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Chapter 1

Poisson distribution and process, superposition and
marking theorems

s The Poisson distribution is perhaps the fundamental discrete distribution and, along with the
Gaussian distribution, one of the two fundamental distributions of probability.

Importance: Poisson → discrete r.v.’s
Gaussian → continuous r.v.’s

Definition: A random variable X ∈ {0, 1, 2, . . . } is Poisson distributed with parameter λ > 0
if

P (X = n|λ) =
λn

n!
e−λ, (1.1)

denoted X ∼ Pois(λ).

Moments of Poisson

E[X] =
∞∑
n=1

nP (X = n|λ) =
∞∑
n=1

λn

(n− 1)!
e−λ = λ

∞∑
n=1

λn−1

(n− 1)!
e−λ︸ ︷︷ ︸

=1

(1.2)

E[X2] =
∞∑
n=1

n2P (X = n|λ) = λ
∞∑
n=1

nλn−1

(n− 1)!
e−λ = λ

∞∑
n=0

(n+ 1)λn

n!
e−λ

= λ(E[X] + 1) = λ2 + λ (1.3)

V[X] = E[X2]− E[X]2 = λ (1.4)

Sums of Poisson r.v.’s (take 1)

s Sums of Poisson r.v.’s are also Poisson. Let X1 ∼ Pois(λ1) and X2 ∼ Pois(λ2). Then
X1 +X2 ∼ Pois(λ1 + λ2).
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Chapter 1 Poisson distribution and process, superposition and marking theorems 2

Important interlude: Laplace transforms and sums of r.v.’ss Laplace transforms give a very easy way to calculate the distribution of sums of r.v.’s (among
other things).

Laplace transforms Let X ∼ p(X) be a positive random variable and let t > 0. The Laplace transform of X is

E[e−tX ] =

∫
X

e−txp(x) dx (sums when appropriate) (1.5)

Important property

s There is a one-to-one mapping between p(x) and E[e−tX ]. That is, if p(x) and q(x) are two
distributions and Ep[e−tX ] = Eq[e−tX ], then p(x) = q(x) for all x. (p and q are the same
distribution)

Sums of r.v.’s

s Let X1
ind∼ p(x), X2

ind∼ q(x) and Y = X1 +X2. What is the distribution of Y ?

s Approach: Take the Laplace transform of Y and see what happens.

Ee−tY = Ee−t(X1+X2) = E[e−tX1e−tX2 ] = E[e−tX1 ]E[e−tX2 ]︸ ︷︷ ︸
by independence of X1 and X2

(1.6)

s So we can multiply the Laplace transforms of X1 and X2 and see if we recognize it.

Sums of Poisson r.v.’s (take 2)s The Laplace transform of a Poisson random variable has a very important form that should be
memorized.

Ee−tX =
∞∑
n=0

e−tn
λn

n!
e−λ = e−λ

∞∑
n=0

(λe−t)n

n!
= e−λeλe

−t
= eλ(e−t−1) (1.7)

s Back to the problem: X1
ind∼ Pois(λ1), X2

ind∼ Pois(λ2), Y = X1 +X2.

Ee−tY = E[e−tX1 ]E[e−tX2 ] = eλ1(e−t−1)eλ2(e−t−1) = e(λ1+λ2)(e−t−1) (1.8)

We recognize that the last term is the Laplace transform of a Pois(λ1 + λ2) random variable.
We can therefore conclude that Y ∼ Pois(λ1 + λ2).s Another way of saying this is that, if we draw Y1 ∼ Pois(λ1 + λ2) and X1 ∼ Pois(λ1) and
X2 ∼ Pois(λ2) and define Y2 = X1 + X2. Then Y1 is equal to Y2 in distribution. (i.e., they
may not be equal, but they have the same distribution. We write this as Y1

d
= Y2.)s The idea extends to sums of more than two. Let Xi ∼ Pois(λi). Then

∑
iXi ∼ Pois(

∑
i λi)

since
Ee−t

∑
iXi =

∏
i

Ee−tXi = e(
∑
i λi)(e

−t−1). (1.9)
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A conjugate prior for λ

s What if we have X1, . . . , XN that we believe to be generated by a Pois(λ) distribution, but we
don’t know λ?

s One answer: Put a prior distribution on λ, p(λ), and calculate the posterior of λ using Bayes’
rule.

Bayes’ rule (review)

P (A,B) = P (A|B)P (B) = P (B|A)P (A) (1.10)
⇓

P (A|B) =
P (B|A)P (A)

P (B)
(1.11)

posterior =
likelihood× prior

evidence
(1.12)

Gamma prior

s Let λ ∼ Gam(a, b), where p(λ|a, b) = ba

Γ(a)
λa−1e−bλ is a gamma distribution. Then the

posterior of λ is

p(λ|X1, . . . , XN) ∝ p(X1, . . . , XN |λ)p(λ) =

[
N∏
i=1

λXi

Xi!
e−λ

]
ba

Γ(a)
λa−1e−bλ

∝ λa+
∑N
i=1 Xi−1e−(b+N)λ (1.13)

⇓
p(λ|X1, . . . , XN) = Gam(a+

∑N
i=1Xi, b+N) (1.14)

Note that E[λ|X1, . . . , XN ] =
a+

∑N
i=1 Xi

b+N
≈ Empirical average of Xi

(Makes sense because E[X|λ] = λ)

V[λ|X1, . . . , XN ] =
a+

∑N
i=1Xi

(b+N)2 ≈ Empirical average/N
(Get more confident as we see more Xi)s The gamma distribution is said to be the conjugate prior for the parameter of the Poisson

distribution because the posterior is also gamma.

Poisson–Multinomial

s A sequence of Poisson r.v.’s is closely related to the multinomial distribution as follows:

Let Xi
ind∼ Pois(λi) and let Y =

∑N
i=1Xi.

Then what is the distribution of ~X = (X1, . . . , XN) given Y ?
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We can use basic rules of probability. . .

P (X1, . . . , XN) = P (X1, . . . , XN , Y =
∑N

i=1 Xi)← (Y is a deterministic function of X1:N )

= P (X1, . . . , XN |Y =
∑N

i=1Xi)P (Y =
∑N

i=1Xi) (1.15)

And so
P (X1, . . . , XN |Y =

∑N
i=1Xi) = P (X1,...,XN )

P (Y=
∑N
i=1 Xi)

=
∏
i P (Xi)

P (Y=
∑N
i=1 Xi)

(1.16)

s We know that P (Y ) = Pois(Y ;
∑N

i=1 λi), so

P (X1, . . . , XN |Y =
∑

iXi) =

[
N∏
i=1

λXii
Xi!

e−λi

]/[
(
∑N

i=1 λi)
∑N
i=1Xi

(
∑N

i=1Xi)!
e−

∑N
i=1 λi

]

=
Y !

X1! · · ·XN !

N∏
i=1

(
λi∑N
j=1 λj

)Xi

(1.17)

⇓
Mult(Y ; p1, . . . , pN), pi = λi/

∑
j λj

s What is this saying?

1. Given the sum of N independent Poisson r.v.’s, the individual values are distributed as a
multinomial using the normalized parameters.

2. We can sample X1, . . . , XN in two equivalent ways

a) Sample Xi ∼ Pois(λi) independently

b) First sample Y ∼ Pois(
∑

j λj), then (X1, . . . , XN) ∼ Mult
(
Y ; λ1∑

j λj
, . . . , λN∑

j λj

)
Poisson as a limiting case distribution

s The Poisson distribution arises as a limiting case of the sum over many binary events each
having small probability.

Binomial distribution and Bernoulli process

s Imagine we have an array of random variables Xnm, where Xnm ∼ Bern
(
λ
n

)
for m = 1, . . . , n

and fixed 0 ≤ λ ≤ n. Let Yn =
∑n

m=1Xnm and Y = limn→∞ Yn. Then Yn ∼ Bin
(
n, λ

n

)
and

Y ∼ Pois(λ).
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Picture: Have n coins with bias λ/n
evenly spaced between [0, 1]. Go down
the line and flip each independently. In
the limit n → ∞, the total # of 1’s is
a Pois(λ) r.v.

Proof :

lim
n→∞

P (Yn = k|λ) = lim
n→∞

n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k
(1.18)

= lim
n→∞

[
n(n− 1) · · · (n− k + 1)

nk

]
︸ ︷︷ ︸

→ 1

[(
1− λ

n

)−k]
︸ ︷︷ ︸

→ 1

[
λk

k!

(
1− λ

n

)n]
︸ ︷︷ ︸
→

λk

k!
e−λ︸ ︷︷ ︸

= Pois(k;λ)

So limn→∞ Bin
(
n, λ

n

)
= Pois(λ).

A more general statements Let λnm be an array of positive numbers such that

1.
∑n

m=1 λnm = λ <∞
2. λnm < 1 and limn→∞ λnm = 0 for all m, i.e., limn→∞maxm λnm = 0

Let Xnm ∼ Bern(λnm) for m = 1, . . . , n. Let Yn =
∑n

m=1Xnm and Y = limn→∞ Yn. Then
Y ∼ Pois(λ).

Proof : (use Laplace transform)

1. E e−tY = lim
n→∞

E e−tYn = lim
n→∞

E e−t
∑n
m=1Xnm = lim

n→∞

n∏
m=1

E e−tXnm

2. E e−tXnm = λnme
−t·1 + (1− λnm)e−t·0 = 1− λnm(1− e−t)

3. So E e−tY = lim
n→∞

n∏
m=1

(
1− λnm(1− e−t)

)
= lim

n→∞
e
∑n
m=1 ln(1−λnm(1−e−t))

4. ln(1− λnm(1− e−t)) = −
∞∑
s=1

1

s
λsnm(1− e−t)s because 0 ≤ 1− λnm(1− e−t) < 1

5.
n∑

m=1

ln(1− λnm(1− e−t)) = −

(
n∑

m=1

λnm

)
︸ ︷︷ ︸

= λ

(1− e−t)−
∞∑
s=2

1

s

(
n∑

m=1

λsnm

)
(1− e−t)s︸ ︷︷ ︸

→ 0 as n → ∞

So E e−tY = e−λ(1−e−t). Therefore Y ∼ Pois(λ).
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Poisson process

s In many ways, the Poisson process is no more complicated than the previous discussion on the
Poisson distribution. In fact, the Poisson process can be thought of as a “structured” Poisson
distribution, which should hopefully be more clear below.

Intuitions and notations

s S : a space (think Rd or part of Rd)s Π : a random countable subset of S
(i.e., a random # of points and their
locations)s A ⊂ S : a subset of Ss N(A) : a counting measure. Counts
how many points in Π fall in A
(i.e., N(A) = |Π ∩ A|)s µ(·) : a measure on S

↪→ µ(A) ≥ 0 for |A| > 0
µ(·) is non-atomic

↪→ µ(A)→ 0 as |A| → ∅

Think of µ as a scaled probability distribution that is continuous so that µ({x}) = 0 for all
points x ∈ S.

Poisson processes

s A Poisson process Π is a countable subset of S such that

1. For A ⊂ S, N(A) ∼ Pois(µ(A))

2. For disjoint sets A1, . . . , Ak, N(A1), . . . , N(Ak) are independent Poisson random vari-
ables.

N(·) is called a “Poisson random measure”. (See above for mapping from Π to N(·))

Some basic properties

s The most basic properties follow from the properties of a Poisson distribution.

a) EN(A) = µ(A)→ therefore µ is sometimes referred to as a “mean measure”

b) If A1, . . . , Ak are disjoint, then

N(
⋃k
i=1 Ai) =

∑k
i=1 N(Ai) ∼ Pois

(∑k
i=1 µ(Ai)

)
= Pois

(
µ(
⋃k
i=1 Ai)

)
(1.19)

Since this holds for k →∞ and µ(Ai)↘ 0, N(·) is “infinitely divisible”.
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c) Let A1, . . . , Ak be disjoint subsets of S. Then

P (N(A1) = n1, . . . , N(Ak) = nk|N(
⋃k
i=1Ai) = n) = P (N(A1)=n1,...,N(Ak)=nk)

P (N(
⋃k
i=1 Ai)=n)

(1.20)

Notice from earlier that N(Ai)⇔ Xi. Following the same exact calculations,

P (N(A1) = n1, . . . , N(Ak) = nk|N(
⋃k
i=1Ai) = n) = n!

n1!···nk!

∏k
i=1

(
µ(Ai)

µ(
⋃k
j=1 Aj)

)ni
(1.21)

Drawing from a Poisson process (break in the basic properties)s Property (c) above gives a very simple way for drawing Π ∼ PP(µ), though some thought
is required to see why.

1. Draw the total number of points N(S) ∼ Pois(µ(S)).

2. For i = 1, . . . , N(S) draw Xi
iid∼ µ/µ(S). In other words, normalize µ to get a

probability distribution on S.
3. Define Π = {X1, . . . , XN(S)}.

Notice Xi is different from previously. Now it’s a location, while before it was a count.
Here, the Poisson distribution is determining the existence of an Xi, while the mean
measure µ determines its value.

d) Final basic property (of these notes)

E e−tN(A) = eµ(A)(e−t−1) −→ an obvious result since N(A) ∼ Pois(µ(A)) (1.22)

Some more advanced properties

Superposition Theorem: Let Π1,Π2, . . . be a countable collection of independent Poisson pro-
cesses with Πi ∼ PP(µi). Let Π =

⋃∞
i=1 Πi. Then Π ∼ PP(µ) with µ =

∑∞
i=1 µi.

Proof : Remember from the definition of a Poisson process we have to show two things.

1. Let N(A) be the PRM (Poisson random measure) associated with PP (Poisson process)
Π and Ni(A) with Πi. Clearly N(A) =

∑∞
i=1Ni(A), and since Ni(A) ∼ Pois(µi(A)) by

definition, it follows that N(A) ∼ Pois(
∑∞

i=1 µi(A)).

2. Let A1, . . . , Ak be disjoint. Then N(A1), . . . , N(Ak) are independent because Ni(Aj)
are independent for all i and j.

Restriction Theorem: If we restrict Π to a subset of S, we still have a Poisson process. Let
S1 ⊂ S and Πi = Π∩S1. Then Π1 ∼ PP(µ1), where µ1(A) = µ(S1 ∩A). This can be thought
of as setting µ = 0 outside of S1, or just looking at the subspace S1 and ignoring the rest of S.

Mapping Theorem: This says that a one-to-one function y = f(x) preserves the Poisson
process. That is, if Πx ∼ PP(µ) and Πy = f(Πx), then Πy is also a Poisson process with the
proper transformation made to µ. (See Kingman for details. We won’t use this in this class.)
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Example

LetN be a Poisson random measure on
R2 with mean measure µ(A) = c|A|.

|A| is the area of A (“Lebesgue
measure”)

Intuition : Think trees in a forest.

Question 1: What is the distance R from the origin to the nearest point?

