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Abstract

As science and engineering have become increasingly data-driven, the role of optimization has
expanded to touch almost every stage of the data analysis pipeline, from the signal and data acqui-
sition to modeling and prediction. The optimization problems encountered in practice are often
nonconvex. While challenges vary from problem to problem, one common source of nonconvexity
is nonlinearity in the data or measurement model. Nonlinear models often exhibit symmetries, creat-
ing complicated, nonconvex objective landscapes, with multiple equivalent solutions. Nevertheless,
simple methods (e.g., gradient descent) often perform surprisingly well in practice.

The goal of this survey is to highlight a class of tractable nonconvex problems, which can be
understood through the lens of symmetries. These problems exhibit a characteristic geometric
structure: local minimizers are symmetric copies of a single “ground truth” solution, while other
critical points occur at balanced superpositions of symmetric copies of the ground truth, and
exhibit negative curvature in directions that break the symmetry. This structure enables efficient
methods to obtain global minimizers. We discuss examples of this phenomenon arising from a
wide range of problems in imaging, signal processing, and data analysis. We highlight the key role
of symmetry in shaping the objective landscape and discuss the different roles of rotational and
discrete symmetries. This area is rich with observed phenomena and open problems; we close by
highlighting directions for future research.
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1 Introduction
As engineering and the sciences become increasingly data and computation driven, the role of optimization
has expanded to touch almost every stage of the data analysis pipeline, from the signal and data acquisition to
modeling and prediction. While the challenges in computing with physical data are many and varied, basic
recurring issues arise from nonlinearities at different stages of this pipeline:

• Nonlinear Measurements are ubiquitous in imaging, optics, and astronomy. A canonical example are
magnitude measurements, which arise when it is easy to measure the (Fourier) modulus of a complex
signal, but hard to measure the phase. For example, we might measure the Fourier magnitude of a complex
signal x P Cn [1–4]
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ˇ

ˇ

ˇ
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ˆ
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˙
ˇ

ˇ

ˇ

ˇ

P Rm. (1.1)

Here, x represents a signal or image of interest, and the goal is to reconstruct x from the nonlinear
measurements y.

• Nonlinear Models are often well-suited to express the variability of real datasets. For example, observa-
tions in microscopy, neuroscience, and astronomy can often be approximated as sparse superpositions of
basic motifs. We can cast the problem of finding these motifs as one of seeking a representation of the form

Y
data

“ A
motifs

X.
sparse coefficients

(1.2)

Here, the columns of Y P Rmˆp are observed data vectors, the columns of A P Rmˆn are basic motifs,
andX P Rnˆp is a sparse matrix of coefficients that expresses each observed data point as a superposition
of motifs. This is sometimes called a sparse dictionary model. A typical goal is to infer both A and
X from observed data. Because bothA andX are unknown, this model should be considered nonlinear
(strictly, bilinear). Natural images may have even more variability, which is better modeled by hierarchical
models (convolutional neural networks) with more complicated nonlinearities [5–7].

Nonlinearity, Symmetry and Nonconvexity. In the examples described above, nonlinearities are not just a
nuisance: they have strong implications on the sense in which we can hope to solve these problems, and, as
we will see in this paper, on our ability to efficiently compute solutions. Both models exhibit symmetries. The
model y “ |Fpxq| in (1.1) exhibits a phase symmetry: both x and xeiφ (for any φ P r0, 2πq) produce the same
observation y. The sparse dictionary model Y “ AX exhibits a permutation symmetry: for any permutation Π,
pA,Xq and pAΠ,Π˚Xq produce the same observation Y .1

In either case, we can only hope to recover the physical ground truth up to these basic symmetries. A
typical computational approach is to formulate an optimization problem

min
z

ϕpzq, (1.3)

and attempt to solve it with iterative methods such as gradient descent [8]. Here, z represents the signal or
model to be recovered – for example, in phase retrieval, z “ x, while in dictionary learning the optimization
variable z is the pair pA,Xq. Typically, ϕp¨qmeasures quality of fit to observed data and the extent to which the
solution satisfies assumptions such as sparsity. As we shall see, most natural choices of ϕ inherit the symmetries
of the data generation model: e.g., for phase recovery, we have ϕpeiθxq “ ϕpxq, while for dictionary learning,
ϕppA,Xqq “ ϕppAΠ,Π˚Xqq: symmetries of the observation models become symmetries of the optimization problem.

If we are judicious in our choice of ϕp¨q, we can hope that the true x is a (near) global minimizer; our task
becomes one of solving the optimization problem (1.3) to global optimality. In contrast to certain applications
of optimization (e.g., in finance, logistics, etc.), we care not just about decreasing the objective function, but
about obtaining the physical ground truth. As such, we are forced to care not just about ensuring that our
algorithms converge, but that they converge to global minimizers. In applied optimization, a time-honored
approach to guaranteeing global optimality is to seek formulations that are convex. The global minimizers of a

1Here, and below, the notationM˚ denotes the complex conjugate transpose of a matrixM . IfM is real-valued, this is simply the
matrix transpose.
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convex function form a convex set. Moreover, every local minimizer (indeed, every critical point) of a convex
function is global. As a result, many convex problems can be efficiently solved to global optimality by local
methods. This makes the area of convex analysis and optimization a model for how geometric understanding
can support practical computation.

Unfortunately, as alluded to above, the symmetric problems we encounter in statistics, signal processing
and related areas are typically nonconvex [9–12], and so we need to look for other geometric principles that
will enable us to guarantee high quality solutions. Indeed, these problems exhibit multiple global minimizers,
which may be disjoint (due to permutation symmetry) or may reside on a nonconvex set (due to rotation or
phase symmetry). Any optimization formulation that inherits these symmetries will be nonconvex.2

Spurious local minimizers Flat saddle points

Figure 1: Two geometric obstructions to nonconvex optimization. Descent methods can become trapped
near local minimizers (left) or stagnate near flat saddle points (right).

Worst Case Obstructions to Nonconvex Optimization. This observation might suggest a certain pessimism:
nonconvex optimization is impossible in general. There are simple classes of nonconvex problems (e.g., in poly-
nomial optimization) that are NP-hard. At a more intuitive level, there are two geometric obstructions to
solving nonconvex problems globally. First, nonconvex problems can exhibit spurious local minimizers, i.e. local
minimizers that are not global. Local descent methods can get trapped; finding the global optimum is hard in
general. Perhaps surprisingly, even finding a localminimizer is NP-hard in general [13, 14]. Figure 1 (right)
illustrates the challenge: it is possible to construct objective functions that are so flat that it is impossible to
efficiently determine a direction of descent.

Calculus and the Local Geometry of Optimization. Because of these worst case obstructions, the classical
literature on efficient3 nonconvex optimization has focused on guaranteeing

(i) convergence to some critical point (z̄ such that ∇ϕpz̄q “ 0),
(ii) or convergence to some local minimizer, for functions ϕwhich are not too flat.

The curvature of a smooth function ϕp¨q around a critical point z̄ can be studied through the hessian∇2ϕpz̄q. If
∇2ϕpz̄q is nonsingular, the signs of its eigenvalues completely determine whether z̄ is a minimizer, maximizer
or saddle point – see Figure 2 (right). In particular, if z̄ is a saddle point or a minimizer, there is a direction
of negative curvature – a direction along which the second derivative is negative. This information can be

2Disclaimer: Not every symmetric problem is nonconvex. Indeed, the objective function ϕpzq “ 1
2
}z}22 is rotationally symmetric

ϕpRzq “ ϕpzq for allR P Opnq, z P Rn and convex. It is easy to construct additional examples of this type. However, the symmetric
problems encountered in statistics, signal processing, and related areas are typically nonconvex; moreover their nonconvexity can be
directly attributed to symmetry.

3Of course, it is also possible to find global optima under minimal assumptions by exhaustively exploring the space of optimization,
e.g., by discretization [15] or by random search [16, 17]. The worst case obstructions described above still rear their heads, in the form of
search times that are exponential in dimension.
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Noncritical Point (∇ϕ ‰ 0) Critical Points (∇ϕ “ 0)

∇2ϕ ą 0

Minimizer
λmin∇2ϕ ă 0

λmax∇2ϕ ą 0

Saddle
∇2ϕ ă 0

Maximizer

Figure 2: Calculus and the local geometry of optimization. The gradient ∇ϕ captures the slope of the
function ϕ. At critical points z̄,∇ϕpz̄q “ 0. The type of critical point (minimizer, maximizer, saddle) can
often be determined from the curvature of ϕ at z̄, which is captured by the hessian ∇2ϕpz̄q.

used to escape saddles and converge to a local minimizer, either explicitly (using the hessian) or implicitly
(using gradient information). There are a variety of iterative methods that trade-off in various ways between
the amount of computation used to determine a good direction of negative curvature at a given iteration and
the number of iterations required to converge [18–23]. However, the high-level message of these methods
is consistent: if all critical points are nondegenerate4, we can escape them and efficiently converge to a local
minimizer. In fact, slightly less is required: it is enough that every non-minimizing critical point have a
direction of strict negative curvature5 [21, 22, 27, 28].

Results of this nature control the worst-case behavior of methods over very broad classes of problems.
In such a general setting, it is not possible to provide strong guarantees on what local minimizer methods
converge to, and whether that minimizer is global. Nevertheless, it is difficult to overstate the impact of this
kind of thinking for stimulating the development of useful methods and elucidating their properties. Moreover,
methods developed to guarantee good worst-case performance often outperform their worst-case guarantees
on practical problem instances – witness longstanding “folk theorems” on the ease optimizing neural networks
[29–34], solving problems in quantum mechanics [35–37] or clustering separated data [38–41]. Delineating
problem classes that capture the difficulty (or ease!) of naturally occurring optimization problems is a pressing
challenge for the mathematics of data science [9–12].

