D l. The corresponding high-
resolution patch bases Dh will be combined according to these
coefficients to generate the output high-resolution patch x.
The problem of finding the sparsest representation of y can
be formulated as:

min ‖α‖0 s.t. ‖FDlα− Fy‖22 ≤ ε, (4)
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where F is a (linear) feature extraction operator. The main role
of F in (4) is to provide a perceptually meaningful constraint 2

on how closely the coefficients α must approximate y. We will
discuss the choice of F in Section III.

Although the optimization problem (4) is NP-hard in gen-
eral, recent results [23], [24] suggest that as long as the desired
coefficients α are sufficiently sparse, they can be efficiently
recovered by instead minimizing the �1-norm 3, as follows:

min ‖α‖1 s.t. ‖FDlα− Fy‖22 ≤ ε. (5)

Lagrange multipliers offer an equivalent formulation

min
α
‖FDlα− Fy‖22 + λ‖α‖1, (6)

where the parameter λ balances sparsity of the solution
and fidelity of the approximation to y. Notice that this is
essentially a linear regression regularized with �1-norm on the
coefficients, known in statistical literature as the Lasso [27].

Solving (6) individually for each local patch does not
guarantee the compatibility between adjacent patches. We
enforce compatibility between adjacent patches using a one-
pass algorithm similar to that of [28].4 The patches are
processed in raster-scan order in the image, from left to right
and top to bottom. We modify (5) so that the super-resolution
reconstruction Dhα of patch y is constrained to closely
agree with the previously computed adjacent high-resolution
patches. The resulting optimization problem is

min ‖α‖1 s.t. ‖FDlα− Fy‖22 ≤ ε1,

‖PDhα−w‖22 ≤ ε2,
(7)

where the matrix P extracts the region of overlap between
the current target patch and previously reconstructed high-
resolution image, and w contains the values of the previously
reconstructed high-resolution image on the overlap. The con-
strained optimization (7) can be similarly reformulated as:

min
α
‖D̃α− ỹ‖22 + λ‖α‖1, (8)

where D̃ =
[

FDl

βPDh

]
and ỹ =

[
Fy
βw

]
. The parameter β

controls the tradeoff between matching the low-resolution
input and finding a high-resolution patch that is compatible
with its neighbors. In all our experiments, we simply set
β = 1. Given the optimal solution α∗ to (8), the high-
resolution patch can be reconstructed as x = Dhα∗.

2Traditionally, one would seek the sparsest α s.t. ‖Dlα− y‖2 ≤ ε. For
super-resolution, it is more appropriate to replace this 2-norm with a quadratic
norm ‖ · ‖F T F that penalizes visually salient high-frequency errors.

3There are also some recent works showing certain non-convex optimization
problems can produce superior sparse solutions to the �1 convex problem, e.g.,
[25] and [26].

4There are different ways to enforce compatibility. In [11], the values in the
overlapped regions are simply averaged, which will result in blurring effects.
The greedy one-pass algorithm [28] is shown to work almost as well as the
use of a full MRF model [9]. Our algorithm, not based on the MRF model,
is essentially the same by trusting partially the previously recovered high
resolution image patches in the overlapped regions.

Algorithm 1 (Super-Resolution via Sparse Representation).
1: Input: training dictionaries Dh and Dl, a low-resolution

image Y .
2: For each 3 × 3 patch y of Y , taken starting from the

upper-left corner with 1 pixel overlap in each direction,

• Compute the mean pixel value m of patch y.
• Solve the optimization problem with D̃ and ỹ defined

in (8): minα ‖D̃α− ỹ‖22 + λ‖α‖1.
• Generate the high-resolution patch x = Dhα∗. Put

the patch x + m into a high-resolution image X 0.

3: End
4: Using gradient descent, find the closest image to X 0

which satisfies the reconstruction constraint:

X∗ = arg min
X
‖SHX − Y ‖22 + c‖X −X0‖22.

5: Output: super-resolution image X ∗.

2) Enforcing global reconstruction constraint: Notice that
(5) and (7) do not demand exact equality between the low-
resolution patch y and its reconstruction D lα. Because of
this, and also because of noise, the high-resolution image
X0 produced by the sparse representation approach of the
previous section may not satisfy the reconstruction constraint
(2) exactly. We eliminate this discrepancy by projecting X 0

onto the solution space of SHX = Y , computing

X∗ = argmin
X
‖SHX − Y ‖22 + c‖X −X0‖22. (9)

The solution to this optimization problem can be efficiently
computed using gradient descent. The update equation for this
iterative method is

Xt+1 = Xt + ν[HT ST (Y − SHXt) + c(X −X0)], (10)

where X t is the estimate of the high-resolution image after
the t-th iteration, ν is the step size of the gradient descent.