Answer: We know that R > r if N(Br) = 0, where Br = ball of radius r. Since these are
equivalent events, we know that

P (R > r) = P (N(Br) = 0) = e−µ(Br) = e−cπr
2

. (1.23)

So p(R = r) = 2cπre−cπr
2
dr, which is a Rayleigh distribution.

Question 2: Let each atom be the center of a disk of radius a. Take our line of sight as the
x-axis. How far can we see?

Answer: The distance V is equivalent to the farthest we can extend a rectangle Dx with y-axis
boundaries of [−a, a]. We know that V > x if N(Dx) = 0. Therefore

P (V > x) = P (N(Dx) = 0) = e−µ(Dx) = e−2acx. (1.24)

So p(V = x) = 2ace−2acxdx which is a Gamma distribution.

Marked Poisson processes

s The other major theorem of these notes relates to “marking” the points of a Poisson process
with a random variable.

s Let Π ∼ PP(µ). For each x ∈ Π, associate a r.v. y ∼ p(y|x). We say that y has “marked” x.
The results is also a Poisson process.

Theorem: Let µ be a measure on space S and p(y|x) a probability distribution on space M .
For each x ∈ Π ∼ PP(µ) draw y ∼ p(y|x) and define Π∗ = {(xi, yi)}. Then Π∗ is a Poisson
process on S ×M with mean measure µ∗ = µ(dx)p(y|x)dy.

Comment: If N∗(C) = |Π∗ ∩C| for C ⊂ S×M , this says that N∗(C) ∼ Pois(µ∗(C)), where
µ∗(C) =

∫
C
µ(dx)p(y|x)dy.
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Proof : Need to show that Ee−tN∗(C) = exp{
∫
C

(e−t − 1)µ(dx)p(y|x)dy}

1. Note that N∗(C) =
∑N(S)

i=1 1{(xi, yi) ∈ C}. N(S) is PRM associated with Π ∼ PP(µ).

2. Recall tower property: Ef(A,B) = E[E[f(A,B)|B]].

3. Therefore, Ee−tN∗(C) = E
[
E
[
exp

{
−t
∑N(S)

i=1 1{(xi, yi) ∈ C}
}
|Π
]]

4. Manipulating :

Ee−tN∗(C) = E

N(S)∏
i=1

E[e−t1{(xi,yi)∈C}|Π]

 (1.25)

= E

N(S)∏
i=1

∫
M

{
e−t·11{(xi, yi) ∈ C}+ e−t·01{(xi, yi) 6∈ C}

}
p(yi|xi)dyi


5. Continuing :

Ee−tN∗(C) = E

N(S)∏
i=1

[1 +

∫
M

(e−t − 1)1{(xi, yi) ∈ C}p(yi|xi)dyi]


︸ ︷︷ ︸

use 1{(xi, yi) 6∈ C} = 1− 1{(xi, yi) ∈ C}

= E

[
n∏
i=1

[
1 +

∫
S

∫
M

(e−t − 1)1{(x, y) ∈ C}p(y|x)dy
µ(dx)

µ(S)
|N(S) = n

]]
︸ ︷︷ ︸

Tower again using Poisson-multinomial representation

= E

[(
(1 +

∫
C

(e−t − 1)p(y|x)dy
µ(dx)

µ(S)

)N(S)
]

︸ ︷︷ ︸
N(S) ∼ Pois(µ(S))

(1.26)

6. Recall that if n ∼ Pois(λ), then

Ezn =
∞∑
n=0

zn
λn

n!
e−λ = e−λ

∞∑
n=0

(zλ)n

n!
= eλ(z−1).

Therefore, this last expectation shows that

Ee−tN∗(C) = exp

{
µ(S)

∫
C

(e−t − 1)p(y|x)dy
µ(dx)

µ(S)

}
= exp

{∫
C

(e−t − 1)µ(dx)p(y|x)dy

}
, (1.27)

thus N∗(C) ∼ Pois(µ∗(C)).
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Example 1: Coloring

s Let Π ∼ PP(µ) and let an x ∈ Π be randomly colored from among K colors. Denote the color
by y with P (y = i) = pi. Then Π∗ = {(xi, yi)} is a PP on S ×{1, . . . , K} with mean measure
µ∗(dx · {y}) = µ(dx)

∏K
i=1 p

1(y=i)
i . If we want to restrict Π∗ to the ith color, called Π∗i , then we

know that Π∗i ∼ PP(piµ). We can also restrict to two colors, etc. What if p(y = i|x) = pi(x)?
Then Π∗i ∼ PP(µ(dx)pi(x)).

Example 2: Using the extended space

s Imagine we have a 24-hour store and customers arrive according to a PP with mean measure
µ on R (time). In this case, let µ(R) = ∞, but µ([a, b]) < ∞ for finite a, b (which gives the
expected number of arrivals between times a and b). Imagine a customer arriving at time x
stays for duration y ∼ p(y|x). At time t, what can we say about the customers in the store?

s Π ∼ PP(µ) and Π∗ = {(xi, yi)} for xi ∈ Π is PP(µ(dx)p(y|x)dy) because it’s a marked
Poisson process.

s We can construct the marked Poisson process like below. The counting measure N∗(C) ∼
Pois(µ∗(C)), µ∗ = µ(dx)p(y|x)dy.

s The points in Ct (below) are those that arrive before time t and are still there at time t. It
follows that

N∗(Ct) ∼ Pois
(∫ t

0

µ(dx)

∫ ∞
t−x

p(y|x)dy

)
.

N∗(Ct) is the number of customers in the store at time t.



Chapter 2

Completely random measures, Campbell’s theorem,
gamma process

Poisson process review

s Recall the definition of a Poisson random measure.

PRM definition: Let S be a space and µ a non-atomic (i.e., diffuse, continuous) measure on it
(think a positive function). A random measure N on S is a PRM with mean measure µ if

a) For every subset A ⊂ S, N(A) ∼ Pois(µ(A)).

b) For disjoint sets A1, . . . , Ak, N(A1), . . . , N(Ak) are independent r.v.’s

Poisson process definition: Let X1, . . . , XN(S) be the N(S) points in N (a random number)
each having measure equal to one. Then the point process Π = {X1, . . . , XN(S)} is a Poisson
process, denoted Π ∼ PP(µ).

Recall that to draw this (when µ(S) <∞) we can

a) Draw N(S) ∼ Pois(µ(S))

b) For i = 1, . . . , N(S), draw Xi
iid∼ µ/µ(S) ← normalize µ to get a probability measure.

Functions of Poisson processes

s Often models will take the form of a function of an underlying Poisson process:
∑

x∈Π f(x).

Example (see Sec. 5.3 of Kingman): Imagine that star locations are distributed as Π ∼ PP(µ).
They’re marked independently with a massm ∼ p(m), giving a marked PP Π∗ ∼ PP(µ×p dm).
The gravitational field at, e.g., the origin is∑

(x,m)∈Π∗

f((x,m)) =
∑

(x,m)∈Π∗

Gmx

‖x‖3
2

x (G is a constant from physics)

11
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s We can analyze these sorts of problems using PP techniques

s We will be more interested in the context of “completely random measures” in this class.

Functions: The finite case

s Let Π ∼ PP(µ) and |Π| < ∞ (with probability 1). Let f(x) be a positive function. Let
M =

∑
x∈Π f(x). We calculate its Laplace transform (for t < 0):

EetM = Eet
∑
x∈Π f(x) = E

 |Π|∏
i=1

etf(xi)

 ← recall two things (below) (2.1)

Recall:

1. |Π| = N(S) ← Poisson random measure for Π

2. Tower property Eg(x, y) = E[E[g(x, y)|y]].

So:

E

N(S)∏
i=1

etf(xi)

 = E

E
N(S)∏
i=1

etf(xi)|N(S)

 = E
[
E
[
etf(x)

]N(S)
]
. (2.2)

Since N(S) ∼ Pois(µ(S)), we use the last term to conclude

E

N(S)∏
i=1

etf(xi)

 = exp{µ(S)(E[etf(x)]− 1)}

= exp

∫
S

µ(dx)(etf(x) − 1)(
since Eetf(x) =

∫
S

µ(dx)

µ(S)
etf(x)

)
↗ ↑

recall that E[(et)N(A)] = exp

∫
A

µ(dx)(et − 1).

(f(x) = 1 in this case)

And so for functions M =
∑

x∈Π f(x) of Poisson processes Π with an almost sure finite
number of points

EetM = exp

∫
S

µ(dx)(etf(x) − 1). (2.3)
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The infinite cases In the case where µ(S) =∞, N(S) =∞ with probability one. We therefore use a different
proof technique that gives the same result.

s Approximate f(x) with simple functions: fk =
∑k2k

i=1 ai1Ai using k2k equally-spaced levels in
the interval [0, k]; Ai = {x : f(x) ∈ [ i−1

2k
, i

2k
)} and ai = i−1

2k
. In the limit k →∞, the width of

those levels 1
2k
↘ 0, and so fk → f .

s For example, if f(x) = x, then fk(x) =
∑k2k

i=1
i−1
2k
1(x ∈ [ i−1

2k
, i

2k
)), so fk(x)↗ x as k →∞

for finite x.s Important notation change:M =
∑

x∈Π f(x)⇔
∫
S
N(dx)f(x).

s Approximate f with fk. Then with the notation change,Mk =
∑

x∈Π fk(x)⇔
∑k2k

i=1 aiN(Ai).s The Laplace functional is

EetM = lim
k→∞

EetMk = lim
k→∞

E
k2k∏
i=1

etaiN(Ai) ← N(Ai) and N(Aj) are independent

= lim
k→∞

exp


k2k∑
i=1

µ(Ai)(e
tai − 1)

 ← N(Ai) ∼ Pois(µ(Ai))

= exp

∫
S

µ(dx)(etf(x) − 1) ← integral as limit of infinitesimal sums (2.4)

Mean and variance ofM: Using ideas from moment generating functions, it follows that

E(M) =

∫
S

µ(dx)f(x)︸ ︷︷ ︸
= d

dtEe
tM|t=0

, V(M) =

∫
S

µ(dx)f(x)2︸ ︷︷ ︸
= d2

dt2
EetM|t=0 − E(M)2

(2.5)
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Finiteness of
∫
S
N(dx)f(x)

s The next obvious question when µ(S) =∞ (and thus N(S) =∞) is if
∫
S
N(dx)f(x) <∞.

Campbell’s theorem gives the necessary and sufficient conditions for this to be true.

s Campbell’s Theorem: Let Π ∼ PP(µ) and N the PRM. Let f(x) be a non-negative function
on S. Then with probability one,

M =

∫
S

N(dx)f(x)

{
<∞ if

∫
S

min(f(x), 1)µ(dx) <∞
=∞ otherwise

(2.6)

Proof : For u > 0, e−uM = e−uM1(M < ∞) ↗ 1(M < ∞) as u ↘ 0. By dominated
convergence, as u↘ 0

Ee−uM = E[e−uM1(M <∞)]↗ E[1(M <∞)] = P (M <∞) (2.7)

In our case: P (M <∞) = limu↘0 exp
∫
S
µ(dx)(e−uf(x) − 1).

Sufficiency

1. For P (M <∞) = 1 as in the theorem, we need limu↘0

∫
S
µ(dx)(e−uf(x) − 1) = 0.

2. For 0 < u < 1 we have

1−f(x) < 1−uf(x) < e−uf(x) −→

(Figure: e−uf(x) is convex in f(x)
and 1 − uf(x) is a 1st order Taylor
expansion of e−uf(x) at f(x) = 0)

3. Therefore 1− e−uf(x) < f(x). Also, 1− e−uf(x) < 1 trivially.

4. So:
0 ≤

∫
S

µ(dx)(1− e−uf(x)) ≤
∫
S

µ(dx) min(f(x), 1) (2.8)

5. If
∫
S
µ(dx) min(f(x), 1) <∞, then by dominated convergence

lim
u↘0

∫
S

µ(dx)(1− e−uf(x)) =

∫
S

µ(dx)
(

1− exp

{
lim
u↘0
−uf(x)

})
= 0 (2.9)

s This proves sufficiency. For necessity we can show that (see, e.g., Cinlar VI.2.13)∫
S

min(f(x), 1)µ(dx) =∞ =⇒
∫
S

µ(dx)(1−e−uf(x)) =∞ =⇒ Ee−uM = 0,∀u (2.10)
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Completely random measures (CRM)

s Definition of measure: The set function µ is a measure on the space S if

1. µ(∅) = 0

2. µ(A) ≥ 0 for all A ⊂ S

3. µ(∪∞i=1Ai) =
∑∞

i=1 µ(Ai) when Ai ∩ Aj = ∅, i 6= j

s Definition of completely random measure: The set function M is a completely random measure
on the space S if it satisfies #1 to #3 above and

1. M(A) is a random variable

2. M(A1), . . . ,M(Ak) are independent for disjoint sets Ai

s Example: Let N be the counting measure associated with Π ∼ PP(µ). It’s a CRM.

s We will be interested in the following situation: Let Π ∼ PP(µ) and mark each θ ∈ Π with a r.v.
π ∼ λ(π), π ∈ R+. Then Π∗ = {(θ, π)} is a PP on S × R+ with mean measure µ(dθ)λ(π)dπ

s If N(dθ, dπ) is the counting measure for Π∗, then N(C) ∼ Pois(
∫
C
µ(dθ)λ(π)dπ).

s For A ⊂ S, let M(A) =
∫
A

∫∞
0
N(dθ, dπ)π. Then M is a CRM on S.

s M is a special case of sums of functions of Poisson processes with f(θ, π) = π. Therefore we
know that

EetM(A) = exp

∫
A

∫ ∞
0

(etπ − 1)µ(dθ)λ(π)dπ. (2.11)

s This works both ways: If we define M and show it has this Laplace transform, then we know
there is a marked Poisson process “underneath” it with mean measure equal to µ(dθ)λ(π)dπ.

−→

marked PP on S × R+ with mean completely random measure on S.
measure µ(dx)× λ(π)dπ M(A) =

∫
A

∫∞
0
N(dθ, dπ)π
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Gamma processess Definition: Let µ be a non-atomic measure on S. Then G is a gamma process if for all A ⊂ S,
G(A) ∼ Gam(µ(A), c) and G(A1), . . . , G(Ak) are independent for disjoint A1, . . . , Ak. We
write G ∼ GaP(µ, c). (c > 0)s Before trying to intuitively understand G, let’s calculate its Laplace transform. For t < 0,

EetG(A) =

∫ ∞
0

cµ(A)

Γ(µ(A))
G(A)µ(A)−1e−G(A)(c−t)dG(A) =

(
c

c− t

)µ(A)

(2.12)

s Manipulate this term as follows (and watch the magic!)