Symmetry and the Global Geometry of Optimization? The goal of this survey paper is to highlight a
particular family of easy nonconvex problems which, under certain hypotheses, can be solved globally with
efficient methods. This family includes a number of contemporary problems in signal processing, data analysis
and related fields [9–12]. The most important high-level property of these problems is that they are symmetric –
in slightly more formal language:

Definition 1.1 (Symmetric Function) Let G be a group acting on Rn. A function ϕ : Rn Ñ Rn1 is G-symmetric if
for all z P Rn, g P G, ϕpg ¨ zq “ ϕpzq.
As argued above, symmetry forces us to grapple with properties of nonconvex functions. On the other hand,
the particular symmetric nonconvex functions encountered in practice are often quite benign. Figure 3 shows
two examples – one with rotational symmetry (G an orthogonal group) and one with discrete symmetry (G
a discrete group, such as the signed permutations). We will develop these examples in more mathematical
detail below. For now, we simply observe that these two instances do not exhibit spurious local minimizers or
flat saddles. The absence of these worst-case obstructions can be attributed to symmetry. In slogan form, we
shall see that:

Slogan I: the (only!) local minimizers are symmetric versions of the ground truth.
4In the language of topology, if the function ϕ is Morse [24, 25].
5In the recent literature, this is called a “strict saddle” property [9, 26]. Concrete rates of convergence are typically stated in terms of

quantitative versions of this property, which explicitly control the size of the gradient and the smallest eigenvalue of the Hessian uniformly
over the domain of optimization.
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Rotational symmetry Discrete symmetry

Figure 3: Symmetry and the global geometry of optimization. Model problems with continuous (left)
and discrete (right) symmetry. For these particular problems, and others we will survey, every local
minimizer is global.

Slogan II: there is negative curvature in directions that break symmetry.

When these two slogans are in force, efficient (local) methods produce global minimizers. Moreover,
symmetry constrains the global layout of the critical points, leading to additional structure that facilitates
efficient optimization. We will show examples where the saddle points of symmetric problems “cascade”,
with negative curvature directions feeding into negative curvature directions, a property which appears to
prevent first order methods from stagnating [42].

Before we embark, a few disclaimers are in order. First, Slogans I and II are only slogans. As we will see,
they have been established rigorously for specific problems under specific (restrictive) technical hypotheses.
We hope to convey a sense of the beauty and robustness of certain observed phenomena in optimization, while
also making clear that the existing mathematics supporting these claims is, in places, ugly and brittle. There is
a need for more unified analyses and better technical tools. We highlight some potential avenues for this in
Section 4. The second, more fundamental, disclaimer is that not all symmetric problems have benign global
geometry. It is easy to construct counterexamples. Nevertheless, as we will see, symmetry provides a lens
through which one can understand the geometric properties that enable efficient optimization for a particular
family of problems. Moreover, when we study these problems through their symmetries, common structures
and common intuitions emerge: problems with similar symmetries exhibit similar geometric properties.

A Taxonomy of Symmetric Nonconvex Problems
In this paper, we identify two families of symmetric nonconvex problems, which exhibit similar geometric
characteristics. The first family of problems exhibit rotational symmetries: the group G is Opnq or SOpnq. The
phase retrieval problem described above is a canonical example; Figure 4 illustrates this family. The second
family of problems exhibit discrete symmetries: signed permutations SP pnq, signed shifts Znˆt˘1u, or products
of these. The dictionary learning problem discussed above is a canonical example; Figure 5 shows several
others.

In the remainder of this paper, we explore the geometry of these two families of problems in more depth.
Section 2 studies problems with rotational symmetries, beginning with a very simple model problem in which
the goal to recover a single complex scalar frommagnitudemeasurements, and extracting conclusions that carry
over to more complicated measurement models for phase recovery [3, 43–46] and related problems in low-rank
matrix factorization and recovery [11, 47, 48]. Section 3 studies problems with discrete symmetries, starting
again from another simple model problem and extracting conclusions that carry over to problems such as
dictionary learning [42, 49–51], blind deconvolution [52–57] and tensor decomposition [26, 58]. As mentioned
above, this area is rich with open problems; we highlight a few of these in Section 4. These open problems
span geometry and algorithms. Nevertheless, our main focus throughout this survey is geometric: we will
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Nonconvex Problems with Rotational Symmetries
Eigenspace Computation

minX˚X“I ´
1
2
trace rX˚AXs.

Compute the principal subspace
of a symmetric matrix.

Symmetry: X ÞÑXR

G “ Oprq

Generalized Phase Retrieval

minx
1
2
}y2 ´ |Ax|2}22.

Recover a complex vector x0 from
magnitude measurements y “ |Ax0|.

Symmetry: x ÞÑ xeiφ

G “ S1 – Op2q

Matrix Recovery
Recover a low-rank matrixX “ UV ˚

from incomplete / corrupted observations

minU,V LpY ´ArUV ˚sq ` ρpU ,V q.

Symmetry: pU ,V q ÞÑ pUΓ,V Γ´˚q

G “ GLprq or G “ Oprq

Figure 4: Three examples of nonconvex optimization problems with rotational symmetries (Section 2).
Each of these three tasks can be reduced to optimization problems in various ways; for each, we give a
representative formulation and discuss its symmetries.

concentrate on the connection between symmetry and geometry. As described above, these geometric analyses
have strong implications: in many cases, they guarantee that problems can be solved globally in polynomial
time. In order to keep the development focused on geometric intuitions, we will only treat computational
issues at a high level. We recommend the (complementary) survey paper [59] for a more detailed exposition
of issues at the interface of statistics and computation, for problems with rotational symmetry. Section 4 also
briefly discusses similar considerations for problems exhibiting discrete symmetries, where we refer readers to
our companion paper [60] for more computational and application aspects on these problems.

2 Nonconvex Problems with Rotational Symmetry
In this section, we study the first main class of problems in our taxonomy of symmetric nonconvex problems:
problems with rotational symmetry. This class includes important model problems in phase recovery [3, 46]
and low-rank estimation [11]. We begin by developing a few basic intuitions through a toy phase retrieval
problem; we then show how these intuitions help to explain the geometry of a range of problems from imaging
and machine learning.

2.1 Minimal Example: Phase Retrieval with a Single Unknown
We first consider a model problem, in which our goal is to recover a single complex scalar x0 P C from m
magnitude measurements

y1 “ |a1x0| , . . . , ym “ |amx0| , (2.1)

where a1, . . . , am P C are known complex scalars. Collecting our observations yi into a single vector y P Rm
and collecting the ai into a single vector a P Cm, we can express this measurement model more compactly as

y “ |ax0| . (2.2)

Our goal is to determine x0, up to a phase. This is a heavily simplified (indeed, trivialized!) version of the
generalized phase retrieval problem [44, 45, 61], which we will describe in more detail in Section 2.2. Here our
goal is simply to understand the consequences of the phase symmetry of the measurement model (2.2) for
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Nonconvex Problems with Discrete Symmetries
Eigenvector Computation

maxxPSn´1
1
2
x˚Ax.

Maximize a quadratic form
over the sphere.

Symmetry: x ÞÑ ´x

G “ t˘1u

Dictionary Learning
Approximate a given matrix Y
as Y « AX , withX sparse

minAPA,X
1
2
}Y ´AX}2F ` λ}X}1.

Symmetry: pA,Xq ÞÑ pAΓ,XΓ˚q

G “ SPpnq

Tensor Decomposition
Determine components ai of an orthogonal

decomposable tensor T “ ř

i ai b ai b ai b ai

maxXPOpnq
ř

i T pxi,xi,xi,xiq.

Symmetry: X ÞÑXΓ

G “ Ppnq

Short-and-Sparse Deconvolution
Recover a short a and a sparse x
from their convolution y “ a ˚ x.

mina,x
1
2
}y ´ a ˚ x}22 ` λ}x}1.

Symmetry: pa,xq ÞÑ pαsτ ras, α´1s´τ rxsq

G “ Zn ˆ R˚ or G “ Zn ˆ t˘1u

Figure 5: Four examples of problems with discrete symmetries. We discuss this family of problems in more
detail in Section 3.

optimization. To this end, we study a model optimization problem,

min ϕpxq
.
“ 1

2

›

›y2 ´ |ax|
2 ›
›

2

2
, (2.3)

which minimizes the sum of squared differences between the squared magnitudes of ax and those of ax0.
Note that

ϕpxq “ 1
4}a}

4
4

`

|x|2 ´ |x0|
2
˘2
. (2.4)

This is a function of a complex scalar x “ xr ` ixi. We can study its geometry by identifying x with a two-
dimensional real vector x̄ “ pxr, xiq. The slope and curvature of the function ϕpx̄q are captured by the gradient
and hessian,

∇ϕpx̄q “ }a}44

´

|x|2 ´ |x0|
2
¯

„

xr
xi



, (2.5)

∇2ϕpx̄q “ }a}44

´

`

|x|2 ´ |x0|
2
˘

I ` 2x̄x̄˚
¯

. (2.6)

Figure 6 visualizes the objective ϕp¨q and its critical points. By setting ∇ϕ “ 0, and inspecting the hessian, we
obtain that there exist two families of critical points: global minimizers at x “ x0e

iφ, and a global maximizer at
x “ 0. We notice that:
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2

0

Maximizer

Minimizers

Nodes: critical points

n (n: # negative
eigenvalues)

Figure 6: Phase Retrieval with a Single Unknown. We plot the objective function ϕpxq for phase retrieval
with a single complex unknown. All local minimizers (red) are symmetric copies x0e

iφ of the ground truth
x0 P C. There is also a local maximizer (green) at x “ 0; at this point, ϕ exhibits negative curvature in
directions that break symmetry. Right: critical points arranged according to objective function ϕ, labelled
according to their index (number of negative eigenvalues).

• Symmetric copies of the ground truth are minimizers. The points x0eiφ are the only local minimizers. In
problems with phase ambiguities, we expect a circle Op2q – S1 of minimizers. In addition, the hessian is
positive semidefinite, but rank deficient at the global minimizers: the zero curvature direction (along
which the objective ϕ is flat) is precisely the direction that is tangent to the set of equivalent solutions
g ¨ x‹ at x‹. Normal to this set, the objective function exhibits positive curvature – a form of restricted
strong convexity.