We take result X∗ from the above optimization as our
final estimate of the high-resolution image. This image is as
close as possible to the initial super-resolution X 0 given by
sparsity, while respecting the reconstruction constraint. The
entire super-resolution process is summarized as Algorithm 1.

3) Global optimization interpretation: The simple SR algo-
rithm outlined in the previous two subsections can be viewed
as a special case of a more general sparse representation
framework for inverse problems in image processing. Related
ideas have been profitably applied in image compression,
denoising [19], and restoration [20]. In addition to placing
our work in a larger context, these connections suggest means
of further improving the performance, at the cost of increased
computational complexity.

Given sufficient computational resources, one could in prin-
ciple solve for the coefficients associated with all patches
simultaneously. Moreover, the entire high-resolution image X
itself can be treated as a variable. Rather than demanding that
X be perfectly reproduced by the sparse coefficients α, we
can penalize the difference between X and the high-resolution
image given by these coefficients, allowing solutions that
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are not perfectly sparse, but better satisfy the reconstruction
constraints. This leads to a large optimization problem:

X∗ =arg min
X,{αij}

{
‖SHX − Y ‖22 + λ

∑
i,j

‖αij‖0

+ γ
∑
i,j

‖Dhαij − PijX‖22 + τρ(X)
}
.

(11)

Here, αij denotes the representation coefficients for the
(i, j)th patch of X , and Pij is a projection matrix that selects
the (i, j)th patch from X . ρ(X) is a penalty function that
encodes additional prior knowledge about the high-resolution
image. This function may depend on the image category, or
may take the form of a generic regularization term (e.g., Huber
MRF, Total Variation, Bilateral Total Variation).

Algorithm 1 can be interpreted as a computationally efficient
approximation to (11). The sparse representation step recovers
the coefficients α by approximately minimizing the sum of
the second and third terms of (11). The sparsity term ‖α ij‖0
is relaxed to ‖αij‖1, while the high-resolution fidelity term
‖Dhαij − PijX‖2 is approximated by its low-resolution
version ‖FDlαij − Fyij‖2.

Notice, that if the sparse coefficients α are fixed, the third
term of (11) essentially penalizes the difference between the
super-resolution image X and the reconstruction given by
the coefficients:

∑
i,j ‖Dhαij − PijX‖22 ≈ ‖X0 − X‖22.

Hence, for small γ, the back-projection step of Algorithm 1
approximately minimizes the sum of the first and third terms
of (11).

Algorithm 1 does not, however, incorporate any prior be-
sides sparsity of the representation coefficients – the term
ρ(X) is absent in our approximation. In Section IV we will
see that sparsity in a relevant dictionary is a strong enough
prior that we can already achieve good super-resolution per-
formance. Nevertheless, in settings where further assumptions
on the high-resolution signal are available, these priors can
be incorperated into the global reconstruction step of our
algorithm.

B. Face super-resolution from Sparsity

Face image resolution enhancement is usually desirable in
many surveillance scenarios, where there is always a large
distance between the camera and the objects (people) of
interest. Unlike the generic image super-resolution discussed
earlier, face images are more regular in structure and thus
should be easier to handle. Indeed, for face super-resolution,
we can deal with lower resolution input images. The basic idea
is first to use the face prior to zoom the input to a reasonable
medium resolution, and then to employ the local sparsity prior
model to recover details. To be precise, the solution is also
approached in two steps: 1) global model: use reconstruction
constraint to recover a medium high-resolution face image,
but the solution is searched only in the face subspace; and 2)
local model: use the local sparse model to recover the image
details.

a) Non-negative matrix factorization: In face super-
resolution, the most frequently used subspace method for mod-
eling the human face is Principal Component Analysis (PCA),

which chooses a low-dimensional subspace that captures as
much of the variance as possible. However, the PCA bases
are holistic, and tend to generate smooth faces similar to the
mean. Moreover, because principal component representations
allow negative coefficients, the PCA reconstruction is often
hard to interpret.