(
c

c− t

)µ(A)

= exp

{
−µ(A) ln

c− t
c

}
= exp

{
−µ(A)

∫ c−t

c

1

s
ds

}
= exp

{
−µ(A)

∫ c−t

c

ds

∫ ∞
0

e−πsdπ

}
= exp

{
−µ(A)

∫ ∞
0

dπ

∫ c−t

c

e−πsds

}
(switched integrals)

= exp

{
µ(A)

∫ ∞
0

(etπ − 1)π−1e−cπdπ

}
(2.13)

Therefore, G has an underlying Poisson random measure on S × R+

G(A) =

∫
A

∫ ∞
0

N(dθ, dπ)π, N(dθ, dπ) ∼ Pois(µ(dθ)π−1e−cπdπ) (2.14)

s The mean measure of N is µ(dθ)π−1e−cπdπ on S × R+. We can use this to answer questions
about G ∼ GaP(µ, c) using the Poisson process perspective.

1. How many total atoms?
∫
S

∫∞
0
µ(dθ)π−1e−cπdπ =∞ ⇒ infinite # w.p. 1

(Tells us that there are an infinite number of points in any subset A ⊂ S that have nonzero
mass according to G)

2. How many atoms ≥ ε > 0?
∫
S

∫∞
ε
µ(dθ)π−1e−cπdπ <∞ ⇒ finite # w.p. 1

(w.r.t. #1, further tells us only a finite number have mass greater than ε)
3. Campbell’s theorem: f(θ, π) = π →

∫
S

∫∞
0

min(π, 1)µ(dθ)π−1e−cπdπ <∞, therefore

G(A) =

∫
A

∫ ∞
0

N(dθ, dπ)π <∞ w.p. 1

(Tells us if we summed up the infinite number of nonzero masses in any set A, we would
get a finite number even though we have an infinite number of nonzero things to add)s Aside: We already knew #3 by definition of G, but this isn’t always the order in which CRMs

are defined. Imagine starting the definition with a mean measure on S × R+.s #3 shouldn’t feel mysterious at all. Consider
∑∞

n=1
1
n2 . It’s finite, but for each n, 1

n2 > 0 and
there are an infinite number of settings for n. “Infinite jump processes” such as the gamma
process replace deterministic sequences like (1, 1/22, 1/32, . . . ) with something random.
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Gamma process as a limiting case

s Is there a more intuitive way to understand the gamma process?

s Definition: Let µ be a non-atomic measure on S and µ(S) <∞. Let πi
iid∼ Gam(µ(S)

K
, c) and

θi
iid∼ µ/µ(S) for i = 1, . . . , K. If Gk =

∑K
i=1 πiδθi , then limK→∞GK = G ∼ GaP(µ, c).

Picture: In the limit K →∞, we have
more and more atoms with smaller and
smaller weights

GK(A) =
K∑
i=1

πiδθi(A) =
K∑
i=1

πi1(θi ∈ A)

Proof : Use the Laplace transform

EetGK(A) = Eet
∑K
i=1 πi1(θi∈A) = E

∏K
i=1 e

tπi1(θi∈A) = E[etπ1(θ∈A)]K

= E
[
etπ1(θ ∈ A) + 1(θ 6∈ A)

]K
=

[
E[etπ]P (θ ∈ A) + P (θ 6∈ A)

]K
=

[(
c

c− t

)µ(S)
K µ(A)

µ(S)
+ 1− µ(A)

µ(S)

]K

=

[
1 +

µ(A)

µ(S)

((
c

c− t

)µ(S)
K

− 1

)]K

=

[
1 +

µ(A)

µ(S)

(
∞∑
n=1

(ln c
c−t)

n

n!

(
µ(S)

K

)n)]K
← (exponential power series)

=

[
1 +

µ(A)

µ(S)

(
µ(S)

K
ln

c

c− t
+O(1/K2)

)]K
(2.15)

s In the limit K →∞, this last equation converges to

exp

{
µ(A)

µ(S)
µ(S) ln

c

c− t

}
=

(
c

c− t

)µ(A)

.

( recall that limK→∞(1 + a
K

+O(K−2))K = ea )

s This is the Laplace transform of a Gam(µ(A), c) random variable.

s Therefore, GK(A)→ G(A) ∼ Gam(µ(A), c), which we’ve already defined and analyzed
as a gamma process.



Chapter 3

Beta processes and the Poisson process

A sparse coding latent factor model

s We have a d× n matrix Y . We want to factorize it as follows:

where

θi ∼ p(θ) i = 1, . . . , K

wj ∼ p(w) j = 1, . . . , n

zj ∈ {0, 1}K j = 1, . . . , n


“sparse coding” because each vector Yj
only possesses the columns of Θ indicated
by zj (want

∑
i zji � K)

s Example: Y could be

a) gene data of n (or d) people,

b) patches extracted from an image for denoising (called “dictionary learning”)

s We want to define a “Bayesian nonparametric” prior for this problem. By this we mean that

1. The prior can allow K →∞ and remain well defined

2. As K →∞, the “effective rank” is finite (and relatively small)

3. The model somehow learns this rank from the data during inference (not discussed)

18
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A “beta sieves” prior

s Let θi ∼ µ/µ(S) and wj be drawn as above. Continue this generative model by letting

zji
iid∼ Bern(πi), j = 1, . . . , n (3.1)

πi ∼ Beta
(
α
γ

K
, α
(

1− γ

K

))
, i = 1, . . . , K (3.2)

s The set (θi, πi) are paired. πi gives the probability an observation picks θi. Notice that we
expect πi → 0 as K →∞.

s Construct a completely random measure HK =
∑K

i=1 πiδθi .s We want to analyze what happens when K →∞. We’ll see that it converges to a beta process.

Asymptotic analysis of beta sieves

s We have that HK =
∑K

i=1 πiδθi , πi
iid∼ Beta (αγ/K, α(1− γ/K)) , θi

iid∼ µ/µ(S), where
γ = µ(S) <∞. We want to understand limK→∞HK .

s Look at the Laplace transform of HK(A). Let H(A) = limK→∞HK(A). Then

EetH(A) = lim
K→∞

EetHK(A) = lim
K→∞

Eet
∑K
i=1 πi1(θi∈A) = lim

K→∞
E[etπ1(θ∈A)]K︸ ︷︷ ︸

sum→ product and use i.i.d. fact

(3.3)

s Focus on Eetπ1(θ∈A) for a particular K-level approximation. We have the following (long)
sequence of equalities:

Eetπ1(θ∈A) = E[etπ1(θ ∈ A) + 1(θ 6∈ A)] = P (θ ∈ A)Eetπ + P (θ 6∈ A)

= 1 +
µ(A)

µ(S)

(
Eetπ − 1

)
← Eetπ = 1 +

∞∑
s=1

ts

s!

s−1∏
r=0

αγ
K

+ r

α + r

= 1 +
µ(A)

µ(S)

∞∑
s=1

ts

s!

s−1∏
r=0

αγ
K

+ r

α + r
← plugging in ↑

= 1 +
µ(A)

K

∞∑
s=1

ts

s!

s−1∏
r=1

r

α + r
+O( 1

K2 ) ← separate out r = 0

= 1 +
µ(A)

K

∞∑
s=1

ts

s!

αΓ(α)Γ(s)

Γ(α + s)
+O( 1

K2 ) ← since Γ(α + 1) = αΓ(α)

= 1 +
µ(A)

K

∞∑
s=1

ts

s!

∫ 1

0

απs−1(1− π)α−1dπ +O( 1
K2 ) ← normalizer of Beta(s, α)

= 1 +
µ(A)

K

∫ 1

0

∞∑
s=1

((tπ)s

s!

)
απ−1(1− π)α−1dπ +O( 1

K2 )

= 1 +
µ(A)

K

∫ 1

0

(etπ − 1)απ−1(1− π)α−1dπ +O( 1
K2 )
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Again using limK→∞(1 + a/K +O(K−2))K = ea, it follows that

lim
K→∞

E[etπ1(θ∈A)]K = exp

{
µ(A)

∫ 1

0

(etπ − 1)απ−1(1− π)α−1dπ

}
. (3.4)

s We therefore know that

1. H is a completely random measure.

2. It has an associated underlying Poisson random measure N(dθ, dπ) on S × [0, 1] with
mean measure µ(dθ)απ−1(1− π)α−1dπ.

3. We can write H(A) as
∫
A

∫ 1

0
N(dθ, dπ)π.

Beta process (as a CRM)

s Definition: Let N(dθ, dπ) be a Poisson random measure on S × [0, 1] with mean measure
µ(dθ)απ−1(1 − π)α−1dπ, where µ is a non-atomic measure. Define the CRM H(A) as∫
A

∫ 1

0
N(dθ, dπ)π . Then H is called a beta process, H ∼ BP(α, µ) and

EetH(A) = exp

{
µ(A)

∫ 1

0

(etπ − 1)απ−1(1− π)α−1dπ

}
.

s (We just saw how we can think of H as the limit of a finite collection of random variables. This
time we’re just starting from the definition, which we could proceed to analyze regardless of
the beta sieves discussion above.)

s Properties of H: Since H has a Poisson process representation, we can use the mean mea-
sure to calculate its properties (and therefore the asymptotic properties of the beta sieves
approximation).

s Finiteness: Using Campbell’s theorem, H(A) is finite with probability one, since∫
A

∫ 1

0

min(π, 1)︸ ︷︷ ︸
= π

απ−1(1− π)α−1dπµ(dθ) = µ(A) <∞ (by assumption about µ)

(3.5)s Infinite jump process: H(A) is constructed from an infinite number of jumps, almost all
infinitesimally small, since

N(A× (0, 1]) ∼ Pois
(
µ(A)

∫ 1

0

απ−1(1− π)α−1dπ
)

= Pois(∞) (3.6)

s Finite number of “big” jumps: There are only a finite number of jumps greater than any
ε > 0 since

N(A× [ε, 1]) ∼ Pois
(
µ(A)

∫ 1

ε

απ−1(1− π)α−1dπ︸ ︷︷ ︸
< ∞ for ε > 0

)
(3.7)

As ε→ 0, the value in the Poisson goes to infinity, so the infinite jump process arises in
this limit. Since the integral over the magnitudes is finite, this infinite number of atoms is
being introduced in a “controlled” way as a function of ε (i.e., not “too quickly”)
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s Reminder and intuitions: All of these properties are over instantiations of a beta process, and
so all statements are made with probability one.

– It’s not absurd to talk about beta processes that don’t have an infinite number of jumps, or
integrate to something infinite (“not absurd” in the way that it is absurd to talk about a
negative value drawn from a beta distribution).

– The support of the beta process includes these events, but they have probability zero, so
any H ∼ BP(α, µ) is guaranteed to have the properties discussed above.

– It’s easy to think of H as one random variable, but as the beta sieves approximation shows,
H is really a collection of an infinite number of random variables.

– The statements we are making about H above aren’t like asking whether a beta random
variable is greater than 0.5. They are larger scale statements about properties of this
infinite collection of random variables as a whole.

s Another definition of the beta process links it to the beta distribution and our finite approxima-
tion:

s Definition II: Let µ be a non-atomic measure on S. For all infinitesimal sets dθ ∈ S, let

H(dθ) ∼ Beta{αµ(dθ), α(1− µ(dθ))},

then H ∼ BP(α, µ).

s We aren’t going to prove this, but the proof is actually very similar to the beta sieves proof.

s Note the difference from the gamma process, where G(A) ∼ Gam(µ(A), c) for any A ⊂ S.
The beta distribution only comes in the infinitesimal limit. That is

H(A) 6∼ Beta{αµ(A), α(1− µ(A))},

when µ(A) > 0. Therefore, we can only write beta distributions on things that equal zero with
probability one. . . Compare this with the limit of the beta sieves prior.

s Observation: While µ({θ}) = µ(dθ) = 0,
∫
A
µ({θ})dθ = 0 but

∫
A
µ(dθ) = µ(A) > 0.

s This is a major difference between a measure and a function: µ is a measure, not a function. It
also seems to me a good example of why these additional concepts and notations are necessary,
e.g., why we can’t just combine things like µ(A) =

∫
A
p(θ)dθ into one single notation, but

instead talk about the “measure” µ and it’s associated density p(θ) such that µ(dθ) = p(θ)dθ.

s This leads to discussions involving the Radon-Nikodym theorem, etc. etc.

s The level of our discussion stops at an appreciation for why these types of theorems exist and
are necessary (as overly-obsessive as they may feel the first time they’re encountered), but we
won’t re-derive them.
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Bernoulli process

s The Bernoulli process is constructed from the infinite limit of the “z” sequence in the pro-
cess zji ∼ Bern(πi), πi

iid∼ Beta (αγ/K, α(1− γ/K)) , i = 1, . . . , K. The random measure
X

(K)
j =

∑K
i=1 zjiδθi converges to a “Bernoulli process” as K →∞.

s Definition: Let H ∼ BP(α, µ). For each atom of H (the θ for which H({θ}) > 0), let
Xj({θ})|H

ind∼ Bern(H({θ})). Then Xj is a Bernoulli process, denoted Xj|H ∼ BeP(H).

s Observation: We know from the Poisson process that H has an infinite number of locations θ
where H({θ}) > 0. Therefore, X is infinite as well.

Some questions about X

1. How many 1’s in Xj?

2. For X1, . . . , Xn|H ∼ BeP(H), how many total locations are there with at least one Xj

equaling one there (marginally speaking, with H integrated out)?

i.e., what is
∣∣∣{θ :

∑n
j=1 Xj({θ}) > 0}

∣∣∣
s The Poisson process representation of the BP makes calculating this relatively easy. We start

by observing that the Xj are marking the atoms, and so we have a marked Poisson process (or
“doubly marked” since we can view (θ, π) as a marked PP as well).

Beta process marked by a Bernoulli process

s Definition: Let Π ∼ PP(µ(dθ)απ−1(1−π)α−1dπ) on S×[0, 1] be a Poisson process underlying
a beta process. For each (θ, π) ∈ Π draw a binary vector z ∈ {0, 1}n where zi|π

iid∼ Bern(π)
for i = 1, . . . , n. Denote the distribution on z as Q(z|π). Then Π∗ = {(θ, π, z)} is a marked
Poisson process with mean measure µ(dθ)απ−1(1− π)α−1dπQ(z|π).

s There is therefore a Poisson process underlying the joint distribution of the hierarchical process

H ∼ BP(α, µ), Xi|H
iid∼ BeP(H), i = 1, . . . , n.

s We next answer the two questions about X asked above, starting with the second one.



Chapter 3 Beta processes and the Poisson process 23

Question: What is K+
n =

∣∣∣{θ :
∑n

j=1Xj({θ}) > 0}
∣∣∣ ?

Answer: The transition distribution Q(z|π) gives the probability of a vector z at a particular
location (θ, π) ∈ Π (notice Q doesn’t depend on θ).

All we care about is whether z ∈ C = {0, 1}n\~0 (i.e., has a 1 in it)

We make the following observations:

– The probability Q(C|π) = P (z ∈ C|π) = 1− P (z 6∈ C|π) = 1− (1− π)n.