• Negative curvature in symmetry breaking directions. There is a local maximizer at x “ 0, which is
equidistant from the target solutions

 

x0e
iφ
(

. At this point ∇2ϕ ă 0; there is negative curvature in every
direction, and movement in any direction breaks symmetry.

2.2 Generalized Phase Retrieval
The univariate phase retrieval problem is an extreme idealization of a basic problem in imaging: recovering a
signal from phaseless measurements [3, 43]. This problem arises in many application areas, including electron
microscopy [62], diffraction and array imaging [63, 64], acoustics [65, 66], quantum mechanics [67, 68] and
quantum information [69], where the goal is to image complex molecular structures. Illuminating a sample
with coherent light produces a diffraction pattern, which is approximately the Fourier transform of the sample’s
density. If we could measure this diffraction pattern, we could recover an image of the sample with atomic
resolution, simply by inverting the Fourier transform. However, there is a wrinkle: typically, the magnitude
of the Fourier transform is much easier to measure than the phase – the magnitude can be measured by
aggregating energy over time, whereas measuring the phase of a high frequency signal requires the detector to
be sensitive to very rapid changes. The Fourier phase retrieval problem asks us to reconstruct a complex signal
from magnitude measurements only:

find x such that |Frxs| “ y.

This problem is widespread in scientific imaging [70–73]. It is also challenging: it is ill-posed in one dimension,
and in higher dimensions even the most effective numerical methods remain sensitive to initialization and
tuning [74], and we refer readers to recent survey papers [3, 46, 75] for more details. From the perspective of
this survey, one explanation for this difficulty resides in the symmetries of the measurement operator |Fr¨s|: in
addition to phase symmetry, the mapping x ÞÑ |Frxs| is invariant under shifts and conjugate reversal of the
signal x.

In recent years, the applied mathematics community has investigated variants of the above problem in
which the Fourier transform F is replaced by a more general linear operatorAp¨q [43, 61, 76]. A “generic” map
x ÞÑ |Arxs| has simpler symmetries – typically only a phase symmetry, |Arxejφs| “ |Arxs|. This makes generic
phase recovery problems easier to study and easier to solve. While the Fourier model is more widely applicable
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2n

1

0

Maximizer

Saddles

Minimizers

Nodes: critical points

n (n: # negative
eigenvalues)

Connections
Dispersive

Figure 7: Generalized Phase Retrieval. We plot two slices of the landscape of the generalized phase
retrieval problem with Gaussian measurements. Left: slice containing symmetric copies of the ground
truth x0e

iφ. Middle slice containing minimizers x0, ´x0 and one orthogonal direction. Notice that at
both the maximizer and saddle points, there is negative curvature in the direction that breaks symmetry
between x0 and ´x0. Right: critical points arranged according to objective Eϕ, labeled with their indices
(number of negative eigenvalues). Connections between critical points are “dispersive”: downstream
negative curvature directions are the image of upstream negative curvature directions under gradient flow
(see Appendix B).

to physical imaging, the generic phase retrieval model does capture aspects of certain less conventional imaging
setups, including ptychography [77–79] (i.e., Ap¨q is the Short Time Fourier Transform), coded illuminations
[80, 81], and coded diffraction patterns [44]. A model one-dimensional version of the generalized phase
retrieval problem can be formulated as follows:

find x P Cn such that |Ax| “ y, (2.7)
whereA P Cmˆn is a matrix which represents the measurement process.

As in univariate phase retrieval, we can attempt to recover x0 by minimizing the misfit to the observed
data, e.g., by solving

min
xPCn

ϕpxq ”
1

4m

m
ÿ

k“1

´

y2k ´ |a
˚
kx|

2
¯2

, (2.8)

where a1, . . . ,am P Cn are the rows of A. We saw above that the univariate version of this function has a
very simple landscape, which is dictated almost entirely by phase symmetry, and that it has no spurious local
minimizers. Should we expect similar behavior in this higher dimensional setting?

Geometry of Generalized Phase Retrieval
One way of generating intuition is to assume that the sampling vectors ai are chosen at random, and analyze
ϕpxq using tools from statistics. Figure 7 visualizes ϕpxq when the ak are Gaussian vectors6 andm is large. As
mÑ8, ϕpxq converges to its expectation Eϕ, which can be calculated in closed form. In Figure 7 (left), we
can see the characteristic phase symmetry, identical to our univariate example above. However, this problem is
higher dimensional. Figure 7 (center) plots the objective over a two-dimensional slice containing the ground
truth and an orthogonal direction. We observe:

• Symmetric copies of the ground truth are minimizers. All the local minimizers are on the circle of points
x0e

iφ, which corresponds to the ground truth up to the (rotational) phase symmetry. Problems with
higher dimensional symmetries will have larger sets of minimizers – e.g., Oprq symmetry leads to a
manifold of minimizers that is isometric to Oprq.

• Negative curvature in symmetry-breaking directions. In higher dimensional examples, we encounter a
variety of local maximizers, saddle points, etc. Nevertheless, these critical points occur near balanced
superpositions of equivalent solutions, and exhibit negative curvature in directions ˘x0, which breaks
symmetry.

6Formally, ak are independent random vectors, with ak “ ark ` iaik with ark and aik independent iidN p0, 1
2
q.
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• Cascade of saddle points. As shown schematically in Figure 7, the critical points can be graded based
on the number of negative eigenvalues of the hessian: critical points with higher objective have more
negative eigenvalues. Moreover, the objective has a “dispersive” property: upstream negative curvature
discourages stagnation near the stable manifold of downstream critical points (see Appendix B for more
detail).

Finite Samples, Structured Measurements, Different Objectives
The exposition in the previous section is still quite idealized: the measurements are Gaussian, and we have
infinitely many of them. Moreover, we have assumed a particular objective ϕpxq, which is not widely used
in practice. Fortunately, the qualitative conclusions of the previous subsection carry over to more structured
and challenging settings for generalized phase retrieval.7 We briefly describe these extensions, while noting
technical caveats and open problems.

Finite Samples. Phase retrieval is a sensing problem; measurements cost resources. It is important to
minimize the number of measurementsm required to accurately reconstruct x. Under the Gaussian model,
the particular loss function ϕp¨q in (2.8) is a sum of independent heavy-tailed random variables. Relatively
straightforward considerations show that whenm Á n2, gradients and hessians concentrate uniformly about
their expectations, and the objective has no spurious local minimizers. This number of samples is clearly
suboptimal – n2 measurements to recover about n complex numbers. The challenge is that the objective
function (2.8) contains fourth moments of Gaussian variables, and is therefore somewhat heavy-tailed. Using
arguments that are tailored to this situation, the required number of samples can be improved tom Á n log3 n
[45]. Moreover, modifying the objective (2.8) to remove large terms (ala robust statistics) can improve this to
essentially optimal (m Á n) [82].8

DifferentObjective Functions. The “squares of the squares” formulation in (2.8) is smooth and hence simple
to analyze, but is typically not preferred in practice, especially when observations are noisy. Alternatives
include ϕpxq “ ř

i

ˇ

ˇy2i ´ |a
˚
i x|

2
ˇ

ˇ [85], ϕpxq “ ř

i |yi ´ |a
˚
i x||

2 [86], and maximum likelihood formulations
that model (Poisson) noise in the observations yi [82]. Although these formulations differ in details, the
major features of the objective landscape are independent of the choice of ϕ. For Gaussian ai, the expectation
Eϕ has no spurious minimizers; moreover, all objectives have a minimizer at zero and a family of saddle
points orthogonal to x0. On the other hand, proving (or disproving) that these objectives have benign global
geometry for smallm is an open problem. Existing small sample analyses [82, 85, 86] control the behavior of
the objective in a neighborhood of x0e

iφ, and initialize in this neighborhood using statistical properties of the
measurement model.

Structured Measurements. Geometric intuitions for GaussianA carry over to several models that are more
closely connected with imaging practice. Examples include convolutional models, in which we observe the
modulus of the convolution y “ |a ˚ x| of the unknown signal xwith a known sequence a [87] and coded
diffraction patterns, in which we make multiple observations yl “ |Frdl ˝xs|, where ˝ denotes an elementwise
product [76]. If the filter a or the masks dl are chosen at random from appropriate distributions, these
structured measurements yield the same asymptotic objective function Eϕ. In particular, in the large sample
limit (a long in the convolutional model, many diffraction patterns in the coded diffraction model), these
measurements still lead to optimization problems with no spurious local minimizers. Similar to the situation
with nonsmooth objective functions, the best known theoretical sample complexities are obtained by initializing
near the ground truth, using statistical properties ofA. Globally analyzing structured measurements in the
small sample regime is a challenging open problem.
The above discussion only scratches the surface of the growing literature on generalized phase retrieval, we
refer readers to [3, 46, 75] for a more comprehensive survey on recent developments. From the perspective

7But not to the Fourier model, which has different symmetries. We discuss challenges and open problems around Fourier measurements
in Section 3 and Section 4.

8Other approaches to producing analyses with small sample complexity include restricting the analysis to a small neighborhood of the
ground truth, and initializing in this neighborhood using spectral methods that leverage the statistics of the measurement model [44, 83],
or forgoing uniform geometric analysis and directly reasoning about trajectories of randomly initialized gradient descent [84].
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of this survey, the unifying thread through all of these models, objectives and problems is the simple model
geometry in Figure 7. In the next section, we will see a similar phenomenon with low-rank matrices: a model
geometry from matrix factorization recurs across a sequence of increasingly challenging matrix recovery
problems.