Even though faces are objects with lots of variance, they
are made up of several relatively independent parts such as
eyes, eyebrows, noses, mouths, checks and chins. Nonnegative
Matrix Factorization (NMF) [29] seeks a representation of the
given signals as an additive combination of local features. To
find such a part-based subspace, NMF is formulated as the
following optimization problem:

argmin
U,V
‖X − UV ‖22

s.t. U ≥ 0, V ≥ 0,
(12)

where X ∈ R
n×m is the data matrix, U ∈ R

n×r is the basis
matrix and V ∈ R

r×m is the coefficient matrix. In our context
here, X simply consists of a set of pre-aligned high-resolution
training face images as its column vectors. The number of the
bases r can be chosen as n∗m/(n+m) which is smaller than
n and m, meaning a more compact representation. It can be
shown that a locally optimum of (12) can be obtained via the
following update rules:

Vij ←− Vij
(UT X)ij

(UT UV )ij

Uki ←− Uki
(XV T )ki

(UV V T )ki
,

(13)

where 1 ≤ i ≤ r, 1 ≤ j ≤ m and 1 ≤ k ≤ n. The obtained
basis matrix U is often sparse and localized.

b) Two step face super-resolution: Let X and Y denote
the high resolution and low resolution faces respectively. Y is
obtained from X by smoothing and downsampling as in Eq. 2.
We want to recover X from the observation Y . In this paper,
we assume Y has been pre-aligned to the training database
by either manually labeling the feature points or with some
automatic face alignment algorithm such as the method used
in [14]. We can achieve the optimal solution for X based on
the Maximum a Posteriori (MAP) criteria,

X∗ = arg max
X

p(Y |X)p(X). (14)

p(Y |X) models the image observation process, usually with
Gaussian noise assumption on the observation Y , p(Y |X) =
1/Z exp(−‖SHUc − Y ‖22/(2 ∗ σ2)) with Z being a nor-
malization factor. p(X) is a prior on the underlying high
resolution image X , typically in the exponential form p(X) =
exp(−cρ(X)). Using the rules in (13), we can obtain the basis
matrix U , which is composed of sparse bases. Let Ω denote
the face subspace spanned by U . Then in the subspace Ω, the
super-resolution problem in (14) can be formulated using the
reconstruction constraints as:

c∗ = argmin
c
‖SHUc− Y ‖22 + ηρ(Uc) s.t. c ≥ 0, (15)

where ρ(Uc) is a prior term regularizing the high resolution
solution, c ∈ R

r×1 is the coefficient vector in the subspace Ω
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Algorithm 2 (Face Hallucination via Sparse Representation).
1: Input: sparse basis matrix U , training dictionaries Dh and

Dl, a low-resolution aligned face image Y .
2: Find a smooth high-resolution face X̂ from the subspace

spanned by U through:

• Solve the optimization problem in (16):
arg minc ‖SHUc− Y ‖22 + η‖ΓUc‖2 s.t. c ≥ 0.

• X̂ = Uc∗.

3: For each patch y of X̂ , taken starting from the upper-left
corner with 1 pixel overlap in each direction,

• Compute and record the mean pixel value of y as m.
• Solve the optimization problem with D̃ and ỹ defined

in (8): minα ‖D̃α− ỹ‖22 + λ‖α‖1.
• Generate the high-resolution patch x = Dhα∗ + m.

Put the patch x into a high-resolution image X ∗.

4: Output: super-resolution face X ∗.

for estimated the high resolution face, and η is a parameter
used to balance the reconstruction fidelity and the penalty of
the prior term. In this paper, we simply use a generic image
prior requiring that the solution be smooth. Let Γ denote a
matrix performing high-pass filtering. The final formulation
for (15) is:

c∗ = argmin
c
‖SHUc− Y ‖22 + η‖ΓUc‖2 s.t. c ≥ 0.

(16)

The medium high-resolution image X̂ is approximated by
Uc∗. The prior term in (16) suppresses the high frequency
components, resulting in over-smoothness in the solution
image. We rectify this using the local patch model based
on sparse representation mentioned earlier in Section II-A1.
The complete framework of our algorithm is summarized as
Algorithm 2.

III. LEARNING THE DICTIONARY PAIR

In the previous section, we discussed regularizing the super-
resolution problem using sparse prior which states that each
pair of high- and low-resolution image patches have the same
sparse representations with respect to the two dictionaries Dh

and Dl. A straightforward way to obtain two such dictionaries
is to sample image patch pairs directly, which preserves the
correspondence between the high resolution and low resolution
patch items [1]. However, such a strategy will result in large
dictionaries and hence expensive computation. This section
will focus on learning a more compact dictionary pair for
speeding up the computation.