– If we restrict the marked PP to C, we get the distribution on the value of K+
n :

K+
n = N(S, [0, 1], C) ∼ Pois

(∫
S

∫ 1

0

µ(dθ)απ−1(1− π)α−1dπ Q(C|π)︸ ︷︷ ︸
= 1−(1−π)n

)
. (3.8)

– It’s worth stopping to remember that N is a counting measure, and think about what
exactly N(S, [0, 1], C) is counting.

∗ N(S, [0, 1], C) is asking for the number of times event C happens (an event related
to z), not caring about what the corresponding θ or π are (hence the S and [0, 1]).
∗ i.e., it’s counting the thing we’re asking for, K+

n .

– We can show that 1− (1− π)n =
n−1∑
i=0

π(1− π)i ← geometric series

– It follows that∫
S

∫ 1

0

µ(dθ)απ−1(1− π)α−1dπ(1− (1− π)n) = µ(S)
n−1∑
i=0

α

∫ 1

0

(1− π)α+i−1dπ

= µ(S)
n−1∑
i=0

αΓ(1)Γ(α + i)

Γ(α + i+ 1)

=
n−1∑
i=0

αµ(S)

α + i
(3.9)

s Therefore K+
n ∼ Pois

( n−1∑
i=0

αµ(S)

α + i

)
.

s Notice that as n→∞, K+
n →∞ with probability one, and that EK+

n ≈ αµ(S) lnn.

s Also notice that we get the answer to the first question for free. Since Xj are i.i.d., we can
treat each one marginally as if it were the first one.

s If n = 1, X(S) ∼ Pois(µ(S)). That is, the number of ones in each Bernoulli process is
Pois(µ(S))-distributed.



Chapter 4

Beta processes and size-biased constructions

The beta process

s Definition (review): Let α > 0 and µ be a finite non-atomic measure on S. Let C ∈ S × [0, 1]
and N be a Poisson random measure with N(C) ∼ Pois(

∫
C
µ(dθ)απ−1(1 − π)α−1dπ). For

A ⊂ S define H(A) =
∫
A

∫ 1

0
N(dθ, dπ)π. Then H is a beta process, denoted H ∼ BP(α, µ).

Intuitive picture (review)

Figure 4.1 (left) Poisson process (right) CRM constructed form Poisson process. If (dθ, dπ) is a point in
the PP, N(dθ, dπ) = 1 and N(dθ, dπ)π = π. H(A) is adding up π’s in the set A× [0, 1].

Drawing from this prior

s In general, we know that if Π ∼ PP(µ), we can drawN(S) ∼ Pois(µ(S)) andX1, . . . , XN(S)
iid∼

µ/µ(S) and construct Π from the X ′is.

s Similarly, we have the reverse property that if N ∼ Pois(γ) and X1, . . . , XN
iid∼ p(X), then the

set Π = {X1, . . . , XN} ∼ PP(γp(X)dX). (This inverse property will be useful later.)

24
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s Since
∫
S

∫ 1

0
µ(dθ)απ−1(1− π)α−1dπ =∞, this approach obviously won’t work for drawing

H ∼ BP(α, µ).

s The method of partitioning [0, 1] and drawing N(S×(a, b]) followed by

θ
(a)
i ∼ µ/µ(S), π

(a)
i ∼

απ−1(1− π)α−1∫ b
a
απ−1(1− π)α−1dπ

1(a < π
(a)
i ≤ b) (4.1)

is possible (using the Restriction theorem from Lecture 1, independence of PP’s on disjoint
sets, and the first bullet of this section), but not as useful for Bayesian models.

s The goal is to find size-biased representations for H that are more straightforward. (i.e., that
involve sampling from standard distributions, which will hopefully make inference easier)

Size-biased representation I (a “restricted beta process”)

s Definition: Let α = 1 and µ be a non-atomic measure on S with µ(S) = γ <∞. Generate the
following independent set of random variables

Vi
iid∼ Beta(γ, 1), θi

iid∼ µ/µ(S), i = 1, 2, . . . (4.2)

Let H =
∑∞

i=1

(∏i
j=1 Vj

)
δθi . Then H ∼ BP(1, µ).

Proof: The proof uses the limiting case of the following finite approximation

s Let πi ∼ Beta( γ
K
, 1), θi ∼ µ/µ(S) for i = 1, . . . , K. LetHK =

∑K
i=1 πiδθi . Then limK→∞HK ∼

BP(1, µ). The proof is similar to the one last lecture.

Question 1: As K →∞, what is π(1) = max{π1, . . . , πK}?

Answer: Look at the CDF’s. We want the function P (π(1) < V1) for a V1 ∈ [0, 1]. Because the
πi are independent,

P (π(1) < V1) = lim
K→∞

P (π1 < V1, . . . , πK < V1) = lim
K→∞

K∏
i=1

P (πi < V1) (4.3)

– P (πi < V1) =

∫ V1

0

γ

K
π
γ
K
−1

i dπi = V
γ
K

1

– lim
K→∞

K∏
i=1

P (πi < V1) = V γ
1

– Therefore, π(1) = V1, V1 ∼ Beta(γ, 1)
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Question 2: What is the second largest, denoted π(2) = limK→∞max{π1, . . . , πK}\{π(1)}?

Answer: This is a little more complicated, but answering how to get π(2) shows how to get the
remaining π(i).

P (π(2) < t|π(1) = V1) =
∏

πi 6=π(1)

P (πi < t|πi < V1) ← condition is each πi < π(1) = V1

=
∏

πi 6=π(1)

P (πi < t, πi < V1)

P (πi < V1)

=
∏

πi 6=π(1)

P (πi < t)

P (πi < V1)
← since t < V1, first event contains second

= lim
K→∞

∏
πi 6=π(1)

∫ t
0
γ
K
π
γ
K
−1

i dπi∫ V1

0
γ
K
π
γ
K
−1

i dπi

= lim
K→∞

[(
t

V1

) γ
K

]K−1

=

(
t

V1

)γ
(4.4)

– So the density p(π(2)|π(1) = V1) = V −1
1 γ

(
π(2)

V1

)γ−1

. π(2) has support [0, V1].

– Change of variables: V2 := π(2)/V1 → π(2) = V1V2, dπ(2) = V1dV2.

– Plugging in, p(V2|π(1) = V1) = V −1
1 γV γ−1

2 · V1︸︷︷︸
Jacobian

= γV γ−1
2 = Beta(γ, 1)

– The above calculation has shown two things:

1. V2 is independent of V1 (this is an instance of a “neutral-to-the-right process”)

2. V2 ∼ Beta(γ, 1)

s Since π(2)|{π(1) = V1} = V1V2 and V1, V2 are independent, we can get the value of π(2) using
previously drawn V1 and then drawing V2 from Beta(γ, 1) distributions.

s The same exact reasoning follows for π(3), π(4), . . .s For example, for π(3), we have P (π(3) < t|π(2) = V1V2, π(1) = V1) = P (π(3) < t|π(2) = V1V2)
because conditioning on π(2) = V1V2 restricts π(3) to also satisfy condition of π(1).s In other words, if we force π(3) < π(2) by conditioning, we get the additional requirement
π(3) < π(1) for free, so we can condition on the π(i) immediately before.

s Think of V1V2 as a single non-random (i.e., already known) value by the time we get to π(3). We
can exactly follow the above sequence after making the correct substitutions and re-indexing.
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Size-biased representation II

Definition: Let α > 0 and µ be a non-atomic measure on S with µ(S) < ∞. Generate the
following random variables:

Ci ∼ Pois
( αµ(S)

α + i− 1

)
, i = 1, 2, . . .

πij ∼ Beta(1, α + i− 1), j = 1, . . . , Ci

θij ∼ µ/µ(S), j = 1, . . . , Ci (4.5)

Define H =
∑∞

i=1

∑Ci
j=1 πijδθij . Then H ∼ BP(α, µ).

Proof:

s We can use Poisson processes to prove this. This is a good example of how easy a proof can
become when we recognize a hidden Poisson process and calculate it’s mean measure.

– Let Hi =
∑Ci

j=1 πijδθij . Then the set Πi = {(θij, πij)} is a Poisson process because it
contains a Poisson-distributed number of i.i.d. random variables.

– As a result, the mean measure of Πi is

αµ(S)

α + i− 1︸ ︷︷ ︸
Poisson # part

× (α + i− 1)(1− π)α+i−2dπ︸ ︷︷ ︸
distribution on π

×µ(dθ)/µ(S)︸ ︷︷ ︸
distribution on θ

(4.6)

We can simplify this to αµ(dθ)(1 − π)α+i−2dπ. We can justify this with the marking
theorem (π marks θ), or just thinking about the joint distribution of (θ, π).

– H =
∑∞

i=1Hi by definition. Equivalently Π =
⋃∞
i=1 Πi.

– By the superposition theorem, we know that Π is a Poisson process with mean measure
equal to the sum of the mean measures of each Πi.

– We can calculate this directly:

∞∑
i=1

αµ(dθ)(1− π)α+i−2dπ = αµ(dθ)(1− π)α−2

∞∑
i=1

(1− π)i︸ ︷︷ ︸
= 1−π

π

dπ (4.7)

– Therefore, we’ve shown that Π is a Poisson process with mean measure

απ−1(1− π)α−1dπµ(dθ).

– In other words, this second size-biased construction is the CRM constructed from in-
tegrating a PRM with this mean measure against the function f(θ, π) = π along the π
dimension. This is the definition of a beta process.
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Size-biased representation IIIs Definition: Let α > 0 and µ be a non-atomic measure on S with µ(S) <∞. The following is
a constructive definition of H ∼ BP(α, µ).

Ci ∼ Pois(µ(S)), V
(`)
ij ∼ Beta(1, α), φij ∼ µ/µ(S) (4.8)

H =
∞∑
i=1

Ci∑
j=1

V
(i)
ij

i−1∏
`=1

(1− V (`)
ij )δθij (4.9)

s Like the last construction, the weights are decreasing in expectation as a function of i.

H =

C1∑
j=1

V1jδθ1j +

C2∑
j=1

V
(2)

2j (1− V (1)
2j )δθ2j +

C3∑
j=1

V
(3)

3j (1− V (2)
3j )(1− V (1)

3j )δθ3j + · · · (4.10)

s The structure is also very similar. We have a Poisson-distributed number of atoms in each
group and they’re marked with an independent random variable.

s Therefore, we can write H =
∑∞

i=1 Hi, where each Hi has a corresponding Poisson process Πi

with mean measure µ(S)× (µ(dθ)/µ(S))× λi(π)dπ, where λi(π) is the distribution of

π = Vi

i−1∏
j=1

(1− Vj), Vi ∼ Beta(1, α).

s By the superposition theorem, H has an underlying Poisson process Π with mean measure
equal to the sum of each Hi’s mean measures: µ(dθ)

∑∞
i=1 λi(π)dπ.

s Therefore, all that remains is to calculate this sum (which is a little complicated).

Proof :s We focus on λi(π), which is the distribution on π = f(V1, . . . , Vi), where f(V1, . . . , Vi) =
Vi
∏i−1

j=1(1− Vj), Vj ∼ Beta(1, α).

s Lemma: Let T ∼ Gam(i− 1, α). Then e−T d
=
∏i−1

j=1(1− Vj).

s Proof : Define ξj = − ln(1 − Vj). We can show by a change of variables that ξj ∼ Exp(α).
The function − ln

∏i−1
j=1(1− Vj) =

∑i−1
j=1 ξj . Since the Vj are independent, the ξj are indepen-

dent. We know that sums of i.i.d. exponential r.v.’s are gamma distributed, so T =
∑i−1

j=1 ξj is

distributed as Gam(i − 1, α). That is, − ln
∏i−1

j=1(1 − Vj)
d
= T ∼ Gam(i − 1, α) and the re-

sult follows because the same function of two equally distributed r.v.’s is also equally distributed.

s We split the proof into two cases, i = 1 and i > 1.

s Case i = 1: V1j ∼ Beta(1, α), therefore π1j = V1j ∼ λ1(π)dπ = α(1− π)α−1dπ.
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s Case i > 1: Vij ∼ Beta(1, α), Tij ∼ Gam(i− 1, α), πij = Vije
−Tij . We need to find the density

of πij . Let Wij = e−Tij . Then changing variables,

pWi
(w|α) =

αi−1

(i− 2)!
wα−1(− lnw)i−2. (4.11)

↑
plug Tij = − lnWij into gamma distribution and multiply by Jacobian

s Therefore πij = VijWij and using the product distribution formula

λi(π|α) =

∫ 1

π

w−1pV (π/w|α)pWi
(w|α)dw

=
αi

(i− 2)!

∫ 1

π

wα−2(− lnw)i−2(1− π/w)α−1dw

=
αi

(i− 2)!

∫ 1

π

w−1(− lnw)i−2(w − π)α−1dw (4.12)

s This integral doesn’t have a closed form solution. However, recall that we only need to calculate
µ(dθ)

∑∞
i=1 λi(π)dπ to find the mean measure of the underlying Poisson process.

µ(dθ)
∞∑
i=1

λi(π)dπ = µ(dθ)λ1(π)dπ + µ(dθ)
∞∑
i=2

λi(π)dπ (4.13)

µ(dθ)
∞∑
i=2

λi(π)dπ = µ(dθ)
∞∑
i=2

dπ
αi

(i− 2)!

∫ 1

π

w−1(− lnw)i−2(w − π)α−1dw

= µ(dθ)dπα2

∫ 1

π

w−1(w − π)α−1dw
∞∑
i=2

(−α lnw)i−2

(i− 2)!︸ ︷︷ ︸
= e−α lnw = w−α

= µ(dθ)dπα2

∫ 1

π

w−(α+1)(w − π)α−1dw︸ ︷︷ ︸
= (w−π)α

απwα

∣∣∣1
π

= µ(dθ)
α(1− π)α

π
dπ (4.14)

s Adding µ(dθ)λ1(π)dπ from Case 1 with this last value,

µ(dθ)
∞∑
i=1

λi(π)dπ = µ(dθ)απ−1(1− π)α−1dπ. (4.15)

s Therefore, the construction corresponds to a Poisson process with mean measure equal to that
of a beta process. It’s therefore a beta process.



Chapter 5

Dirichlet processes and a size-biased construction

s We saw how beta processes can be useful as a Bayesian nonparametric prior for latent factor
(matrix factorization) models.

s We’ll next discuss BNP priors for mixture models.

Quick review

s 2-dimensional data generated from Gaussian with unknown
mean and known variance.s There are a small set of possible means and an observations
picks one of them using a probability distribution.s Let G =

∑K
i=1 πkδθi be the mixture distribution on mean pa-

rameters – θi: ith mean, πi: probability of it

s For the nth observation,
1. cn ∼ Disc(π) picks mean index
2. xn ∼ N(θcn ,Σ) generates observation

Priors on G

s Let µ be a non-atomic probability measure on the parameter space.

s Since π is a K-dimensional probability vector, a natural prior is Dirichlet.