2.3 Low Rank Matrix Recovery
The problem of recovering a low-rank matrix from incomplete and unreliable observations finds broad ap-
plications in robust statistics, recommender systems, data compression, computer vision, and so on [88]. In
matrix recovery problems, the goal is to estimate a matrixX0 P Rn1ˆn2 from incomplete or noisy observations.
Typically, this problem is ill-posed without some assumptions on the matrixX0. In many applications,X0

can be assumed to be low rank, or approximately so:
r “ rankpX0q ! min tn1, n2u . (2.9)

Any rank-r matrix can be expressed as a product of a tall n1 ˆ r matrix and a wide r ˆ n2 matrix:
X0 “ UV

˚, U P Rn1ˆr,V P Rn2ˆr. (2.10)
A very popular strategy for recoveringX0 is start with some objective function ψpXq that enforces consistency
with observed data, and then parameterizeX in terms of the factors U , V [89], yielding the optimization
problem

min
U ,V

ϕpU ,V q ” ψpUV ˚q. (2.11)

Symmetries of Low Rank Models
Formulations like (2.11) are almost always nonconvex, due to symmetries of the factorization (2.10). Indeed,
for any invertible r ˆ r matrix Γ,

UV ˚ “ UΓΓ´1V ˚ “ pUΓq
`

V Γ´˚
˘˚ (2.12)

Because of this ambiguity, the problem (2.11) always possess a general linear (invertible matrix) symmetry:
pU ,V q ” pUΓ,V Γ´˚q, Γ P GLprq. (2.13)

Because a general linear matrix Γ can have determinant arbitrarily close to zero, and hence be arbitrarily
ill-conditioned, the equivalence class of solutions pU ,V q has somewhat complicated geometry, as a subset of
Rn1ˆr ˆ Rn2ˆr.9 Fortunately, it is not difficult to reduce this general linear symmetry to a simpler and better
conditioned orthogonal symmetry, either by using information about the targetX0, or by adding additional
penalty terms to (2.11).

Rotational Symmetries for Symmetric X0. If the target solution X0 is symmetric and positive semidefinite,
then it admits factorization of the formX0 “ U0U

˚
0 , and so we can take U “ V . This gives a slightly simpler

problem
min
U

ϕpUq ” ψpUU˚q, (2.14)

with a smaller symmetry group. For any Γ P Oprq, UU˚ “ UΓΓ˚U˚ “ pUΓq pUΓq
˚, and so the symmetric

problem (2.14) exhibits an orthogonal symmetry U ” UΓ, for Γ P Oprq.

Rotational Symmetries for General X0 via Penalization. For general (non-symmetric) matrices X , it is
possible to additional penalties to (2.11) in such away that the general linear symmetry reduces to an orthogonal
symmetry. At a high level, the idea is to add a penalty ρpU ,V q that enforces U˚U « V ˚V ; this prevents U
and V from having vastly different scales.10 The penalty ρ can be chosen such to be Oprq-symmetric, such that
the combined problem

min
U ,V

φpU ,V q ` ρpU ,V q, (2.15)

possesses an Oprq symmetry: pU ,V q ” pUΓ,V Γq, for Γ P Oprq.
9For example, it is neither closed nor bounded.

10For example, ρpU ,V q “ 1
2
}U˚U ´ V ˚V }F accomplishes this.
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Figure 8: Geometry of Matrix Factorization. Geometry of a model problem in which the target X0 is a
symmetric matrix of rank two, with eigenvalues 3

4
and 1

2
. Left: plot of the objective ϕ over a slice of the

domain containing all optimal solutions. Center: two families of saddle points, corresponding to rank-one
approximations. Right: objective value ϕ versus index for the four families of critical points in this problem.
Again the critical points are graded, in the sense that ϕ decreases with decreasing index, and the paths
between them are dispersive, in the sense that downstream negative curvature directions are the image of
upstream negative curvature directions under gradient flow.

Model Problems and the Matrix Recovery Zoo. There are many variants of matrix recovery, which are
motivated by different applications and impose different assumptions on the observations and the noise
[11, 48, 88]. Although these problems have their own technical challenges, they have certain qualitative
features in common. At a slogan level, “matrix recovery problems act like matrix factorization problems” [48]. In
the next section, we will begin by describing in detail the geometry of matrix factorization, and then describe
how these intuitions carry over to matrix recovery from incomplete or unreliable observations.

Geometry of Matrix Factorization
Our first model problem starts with a complete, noise-free observation Y “ X0 of a symmetric, positive
semidefinite matrixX0 P Rnˆn of rank r ă n, and attempts to factor it asX0 “ UU

˚ by minimizing the misfit
to the observed data [90]:

min
UPRnˆr

ϕpU ,Uq
.
“ 1

4

›

›Y ´UU˚
›

›

2

F
. (2.16)

This is a nonconvex optimization problem, with orthogonal symmetry U ” UΓ. Figure 8 visualizes the
the objective landscape for this problem. It turns out that the critical points of ϕ are dictated by the eigen-
decomposition of the symmetric matrix X0 – every critical point U is generated by selecting and appropriately
scaling a subset of the eigenvectors ofX0, and then applying a right rotation U ÞÑ UR. At a slogan level, critical
points correspond to “underfactorizations” of the ground truth. Inspecting the hessian, we find that:

• Symmetric copies of the ground truth are minimizers. Local minimizers are the critical points which
select all of the top r eigenvectors, which correspond to the ground truth up to rotation symmetry;

• Negative curvature in symmetry-breaking directions. At a saddle point point, there is strict negative
curvature in any direction which increases the number of top eigenvectors that participate.

• Cascade of saddle points. Saddle points are critical points selecting subsets of the top r eigenvectors.
These saddle points can be graded based on number of selected eigenvectors. 11

Figure 8 (center) visualizes these effects.
This model geometry carries over to non-symmetric matrices. For example, considering a penalized

low-rank estimation problem

min
UPRn1ˆr,V PRn2ˆr

ϕpU ,V q
.
“ 1

4

›

›Y ´UV ˚
›

›

2

F
` ρpU ,V q, (2.17)

11A natural descent algorithm only visit at most r saddle points whose trajectory depends on the containment of the active eigenvectors
at those saddle points.
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we obtain a problem with Oprq symmetry. Critical points are generated by appropriately scaling subsets of the
singular vectors of Y – see Appendix A for details on both of these geometries.

From Factorization to Matrix Recovery and Completion
We next describe how precise geometric analyses of matrix factorization extend to the more realistic problem
of recovering a low-rank matrix from incomplete and unreliable observations. As we shall see, matrix recovery
problems often retain important qualitative features of matrix factorization. We will illustrate this phenomenon
through several instances of a model recovery problem, in which we observem linear functions of an unknown
matrixX0 P Rn1ˆn2 :

yi “ xAi,X0y , 1 ď i ď m, (2.18)

and the goal is to recoverX0. This model is flexible enough to represent matrix completion from missing
entries [91], as well as more exotic sensing problems [88, 92]. We can write this observation model more
compactly by defining a linear operator A : Rn1ˆn2 Ñ Rm with ApXq :“ rxAi,Xys1ďiďm. In this notation,

y “ ApXq. (2.19)

Ifm ă n1n2, the number of observations is smaller than the number of unknowns, and the recovery problem
is ill-posed. Fortunately, matrices encountered in applications have low-complexity structures; for instance,
they are usually low-rank or approximately so. As above, a rank-r X0 admits a factorizationX0 “ U‹V

˚
‹ ,

that we can enforce this low-rank structure by directly recovering the factors U and V , up to symmetry. A
natural approach is to minimize the misfit to the observed data:

min
U ,V

ϕpU ,V q
.
“

1

4m

m
ÿ

i“1

`

yi ´
@

Ai,UV
˚
D˘2

` ρpU ,V q “
1

4m

›

›y ´ApUV ˚q
›

›

2

F
` ρpU ,V q, (2.20)

where as above ρ is a regularizer that encourages the factors to be balanced.

Matrix Sensing. If A “ I is the identity operator, (2.20) is simply the factorization problem. In this special
situation, the measurement operator A exactly preserves the geometry of all n1 ˆ n2 matrices, in the sense
that }ArXs}F “ }X}F for allX . When the number of measurements is small (m ă n1n2), this is impossible.
Fortunately, (2.20) still “behaves like factorization”, and hence can be used to recover X0, as long as A
approximately preserves the geometry of the low-rankmatrices – a much lower dimensional set [90, 93–96].12
When this approximation is sufficiently accurate, there is a bijection between the critical points of the sensing
problem (2.20) and those of factorization, which preserves the index (number of negative eigenvalues). Under
this condition, every local minimum of the sensing problem is global [94].

Matrix Completion. The most practical and important instance of the general sensing model (2.20) is the
matrix completion problem [91], in which the goal is to recover a low-rank matrix from a subset of its entries.
This model problem arises e.g., in collaborative filtering [97, 98], where the goal is to predict users’ preferences
for various products based a few observed preferences. Variants of this problem also appear in sensor networks
(determining positions of sensors from a few distance measurements) [99, 100], imaging (recovering shape
from illumination) [101, 102] and the geosciences [103, 104], just to name a few.

Matrix completion also inherits the geometry of matrix factorization, with several technical caveats, which
are consequences of the fact that it is challenging to recoverX0 that are concentrated on a small number of
entries: if we fail to sample these important entries, we will fail to recoverX0. This basic issue affects both for
the well-posedness of the matrix completion problem and for our ability to solve it globally using nonconvex
optimization. Local optimization methods could potentially become trapped in the region of the space in
whichUV ˚ is nearly sparse, since the measurements do not effectively sense such matrices. One simple fix is to
add an additional regularizer on the rows ui and vi of the factors, which encourages them to have small norm.
This forces the energy of UV ˚ to be spread across many entries.13 Ge et al. [47] proved that the resulting

12This intuition can be formalized through the rank restricted isometry property (rank RIP) [88, 92].
13In details, one can add a penalty ρmcpU ,V q “ λ1

řn1
i“1

`›

›e˚i U
›

› ´ α1

˘4

`
` λ2

řn2
j“1

´›

›

›
e˚j V

›

›

›
´ α2

¯4

`
to (2.20)
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problem has benign global geometry whenever we observe a sufficiently large random subset Ω and the target
matrixX0 is itself not too concentrated on a few entries, in a precise technical sense.14

Robust Matrix Recovery. Many data analysis problems confront the analyst with data sets that are not only
incomplete, but also corrupted. Robust matrix recovery is the problem of estimating low-rank matrixX0 from
such an unreliable observation. Different models of corruption may be applicable in different application
scenarios. For example, in imaging and vision, individual features (entries of the matrix) may be corrupted,
e.g., due to occlusion [105, 106]. This can be modeled as a sparse error: Y “X0 `S0, with bothX0 “ U0V

˚
0

and S0 unknown. We start from the natural formulation

min
U ,V ,S

1
2}UV

˚
` S ´ Y }2F ` gspSq ` ρrpU ,V q, (2.21)

where gspSq is a regularizer that encourages S to be sparse. Partially minimizing with respect to S, we obtain

min
U ,V

ψpUV ˚ ´ Y q ` ρrpU ,V q, (2.22)

where ψp¨q is a new function that measures data fidelity – e..g, if gs is the `1 norm, then ψ is a Huber function
[107]. This is again a matrix factorization problem, but with a different loss ψpUV ˚ ´ Y q. While there are
a number of open issues around the global (and even local! [108, 109]) geometry of this problem, known
results again suggest that for certain choices of gs and ρr it indeed inherits the geometry of factorization [11].
Similar to matrix completion, technical issues arise due to the possibility of encountering low-rank matrices
UV ˚ that are themselves sparse. If the regularizer ρr is chosen to discourage such solutions, it is possible to
prove that the resulting objective function has no spurious local minimizers, and negative curvature at every
non-minimizing critical point.