A. Single Dictionary Training

Sparse coding is the problem of finding sparse repre-
sentations of the signals with respect to an overcomplete
dictionary D. The dictionary is usually learned from a set of
training examples X = {x1, x2, ..., xt}. Generally, it is hard
to learn a compact dictionary which guarantees that sparse
representation of (4) can be recovered from � 1 minimization
in (5). Fortunately, many sparse coding algorithms proposed

previously suffice for practical applications. In this work, we
focus on the following formulation:

D =arg min
D,Z
‖X −DZ‖22 + λ‖Z‖1

s.t. ‖Di‖22 ≤ 1, i = 1, 2, ..., K.
(17)

where the �1 norm ‖Z‖1 is to enforce sparsity, and the �2 norm
constraints on the columns of D remove the scaling ambiguity
5. This particular formulation has been studied extensively
[30], [22], [31]. (17) is not convex in both D and Z , but is
convex in one of them with the other fixed. The optimization
performs in an alternative manner over Z and D:

1) Initialize D with a Gaussian random matrix, with each
column unit normalized.

2) Fix D, update Z by

Z = arg min
Z
‖X −DZ‖22 + λ‖Z‖1, (18)

which can be solved efficiently through linear program-
ming.

3) Fix Z , update D by

D = argmin
D
‖X −DZ‖22

s.t.‖Di‖22 ≤ 1, i = 1, 2, ..., K,
(19)

which is a Quadratically Constrained Quadratic Pro-
gramming that is ready to be solved in many optimiza-
tion packages.

4) Iterate between 2) and 3) until converge. In our imple-
mentation, we used a Matlab package developed in [22].

B. Joint Dictionary Training

Given the sampled training image patch pairs P =
{Xh, Y l}, where Xh = {x1, x2, ..., xn} are the set of sampled
high resolution image patches and Y l = {y1, y2, ..., yn} are
the corresponding low resolution image patches (or features),
our goal is to learn dictionaries for high resolution and low res-
olution image patches, so that the sparse representation of the
high resolution patch is the same as the sparse representation
of the corresponding low resolution patch. This is a difficult
problem, due to the ill-posed nature of super-resolution. The
individual sparse coding problems in the high-resolution and
low-resolution patch spaces are

Dh = arg min
{Dh,Z}

‖Xh −DhZ‖22 + λ‖Z‖1, (20)

and
Dl = arg min

{Dl,Z}
‖Y l −DlZ‖22 + λ‖Z‖1, (21)

respectively. We combine these objectives, forcing the high-
resolution and low-resolution representations to share the same
codes, instead writing

min
{Dh,Dl,Z}

1
N
‖Xh −DhZ‖22 +

1
M
‖Y l −DlZ‖22

+ λ(
1
N

+
1
M

)‖Z‖1,
(22)

5Note that without the norm constraints the cost can always be reduced by
dividing Z by c > 1 and multiplying D by c > 1.
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Fig. 2. The high resolution image patch dictionary trained by (24) using
100,000 high resolution and low resolution image patch pairs sampled from
the generic training images. Totally 512 dictionary atoms are learned with
each atom of size 9 × 9.

where N and M are the dimensions of the high resolution and
low resolution image patches in vector form. Here, 1/N and
1/M balance the two cost terms of (20) and (21). (22) can be
rewritten as

min
{Dh,Dl,Z}

‖Xc −DcZ‖22 + λ(
1
N

+
1
M

)‖Z‖1, (23)

or equivalently

min
{Dh,Dl,Z}

‖Xc −DcZ‖22 + λ̂‖Z‖1, (24)

where

Xc =

[
1√
N

Xh

1√
M

Y l

]
, Dc =

[
1√
N

Dh
1√
M

Dl

]
. (25)

Thus we can use the same learning strategy in the single
dictionary case for training the two dictionaries for our super-
resolution purpose. Note that since we are using features from
the low resolution image patches, Dh and Dl are not simply
connected by a linear transform, otherwise the training process
of (24) will depend on the high resolution image patches only
(for detail, refer to Section III-C). Fig. 2 shows the dictionary
learned by (24) for generic images.6 The learned dictionary
demonstrates basic patterns of the image patches, such as
orientated edges, instead of raw patch prototypes, due to its
compactness.

C. Feature Representation for Low Resolution Image Patches

In (4), we use a feature transformation F to ensure that the
computed coefficients fit the most relevant part of the low-
resolution signal, and hence have a more accurate prediction
for the high resolution image patch reconstruction. Typically,
F is chosen as some kind of high-pass filter. This is reasonable
from a perceptual viewpoint, since people are more sensitive to

6We omit the dictionary for the low resolution image patches because we
are training on features instead the patches themselves.

the high-frequency content of the image. The high-frequency
components of the low-resolution image are also arguably the
most important for predicting the lost high-frequency content
in the target high-resolution image.