Dirichlet distribution: A distribution on probability vectors

s Definition: Let α1, . . . , αK be K positive numbers. The Dirichlet distribution density function
is defined as

Dir(π|α1, . . . , αK) =
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

παi−1
i (5.1)

30
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s Goals: The goals are very similar to the beta process.

1. We want K →∞
2. We want the parameters α1, . . . , αK to be such that, as K →∞, things are well-defined.
3. It would be nice to link this to the Poisson process somehow.

Dirichlet random vectors and gamma random variables

s Theorem: Let Zi ∼ Gam(αi, b) for i = 1, . . . , K. Define πi = Zi/
∑K

j=1 Zj Then

(π1, . . . , πK) ∼ Dir(α1, . . . , αK). (5.2)

Furthermore, π and Y =
∑K

j=1 Zj are independent random variables.

s Proof: This is just a change of variables.

– p(Z1, . . . , ZK) =
K∏
i=1

p(Zi) =
K∏
i=1

bαi

Γ(αi)
Zαi−1
i e−bZi

– (Z1, . . . , ZK) := f(Y, π) = (Y π1, . . . , Y πK−1, Y (1−
∑K−1

i=1 πi))

– pY,π(Y, π) = PZ(f(Y, π)) · |J(f)| ← J(·) = Jacobian

– J(f) =


∂f1

∂π1
· · · ∂f1

∂πK−1

∂f1

∂Y

. . .
∂fK
∂π1

· · · ∂fK
∂πK−1

∂fK
∂Y

 =


Y 0 · · · π1

0 Y 0 π2

0 0
. . . ...

−Y −Y · · · 1−
∑K−1

i=1 πi


– One can show that |J(f)| = Y K−1

– Therefore

pZ(f(Y, π))|J(f)| =
K∏
i=1

bαi

Γ(αi)
(Y πi)

αi−1e−bY πiY K−1, (πK := 1−
K−1∑
i=1

πi)

=

[
b
∑
i αi

Γ(
∑

i αi)
Y

∑
i αi−1e−bY

]
︸ ︷︷ ︸

Gam(
∑

i αi, b)

[
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

παi−1
i

]
︸ ︷︷ ︸

Dir(α1, . . . , αK)

(5.3)

s We’ve shown that:

1. A Dirichlet distributed probability vector is a normalized sequence of independent gamma
random variables with a constant scale parameter.

2. The sum of these gamma random variables is independent of the normalization because
their joint distribution can be written as a product of two distributions.

3. This works in reverse: If we want to draw an independent sequence of gamma r.v.’s, we
can draw a Dirichlet vector and scale it by an independent gamma random variable with
first parameter equal to the sum of the Dirichlet parameters (and second parameter set to
whatever we want).
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Dirichlet process

s Definition: Let α > 0 and µ a non-atomic probability measure on S. For all partitions of S,
A1, . . . , Ak, where Ai ∩Aj = ∅ for i 6= j and ∪Ki=1Ai = S, define the random measure G on S
such that

(G(A1), . . . , G(Ak)) ∼ Dir(αµ(A1), . . . , αµ(Ak)). (5.4)

Then G is a Dirichlet process, denoted G ∼ DP(αµ).

Dirichlet processes via the gamma process

s Pick a partition of S, A1, . . . , Ak. We can represent G ∼ DP(αµ) as the normalization of
gamma distributed random variables,

(G(A1), . . . , G(Ak)) =
(G′(A1)

G′(S)
, . . . ,

G′(Ak)

G′(S)

)
, (5.5)

G′(Ai) ∼ Gam(αµ(Ai), b), G′(S) = G′(∪ki=1Ai) =
k∑
i=1

G′(Ai) (5.6)

s Looking at the definition and how G′ is defined, we realize that G′ ∼ GaP(αµ, b). Therefore, a
Dirichlet process is simply a normalized gamma process.

s Note that G′(S) ∼ Gam(α, b). So G′(S) <∞ with probability one and so the normalization
G is well-defined.

Gamma processes and the Poisson process

s Recall that the gamma process is constructed from a Poisson process.

s Gamma process: Let N be a Poisson random measure on S × R+ with mean measure
αµ(dθ)z−1e−bzdz. Define G′(Ai) =

∫
Ai

∫∞
0
N(dθ, dz)z. Then G′ ∼ GaP(αµ, b).

s Since the DP is a rescaled GaP, this shares the same
properties (from Campbells theorem)

– For example, it’s an infinite jump process.

– However, the DP is not a CRM like the GaP
since G(Ai) and G(Aj) are not independent for
disjoint sets Ai and Aj . This should be clear
since G has to integrate to 1.



Chapter 5 Dirichlet processes and a size-biased construction 33

Dirichlet process as limit of finite approximation

s This is very similar to the previous discussion on limits of finite approximations to the gamma
and beta process.

s Definition: Let α > 0 and µ a non-atomic probability measure on S. Let

GK =
K∑
i=1

πiδθi , π ∼ Dir(α/K, . . . , α/K), θi
iid∼ µ (5.7)

Then limK→∞GK = G ∼ DP(αµ).

s Rough proof: We can equivalently write

GK =
K∑
i=1

(
Zi∑K
j=1 Zj

)
δθi , Zi ∼ Gam(α/K, b), θi ∼ µ (5.8)

s If G′K =
∑K

i=1 Ziδθi , we’ve already proven that G′K → G′ ∼ GaP(αµ, b). GK is thus the limit
of the normalization of G′K . Since limK→∞G

′
K(S) is finite almost surely, we can take the

limit of the numerator and denominator of the gamma representation of GK separately. The
numerator converges to a gamma process and the denominator its normalization. Therefore,
GK converges to a Dirichlet process.

Some comments

s This infinite limit of the finite approximation results in an infinite vector, but the original
definition was of a K dimensional vector, so is a Dirichlet process infinite or finite dimensional?
Actually, the finite vector of the definition is constructed from an infinite process:

G(Aj) = lim
K→∞

GK(Aj) = lim
K→∞

K∑
i=1

πiδθi(Aj). (5.9)

s Since the partition A1, . . . , Ak of S is of a continuous space we have to be able to let K →∞,
so there has to be an infinite-dimensional process underneath G.

s The Dirichlet process gives us a way of defining priors on infinite discrete probability distribu-
tions on this continuous space S.

s As an intuitive example, if S is a space corresponding to the mean of a Gaussian, the Dirichlet
process gives us a way to assign a probability to every possible value of this mean.

s Of course, by thinking of the DP in terms of the gamma and Poisson processes, we know that an
infinite number of means will have probability zero, and infinite number will also have non-zero
probability, but only a small handful of points in the space will have substantial probability.
The number and locations of these atoms are random and learned during inference.

s Therefore, as with the beta process, size-biased representations of G ∼ DP(αµ) are needed.
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A “stick-breaking” construction of G ∼ DP(αµ)

s Definition: Let α > 0 and µ be a non-atomic probability measure on S. Let

Vi ∼ Beta(1, α), θi ∼ µ (5.10)

independently for i = 1, 2, . . . Define

G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi . (5.11)

Then G ∼ DP(αµ).

s Intuitive picture: We start with a unit length stick and break off proportions.

G = V1δθ1 +

V2(1− V1)δθ2 +

V3(1− V2)(1− V1)δθ3 + · · ·

(1 − V2)(1 − V1) is what’s left
after the first two breaks. We
take proportion V3 of that for θ3
and leave (1−V3)(1−V2)(1−V1)

↙

Getting back to finite Dirichlets

s Recall from the definition that (G(A1), . . . , G(AK)) ∼ Dir(αµ(A1), . . . , αµ(AK)) for all par-
titions A1, . . . , AK of S.

s Using the stick-breaking construction, we need to show that the vector formed by

G(Ak) =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi(Ak) (5.12)

for k = 1, . . . , K is distributed as Dir(αµ1, . . . , αµK), where µk = µ(Ak).

s Since P (θi ∈ Ak) = µ(Ak), δθi(Ak) can be equivalently represented by a K-dimensional
vector eYi = (0, . . . , 1, . . . , 0), with the 1 in the position Yi and Yi ∼ Disc(µ1, . . . , µK) and the
rest 0.

s Letting πi = G(Ai), we therefore need to show that if

π =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)eYi , Vi
iid∼ Beta(1, α), Yi

iid∼ Disc(µ1, . . . , µK) (5.13)

Then π ∼ Dir(αµ1, . . . , αµK).
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s Lemma: Let π ∼ Dir(a1 + b1, . . . , aK + bK). We can equivalently represent this as

π = V Y + (1− V )W, V ∼ Beta(
∑

k ak,
∑

k bk),

Y ∼ Dir(a1, . . . , aK), W ∼ Dir(b1, . . . , bK) (5.14)

Proof : Use the normalized gamma representation: πi = Zi/
∑

j Zj, Zi ∼ Gam(ai + bi, c).

– We can use the equivalence

ZY
i ∼ Gam(ai, c), ZW

i ∼ Gam(bi, c) ⇔ ZY
i + ZW

i ∼ Gam(ai + bi, c) (5.15)

– Splitting into two random variables this way we have the following normalized gamma
representation for π

π =

(
ZY

1 + ZW
1∑

i Z
Y
i + ZW

i

, . . . ,
ZY
K + ZW

K∑
i Z

Y
i + ZW

i

)
(5.16)

=

( ∑
i Z

Y
i∑

i Z
Y
i + ZW

i

)
︸ ︷︷ ︸
V ∼ Beta(

∑
i ai,

∑
i bi)

(
ZY

1∑
i Z

Y
i

, . . . ,
ZY
K∑
i Z

Y
i

)
︸ ︷︷ ︸

Y ∼ Dir(a1,...,aK)

+

( ∑
i Z

W
i∑

i Z
Y
i + ZW

i

)
︸ ︷︷ ︸

1 − V

(
ZW

1∑
i Z

W
i

, . . . ,
ZW
K∑
i Z

W
i

)
︸ ︷︷ ︸

W ∼ Dir(b1,...,bK)

– From the previous proof about normalized gamma r.v.’s, we know that the sums are
independent from the normalized values. So V , Y , and W are all independent.

s Proof of stick-breaking construction:

– Start with π ∼ Dir(αµ1, . . . , αµK). Also, we use αi ≡ αµi in parts below.

– Step 1:

Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

παi−1
i =

(
K∑
j=1

πj

)
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

παi−1
i (5.17)

=
K∑
j=1

αµj
αµj

Γ(α)∏
i Γ(αi)

K∏
i=1

π
αi+ej(i)−1
i

=
K∑
j=1

µj
Γ(1 + α)

Γ(1 + αj)
∏

i 6=j Γ(αi)

K∏
i=1

π
αi+ej(i)−1
i︸ ︷︷ ︸

= Dir(αµ+ej)

– Therefore, a hierarchical representation of Dir(αµ1, . . . , αµK) is

Y ∼ Discrete(µ1, . . . , µK), π ∼ Dir(αµ+ eY ). (5.18)
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– Step 2:
From the lemma we have that π ∼ Dir(αµ + eY ) can be expanded into the equivalent
hierarchical representation π = V Y ′ + (1− V )π′, where

V ∼ Beta(
∑

i eY (i)︸ ︷︷ ︸
= 1

,
∑

i αµi︸ ︷︷ ︸
= α

), Y ′ ∼ Dir(eY )︸ ︷︷ ︸
= eY with probability 1

, π′ ∼ Dir(αµ1, . . . , αµK) (5.19)

– Combining Steps 1& 2:
We will use these steps to recursively break down a Dirichlet distributed random vector
an infinite number of times. If

π = V eY + (1− V )π′, (5.20)

V ∼ Beta(1, α), Y ∼ Disc(µ1, . . . , µK), π′ ∼ Dir(αµ1, . . . , αµK),

Then from steps 1 & 2, π ∼ Dir(αµ1, . . . , αµK).

– Notice that there are Dir(αµ1, . . . , αµK) r.v.’s on both sides. We “broke down” the one
on the left. We can continue by “breaking down” the one on the right:

π = V1eY1 + (1− V1)(V2eY2 + (1− V2)π′′) (5.21)

Vi
iid∼ Beta(1, α), Yi

iid∼ Disc(µ1, . . . , µK), π′′ ∼ Dir(αµ1, . . . , αµK),

π is still distributed as Dir(αµ1, . . . , αµK).

– Continue this an infinite number of times:

π =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)eYi , Vi
iid∼ Beta(1, α), Yi

iid∼ Disc(µ1, . . . , µK). (5.22)

Still, following each time the right-hand Dirichlet is expanded we get a Dir(αµ1, . . . , αµK)
random variable. Since limT→∞

∏T
j=1(1− Vj) = 0, the term pre-multiplying this RHS

Dirichlet vector equals zero and the limit above results, which completes the proof.

s Corollary:

If G is drawn from DP(αµ) using the stick-breaking construction and β ∼ Gam(α, b) indepen-
dently, then βG ∼ GaP(αµ, b). Writing this out,

βG =
∞∑
i=1

β
(
Vi

i−1∏
j=1

(1− Vj)
)
δθi (5.23)

s We therefore get a method for drawing a gamma process almost for free. Notice that α appears
in both the DP and gamma distribution on β. These parameters must be the same value for βG
to be a gamma process.
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Dirichlet process extensions, count processes

Gamma process to Dirichlet process

s Gamma process: Let α > 0 and µ a non-atomic probability measure on S. Let N(dθ, dw)
be a Poisson random measure on S × R+ with mean measure αµ(dθ)we−cwdw, c > 0. For
A ⊂ S, let G′(A) =

∫
A

∫∞
0
N(dθ, dw)w. Then G′ is a gamma process, G′ ∼ GaP(αµ, c), and

G′(A) ∼ Gam(αµ(A), c).

s Normalizing a gamma process: Let’s take G′ and normalize it. That is, define G(dθ) =
G′(dθ)/G′(S). (G′(S) ∼ Gam(α, c), so it’s finite w.p. 1). Then G is called a Dirichlet
process, written G ∼ DP(αµ).

Why? Take S and partition it into K disjoint regions, i.e., (A1, . . . , AK), Ai ∩ Aj = ∅, i 6= j,
∪iAi = S. Construct the vector

(G(A1), . . . , G(AK)) =

(
G′(A1)

G′(S)
, . . . ,

G′(AK)

G′(S)

)
. (6.1)

Since each G′(Ai) ∼ Gam(αµ(Ai), c), and G′(S) =
∑K

i=1G
′(Ai), it follows that

(G(A1), . . . , G(AK)) ∼ Dir(αµ(A1), . . . , αµ(AK)). (6.2)

This is the definition of a Dirichlet process.

s The Dirichlet process has many extensions to suit the structure of different problems.

s We’ll look at four, two that are related to the underlying normalized gamma process, and two
from the perspective of the stick-breaking construction.

s The purpose is to illustrate how the basic framework of Dirichlet process mixture modeling can
be easily built into more complicated models that address problems not perfectly suited to the
basic construction.

s Goal is to make it clear how to continue these lines of thinking to form new models.