Equation (2.21) is just one model for matrix recovery from unreliable observations. Versions in which
entire columns of Y are corrupted are also of interest for robust statistical estimation (see e.g., [110]), where
they model outlying data vectors. Certain variants of this problem also inherit the geometry of factorization
– local minimizers are global, saddle points are generated by partial factorizations of the ground truth, and
exhibit negative curvature in directions that introduce additional ground truth factors [111]. It is also possible
to formulate this version of the robust matrix recovery problem as one of finding a hyperplane that contains
the majority of the datapoints. This dual viewpoint leads to nonconvex problems with a sign symmetry, which
again have benign geometry under certain conditions on the input data [112, 113].

2.4 Other Nonconvex Problems with Rotational Symmetry
Other Low-Rank Recovery Problems. There are a number of nonlinear inverse problems that can be con-
verted to rank-one recovery problems, and hence inherit the good geometry of low-rank recovery. Examples
include subspace deconvolution [52, 114, 115], phase synchronization [116–119], community detection [120],
amongst others.

Linear Neural Network. Most neural network learning problems are nonconvex. Neural network problems
arising in practical deep learning typically exhibit complicated symmetries, which include compositions of
permutations. Linear neural networks (whose predictions fpxq “WLWL´1 . . .W 0x « y are a linear function
of the input x) have attracted attention as a more approachable object of theoretical investigation. This model
exhibits rotational symmetries at each layer. Using similar considerations to those described above, [30] and
related work prove that every local minimum is global. As with matrix factorization, critical points of natural
optimization models correspond to “underfactorizations”. However, in contrast to matrix factorization, this
problem does possess “flat” saddle points at which the Hessian has no negative eigenvalues – this is the result
of the compound effect of symmetries at multiple layers.

14Formally,X0 is µ-incoherent, in the sense that for its compact SVDX0 “ BΣC˚, }e˚i B}2 ď
a

µr{n1 and }e˚j C}2 ď
a

µr{n2.
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3 Nonconvex Problems with Discrete Symmetry
In this section, we study nonconvex problems with discrete symmetry groups G. Canonical examples include
sparse dictionary learning (signed permutation symmetry) [49–51, 121], sparse blind deconvolution (signed
shift symmetry) [53–57, 122], tensor decomposition [26, 58] and clustering (permutation symmetry). Problems
of this type are not easily amenable to convexification; understanding nonconvex optimization landscapes
becomes critical. Design choices, such as the choice of objective function and constraints, also seem to play a
critical role: many of the examples we review below are formulated as constrained optimization problems
over compact manifolds such as spheres or orthogonal groups. We again begin by studying a very simple
model problem: dictionary learning with one-sparse data. We extract several key intuitions for problems with
discrete symmetries, and then examine how these intuitions carry over to less idealized (and more useful!)
problem settings.

3.1 Minimal Example: Dictionary Learning with One-Sparse Data
We introduce some basic intuitions through a model problem, which is a highly idealized version of dictionary
learning. In thismodel problem, we observe amatrixY which is the product of an orthogonalmatrixA0 P Opmq
(called a dictionary) and a matrixX0 P Rmˆn whose columns are one-sparse, i.e., each column ofX0 has one
nonzero entry:

Y 0
data

“ A0
orthogonal dictionary

X0.
1-sparse coefficients

(3.1)

This observation model exhibits a signed permutation symmetry (G “ SPpnq): for a given pair pA0,X0q,
and any Γ P SPpnq, the pair pA0Γ,Γ

˚X0q also reproduces Y . The goal is to recover A0 andX0, up to this
symmetry.

A natural approach for recoveringA0 is to search for an orthogonal matrixA such thatA˚Y is as sparse as
possible:

min hpA˚Y q s.t. A P Opmq, (3.2)
where hpXq “ ř

ij hpXijq encourages sparsity. There are many possible choices for h [121, 123, 124]; for
concreteness, here we take h to be the huber function

hλpuq “

#

λ|u| ´ λ2{2 |u| ą λ,

u2{2 |u| ď λ.
(3.3)

This can be viewed as a differentiable surrogate for the (sparsity promoting) `1 norm.
In (3.2), we solve for the entire dictionaryA “ ra1, . . . ,ams at once. An even simpler model problem can

be formulated by instead solving for the columns ai one at a time:

min hλ pa
˚Y q such that a P Sm´1. (3.4)

Here, the goal is to recover a signed column ˘ai of the dictionaryA.15 This problem asks us to minimize an
`1-like function over the sphere.16

To further simplify matters, we assume that the true dictionaryA0 is the identity matrix. This does not
change our geometric conclusions – changing to anotherA0 simply rotates the objective function. Similarly,
since in this model problem each column of X0 has one nonzero entry, we lose little generality in taking
X0 “ I . With these idealizations, the problem simply becomes one of minimizing a sparsity surrogate over
the sphere

min ϕpaq ” hλ paq such that a P Sm´1. (3.5)
Here, recovering a signed column of the true dictionaryA0 “ I corresponds to recovering one of the signed
standard basis vectors ˘e1, . . . ,˘em in this model problem.

15The entire dictionary can be recovered by solving a sequence of problems of this type; see [49, 50, 125].
16The problem (3.4) can also be interpreted geometrically as searching for a sparse vector in the linear subspace rowpY q; see also

[60, 126].
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Figure 9: A model problem with discrete symmetry. Left: the huber function hλpuq is a differentiable
approximation to the `1 norm. Minimizing hλ encourages sparsity. Middle: hλpuq as a function on the
sphere S2. Local minimizers (red) are signed standard basis vectors ˘ei. These are the maximally sparse
vectors on S2. Right: graph of hλ; notice the strong negative curvature at points that are not sparse.

Geometry of the model problem. The 1-sparse dictionary learning model problem also exhibits a signed
permutation symmetry: for any Γ P SPpmq, ϕpΓaq “ ϕpaq. The set of target solutions ˘e1, . . . ,˘em is also
symmetric. Figure 9 plots the objective function, and these target solutions, in a three dimensional example.
Clearly, in this example, these target solutions are the only local minimizers.

To study this phenomenon more formally, we need to understand the slope (gradient) and curvature
(Hessian) of ϕ as a function over the sphere Sm´1. We develop these objects in an intuitive fashion. The sphere
is a smooth manifold; its tangent space at a point a can be identified with aK:

TaSm´1 “ t δ | a˚δ “ 0 u .

The orthogonal projector onto the tangent space is simply given by P aK “ I ´ aa˚. The slope of ϕ over the
sphere (formally, the Riemannian gradient) is simply the component of the standard gradient that is tangent
to the sphere:

gradrϕspaq “ P aK∇ϕpaq (3.6)
The curvature of ϕ over the sphere is slightly more complicated. For a direction δ P TaSm´1, the second
derivative of ϕ along the geodesic curve (great circle) γptq “ expaptδq is given by δ˚Hessrϕspaqδ, where
Hessrϕs is the Riemannian Hessian

Hessrϕspaq “ P aK
´

∇2ϕpaq
curvature of ϕ

´ x∇ϕpaq,ay I
curvature of the sphere

¯

P aK . (3.7)

This expression contains two terms. The first is the standard (Euclidean) Hessian∇2ϕ, which accounts for
the curvature of the objective function ϕ. The second term accounts for the curvature of the sphere itself.17
Analogous to the case in Euclidean space, critical points are characterized by gradrϕspaq “ 0; curvature can be
studied through Hessrϕspaq. For more technical details, we refer readers to [127].

To study the critical points, we begin by calculating the Euclidean gradient of ϕ:

∇ϕpaq “ λ signpaq d 1|a|ąλ ` ad 1|a|ďλ, (3.8)
17This expression can be derived in a simple way by letting }δ} “ 1, and calculating d2

dt2

ˇ

ˇ

ˇ

t“0
ϕ
´

a cos t` δ sin t
¯

.
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where d denotes elementwise multiplication. Using this expression, we can show that the Riemannian
gradient vanishes (gradrϕspaq “ 0) if and only if∇ϕpaq9a (here, 9 denotes proportionality, i.e., Ds such that
∇ϕpaq “ sa). This occurs whenever

a 9 signpaq. (3.9)
We can therefore index critical points by the support I and sign pattern σ of a, writing aI,σ . To understand
which critical points are minimizers, we can study the Hessian Hessrϕspaq. The Euclidean Hessian is∇2ϕpaq “
1|a|ďλ; its Riemannian counterpart is

HessrϕspaI,σq “ P aKI,σ

`

P |aI,σ|ďλ ´ λ|I|I
˘

P aKI,σ . (3.10)

At critical points aI,σ the Hessian exhibits p|I| ´ 1q negative eigenvalues, and n ´ |I| positive eigenvalues.
Based on these calculations, we obtain the following conclusions about the geometry of ϕ:

• Symmetric copies of the ground truth are minimizers. Local minimizers are the signed standard basis
vectors a “ ˘ei with the positive Riemannian Hessian; the objective function is strongly convex in the
vicinity of local minimizers.