In the literature, people have suggested extracting different
features for the low resolution image patch in order to boost
the prediction accuracy. Freeman et al. [9] used a high-pass
filter to extract the edge information from the low-resolution
input patches as the feature. Sun et. al. [10] used a set
of Gaussian derivative filters to extract the contours in the
low-resolution patches. Chang et. al. [11] used the first- and
second-order gradients of the patches as the representation. In
this paper, we also use the first- and second-order derivatives as
the feature for the low-resolution patch due to their simplicity
and effectiveness. The four 1-D filters used to extract the
derivatives are:

f1 = [−1, 0, 1], f2 = fT
1 ,

f3 = [1, 0,−2, 0, 1], f4 = fT
3 ,

(26)

where the superscript “T ” means transpose. Applying these
four filters yields four feature vectors for each patch, which
are concatenated into one vector as the final representation of
the low-resolution patch. In our implementation, the four filters
are not applied directly to the sampled low resolution image
patches; instead, we apply the four filters to the training im-
ages. Thus, for each low resolution training image, we get four
gradient maps, and we extract fours patches from these gra-
dient maps at each location, and concatenate them to become
the feature vector. Therefore, the feature representation for
each low resolution image patch also encodes its neighboring
information, which is beneficial for promoting compatibility
among adjacent patches in the final super-resolution image.

In practice, we find that it works better to extract the features
from the upsampled version of the low-resolution image
instead of the original one. That is, we first upsample the low
resolution image by factor of two 7 using Bicubic interpolation,
and then extract gradient features from it. Since we know
all the zoom ratios, it is easy to track the correspondence
between high resolution image patches and the upsampled low
resolution image patches both for training and testing. Because
of the way of extracting features from the low resolution
image patches, the two dictionaries Dh and Dl are not simply
linearly connected, making the joint learning process in Eq.
24 more reasonable.

IV. EXPERIMENTAL RESULTS

In this section, we first demonstrate the super-resolution
results obtained by applying the above methods on both
generic and face images. We then move on to discuss various
influential factors for the proposed algorithm including dic-
tionary size, noise with inputs, and the global reconstruction
constraints.

In our experiments, we magnify the input low resolution
image by a factor of 3 for generic images and 4 for face

7We choose 2 mainly for dimension considerations. For example, if we
work on 3-by-3 patches in the low resolution image, by upsampling the image
by ratio of 2, the final feature for the 9 dimensional low resolution patch will
be 6 × 6 × 4 = 144.
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images, which is commonplace in the literature of single frame
super-resolution. In generic image super-resolution, for the
low-resolution images, we always use 3 × 3 low-resolution
patches (upsampled to 6×6), with overlap of 1 pixel between
adjacent patches, corresponding to 9× 9 patches with overlap
of 3 pixels for the high-resolution patches. In face super-
resolution, we choose the patch size as 5 × 5 pixels for both
low- and high-resolution face images. For color images, we
apply our algorithm to the illuminance channel only, since
humans are more sensitive to illuminance changes. We there-
fore interpolate the color layers (Cb, Cr) using plain Bicubic
interpolation. We evaluate the results of various methods both
visually and qualitatively in Root Mean Square Error (RMSE).
Even though RMSE is a common criterion in image processing
for recovery, it is not quite reliable for rating visual image
quality [32], as we will see in the following parts. Note
that since we only work on illuminance channel, the RMSE
reported is carried out only on the illuminance channel.

A. Single Image Super-Resolution

1) Generic image super-resolution: We apply our meth-
ods to generic images such as flowers, human faces and
architectures. The two dictionaries for high resolution and
low resolution image patches are trained from 100,000 patch
pairs randomly sampled from natural images collected from
the internet. We preprocess these images by cropping out
the textured regions and discard the smooth parts 8. Unless
otherwise explicitly stated, we always fix the dictionary size
as 1024 in all our experiments, which is a balance between
computation and image quality (Section IV-B will examine the
effects of different dictionary sizes). In the super-resolution
algorithm Eq. 8, the choice of λ depends on the level of noise
in the input image, which we will discuss further in Section
IV-C. For generic low-noise images, we always set λ = 0.1 in
all our experiments, which generally yields satisfactory results.

