ELEN 4903: Machine Learning
Lecture 22, 4/19/2016

Prof. John Paisley
Columbia University
The sequence \((s_1, s_2, s_3, \ldots)\) has the *Markov property*, if for all \(t\)

\[p(s_t|s_{t-1}, \ldots, s_1) = p(s_t|s_{t-1}). \]

Our first encounter with Markov models assumed a finite state space, meaning we can define an indexing such that \(s \in \{1, \ldots, S\}\).

This allowed us to represent the transition probabilities in a matrix,

\[A_{ij} \iff p(s_t = j|s_{t-1} = i). \]
The hidden Markov model modified this by assuming the sequence of states was a *latent process* (i.e., unobserved).

An observation x_t is associated with each s_t, where $x_t \mid s_t \sim p(x \mid \theta_{s_t})$.

Like a mixture model, this allowed for a few distributions to generate the data. It adds an extra transition rule between distributions.
In both cases, the state space was discrete and relatively small in number.

- For the Markov chain, we gave an example where states correspond to positions in \mathbb{R}^d.

- A continuous hidden Markov model might perturb the latent state of the Markov chain.
 - For example, each s_i can be modified by continuous-valued noise, $x_i = s_i + \epsilon_i$.
 - But $s_{1:T}$ is still a discrete Markov chain.
Markov and hidden Markov models both assume a discrete state space.

For Markov models:
- The state could be a data point x_i (Markov Chain classifier)
- The state could be an object (object ranking)
- The state could be the destination of a link (internet search engines)

For hidden Markov models we can simplify complex data:
- Sequences of discrete-valued data may be generated from a small set of discrete distributions, which groups similar codes.
- Sequences of continuous data may come from a few distributions.

What if we model the states as continuous too?
Continuous Markov models extend the state space to a continuous domain. Instead of $s \in \{1, \ldots, S\}$, s can take any value in \mathbb{R}^d.

Again compare:

- **Discrete-state Markov models**: The states live in a discrete space.
- **Continuous-state Markov models**: The states live in a continuous space.

The simplest example is the process

$$s_t = s_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma I).$$

Each successive state is a perturbed version of the current state.
The most basic continuous-state version of the hidden Markov model is called a *linear Gaussian Markov model* (also called the *Kalman filter*).

\[
\begin{align*}
 s_{t+1} &= Cs_t + \epsilon_t, \\
 x_t &= Ds_t + \varepsilon_t
\end{align*}
\]

- \(s_t \in \mathbb{R}^p \) is a continuous-state (hidden) Markov process
- \(x_t \in \mathbb{R}^d \) is a continuous-valued observation
- The (often small) process noise \(\epsilon_t \sim N(0, Q) \)
- The (often large) measurement noise \(\varepsilon_t \sim N(0, V) \).
Difference from HMM: s_t and x_t are both from continuous distributions.

The linear Gaussian Markov model (and its variants) has many applications.

- Tracking objects such as faces or missiles.
- Automatic control systems
- Economics and finance (e.g., stock modeling)
- etc.
Example: Tracking

We get (very) noisy measurements of an object’s position in time, $x_t \in \mathbb{R}^2$.

The time-varying state vector is $s = [\text{pos}_1 \ \text{vel}_1 \ \text{accel}_1 \ \text{pos}_2 \ \text{vel}_2 \ \text{accel}_2]^T$.

Motivated by the underlying physics, we model this as:

$$s_{t+1} = s_t + \epsilon_t$$

$$x_{t+1} = s_{t+1} + \epsilon_{t+1}$$

Therefore, s_t not only approximates where the target is, but where it’s going.
EXAMPLE: TRACKING
THE LEARNING PROBLEM

As with the hidden Markov model, we’re given the sequence \((x_1, x_2, x_3, \ldots)\), where each \(x \in \mathbb{R}^d\). The goal is to learn state sequence \((s_1, s_2, s_3, \ldots)\).

All distributions are Gaussian,

\[
p(s_{t+1} = s | s_t) = N(Cs_t, Q), \quad p(x_t = x | s_t) = N(Ds_t, V).
\]

Notice that, with the discrete HMM we wanted to learn \(\pi, A\) and \(B\), where

- \(\pi\) is the initial state distribution
- \(A\) is the transition matrix among the discrete set of states
- \(B\) contains the state-dependent distributions on discrete-valued data

The situation here is very different.
No “B” to learn: In the linear Gaussian Markov model, each state is unique and so the distribution on x_t is different for each t.

No “A” to learn: In addition, each transition is to a new state, so each s_t has its own unique probability distribution.

What we can learn are the two posterior distributions.

1. $p(s_t|x_1, \ldots, x_T)$: A distribution on each latent state in the sequence

2. $p(s_t|x_1, \ldots, x_t)$: A distribution on the current state given the past.

- #1: Kalman filtering problem. We’ll focus on this one today.
- #2: Kalman smoothing problem. Requires extra step (not discussed).
The Kalman Filter

Goal: Learn the sequence of distributions $p(s_t|x_1, \ldots, x_t)$ given a sequence of data (x_1, x_2, x_3, \ldots) and the model

$$s_{t+1} \mid s_t \sim N(Cs_t, Q), \quad x_t \mid s_t \sim N(Ds_t, V).$$

This is the (linear) Kalman filtering problem and is often used for tracking.