37
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Example 1: Spatially and temporally normalized gamma processes

s Imagine we wanted a temporally evolving Dirichlet process. Clusters (i.e., atoms, θ) may arise
and die out at different times (or exist in geographical regions)

Time-evolving model: Let N(dθ, dw, dt) be a Poisson random measure on S × R+ × R with
mean measure αµ(dθ)w−1e−cwdwdt. Let G′(dθ, dt) =

∫∞
0
N(dθ, dw, dt)w. Then G′ is a

gamma process with added “time” dimension t.

s (There’s nothing new from what we’ve studied: Let θ∗ = (θ, t) and αµ(dθ∗) = αµ(dθ)dt.)

s For each atom (θ, t) with G′(dθ, dt) > 0, add a marking yt(θ)
ind∼ Exp(λ).

s We can think of yt(θ) as the lifetime of parameter θ born at time t.

s By the marking theorem, N∗(dθ, dw, dt, dy) ∼ Pois
(
αµ(dθ)w−1e−cwdwdtλe−λydy

)

s At time t′, construct the Dirichlet process Gt by normalizing over all atoms “alive” at time t.
(Therefore, ignore atoms already dead or yet to be born.)

Spatial model: Instead of giving each atom θ a time-stamp and “lifetime,” we might want to
give it a location and “region of influence”.

s Replace t ∈ R with x ∈ R2 (e.g., latitude-longitude). Replace dt with dx.

s Instead of yt(θ) ∼ Exp(λ) = lifetime, yx(θ) ∼ Exp(λ) = radius of ball at x.

s G′x is the DP at location x′.s It is formed by normalizing over all
atoms θ for which

x′ ∈ ball of radius yx(θ) at x
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Example 2: Another time-evolving formulation

s We can think of other formulations. Here’s one where time is discrete. (We will build up to this
with the following two properties).

s Even though the DP doesn’t have an underlying PRM, the fact that it’s constructed from a PRM
means we can still benefit from its properties.

Superposition and the Dirichlet process: Let G′1 ∼ GaP(α1µ1, c) and G′2 ∼ GaP(α2µ2, c).
Then G′1+2 = G′1 +G′2 ∼ GaP(α1µ1 + α2µ2, c). Therefore,

G1+2 =
G′1+2

G′1+2(S)
∼ DP(α1µ1 + α2µ2). (6.3)

We can equivalently write

G1+2 =
G′1(S)

G′1+2(S)︸ ︷︷ ︸
Beta(α1,α2)

× G′1
G′1(S)︸ ︷︷ ︸

DP(α1µ1)

+
G′2(S)

G′1+2(S)
× G′2
G′2(S)︸ ︷︷ ︸

DP(α2µ2)

∼ DP(α1µ1 + α2µ2) (6.4)

From the lemma last week, these two DP’s and the beta r.v. are all independent.

s Therefore,

G = πG1 + (1− π)G2, π ∼ Beta(α1, α2), G1 ∼ DP(α1µ1), G2 ∼ DP(α2µ2) (6.5)

is equal in distribution to G ∼ DP(α1µ1 + α2µ2).

Thinning of gamma processes (a special case of the marking theorem)

s We know that we can constructG′ ∼ GaP(αµ, c) from the Poisson random measureN(dθ, dw) ∼
Pois (αµ(dθ)w−1e−cwdw). Mark each point (θ, w) in N with a binary variable z ∼ Bern(p).
Then

N(dθ, dw, z) ∼ Pois
(
pz(1− p)1−zαµ(dθ)w−1e−cwdw

)
. (6.6)

s If we view z = 1 as “survival” and z = 0 as “death,” then if we only care about the atoms that
survive, we have

N1(dθ, dw) = N(dθ, dw, z = 1) ∼ Pois(pαµ(dθ)w−1e−cwdw). (6.7)

s This is called “thinning.” We see that p ∈ (0, 1) down-weights the mean measure, so we only
expect to see a fraction p of what we saw before.

s Still, a normalized thinned gamma process is a Dirichlet process

Ġ′ ∼ GaP(pαµ, c), Ġ =
Ġ′

Ġ′(S)
∼ DP(pαµ). (6.8)
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s What happens if we thin twice? We’re marking with z ∈ {0, 1}2 and restricting to z = [1, 1],

G̈′ ∼ GaP(p2αµ, c) → G̈ ∼ DP(p2αµ). (6.9)

s Back to the example, we again want a time-evolving Dirichlet process where new atoms are
born and old atoms die out.

s We can easily achieve this by introducing new gamma processes and thinning old ones.

A dynamic Dirichlet process:

At time t: 1. Draw G∗t ∼ GaP(αtµt, c).

2. Construct G′t = G∗t + Ġ′t−1, where Ġ′t−1 is the gamma process
at time t− 1 thinned with parameter p.

3. Normalize Gt = G′t/G
′
t(S).

s Why is Gt still a Dirichlet process? Just look at G′t:

– Let G′t−1 ∼ GaP(α̂t−1µ̂t−1, c).

– Then Ġ′t−1 ∼ GaP(pα̂t−1µ̂t−1, c) and G′t ∼ GaP(αtµt + pα̂t−1µ̂t−1, c).

– So Gt ∼ DP(αtµt + pα̂t−1µ̂t−1).

s By induction,

Gt ∼ DP(αtµt + pαt−1µt−1 + p2αt−2µt−2 + · · ·+ pt−1α1µ1). (6.10)

s If we consider the special case where αtµt = αµ for all t, we can simplify this Dirichlet process

Gt ∼ DP
(

1− pt

1− p
αµ

)
. (6.11)

In the limit t→∞, this has the steady state

G∞ ∼ DP
(

1

1− p
αµ

)
. (6.12)

s Stick-breaking construction (review for the next process)

We saw that if α > 0 and µ is any probability measure, atomic or non-atomic or mixed, then
we can draw G ∼ DP(αµ) as follows:

Vi
iid∼ Beta(1, α), θi

iid∼ µ, G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi (6.13)
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s It’s often the case where we have grouped data. For example, groups of documents where each
document is a set of words.

s We might want to model each group (indexed by d) as a mixture Gd. Then, for observation n
in group d, θ(d)

n ∼ Gd, x
(d)
n ∼ p(x|θ(d)

n ).

s We might think that each group shares the same set of highly probable atoms, but has different
distributions on them.

s The result is called a mixed-membership model.

Mixed-membership models and the hierarchical Dirichlet process (HDP)

s As the stick-breaking construction makes clear, when µ is non-atomic simply drawing each
Gd

iid∼ DP(αµ) won’t work because it places all probability mass on a disjoint set of atoms.

s The HDP fixes this by “discretizing the base distribution.”

Gd |G0
iid∼ DP(βG0), G0 ∼ DP(αµ). (6.14)

s Since G0 is discrete, Gd has probability on the same subset of atoms. This is very obvious by
writing the process with the stick-breaking construction:

Gd =
∞∑
i=1

π
(d)
i δθi , (π

(d)
1 , π

(d)
2 , . . . ) ∼ Dir(αp1, αp2, . . . ) (6.15)

pi = Vi

i−1∏
j=1

(1− Vj), Vi
iid∼ Beta(1, α), θi

iid∼ µ.

s Nested Dirichlet processes

The stick-breaking construction is totally general: µ can be any distribution.

What if µ→ DP(αµ)? That is, we define the base distribution to be a Dirichlet process.

G ∼
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δGi , Vi
iid∼ Beta(1, α), Gi

iid∼ DP(αµ). (6.16)

(We write Gi to link to the DP, but we could have written θi
iid∼ DP(αµ) since that’s what we’ve

been using.)

s We now have a mixture model of mixture models. For example:

1. A group selects G(d) ∼ G (picks mixture Gi according to probability Vi
∏

j<i(1− Vj)).
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2. Generates all of its data using this mixture. For the nth observation in group d, θ(d)
n ∼ G(d),

X
(d)
n ∼ p(X|θ(d)

n ).

s In this case we have all-or-nothing sharing. Two groups either share the atoms and the distribu-
tion on them, or they share nothing.

Nested Dirichlet process trees

s We can nest this further. Why not let µ in the nDP be a Dirichlet process also? Then we would
have a three level tree.

s We can then pick paths down this tree to a leaf node where we get an atom.

Count Processes

s We briefly introduce count processes. With the Dirichlet process, we often have the generative
structure

G ∼ DP(αµ), θ∗j |G
iid∼ G, G =

∞∑
i=1

πiδθi , j = 1, . . . , N (6.17)

s What can we say about the count process n(θ) =
∑N

j=1 1(θ∗j = θ)?

s Recall the following equivalent processes:

G′ ∼ GaP(αµ, c) (6.18)
n(θ)|G′ ∼ Pois(G′(θ)) (6.19)

and
G′ ∼ GaP(αµ, c) (6.20)

n(S) ∼ Pois(G′(S)) (6.21)
θ∗1:n(S) ∼ G′/G′(S) (6.22)

s We can therefore analyze this using the underlying marked Poisson process. However, notice
that we have to let the data size be random and Poisson distributed.

Marking theorem: Let G′ ∼ GaP(αµ, c) and mark each (θ, w) for which G′(θ) = w > 0 with
the random variable n|w ∼ Pois(w). Then (θ, w, n) is a marked Poisson process with mean
measure αµ(dθ)w−1e−cwdwwn

n!
e−w.
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s We can restrict this to n by integrating over θ and w.

Theorem: The number of atoms having k counts is

#k ∼ Pois
(∫

S

∫ ∞
0

αµ(dθ)w−1e−cwdw
wk

k!
e−w
)

= Pois
(α
k

( 1

1 + c

)k)
(6.23)

Theorem: The total number of uniquely observed atoms is also Poisson

#unique =
∞∑
k=1

#k ∼ Pois
( ∞∑
k=1

α

k

( 1

1 + c

)k)
= Pois(α ln(1 + c−1)) (6.24)

Theorem: The total number of counts is n(S)|G′ ∼ Pois(G′(S)), G′ ∼ GaP(αµ, c). So
E[n(S)] = α

c
( =

∑∞
k=1 kE#k)

Final statement: Let c = α
N

. If we expect a dataset of size N to be drawn from G ∼ DP(αµ),
we expect that dataset to use α ln(α +N)− α lnα unique atoms from G.

A quick final count process

s Instead of gamma process −→ Poisson counts, we could have beta process −→ negative
binomial counts.

s Let H =
∑∞

i=1 πiδθi ∼ BP(α, µ).

s Let n(θ) = negBin(r,H(θ)), where the negative binomial random variable counts how
many “successes” there are, with P (success) = H(θ) until there are r “failures” with
P (failure) = 1−H(θ).

s This is another count process that can be analyzed using the underlying Poisson process.
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Exchangeability, Dirichlet processes and the
Chinese restaurant process

DP’s, finite approximations and mixture models

s DP: We saw how, if α > 0 and µ is a probability measure on S, for every finite partition
(A1, . . . , Ak) of S, the random measure

(G(A1)), . . . , G(Ak)) ∼ Dir(αµ(A1), . . . , αµ(Ak))

defines a Dirichlet process.

s Finite approximation: We also saw how we can approximate G ∼ DP(αµ) with a finite
Dirichlet distribution,

GK =
K∑
i=1

πiδθi , πi ∼ Dir
( α
K
, . . . ,

α

K

)
, θ

iid∼ µ.

s Mixture models: Finally, the most common setting for these priors is in mixture models, where
we have the added layers

θ∗j |G ∼ G, Xj|θ∗j ∼ p(X|θ∗j ), j = 1, . . . , n. (Pr(θ∗j = θi|G) = πi)

s The values of θ∗1, . . . , θ
∗
n induce a clustering of the data.

s If θ∗j = θ∗j′ for j 6= j′ then Xj and Xj′ are “clustered” together since they come from the same
distribution.

s We’ve thus far focused on G. We now focus on the clustering of X1, . . . , Xn induced by G.

Polya’s Urn model (finite Dirichlet)

s To simplify things, we work in the finite setting and replace the parameter θi with its index i.
We let the indicator variables c1, . . . , cn represent θ∗1, . . . , θ

∗
n such that θ∗j = θcj .

44
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s Polya’s Urn is the following process for generating c1, . . . , cn:

1. For the first indicator, c1 ∼
∑K

i=1
1
K
δi

2. For the nth indicator, cn|c1, . . . , cn−1 ∼
∑n−1

j=1
1

α+n−1
δcj + α

α+n−1

∑K
i=1

1
K
δi

s In words, we start with an urn having α
K

balls of color i for each of K colors. We randomly
pick a ball, put it back in the urn and put another ball of the same color in the urn.

s Another way to write #2 above is to define n(n−1)
i =

∑n−1
j=1 1(cj = i). Then

cn|c1, . . . , cn−1 ∼
K∑
i=1

α
K

+ n
(n−1)
i

α + n− 1
δi.

To put it most simply, we’re just sampling the next color from the empirical distribution of the
urn at step n.

s What can we say about p(c1 = i1, . . . , cn = in) (write as p(c1, . . . , cn)) under this prior?

1. By the chain rule of probability, p(c1, . . . , cn) =
∏n

j=1 p(cj|c1, . . . , cj−1).

2. p(cj = i|c1, . . . , cj−1) =
α
K

+ n
(j−1)
i

α + j − 1

3. Therefore,

p(c1:n) = p(c1)p(c2|c1)p(c3|c1, c2) · · · =
n∏
j=1

α
K

+ n
(j−1)
cj

α + j − 1
(7.1)

s A few things to notice about p(c1, . . . , cn)

1. The denominator is simply
∏n

j=1(α + j − 1)

2. n(j−1)
cj is incrementing by one. That is, after c1:n we have the counts (n

(n)
1 , . . . , n

(n)
K ). For

each n(n)
i the numerator will contain

∏n
(n)
i
s=1 ( α

K
+ s− 1).

3. Therefore,

p(c1, . . . , cn) =

∏K
i=1

∏n
(n)
i
s=1 ( α

K
+ s− 1)∏n

j=1(α + j − 1)
(7.2)

s Key: The key thing to notice is that this does not depend on the order of c1, . . . , cn. That is, if
we permuted c1, . . . , cn such that cj = iρ(j), where ρ(·) is a permutation of (1, . . . , n), then

p(c1 = i1, . . . , cn = in) = p(c1 = iρ(1), . . . , cn = iρ(n)).

s The sequence c1, . . . , cn is said to be “exchangeable” in this case.
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Exchangeability and independent and identically distributed (iid) sequences

s Independent sequences are exchangeable

p(c1, . . . , cn) =
n∏
i=1

p(ci) =
n∏
i=1

p(cρ(i)) = p(cρ(1), . . . , cρ(n)). (7.3)

s Exchangeable sequences aren’t necessarily independent (exchangeability is “weaker”). Think
of the urn. cj is clearly not independent of c1, . . . , cj−1.