Fig. 3 and 4 compare the outputs of our method with those
of the neighborhood embedding (NE) [11]. The NE method
is similar to ours in the sense that both methods use the
linear combination weights derived from the low resolution
image patch to generate the underlying high resolution image
patch. Unlike our method, the NE method uses fixed k nearest
neighbors to find the reconstruction supports directly from
sampled training patches and does not including a dictionary
training phase. To make a fair comparison, we use the same
100,000 patch pairs for the NE method and try different k ′s
to get the most visually appealing results. Using a compact
dictionary pair, our method is much faster and yet generates
shaper results. As the reconstructed images show in Fig. 3 and
4, there are noticeable differences in the texture of the leaves:
the fuzz on the leaf stalk, and also the freckles on the face of
the girl. In the captions of both figures, we list the RMSEs
in parentheses following each method. As seen, our method
can achieve lower RMSE than both Bicubic interpolation and
NE. An interesting observation is that, although NE generates
visually more appealing images than Bicubic, its RMSE is

8Other authors prepare the training patches by extracting the image edges
and sample patches around the edge regions to get the patch primitives.

actually higher than Bicubic, indicating that RMSE is not a
reliable criterion for visual image quality.

In Figure 5, we compare our method with several more
state-of-the-art methods on an image of the Parthenon used
in [7], including back projection (BP) [33], NE [11], and
the recently proposed method based on a learned soft edge
prior (SE) [7]. The result from back projection has many
jagged effects along the edges. NE generates sharp edges in
places, but blurs the texture on the temple’s facade. The SE
method gives a decent reconstruction, but introduces undesired
smoothing that is not present in our result. We also give the
RMSEs for all the methods in the followed parentheses in
the caption. Again, besides best visual quality, our method
achieves the lowest RMSE among these methods as well.

2) Face super-resolution: In this part, we evaluate our
proposed super-resolution algorithm on frontal views of human
faces. The experiments are conducted on the face database
FRGC Ver 1.0 [34]. All these high resolution face images
were aligned by an automatic alignment algorithm using the
eye positions, and then cropped to the size of 100 × 100
pixels. To obtain the face subspace Ω spanned by W , we
select 540 face images as training, covering both genders,
different races, varying ages and different facial expressions
(Figure 6). These high resolution face images are blurred and
downsampled to 25 × 25 pixels to form the low-resolution
counterparts. To prepare the coupled dictionaries needed for
our sparse representation algorithm, we also sample 100,000
patch pairs from the training images and learn the dictionaries
of size 1024. 30 new face images (from people not in the
training set) are chosen as our test cases, which are blurred
and downsampled to the size of 25 × 25 pixels in the same
procedure as preparing the training set. These low-resolution
input faces are aligned by manually labeling the eyeball
positions.

Fig. 6. Example training faces for the face super-resolution algorithm. The
training images cover faces of both genders, different ages, different races
and various facial expressions.

As mentioned earlier, face image super-resolution can han-
dle more challenging tasks than generic image super-resolution
due to the regular face structure. Indeed, it is not an easy job
to zoom the 25 × 25 low resolution face image by 4 times
using the method for generic image super-resolution. First,
the downsampling process loses so much information that it
is difficult to predict well a 12×12 high resolution patch given
only a 3 × 3 image patch. Second, the resolution of the face
image is so low that the structures of the face that are useful
for super-resolution inference (such as corners and edges)
collapses into only a couple of pixels. The two-step approach
for face super-resolution, on the other hand, can compensate
for the lost information in the first step using the redundancy
of the face structures by searching the solution in the face
subspace respecting the reconstruction constraints. The local
model from sparse representation then can be further employed
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Fig. 3. Results of the flower image magnified by a factor of 3 and the corresponding RMSEs. Left to right: input, Bicubic interpolation (RMSE: 4.066), NE
[11] (RMSE: 4.888), our method (RMSE: 3.761), and the original.

Fig. 4. Results of the girl image magnified by a factor of 3 and the corresponding RMSEs. Left to right: input, Bicubic interpolation (RMSE: 6.843), NE
[11] (RMSE: 7.740), our method (RMSE: 6.525), and the original.

Fig. 5. Results on an image of the Parthenon with magnification factor 3 and corresponding RMSEs. Top row: low-resolution input, Bicubic interpolation
(RMSE: 12.724), BP (RMSE: 12.131). Bottom row: NE (RMSE: 13.556), SE [7] (RMSE: 12.228), and our method (RMSE: 11.817).

to enhance the edges and textures to achieve shaper results.
In Fig. 7, we compare the proposed two-step approach with
the direct sparse representation method for generic images.
Since the resolution of the input face image is so low, a direct
application of the generic approach does not seem to generate
satisfying results.

In our experiments with face images, we also set λ = 0.1
for sparsity regularization. We compare our algorithm with
Bicubic interpolation [6] and BP [33]. The results are shown
in Fig. 8, which indicate that our method can generate much
higher resolution faces. Column 4 shows the intermediate
results from the NMF global modeling and column 5 demon-
strates the results after local sparse modeling. Comparing the
two columns, the local sparse modeling further enhances the
edges and textures , and also reduces RMSE.