• Negative curvature in symmetry breaking directions. Saddle points are balanced superpositions of target
solutions: aI,σ “ 1?

|I|

ř

iPI σiei for I Ď t1, . . . ,mu and signs σi P t˘1u. There is negative curvature in
directions δ P spanptei | i P Iuq that break the balance between target solutions.

• Cascade of saddle points. Saddle points are graded: points aI,σ with larger objective value have more
directions of negative curvature. Moreover, similar to the examples discussed in the last section, the
objective function exhibits a “dispersive” structure: downstream negative curvature directions are the
image of upstream negative curvature directions under gradient flow. This means that negative curvature
upstream helps to prevent local methods from stagnating near downstream saddle points.

In the following subsections, we will see how these basic phenomena recur in more practical nonconvex
problems with discrete symmetries, including general dictionary learning (Section 3.2), blind deconvolution
(Section 3.3), and others.

3.2 Dictionary Learning
The one-sparse dictionary learning problem is an extreme simplification of basic modern data processing
problem: seeking a concise representation of data. The goal of dictionary learning is to produce a sparse model
for an observed dataset Y “

“

y1, . . . ,yp
‰

P Rmˆp. Namely, we seek matricesA0 P Rmˆn andX0 P Rnˆp such
that

Y « A0
dictionary

X0
sparse coefficients

(3.11)

withX0 as sparse as possible. Sparsity is desirable for data compression, and to facilitate tasks such as sensing,
denoising, superresolution, etc. [128, 129]

In the representation (3.11), the data points yj are approximated as superpositions yj « A0x0j of a few
columns of the matrixA0 “ ra01, . . . ,a0ns. This matrix is sometimes called a dictionary. Clearly, the size of the
dictionary, n, has an impact on the accuracy, sparsity, and utility of this data representation. The appropriate
dictionary size depends on application: for learning from a single image, a complete (n “ m) dictionary may
suffice, whereas for learning from larger collections of images, an overcomplete (n ą m) dictionary may be
more appropriate [130–132]. Below, we discuss how our basic intuitions from the orthogonal, one-sparse case,
carry over to each of these more realistic model problems.

Complete Dictionary Learning. There are two basic issues in moving from one-sparse dictionary learning
problem to more general complete dictionary learning problems, in which A0 P Rmˆm is some invertible
matrix. First, the target dictionaryA0 may not be orthogonal. Second, the columns of the coefficient matrixX0

are generally not one-sparse. For theoretical purposes, both of these issues can be addressed using probabilistic
properties ofX0. First, using the statistics of Y “ A0X0 it is possible to reduce the problem of learning a
general invertible A0 to one of learning an orthogonal matrix A “

`

A0A
˚
0

˘´1{2
A0. Concretely, if X0 is a
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sparse random matrix with independent symmetric entries, Y “
`

Y Y ˚
˘´1{2

Y « cAX0 satisfies a sparse
model with orthogonal dictionaryA. Similar to our discussion above, one can recover the columns ofA by
solving the optimization problem

min ϕpaq ” h
`

a˚Y
˘

s. t. a P Sm´1. (3.12)

Although the columns ofX0 are not one-sparse, when the number samples is large, this objective function
retains all of the qualitative properties observed in the one-sparse problem, including local minimizers near
symmetric solutions and saddle points near balanced superpositions of symmetric solutions, with negative
curvature in symmetry breaking directions. The proofs of these properties rely heavily on probabilistic
reasoning: one argues that the “population” objective function Eϕ has benign structure, and then argues that
when the number p of samples is large, gradients and Hessians of ϕ are uniformly close to those of Eϕ, and
hence ϕ has the same benign properties [49, 50].

Overcomplete Dictionary Learning. In practice, overcomplete dictionaries, in which the number of dictionary
atoms n is larger than the signal dimension m, are often favored compared to complete dictionaries. Over-
complete dictionaries have greater expressive power, yielding sparser coefficient matricesX . Our current
theoretical understanding of the objective landscape associated with overcomplete dictionary learning is still
developing. One suggestive result shows that when the dictionary is moderately overcomplete (n ď 3m),
under appropriate technical hypotheses, a formulation based onmaximizing the `4 norm exhibits benign global
geometry [51]: again, every local minimizer is global and saddle points exhibit strict negative curvature.18
These results suggest that overcomplete dictionary learning problems can exhibit benign global geometry;
there are a number of open questions around (i) the degree of overcompleteness n{m that this structure can
tolerate and (ii) the extent to which similar properties hold in more conventional synthesis dictionary learning
formulations, in which one optimizes over bothA andX simultaneously.

3.3 Sparse Blind Deconvolution
Convolutional models arise in a wide range of problems in imaging and data analysis. The most basic
convolutional data model expresses an observation y as the convolution of two signals a0 and x0. Blind
deconvolution aims to recover a0 and x0 from the observation y, up to certain intrinsic symmetries that we
describe below. This problem is ill-posed in general – there are infinitely many pa0,x0q that convolve to produce
y. Tomake progress, some low dimensional priors about a0 andx0 are essential. Different priors yield different
nonconvex optimization problems; in this section, we will focus on several variants of blind deconvolution
with sparsity priors on x0, and then briefly mention other popular variants of blind deconvolution.

Short and Sparse Blind Deconvolution
Analyzing signals comprised of repeated motifs is a common task in areas such as neuroscience, materials
science, astronomy, and natural and scientific imaging [55? ? ? ]. Such signals can bemodeled as the convolution
of a short motif a0 and a sparse coefficient signal x0, which encodes where the motif occurs in time/space.
Mathematically, the observation y P Rm is the windowed19 convolution of the short a0, which is supported on
k (k ! m) consecutive entries and the sparse x0:

y “ Pm ra0 ˚ x0s . (3.13)

Here, ˚ denotes linear convolution and Pm r¨s retains the entries supported on indices 0, ¨ ¨ ¨ ,m´ 1.
The inverse problem of recovering a0 and x0 from y is called short and sparse blind deconvolution (SaS-BD)

[53, 54, 122]. The linear convolution ˚ exhibits a signed shift symmetry:

a0 ˚ x0 “ αsτ ra0s ˚ α
´1s´τ rx0s. (3.14)

18When the dictionary is overcomplete, dictionary atoms ai are correlated and a˚Y is no longer sparse, even if a is chosen as one
of the atoms ai. Rather, at a “ ai, a˚Y is spiky, with a few large entries amongst many small ones. `4 maximization is well-suited
to encouraging this kind of spikiness. The most widely used practical dictionary learning algorithms are based on synthesis sparsity.
Understanding the global geometry of this kind of formulation remains an important open problem

19Rather than having complete access to the convolved signal (which could be infinitely long), we observem consecutive entries of it.
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Here α is some nonzero scalar and sτ rvs denotes a shift of vector v by τ entries, i.e. sτ rvspiq “ vpi´ τq. As
with the other nonconvex problems we have studied up to this point, we should expect this symmetry to play
an critical role in shaping the landscape of optimization – in particular, we would expect the global minimizers
to be symmetric copies of the ground truth.20

Symmetry breaking? However, there is a wrinkle: in order to obtain a finite dimensional optimization
problem, one typically constrains the length-k signal a0 to be supported on t0, . . . , k ´ 1u. This constraint
appears to remove the shift symmetry: now only a scaled version pαa0, α

´1x0q of the truth exactly reproduces
the observation. Perhaps surprisingly, even with this constraint, symmetry still shapes the landscape of
optimization. However, instead of dictating the global minimizers, in constrained formulations, symmetry
dictates the localminimizers. The reason is simple: a shift of a0 by τ samples is not supported on t0, . . . , k´ 1u,
and hence is not feasible. However, its truncation to t0, . . . , k ´ 1u is feasible, and still approximates y:

y « Pk rsτ ra0ss ˚ s´τ rx0s. (3.15)

Because this approximation is not perfect, truncated shifts are not global minimizers. However, they are very
close to local minimizers [53, 122]. These points have suboptimal objective value and do not exactly reproduce
pa0,x0q. Despite this, the optimization landscape is still sufficiently benign21 that it is possible to exactly
recover pa0,x0qwith efficient methods – one can, e.g., first find a local minimizer that is close to a truncated
shift of a0, and then refine it to exactly recover a0.

This problem illustrates how hard it is to avoid symmetry in studying deconvolution problems: even with
an explicit symmetry breaking constraint, symmetry still shapes the landscape of optimization! The main
motivation for studying this more complicated deconvolution model is its applicability. Giving formulations
that better respect the symmetry structure, and hence have no spurious local minimizers, is an important open
problem.

Multi-channel Sparse Blind Deconvolution
The problem of multi-channel sparse blind deconvolution assumes access to multiple observations yi “
a0 f xi P Rk generated from circular convolution (denoted by f) of a0 P Rk and distinct sparse signals xi
[51, 56, 57, 133]. Here, shift symmetry becomes a cyclic shift symmetry: there exist k equivalent solutions
corresponding to k different cyclic shifts. The resulting optimization landscape exhibits similar characteristics
to that of complete dictionary learning, which we have described in Section 3.1 and Figure 9. In particular, any
local minimizer is a scaled cyclic shift of the ground truth [56, 57, 133].

Geometry of Sparse Blind Deconvolution
Despite the technical difference of the convolution operator in MCS and SaS blind deconvolution problems,
their optimization landscapes share the following key phenomena:

• Symmetric copies of the ground truth are minimizers. In above two variants of sparse blind deconvolu-
tion problems, the local minimizers are either a cyclic shifted or shifted truncation of the ground truth
under conditions. Both can be viewed as a result of the inherent shift symmetry.

• Negative curvature in symmetry breaking directions. Near saddle points, there is negative curvature
in the direction of any particular (truncated) shifted copy of the ground truth, and the objective value
decreases by moving towards this symmetry breaking direction.