Exchangeability and de Finetti

s de Finetti’s theorem: A sequence is exchangeable if and only if there is a parameter π with
distribution p(π) for which the sequence is independent and identically distributed given π.

s In other words, for our problem there is a probability vector π such that p(c1:n|π) =
∏n

j=1 p(cj|π).

s The problem is to find p(π)

p(c1, . . . , cn) =

∫
p(c1, . . . , cn|π)p(π)dπ

=

∫ n∏
j=1

p(cj|π)p(π)dπ

=

∫ n∏
j=1

πcjp(π)dπ

=

∫ k∏
i=1

π
n

(n)
i

i p(π)dπ

↓ ↓∏K
i=1

∏n
(n)
i
s=1 ( α

K
+ s− 1)∏n

j=1(α + j − 1)
= Ep(π)

[
K∏
i=1

π
n

(n)
i

i

]
(7.4)

s Above, the first equality is always true. The second one is by de Finetti’s theorem since
c1, . . . , cn is exchangeable. (We won’t proven this theorem, we’ll just use it.) The following
results. In the last equality, the left hand side was previously shown and the right hand side is
what the second to last line is equivalently written as.

s By de Finetti and exchangeability of c1, . . . , cn, we therefore arrive at an expression for the
moments of π according to the still unknown distribution p(π).
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s Because the moments of a distribution are unique to that distribution (like the Laplace trans-
form), p(π) has to be Dir( α

K
, . . . , α

K
), since plugging this in for p(π) we get

Ep(π)

[
K∏
i=1

π
n

(n)
i

i

]
=

∫ K∏
i=1

πnii
Γ(α)

Γ( α
K

)K

K∏
i=1

π
α
K
−1

i dπ

=
Γ(α)

∏K
i=1 Γ( α

K
+ ni)

Γ( α
K

)KΓ(α + n)

∫
Γ(α + n)∏K
i=1 Γ( α

K
+ ni)

K∏
i=1

πni+
α
K
−1

︸ ︷︷ ︸
= Dir( α

K
+n1,...,

α
K

+nk)

dπ

=
Γ(α)

∏K
i=1 Γ( α

K
)
∏ni

s=1( α
K

+ s− 1)

Γ( α
K

)KΓ(α)
∏n

j=1(α + j − 1)

=

∏K
i=1

∏n
(n)
i
s=1 ( α

K
+ s− 1)∏n

j=1(α + j − 1)
(7.5)

s This holds for all n and (n1, . . . , nk). Since a distribution is defined by its moments, the result
follows.

s Notice that we didn’t need de Finetti since we could just hypothesize the existence of a π for
which p(c1:n|π) =

∏
i p(ci|π) and try to find it. It’s more useful when the distribution is more

“non-standard,” or to prove that a π doesn’t exist.

s Final statement: As n→∞, the distribution
∑K

i=1

n
(n)
i + α

K

α+n
δi →

∑K
i=1 π

∗
i δi.

– This is because there exists a π for which c1, . . . , cn are iid, and so by the law of large
numbers the point π∗ exists and π∗ = π.

– Since π ∼ Dir( α
K
, . . . , α

K
), it follows that the empirical distribution converges to a random

vector that is distributed as Dir( α
K
, . . . , α

K
).

The infinite limit (Chinese restaurant process)

s Let’s go back to the original notation:

θ∗j |GK ∼ GK , GK =
K∑
i=1

πiδθi , π ∼ Dir(
α

K
, . . . ,

α

K
), θi

iid∼ µ.

s Following the exact same ideas (only changing notation). The urn process is

θ∗n|θ∗1, . . . , θ∗n−1 ∼
K∑
i=1

α
K

+ n
(n−1)
i

α + n− 1
δθi , θi

iid∼ µ.

s We’ve proven that limK→∞GK = G ∼ DP(αµ). We now take the limit of the corresponding
urn process.



Chapter 7 Exchangeability, Dirichlet processes and the Chinese restaurant process 48

s Re-indexing: At observation n, re-index the atoms so that n(n−1)
j > 0 for j = 1, . . . , K+

n−1 and
n

(n−1)
j = 0 for j > K+

n−1. (K+
n−1 = # unique values in θ∗1:n−1) Then

θ∗n|θ∗1, . . . , θ∗n−1 ∼
K+
n−1∑
i=1

α
K

+ n
(n−1)
i

α + n− 1
δθi +

α

α + n− 1

K∑
i=1+K+

n−1

1

K
δθi . (7.6)

s Obviously for n � K, K+
n−1 = K very probably, and just the left term remains. However,

we’re interested in K →∞ before we let n grow. In this case

1.
α
K

+ n
(n−1)
i

α + n− 1
−→ n

(n−1)
i

α + n− 1

2.
K∑

i=1+K+
n−1

1

K
δθi −→ µ.

s For #2, if you sample K times from a distribution and create a uniform measure on those
samples, then in the infinite limit you get the original distribution back. Removing K+

n−1 <∞
of those atoms doesn’t change this (we won’t prove this).

The Chinese restaurant process

s Let α > 0 and µ a probability measure on S. Sample the sequence θ∗1, . . . , θ
∗
n, θ∗ ∈ S as

follows:

1. Set θ∗1 ∼ µ

2. Sample θ∗n|θ∗1, . . . , θ∗n−1 ∼
∑n−1

j=1
1

α+n−1
δθ∗j + α

α+n−1
µ

Then the sequence θ∗1, . . . , θ
∗
n is a Chinese restaurant process.

s Equivalently define n(n−1)
i =

∑n−1
j=1 1(θ∗j = θj). Then

θ∗n|θ∗1, . . . , θ∗n−1 ∼
K+
n−1∑
i=1

n
(n−1)
i

α + n− 1
δθi +

α

α + n− 1
µ.

s As n→∞, α
α+n−1

→ 0 and

K+
n−1∑
i=1

n
(n−1)
i

α + n− 1
δθi −→ G =

∞∑
i=1

πiδθi ∼ DP(αµ). (7.7)

s Notice with the limits that K first went to infinity and then n went to infinity. The resulting
empirical distribution is a Dirichlet process because for finite K the de Finetti mixing measure
is Dirichlet and the infinite limit of this finite Dirichlet is a Dirichlet process (as we’ve shown).
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Chinese restaurant analogy

s An infinite sequence of tables each have a dish (parameter) placed on it that is drawn iid from
µ. The nth customer sits at an occupied table with probability proportional to the number of
customers seated there, or selects the first unoccupied table with probability proportional to α.

s “Dishes” are parameters for distributions, a “customer” is a data point that uses its dish to
create its value.

Some properties of the CRP

s Cluster growth: What does the number of unique clusters K+
n look like as a function of n?

K+
n =

∑n
j=1 1(θ∗j 6= θ∗`<j) ← this event occurs when we select a new table

E[K+
n ] =

n∑
j=1

E[1(θ∗j 6= θ∗`<j)] =
n∑
j=1

P (θ∗j 6= θ∗`<j) =
n∑
j=1

α

α + j − 1
≈ α lnn

Where does this come from? Each θ∗j can pick a new table. θ∗j does so with probability α
α+j−1

.

s Cluster sizes: We saw last lecture that if we let the number of observations n be random, where

n|y ∼ Pois(y), y ∼ gam(α, α/n̂),

then we can analyze cluster size and number using the Poisson process.

– E[n] = E[E[n|y]] = E[y] = n̂ ← expected number of observations

– K+
n ∼ Pois(α ln(α + n)− α lnα) ← total # clusters

– Therefore E[K+
n ] = α ln((α + n)/α) (compare with above where n is not random)

–
∑K+

n

i=1 1(n
(n)
i = k) ∼ Pois

(
α
k
( n
α+n

)k
)
← number of clusters with k observations

s It’s important to remember that n is random here. So in #2 and #3 above, we first generate
n and then sample this many times from the CRP. For example, E[K+

n ] is slightly different
depending on whether n is random or not.
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Inference for the CRPs Generative process: Xn|θ∗n ∼ p(X|θ∗n), θ∗n|θ∗1:n−1 ∼
∑n−1

i=1
1

α+n−1
δθ∗i + α

α+n−1
µ. α > 0 is

“concentration” parameter and we assume µ is a non-atomic probability measure.

s Posterior inference: Given the data X1, . . . , XN and parameters α and µ, the goal of inference
is to perform the inverse problem of finding θ∗1, . . . , θ

∗
N . This gives the unique parameters

θ1:KN = unique(θ∗1:N) and the partition of the data into clusters.

s Using Bayes rule doesn’t get us far (recall that p(B|A) = p(A|B)p(B)
p(A)

).

p(θ1, θ2, . . . , θ
∗
1:N |X1:N) =

[
N∏
j=1

p(Xj|θ∗j )

]
p(θ∗1:N)

∞∏
i=1

p(θi)
/

intractable normalizer (7.8)

s Gibbs sampling: We can’t calculate the posterior analytically, but we can sample from it: Iterate
between sampling the atoms given the assignments and then sampling the assignments given
the atoms.

Sampling the atoms θ1, θ2, . . .s This is the easier of the two. For the KN unique clusters in θ∗1, . . . , θ
∗
N at iteration t, we need to

sample θ1, . . . , θKN .

Sample θi: Use Bayes rule,

p(θi|θ−i, θ∗1:N , X1:N) ∝

 ∏
j:θ∗j=θi

p(Xj|θi)


︸ ︷︷ ︸

likelihood

× p(θi)︸︷︷︸
prior (µ)

(7.9)

s In words, the posterior of θi depends only on the data assigned to the ith cluster according to
θ∗1, . . . , θ

∗
N .

s We simply select this subset of data and calculate the posterior of θi on this subset. When µ
and p(X|θ) are conjugate, this is easy.

Sampling θ∗j (seating assignment for Xj)s Use exchangeability of θ∗1, . . . , θ
∗
N to treat Xj as if it were the last observation,

p(θ∗j |X1:N ,Θ, θ
∗
−j) ∝ p(Xj|θ∗j ,Θ)p(θ∗j |θ∗−j) ← also conditions on “future” θ∗n (7.10)

s Below is the sampling algorithm followed by the mathematical derivation

set θ∗j =

{
θi w.p. ∝ p(Xj|θi)

∑
n6=j 1(θ∗n = θi), θi ∈ unique{θ∗−j}

θnew ∼ p(θ|Xj) w.p. ∝ α
∫
p(Xj|θ)p(θ)dθ

(7.11)
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s The first line should be straightforward from Bayes rule. The second line is trickier because we
have to account for the infinitely remaining parameters. We’ll discuss the second line next.

s First, return to the finite model and then take the limit (and assume the appropriate re-indexing).

s Define: n−ji = #{θ∗n : θ∗n = θi, n 6= j}, K−j = #unique{θ∗−j}.

s Then the prior on θ∗j is

θ∗j |θ∗−j ∼
K−j∑
i=1

n−ji
α + n− 1

δθi +
α

α + n− 1

K∑
i=1

1

K
δθi (7.12)

s The term
∑K

i=1
1
K
δθi overlaps with the K−j atoms in the first term, but we observe that

K−j/K → 0 as K →∞.

s First: What’s the probability a new atom is used in the infinite limit (K →∞)?

p(θ∗j = θnew|Xj, θ
∗
−j) ∝ lim

K→∞
α

K∑
i=1

1

K
p(Xj|θi) (7.13)

Since θi
iid∼ µ,

lim
K→∞

K∑
i=1

1

K
p(Xj|θi) = Eµ[p(Xj|θ)] =

∫
p(Xj|θ)µ(dθ). (7.14)

Technically, this is the probability that an atom is selected from the second part of (7.12) above.
We’ll see why this atom is therefore “new” next.

s Second: Why is θnew ∼ p(θ|Xj)? (And why is it new to begin with?)

s Given that θ∗j = θnew, we need to find the index i so that θnew = θi from the second half of
(7.12).

p(θnew = θi|Xj, θ
∗
j = θnew) ∝ p(Xj|θnew = θi)p(θnew = θi|θ∗j = θnew)

∝ lim
K→∞

p(Xj|θi)
1

K
⇒ p(Xj|θ)µ(dθ) (7.15)

So p(θnew|Xj) ∝ p(Xj|θ)µ(dθ).

Therefore, given that the atom associated with Xj is selected from the second half of (7.12),
the probability it coincides with an atom in the first half equals zero (and so it’s “new” with
probability one). Also, the atom itself is distributed according to the posterior given Xj .



Chapter 8

Exchangeability, beta processes and the Indian
buffet process

Marginalizing (integrating out) stochastic processes

s We saw how the Dirichlet process gives a discrete distribution on model parameters in a
clustering setting. When the Dirichlet process is integrated out, the cluster assignments form a
Chinese restaurant process:

p(θ∗1, . . . , θ
∗
N)︸ ︷︷ ︸

Chinese restaurant process

=

∫ N∏
n=1

p(θ∗n|G)︸ ︷︷ ︸
i.i.d. from discrete dist.

p(G)︸︷︷︸
DP

dG (8.1)

s There is a direct parallel between the beta-Bernoulli process and the “Indian buffet process”:

p(Z1, . . . , ZN)︸ ︷︷ ︸
Indian buffet process

=

∫ N∏
n=1

p(Zn|H)︸ ︷︷ ︸
Bernoulli process

p(H)︸ ︷︷ ︸
BP

dH (8.2)

s As with the DP→CRP transition, the BP→IBP transition can be understood from the limiting
case of the finite BP model.

Beta process (finite approximation)

s Let α > 0, γ > 0 and µ a non-atomic probability measure. Define

HK =
K∑
i=1

πiδθi , πi ∼ Beta(α γ
K
, α(1− γ

K
)), θi ∼ µ. (8.3)

Then limK→∞HK = H ∼ BP(α, γµ). (See Chapter 3 for proof.)

52
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Bernoulli process using HKs Given HK , we can draw the Bernoulli process ZK
n |HK ∼ BeP (HK) as follows:

ZK
n =

K∑
i=1

binδθi , bin ∼ Bernoulli(πi). (8.4)

Notice that bin should also be marked with K, which we ignore. Again we are particularly
interested in limK→∞(ZK

1 , . . . , Z
K
N ).

s To derive the IBP, we first consider

lim
K→∞

p(ZK
1:N) = lim

K→∞

∫ N∏
n=1

p(ZK
n |HK)p(HK)dHK . (8.5)

s We can think of ZK
1 , . . . , Z

K
N in terms of a binary matrix, BK = [bin], where

1. each row corresponds to an atom, θi and bin
iid∼ Bern(πi) for row i

2. each column corresponds to a Bernoulli process, ZK
n for column n

Important: The rows of B are independent processes.

s Consider the process bin|πi
iid∼ Bern(πi), πi ∼ Beta(α γ

K
, α(1 − γ

K
)). The marginal process

bi1, . . . , biN follows an urn model with two colors.