Fig. 7. The comparison between the two-step face super-resolution algorithm
with the generic image super-resolution algorithm applied to low resolution
face images. From left to right: input image, super-resolution result using the
two step approach, and super-resolution result using the generic approach.
The two-step face super-resolution algorithm generates visually much better
results.

From columns 4 and 5, we can also see that the local patch
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method based on sparse representation further enhances the
edges and textures.

Fig. 8. Results of our algorithm compared to other methods and the
corresponding average RMSEs. From left to right columns: (a) low resolution
input; (b) Bicubic interpolation (RMSE: 8.024); (c) back projection (RMSE:
7.474); (d) global NMF modeling followed by bilateral filtering (RMSE:
10.738); (e) global NMF modeling and Sparse Representation (RMSE:
6.891); (f) Original.

B. Effects of Dictionary Size

The above experimental results show that the sparsity prior
for image patches is very effective in regularizing the other-
wise ill-posed super-resolution problem. In those results, we
fix the dictionary size to be 1024. Intuitively, larger dictionar-
ies should possess more expressive power (in the extreme, we
can use the sampled patches as the dictionary directly as in
[1]) and thus may yield more accurate approximation, while
increasing the computation cost. In this section, we evaluate
the effect of dictionary size on generic image super-resolution.
From the sampled 100,000 image patch pairs, we train four
dictionaries of size 256, 512, 1024 and 2048, and apply them
to the same input image. We also use the 100,000 image
patches directly as the dictionary for comparison. The results
are evaluated both visually and quantitatively in RMSE.

Fig. 9 shows the reconstructed results for the Lena image
using dictionaries of different sizes. While there are not many
visual differences for the results using different dictionary
sizes from 256 to 2048 and the whole sampled patch set,
we indeed observe the reconstruction artifacts will gradually
diminish with larger dictionaries. The visual observation is
also supported by the RMSEs of the recovered images. In
Table IV-B, we list the RMSEs of the reconstructed images
for dictionaries of different sizes. As shown in the table,
using larger dictionaries will yield smaller RMSEs, and all of
them have smaller RMSEs than those by Bicubic interpolation.
However, the computation is approximately linear to the size
of the dictionary; larger dictionaries will result in heavier
computation. Fig. 10 shows the computation time in seconds
with “Girl” as the test image. The algorithm is written in
Matlab without optimization for speed, and ran on a laptop
of Core duo @ 1.83G with 2G memory. To compare with

256 512 1024 2048
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Fig. 10. The computation time on “Girl” image with dictionaries of different
sizes (in seconds).

[1], the computation time is almost an hour, much slower
than our current solution with trained compact dictionaries.
In practice, one chooses the appropriate dictionary size as a
trade-off between reconstruction quality and computation. We
find that dictionary size 1024 can yield decent outputs, while
allowing fast computation.

C. Robustness to Noise

Most single input super-resolution algorithms assume that
the input images are clean and free of noise, an assumption
which is likely to be violated in real applications. To deal with
noisy data, previous algorithms usually divide the recovery
process into two disjoint steps: first denoising and then super-
resolution. However, the results of such a strategy depend
on the specific denoising technique, and any artifacts during
denoising on the low-resolution image will be kept or even
magnified in the latter super-resolution process. Here we
demonstrate that by formulating the problem into our sparse
representation model, our method is much more robust to noise
with input and thus can handle super-resolution and denoising
simultaneously. Note that in (6) the parameter λ depends on
the noise level of the input data; the noisier the data, the larger
the value of λ should be. Fig. 11 shows how λ influences the
reconstructed results given the same noiseless input image.
The larger λ, the smoother the result image texture gets. This
is obvious by formulating Eq. 8 into Maximum a Posterior
(MAP) problem:

α∗ = argmax P (α) · P (ỹ|α, D̃). (27)

where

P (α) =
1
2b

exp(−‖α‖1
b

)

P (ỹ|α, D̃) =
1

2σ2
exp(− 1

2σ2
‖D̃α− ỹ‖22),

(28)

where b is the variance of the Laplacian prior on α, and σ 2

is the variance of the noise assumed on the data ỹ. Taking the
negative log likelihood in Eq. 27, we get the exact optimization
problem in Eq. 8, with λ = σ2/b. Suppose the Laplacian
variance b is fixed, the more noisy of the data (σ 2 is larger),
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Images Bicubic D256 D512 D1024 D2048 Raw Patches

Girl 5.912 5.606 5.603 5.491 5.473 5.483
Flower 3.530 3.266 3.271 3.212 3.164 3.139
Lena 7.360 6.587 6.572 6.359 6.232 6.029
Statue 9.873 8.826 8.777 8.342 8.237 8.255

TABLE I
THE RMSES OF THE RECONSTRUCTED IMAGES USING DICTIONARIES OF DIFFERENT SIZES, AND USING THE RAW IMAGE PATCHES DIRECTLY FROM

WHICH THE DICTIONARIES ARE TRAINED.