• Cascade of saddle points. The saddle points are approximately balanced superpositions of several shifts
of the ground truth. The more shifts participate, the larger the objective value and the more negative
eigenvalues the Hessian exhibits.

20Notice that the scale and shift symmetries are intrinsic to the convolution operator in (3.13). Althoughwe focus on sparse deconvolution,
these symmetries will persist in deconvolution with any shift-invariant structural model for a0 and x0. Moreover, as we will see below,
they persist even in the presence of artificial symmetry-breaking mechanisms, in the sense that they still dictate the local minimizers.

21In particular, there is negative curvature in symmetry breaking directions.
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Other Blind Deconvolution Variants
Subspace blind deconvolution is another widely studied variant of blind deconvolution that leverages a low
dimensionalmodel for the pair pa0,x0q. In this variant, a0 andx0 are assumed to lie on known low-dimensional
subspaces [114]. This problem can be cast as a rank-one matrix recovery problem, which exhibits a similar
geometry to the problems studied in Section 2.

Convolutional dictionary learning extends the basic convolution model by allowing for multiple basic motifs
a1, . . . ,aN [134]. More precisely, we observe one or more signals of the form y “

řN
i“1 ai ˚ xi, and the goal is

to recover all the ai and xi. In addition to the symmetries inherited from the convolution operator, this problem
processes an additional permutation symmetry: permuting the index i does not change the approximation to
y. Despite this additional complexity, empirically local minimizers remain symmetric copies of the ground
truth [55, 122]; under certain technical hypotheses, one can prove that natural first order algorithms always
recover one such symmetric copy [51].

3.4 Other Nonconvex Problems with Discrete Symmetry
Symmetric Tensor Decomposition. Tensors can be regarded as high dimensional generalization of matrices.
Tensor decomposition problems find many applications in statistics, data science, and machine learning [135?
–137]. Although we can usually generalize algebraic notions from matrices to tensors, their counterpart in
tensors are often not as well-behaved or easy to compute [135]. In fact, many natural tensor problems are
NP-hard in the worst case [? ].

Nonetheless, recent results suggest that certain appealing special cases of tensor decomposition are tractable
[26, 136? ]. This is especially true for orthogonal tensor decomposition, where the task is to decompose a p-th
order symmetric tensor into this orthogonal components. More specifically, an orthogonal tensor T can be
presented in the following form

T “

r
ÿ

k“1

abpk , r ď n, (3.16)

with takurk“1 are a collection of orthogonal vectors, and abp denotes the p-way outer product of a vector a. The
orthogonal tensor decomposition shares many similarities with the other nonconvex problems with discrete
symmetry discussed above:
• the problem exhibits a signed permutation symmetry which is similar to dictionary learning: given T we can

only hope to recover the orthogonal components takurk“1 up to order permutation;
• when p is even order, as shown in Figure 5, a natural nonconvex formulation

min
xPSn´1

´T px, ¨ ¨ ¨ ,xq “ ´
›

›A˚x
›

›

p

p
with A “

“

a1 ¨ ¨ ¨ ar
‰

(3.17)

manifests a similar optimization landscape, for which every local minimizer is close to one of the signed
orthogonal components and other critical points exhibit strict negative curvature.

These results have inspired further endeavors beyond orthogonal tensors [51, 58, 139]. One particular case
of interest is decomposing a symmetric tensor T in (3.16) with r ą n and nonorthogonal takurk“1, which is
often referred as overcomplete tensor decomposition. In particular, when p “ 4, r P Opn1.5q and takurk“1 are
i.i.d. Gaussian, [58] shows that (3.17) has no bad local minimizer over a level set whose measure geometrically
shrinks w.r.t. the problem dimension; for p “ 4, r ă 3n, and incoherent takurk“1, [51] presented a global
analysis for overcomplete tensor decomposition, disclosing its connection to overcomplete dictionary learning.
Nonetheless, these results are still far from providing a complete understanding of overcomplete tensor
decomposition. One interesting question remains largely open is when bad local minimizers exist for large
rank r " n in the nonorthogonal case.
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Clustering. Clustering is one of the most fundamental problems in unsupervised learning. This problem
possesses a permutation symmetry: one can generate equivalent clusters by permuting the indices for cluster
centers. Popular nonconvex algorithms include the Lloyd algorithm and variants of Expectation Maximization.
Despite the broad applications and empirical success of these methods, few theoretical guarantees have been
obtained until recently. The problem of demixing two balanced, identical data clusters manifests global conver-
gence to (a symmetric copy of) the ground truth [38, 39, 140–142]. We see similar geometric properties hold
here: symmetric copies of the ground truth are minimizers and saddle points exhibit directions of strict negative curvature.
Moreover, the saddle points are also located at balanced superpositions of local minimizers. Sometimes, these
saddle points may contain redundant cluster estimates. In this case, the redundant cluster estimates can be
interpreted as a under-parametrized solution (with a smaller k specified).

However, in general clustering problems with more than two clusters, local minimizers provably exist
[143, 144]. When the clusters are sufficiently separated, these local minimizers possess characteristic structures
[40]: they correspond imbalanced segmentations of the data, in which a subset of the true clusters are optimally
undersegmented and another subset is optimally oversegmented.

Deep Neural Networks. Deep neural networks have more complicated symmetry groups than the problems
described above. For example, natural objective functions associated with fitting a fully connected neural
network are invariant under simultaneous permutations of the features at each layer. We currently lack tools for
reasoning about the global geometry of such problems. However, progress has been made on certain special
cases: for example, certain problems associated with fitting shallow networks share similar geometry to tensor
decomposition [145, 146]. With varying technical assumptions, all local solutions have been shown to be global
in a 1-layer neural network [31, 147–150]. However, general deep nonlinear neural networks can exhibit flat
saddles and spurious local minimizers [151, 152]. We refer interested readers to [34] for more comprehensive
development on optimization theory and algorithm of deep learning.

Fourier Phase Retrieval. The problem of Fourier phase retrieval is a crucial to scientific imaging. In this
problem, the goal is to recover x0 from observation y “ |Fpx0q|. Apart from the rotational (phase) symmetry,
the problem of Fourier phase retrieval manifests two additional symmetries 22: (cyclic)-shift symmetry
|Fpxq| “ |Fpsτ rxsq| and conjugate inversion symmetry |Fpxq| “ |Fpx̌q|, where x̌pnq “ x̄p´nq [153]. This
complicated symmetry structure is reflected in a complicated optimization landscape, which is challenging to
study analytically. Many basic problems in the algorithmic theory of Fourier phase retrieval remain open.

4 Discussion
This work has reviewed recent advances in provable nonconvex methods for signal processing and machine
learning, through the lens of symmetry. It is an exciting time to work on both the theory and practice of
nonconvex optimization. For complementary perspectives on the area, we refer interested readers to other
recent review papers [10–12, 60]. In the following, we close by discussing several general methodological
points and general directions for future work.

Convexification. In the past decades, convex relaxation has been demonstrated a powerful tool for solving
nonconvex problems such as sparse recovery [? ? ] low-rank matrix completion [91, 105? ], etc. For
these problems, convex relaxation achieves near-optimal sample complexity. Which nonconvex problems are
amenable to convex relaxation? There are general results that suggest that unimodal functions (i.e., functions
with one local minimizer) on convex sets can be convexified, by endowing the space with an appropriate
geometry [? ].23 The symmetric problems encountered in this survey are not unimodal. The degree to which
they are amenable to convex relaxation varies substantially:

22When x is one dimensional, the problem becomes even more pessimistic — there exist multiple one dimensional signals with the
same Fourier magnitude, but not related by an obvious symmetry.

23These are existence results; their direct implications for efficient computation are limited, since they apply to NP-hard problems. It is
also worth noting that many of our discrete symmetric problems in Section 3 are formulated over compact manifolds such as Sn´1; the
only continuous geodesically convex function on a compact Riemannian manifold is a constant [? ? ].
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• Problems with rotational symmetry. Many problems with rotational symmetry can be convexified by lifting
to a higher dimensional space [61, 91, 105], e.g., by replacing the factor U with a matrix valued variable
X “ UU˚. This collapses the Oprq symmetry; the resulting problems can often be converted to semidefinite
programs and solved globally. Typically, nonconvex formulations are still preferred in practice, due to their
scalability to large datasets. Section 2 and the references therein describe alternative geometric principles
that help to explain the success of these methods.

• Problems with discrete symmetry. Most of the discrete symmetric problems described in Section 3 do not admit
simple convex relaxations. For example, complete dictionary learning can be reduced to a sequence of linear
programs [125], but only in the highly sparse case, in which the target sparse representation has Op?nq
nonzero entries per length-n data vector. This limitations are attributable in part to the more complicated
discrete symmetry structure. Natural ideas, such as taking a quotient by the symmetry group, encounter
obstacles at both the conceptual and implementation levels. One general methodology which doesmeet with
success in this setting is sum-of-squares relaxation, which for variants of dictionary learning and tensor
decomposition leads to quasipolynomial or even polynomial time algorithms [? ].

Efficient First-Order Algorithms. In this paper, we have described families of symmetric nonconvex opti-
mization problems with benign global geometry: local minimizers are global and saddle points exhibit strict
negative curvature. Although we have not emphasized algorithmic aspects of these problems, this geometric
structure does have strong implications for computation – a variety of methods the key is leveraging negative
curvature to efficiently obtain minimizers. One class of methods explicitly models negative curvature, e.g.,
using a second order approximation to the objective function. Methods in this class include trust region
methods [19], cubic regularization [20], and curvilinear search [18]. These methods can be challenging to
scale to very large problems, since they typically require computation and storage of the Hessian. It is also
possible to leverage negative curvature using more scalable first-order methods such as gradient descent. In
the vicinity of a saddle point, the gradient method essentially performs a power iteration which moves in
directions of negative curvature. Although this scheme can stagnate at or near saddle points, it is possible to
guarantee efficient escape by perturbing the iterates with an appropriate amount of random noise [22, 26? ?
, 27].