Polya’s urn (two-color special case)

1. Start with an urn having αγ/K balls of color 1 and α(1− γ/K) balls of color 2.

2. Pick a ball at random, pit it back and put a second one of the same color

Mathematically:

1. bi1 ∼
γ

K
δ1 + (1− γ

K
)δ0

2. bi,N+1|bi1, . . . , biN ∼
αγ
K

+ n
(N)
i

α +N
δ1 +

α(1− γ
K

) +N − n(N)
i

α +N
δ0

where n(N)
i =

∑N
j=1 bij . Recall from exchangeability and de Finetti that

lim
K→∞

n
(N)
i

N
−→ πi ∼ Beta(α γ

K
, α(1− γ

K
)) (8.6)

s Last week we proved this in the context of the finite symmetric Dirichlet, π ∼ Dir( α
K
, . . . , α

K
).

The beta distribution is the two-dimensional special case of the Dirichlet and the proof can be
applied to any parameterization besides symmetric.



Chapter 8 Exchangeability, beta processes and the Indian buffet process 54

s In the Dirichlet→CRP limiting case, K corresponds to the number of colors in the urn and
K →∞ with the starting number of each color α

K
→ 0.

s In this case, there are always only two colors. However, the number of urns equals K, so the
number of urn processes is going to infinity as the first parameter of each beta goes to zero.

An intuitive derivation of the IBP: Work with the urn representation of BK . Again, bin is entry
(i, n) of BK and the generative process for BK is

bi,N+1|bi1, . . . , biN ∼
αγ
K

+ n
(N)
i

α +N
δ1 +

α(1− γ
K

) +N − n(N)
i

α +N
δ0 (8.7)

where n(N)
i =

∑N
j=1 bij . Each row of BK is associated with a θi ∼iid µ so we can reconstruct

ZK
n =

∑K
i=1 binδθi using what we have.

s Let’s break down limK→∞BK into two cases.

Case n = 1: We ask how many ones are in the first column of B?

lim
K→∞

K∑
i=1

bi1 ∼ lim
K→∞

Bin(K, γ/K) = Pois(γ) (8.8)

So Z1 has Pois(γ) ones. Since the θ associated with these ones are i.i.d., we can “ex post facto”
draw them i.i.d. from µ and re-index.

Case n > 1: For the remaining Zn, we break this into two subcases.

s Subcase n(n−1)
i > 0: bin|bi1, . . . , bi,n−1 ∼

n
(n−1)
i

α + n− 1
δ1 +

α + n− 1− n(n−1)
i

α + n− 1
δ0

s Subcase n(n−1)
i = 0: bin|bi1, . . . , bi,n−1 ∼ lim

K→∞

α γ
K

α + n− 1
δ1 +

α(1− γ
K

) + n− 1

α + n− 1
δ0

s For each i,
(

αγ
α+n−1

)
1
K
δ1 → 0δ1, but there are also an infinite number of these indexes i for

which n(n−1)
i = 0. Is there a limiting argument we can again make to just ask how many ones

there are total for these indexes with n(n−1)
i = 0?

s Let Kn = #{i : n
(n−1)
i > 0}, which is finite almost surely. Then

limK→0

K∑
i=1

bin1(n
(n−1)
i = 0) ∼ lim

K→∞
Bin

(
K −Kn,

( αγ

α + n− 1

) 1

K

)
= Pois

( αγ

α + n− 1

)
(8.9)
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s So there are Pois
(

αγ
α+n−1

)
new locations for which bin = 1. Again, since the atoms are i.i.d.

regardless of the index, we can simply draw them i.i.d. from µ and re-index.

Putting it all together: The Indian buffet process

s For n = 1: Draw C1 ∼ Pois(γ), θ1, . . . , θC1

iid∼ µ and set Z1 =
∑C1

i=1 δθi .

s For n > 1: Let Kn−1 =
∑n−1

j=1 Cj . For i = 1, . . . , Kn−1, draw

bin|bi,1:n−1 ∼
n

(n−1)
i

α + n− 1
δ1 +

α + n− 1− n(n−1)
i

α + n− 1
δ0. (8.10)

Then draw Cn ∼ Pois
(

αγ
α+n−1

)
and θKn−1+1, . . . , θKn−1+Cn

iid∼ µ and set

Zn =

Kn−1∑
i=1

binδθi +

Kn−1+Cn∑
i′=Kn−1+1

δθi′ . (8.11)

s By exchangeability and de Finetti, limN→∞
1
N

∑N
i=1 Zi → H ∼ BP(α, γµ).

The IBP story: Start with α customers not eating anything.

1. A customer walks into an Indian buffet with an infinite number of dishes and samples
Pois(γ) of them.

2. The nth customer arrives and samples from the previously sampled dishes with probabil-
ity proportional to the number of previous customers who sampled it, and then samples
Pois

(
αγ

α+n−1

)
new dishes.

s In modeling scenarios, each dish corresponds to a factor (e.g., a one-dimensional subspace)
and a customer samples a subset of factors.

s Clearly, after n customers there are
∑n

i=1Ci ∼ Pois
(∑n

i=1
αγ

α+i−1

)
dishes that have been

sampled. (See Chapter 3 for another derivation of this quantity.)



Chapter 9

Another look at constructive definitions of the beta
and Dirichlet process

s It isn’t always obvious how equivalent representations for stochastic processes are arrived at,
such as constructions for the Dirichlet and beta process. Often the proof of correctness requires
the statement of equivalence as a starting point. We’ll next look at alternative methods for
deriving the constructions we’ve looked at that don’t require the construction as a starting point.

BP constructions and the IBP

s From Chapter 4: Let α, γ > 0 and µ a non-atomic probability measure. Let

Ci ∼ Pois
( αγ

α + i− 1

)
, πij ∼ Beta(1, α + i− 1), θij ∼ µ (9.1)

and define H =
∑∞

i=1

∑Ci
j=1 πijδθij . Then H ∼ BP(α, γµ).

s We proved this using Poisson process theory. Now we’ll show how this construction can be
arrived at in the first place.

s Imagine an urn with β1 balls of one color and β2 of another. The distribution on the first draw
from this urn is

β1

β1 + β2

δ1 +
β2

β1 + β2

δ0.

Let (b1, b2, . . . ) be sequence generated from an urn process with this initial configuration. Then
as we have seen, in the limit N →∞, 1

N

∑N
i=1 bi → π ∼ Beta(β1, β2).

s Key: We can skip the whole urn procedure if we’re only interested in π. That is, if we draw
from the urn once, look at it and see it’s color one, then the urn distribution is

β1 + 1

1 + β1 + β2

δ1 +
β2

1 + β1 + β2

δ0

We can ask: what will happen if we continue after this first draw? What is the differenc between
this “posterior” configuration and another urn where this is defined to be the initial setting? It
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shouldn’t be hard to convince yourself that, in this case, as N →∞,

1

N

N∑
i=1

bi|{b1 = 1} → π ∼ Beta(β1 + 1, β2).

s This is because the sequence (b1 = 1, b2, b3, . . . ) is equivalent to an urn process (b2, b3, . . . )
where the initial configuration is β1 + 1 of color 1 and β2 of color 0.

s Furthermore, we know from de Finetti and exchangeability that if Z1, . . . , ZN are from an IBP,
then limN→∞

1
N

∑N
i=1 Zi → H ∼ BP(α, γµ). Right now we’re only interested in this limit.

Derivation of the construction via the IBP

s For each Zn, there are Cn ∼ Pois
(

αγ
α+n−1

)
new “urns” introduced with the initial configuration

δ1 + (α+n− 1)δ0, where δ1 indicates the corresponding atom was used (it doesn’t matter what
that atom turned out to be). The initial distribution for the next draw is the normalization of
this. From this point on, each new urns can be treated as independent processes. Notice that
this is the case for every instantiation of the IBP.

s With the IBP, we continue this urn process. Instead, we can ask the limiting distribution of the
urn immediately after instantiating it. We know from above that the new urns created at step n
will converge to random variables drawn independently from a Beta(1, α + n− 1) distribution.
We can draw this probability directly.

s The results is the construction written above.

Dirichlet stick-breaking construction and the CRPs What about stick-breaking for the Dirichlet process? It turns out that knowledge about the urn
representation of the DP provided by the Chinese restaurant process suggests this in a way very
similar to how the IBP suggested the above construction of the beta process.

s First, what do we know about the CRP? We know that if θ∗1 ∼ µ and

θ∗N+1|θ∗1:N ∼ GN ≡
nN1

α +N
δθ1 +

nN2
α +N

δθ2 + · · ·+
nNKN
α +N

δθKN +
α

α +N
µ

then limN→∞GN = G ∼ DP(αµ). Here we’ve defined θi to be the ith unique atom generated
by this process, nNi to be the number of atoms in θ∗1:N equal to θi after N observations, and KN

to be the number of unique atoms contained in θ∗1:N .

s Now consider the first atom θ∗1 ∼ µ. It might sound odd to say, but this is a probability one
event. Therefore, we know that we will always have an urn that looks like αµ + δθ1 where
θ1 ∼ µ. The only thing that’s random is what “color” the first observation θ1 has, not that we
start with an urn containing one “ball” equal to color θ1.
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s Now ask: If I ran out this process and only cared about limN→∞
nN1
α+N

δθ1 what do I know? It

turns out that we can definitively say that limN→∞
nN1
α+N

= V1 ∼ Beta(1, α). Therefore, we are
in a situation where

GN → V1δθ1 + (1− V1)G′, V1 ∼ Beta(1, α), θ1 ∼ µ

Similarly, as just stated, we know that limN→∞GN = G ∼ DP(αµ), so V1δθ1 + (1 − V1)G′

must also be a Dirichlet process. The only question now is, what does G′ equal to?

s It turns out that G′ is also the limit of a CRP that is independent of V1 and θ1. I will leave it as
a statement and not try to rigorously prove it further (since again this chapter is more intended
to show the intuition of deriving rather than proving a construction).

s However, we’re in the same recursive setting as when we first derived the stick-breaking
construction. If we know that G′ is the limit of an independent CRP, then we know that it will
start with an urn that looks like αµ+ δθ2 , where θ2 ∼ µ is the atom generated the second time
we choose to draw from µ, and the argument repeats.

s After the second nesting, we have

GN → V1δθ1 + (1− V1)V2δθ2 + (1− V1)(1− V2)G′′, V1, V2
iid∼ Beta(1, α), θ1, θ2

iid∼ µ

and in the limit:

G =
∞∑
i=1

Vi

i−1∏
j=1

(1− Vj)δθi , Vi
iid∼ Beta(1, α), θi

iid∼ µ

Constructing beta processes by thinking about Dirichlet processes

s We next discuss a method for deriving the other stick-breaking construction of the beta process.
This approach requires knowledge about the stick-breaking construction of the Dirichlet distri-
bution (with the beta as a special case).

s Let µ be a non-atomic measure on S with γ = µ(S) < ∞ and α > 0. We saw that the
following is a constructive definition of the beta process H ∼ BP(α, µ),

H =
∞∑
i=1

Ci∑
j=1

V
(i)
ij

i−1∏
l=1

(1− V (l)
ij )δθij , (9.2)

Ci
iid∼ Pois(γ), V

(l)
ij

ind∼ Beta(1, α), θij
iid∼ µ/γ.

s This construction sequentially incorporates into H a Poisson-distributed number of atoms
drawn i.i.d. from µ/γ, with each group in this sequence indexed by i. The atoms receive
weights as follows: Using an atom-specific stick-breaking construction, an atom in group i
throws away the first i− 1 breaks of its stick and keeps the ith break as its weight.
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Derivation via the finite approximations We prove the construction by constructing finite arrays of random variables and considering
their limit. Remember that the finite approximation is

HK =
K∑
k=1

πkδθk , πk ∼ Beta(α
γ

K
, α(1− γ

K
)), θk ∼ µ/γ

s We represent each beta-distributed random variable by its stick-breaking construction. Recall
that using this construction, we can draw π ∼ Beta(a, b) as follows:

1. Draw an infinite sequence of random variables (V1, V2, . . . ) i.i.d. from Beta(1, a+ b) and
a second sequence (Y1, Y2, . . . ) i.i.d. Bern( a

a+b
).

2. Construct πR =
∑R

i=1 Vi
∏i−1

j=1(1− Vj)1(Yi = 1).
3. Then as R→∞, πR → π ∼ Beta(a, b).

s Using a truncated stick-breaking construction of the beta random variables in HK , we can state
the following: Draw two K × R arrays of independent random variables, Vki ∼ Beta(1, α)
and Yki ∼ Bern(γ/K), and draw θk ∼ µ/γ for k = 1, . . . , K and i = 1, . . . , R. Let

H
(R)
K =

K∑
k=1

R∑
i=1

Vki

i−1∏
j=1

(1− Vkj)1(Yki = 1)δθk .

Then H(R)
K converges in distribution to H ∼ BP(α, µ) by letting K →∞ and R→∞.

s This leads to the following thought process:

– We know that in the limit as K →∞ and R→∞, H(R)
K → H ∼ BP(α, µ).

– We first note that column sums of Y are marginally distributed as Bin(K, γ/K), and are
independent. The ith column sum value gives the number of atoms that receive probability
mass at step i, with Yki = 1 indicating the kth indexed atom is one of them.

– Let the set IKi = {k : Yki = 1} be the index set of these atoms at finite approximation
level K. This set is constructed by selecting CK

i ∼ Bin(K, γ/K) values from {1, . . . , K}
uniformly without replacement. In the limit K →∞, CK

i → Ci with Ci ∼ Pois(γ).

– Given k ∈ IKi , we know that πk has weight added to it from the ith break of its own
stick-breaking construction. As a matter of accounting, we are interested in other values j
for which Ykj = 1, particularly when j < i.

s We next show that in the limit K →∞, the index values in the set Ii := I∞i are always unique
from those in previous sets (j < i), meaning for a given column L ≤ R, we see new index
values with probability equal to one. We are therefore always adding probability mass to new
atoms. This is significant because we can therefore create new sticks and break them on the fly,
while letting the uniquely created atom for that weight be a proxy for the index that would have
been chosen.
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s Let E be the event that there exists a value k ∈ Ii ∩ Ij for some i 6= j and i, j ≤ L ≤ R.
Then PL(E) = limK→∞ PL(

⋃
j<i≤L IKi ∩ IKj 6= ∅ |µ). We can bound the probability of PL as

follows:

PL(
⋃
j<i≤L IKi ∩ IKj 6= ∅ |µ) ≤

∑
j<i≤L

PL(IKi ∩ IKj 6= ∅ |µ)

≤
∑
j<i≤L

K∑
k=1

PL(YkiYkj = 1|µ)

≤ L(L− 1)

2

γ2

K
. (9.3)

Therefore, for any finite integer L ≤ R, in the limit K →∞ the atoms θk, k ∈ IL, are different
from all previously observed atoms with probability one since µ is a diffuse measure. Since
this doesn’t depend on R, we can just let R→∞ next.
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