Fig. 9. The effects of dictionary size on the super-resolution reconstruction of Lena. From left to right: dictionary size 256, 512, 1024, 2048 and the whole
sampled patch set respectively.

Noise Levels / Gaussian σ 0 4 6 8

Bicubic 9.873 10.423 11.037 11.772
Neighbor Embedding 9.534 10.734 11.856 13.064
Our method 8.359 9.240 10.454 11.448

TABLE II
THE RMSES OF THE RECONSTRUCTED IMAGES FROM DIFFERENT LEVELS

OF NOISY INPUTS.

the larger of the value λ should be. On the other hand, given
the input image, the larger value of λ we set, the more noisy
the model will assume of the data, and thus tends to generate
smoother results.

To test the robustness of our algorithm to noise, we add
different levels of Gaussian noise to the low resolution input
image. The standard deviation of the Gaussian noise ranges
from 4 to 10. The regularization parameter λ is empirically
set to be one tenth of the standard deviation. In Fig. 12, we
show the results of our algorithm applying to the Liberty statue
image with different levels of Gaussian noise. For comparison,
we also show the results of using Bicubic and NE [11]. As
expected, the results of Bicubic is both noisy and blurred. For
NE, the number of neighbors is chosen as decreasing as the
noise becomes heavier to get better results. As shown, the NE
method is good at preserving edges, but fails to distinguish
the signal from noise, and therefore generates unwanted noisy
results. Our algorithm is capable of performing denoising and
super-resolution simultaneously more elegantly. Table II shows
the RMSEs of the reconstructed images from different levels
of noisy data. In terms of RMSE, our method outperforms
both Bicubic interpolation and NE in all cases.

Methods Flower Girl Parthenon Lena Statue

Bicubic 3.530 5.912 12.724 7.360 9.873
Local Model 3.365 5.669 12.247 6.775 8.902
Plus Global 3.212 5.491 11.875 6.359 8.237

TABLE III
THE GLOBAL CONSTRAINT IN THE SECOND STEP FURTHER REFINES THE
RESULTS FROM LOCAL SPARSE MODEL IN THE FIRST STEP AND REDUCES

RMSES.

D. Effects of Global Constraints

The global reconstruction constraint enforced by Eq. 9
is employed to refine the local image patch sparse model,
ensuring the recovered high-resolution image to be consistent
with its low-resolution observation. In our experiments, we
observe that the sparsity prior is very effective and contribute
the most, while the global constraint in the second step reduces
RMSE by removing some minor artifacts which are hardly
seen from the first step. Tab. III shows the RMSEs of the
results from local sparse model only and local model combined
with the global model. The RMSEs of Bicubic interpolation
are again given as references. As shown, the local sparse model
can achieve better RMSEs than Bicubic interpolation, and the
global constraint further reduces the RMSEs of the recovered
images. These experiments are carried out with dictionary size
1024.

V. CONCLUSION

This paper presented a novel approach toward single im-
age super-resolution based on sparse representations in terms
of coupled dictionaries jointly trained from high- and low-
resolution image patch pairs. The compatibilities among ad-
jacent patches are enforced both locally and globally. Experi-
mental results demonstrate the effectiveness of the sparsity as
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Fig. 11. The effects of λ on the recovered image given the input. From left to right, λ = 0.01, 0.05, 0.1, 0.2, 0.3. The larger λ is, the smoother the result
image gets. Note that the results are generated from the local model only.

a prior for patch-based super-resolution both for generic and
face images. However, one of the most important questions
for future investigation is to determine the optimal dictionary
size for natural image patches in terms of SR tasks. Tighter
connections to the theory of compressed sensing may yield
conditions on the appropriate patch size, features to utilize
and also approaches for training the coupled dictionaries.
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Fig. 12. Performance evaluation of our proposed algorithm on noisy data. Noise level (standard deviation of Gaussian noise) from left to right: 0, 4, 6 and 8. Top
row: input images. Middle row: recovered images using NE [11] (k = 13, 12, 9, 7). Bottom row: recovered images using our method (λ = 0.1, 0.4, 0.6, 0.8).
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