Themethods described above are efficient across the broad class of strict saddle functions [9, 26], i.e., functions
whose saddle points all have directions of strict negative curvature. This is a worst case performance guarantee.
Perhaps surprisingly, the simplest and most widely used first order method, gradient descent, is not efficient
for worst case strict saddle functions: although randomly initialized gradient descent does obtain a minimizer
with probability one [21, 23], for certain strict saddle functions it can take time exponential in dimension [? ].
These challenging functions have a large numbers of saddle points, which are conspicuously arranged such
that upstream negative curvature directions align with positive curvature directions for downstream saddle
points.

This worst case behavior is in some sense the opposite of what is observed in the type of highly symmetric
functions studied here: functions encountered in generalized phase retrieval [? ], dictionary learning [42],
deconvolution[57, 133], etc., exhibit a global negative curvature structure ([42] and Appendix B, in which
upstream negative curvature directions align with negative curvature directions of downstream saddle points.
In this situation, randomly initialized gradient descent is efficient. This points to another gap between naturally
occurring nonconvex optimization problems and their worst case counterparts. There is substantial room for
future work in this direction.

Disciplined Formulations and Analysis. Our understanding of nonconvex optimization is still far from
satisfactory – analyses are delicate, case-by-case, and pertain to problems with elementary symmetry (e.g.,
rotation or permutation) and simple constraints (e.g., the sphere).
• A Unified Theory. Analogous to the study of convex functions [? ], there is a pressing need for simpler

analytic tools, to identify and generalize benign properties for new nonconvex problems, despite some
recent endeavors [51, 123] of identifying general conditions and operations preserving benign geometric
structures.

• Complicated Symmetries and Constraints. Practical nonconvex problems often involve multiple symmetries (e.g.,
Fourier phase retrieval and deep neural networks) and/or complicated manifolds (e.g., Stefiel manifold [37]).
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We need better technical tools to understand the impact of compound symmetries (especially compound
discrete symmetries) on the optimization landscape, despite some steps in this directions [37, 121, 123].

• Nonsmoothness. In many scenarios we encounter nonconvex problems with nonsmooth formulations [108,
109, 113, 123? ? ? ? ], for better promoting solution sparsity or robustness. However, most of our current
analysis is local [123? ], and (subgradient) optimization [113, 123? ] could be slow to converge. Attempts
to obtain global analyses and fast optimization methods might benefit from more sophisticated tools from
variational analysis [? ] and development of efficient 2nd-order methods [? ].
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A Critical Points of Low Rank Matrix Factorization
In this appendix, we give a more detailed accounting of the critical points of two model matrix factorization
problems.

Symmetric Low Rank Matrix Factorization. We begin by considering the symmetric factorization problem .
This is a nonconvex optimization problem, with orthogonal symmetry U ” UΓ. As we will see, its critical
points can be described in terms of the eigendecomposition of the symmetric matrixX0. X0 has a complete
orthonormal basis of eigenvectors ξ1, . . . ξn, with corresponding nonnegative eigenvalues λ1 ą λ2 ą ¨ ¨ ¨ ą
λr ą λr`1 “ ¨ ¨ ¨ “ λn “ 0.24

X0 “
ÿ

i

λiξiξ
˚
i . (A.1)

Using properties of the eigenvectors, it is not difficult to show that every optimal factorizationX0 “ UU
˚ can

be written as
U “

”

ξ1λ
1{2
1 | . . . | ξrλ

1{2
r

ı

Γ, (A.2)

for some orthogonal matrix Γ P Oprq.
By setting ∇ϕ “ 0, we can obtain the following characterization of critical points: U is a critical point if

and only if it can be written as

U “ rφ1 | φ2 | ¨ ¨ ¨ | φrsΓ, Γ P Oprq, (A.3)

where the the columns φi are generated by appropriately scaling r1 ď r orthogonal eigenvectors ofX0:

φ1 “ λ
1{2
i1
ξi1 , . . . , φr1 “ λ

1{2
ir1
ξir1 , (A.4)

and setting any remaining φ` to 0. In words, equivalence classes of critical points are generated by selecting
subsets of the eigenvectors ofX0. Selecting the r leading eigenvectors, as in (A.2), gives a global minimizer.
The curvature at other critical points can be studied through the hessian

∇2ϕrW ,W s “ 1
2

›

›UW ˚
`WU˚

›

›

2

F
`
@

UU˚ ´ Y ,WW ˚
D

. (A.5)

Evaluating this at critical points, and using orthogonality of the eigenvectors ξi, we can observe that:
• Saddle points occur at any critical point Ū that is not generated by choosing r lead eigenvectors. Suppose

that Ū “ ΦΓ, and φ` “ 0 for some j ą r. Then there is some lead eigenvector˘ξi (i ď r) which does not
participate in Φ. Consider a perturbation ˘W “ ξie

˚
`Γ which moves φ` in the direction of the neglected

eigenvector ξi or its negative. The second derivative of ϕ in this direction is simply

∇2ϕrW ,W s “
@

UU˚ ´ Y , ξiξ
˚
i

D

“ ´λi ă 0. (A.6)

In words: the objective function exhibits strict negative curvature in any direction that perturbs any
zero column φ` in the direction of a neglected. This is intuitive, since this modification allows the
approximation to capture more of the energy of the observation Y . Since we can perturb in either the
direction of `ξ` or ´ξ`, this can be interpreted as negative curvature in a direction that breaks this
symmetry.

• Local minimizers occur only at the global minimizers, of the form (A.2). There is a manifold of local
minimizers, isometric to Oprq. This generalizes the “circle” of local minimizers observed in phase
retrieval.

24For simplicity, we assume that the nonzero eigenvalues are distinct. Problems with repeated eigenvalues exhibit a similar structure,
with minor modifications.
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Dispersive Non-Dispersive

Figure 10: Dispersive and Non-dispersive Flows. Left: Dispersive functions exhibit global negative
curvature. Right: nondispersive functions may exhibit positive curvature upstream of a saddle. In this
situation, randomly initialized gradient descent may stagnate near the saddle point.

General Low Rank Matrix Factorization. In comparison to symmetric matrix factorization, the problem of
factorizing a general rectangular matrix

X “ UV ˚, U ‰ V (A.7)
admits a full generalized linear symmetry. Asmentioned above, this can be reduced to an orthogonal symmetry,
by introducing an additional penalty, solving

min
U ,V

ϕpU ,V q ` ρspU ,V q. (A.8)

For example, setting ρspU ,V q “
›

›U˚U ´ V ˚V
›

›

2

F
achieves this.25

How does this penalized problem behave? The critical points of this more general model also admit a
simple description in terms of the spectral structure of the target matrix X0, given by the singular value
decompositionX0 “

ř

i σiξiν
˚
i . Where in the symmetric case, critical points are generated by selecting subsets

of eigenvectors, here every critical point pU ,V q is generated by selecting subsets of singular vectors:
U “ rφ1 | ¨ ¨ ¨ | φrsΓ (A.9)
V “ rζ1 | ¨ ¨ ¨ | ζrsΓ, Γ P Oprq, (A.10)

where
φ1 “ σ

1{2
i1
ξi1 , . . . ,φr1 “ σ

1{2
ir1
ξir1 , (A.11)

ζ1 “ σ
1{2
i1
νi1 , . . . , ζr1 “ σ

1{2
ir1
νir1 , (A.12)

and any remaining columns φ`, ζ` are zero. This generalizes in a straightforward way the characterization for
symmetric matrices above. Similar considerations show negative curvature in directions ˘pξie˚` ,νie˚` q that
swap in a leading singular vector pair.

B Dispersive Structure: Negative Curvature
In this appendix, we describe in more detail the notion of dispersion illustrated in Figures 7, 8 and 9 and
the associated critical point diagrams. This notion seems to be important for explaining why the symmetric

25Other penalties are also possible – e.g., ρspU ,V q “ }U}2F ` }V }2F , which encourages the factors to be balanced. This penalty is
tightly connected to nuclear norm regularization.
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functions encountered in this paper are amenable to simple iterative methods such as randomly initialized
gradient descent. The key intuition is that these functions exhibit a global negative curvature structure. This
structure can be described most cleanly in terms of a continuous-time gradient flow

9xt “ ´∇ϕpxtq. (B.1)

We say that two critical points xÒ and xÓ are linked by gradient flow if there is a unique integral curve xt of
this differential equation, with limtÑ8 xt “ x

Ó and limtÑ´8 xt “ x
Ò.

We are interested in understanding whether gradient descent tends to stagnate near xÓ. To this end, it is
useful to study the effect of perturbations vt about xt. In particular, we are interested in understanding the
behavior of the integral curve passing through xt ` εvt, for ε small. Under gradient flow the perturbation
evolves according to the linear time varying dynamical system

9vt “ ´∇2ϕpxtqvt. (B.2)

This differential equation provides a means of tracking the effect of perturbations across time. For any
t, t1 P p´8,8q, we can define a transport operator Tt,t1 from the tangent space at xt to the tangent space at xt1 ,
by letting Tt1,tw be the unique solution vt1 to the differential equation (B.2) with initial condition vt “ w.

The geometry of ϕ around the saddle point xÓ can be studied through the hessian∇2ϕpxÓq. We say that
the function ϕ is dispersive along the path xÒ Ñ xÓ if for every eigenvector v of ∇2ϕpxÓq that corresponds
to a negative eigenvalue, and every tÒ P p´8,8q, there exists a tÓ such that for every tÒ ď t1 ď tÓ ă t,
w “ Tt1,tΠxt,xÓv is a direction of negative curvature, i.e., w˚∇2ϕpxt1qw ă 0.

This somewhat cumbersome technical definition exists to capture the idea that downstream negative curvature
directions are the images of upstream negative curvature directions under gradient flow. All of the symmetric functions
studied in this paper exhibit this property. However, worst case strict saddle functions such as the “octopus
function” [? ] do not. Intuitively speaking, this negative curvature structure helps gradient descent to avoid
stagnating near saddle points. This intuition has been made formal in a number of special cases: generalized
phase retrieval, complete dictionary learning, and multichannel deconvolution, for example.
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