Setup: We can use Bayes rule to write

$$p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) p(s_t|x_1, \ldots x_{t-1})$$

and represent the prior as a marginal distribution

$$p(s_t|x_1, \ldots, x_{t-1}) = \int p(s_t|s_{t-1}) p(s_{t-1}|x_1, \ldots, x_{t-1}) ds_{t-1}$$
The Kalman Filter

We’ve decomposed the problem into parts that we do and don’t know (yet)

\[p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) \int \underbrace{p(s_t|s_{t-1})}_{N(Ds_{t}, V)} \underbrace{p(s_{t-1}|x_1, \ldots, x_{t-1})}_{N(Cs_{t-1}, Q)} ds_{t-1} \]

Observations and considerations:

1. The left is the posterior on \(s_t \) and the right has the posterior on \(s_{t-1} \).
2. We want the integral to be in closed form and a known distribution.
3. We want the prior and likelihood terms to lead to a known posterior.
4. We want future calculations, e.g. for \(s_{t+1} \), to be easy.

We will see how choosing the Gaussian distribution makes this all work.
The Kalman Filter: Step 1

Calculate the marginal for prior distribution

Hypothesize (temporarily) that the unknown distribution is Gaussian,

\[p(s_t | x_1, \ldots, x_t) \propto p(x_t | s_t) \int p(s_t | s_{t-1}) p(s_{t-1} | x_1, \ldots, x_{t-1}) \, ds_{t-1} \]

A property of the Gaussian is that marginals are still Gaussian,

\[\int N(s_t | C s_{t-1}, Q) N(s_{t-1} | \mu, \Sigma) \, ds_{t-1} = N(s_t | C \mu, Q + C \Sigma C^T). \]

We know \(C \) and \(Q \) (by design) and \(\mu \) and \(\Sigma \) (by hypothesis).
Calculate the posterior

We plug in the marginal distribution for the prior and see that

\[p(s_t|x_1, \ldots, x_t) \propto N(x_t|Ds_t, V) N(s_t|C\mu, Q + C\Sigma C^T). \]

Though the parameters look complicated, the posterior is just a Gaussian

\[p(s_t|x_1, \ldots, x_t) = N(s_t|\mu', \Sigma') \]

\[\Sigma' = \left[(Q + C\Sigma C^T)^{-1} + D^T V^{-1} D \right]^{-1} \]

\[\mu' = \Sigma' \left(D^T V^{-1} x_t + (Q + C\Sigma C^T)^{-1} C\mu \right) \]

We can plug the relevant values into these two equations.
By making the assumption of a Gaussian in the prior,

\[
p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) \int \underbrace{p(s_t|s_{t-1})}_{N(s_t|Ds_t, V)} \underbrace{p(s_{t-1}|x_1, \ldots, x_{t-1})}_{N(s_{t-1}|Cs_{t-1}, Q)} \underbrace{ds_{t-1}}_{N(\mu, \Sigma)} \text{ by hypothesis}
\]

we found that the posterior is also Gaussian with a new mean and covariance.

- We therefore only need to define a Gaussian prior on the first state to keep things moving forward. For example,

\[
p(s_0) \sim N(0, I).
\]

Once this is done, all future calculations are in closed form.
Making predictions

We know how to update the sequence of state posterior distributions

\[p(s_t|x_1, \ldots, x_t). \]

What about predicting \(x_{t+1} \)?

\[
p(x_{t+1}|x_1, \ldots, x_t) = \int p(x_{t+1}|s_{t+1})p(s_{t+1}|x_1, \ldots, x_t) ds_{t+1}
\]

\[
= \int p(x_{t+1}|s_{t+1}) \int p(s_{t+1}|s_t)p(s_t|x_1, \ldots, x_t) ds_t ds_{t+1}
\]

Again, Gaussians are nice because these operations stay Gaussian.

This is a multivariate Gaussian that looks even more complicated than the last one, but is just a function of things we know (omitted).
Algorithm: Kalman Filtering

The Kalman filtering algorithm can be run in real time.

0. Set the initial state distribution $p(s_0) = N(0, I)$

1. Prior to observing each new $x_t \in \mathbb{R}^d$ predict

 $$x_t \sim N(\mu^x_t, \Sigma^x_t)$$ \hspace{1cm} (using previously discussed marginalization)

2. After observing each new $x_t \in \mathbb{R}^d$ update

 $$p(s_t|x_1, \ldots, x_t) = N(\mu^s_t, \Sigma^s_t)$$ \hspace{1cm} (using equations on previous slide)
Learning state trajectory

Green: True trajectory

Blue: Observed trajectory

Red: State distribution

Intuitions about what this is doing:

- In the prior distribution notice that we add Q to the covariance,

 $$p(s_t|x_1, \ldots, x_{t-1}) = N(s_t|C\mu, Q + C\Sigma C^T).$$

 This allows the state s_t to “drift” away from s_{t-1}.

- In the posterior $p(s_t|x_1, \ldots, x_t)$, x_t “drags” the distribution towards x_t.
Some final model comparisons

Gaussian mixture model

- $s_t \sim \text{Discrete}(\pi)$
- $x_t | s_t \sim N(\mu_{s_t}, \Sigma_{s_t})$

Continuous hidden Markov model

- $s_t | s_{t-1} \sim \text{Discrete}(A_{s_{t-1}})$
- $x_t | s_t \sim N(\mu_{s_t}, \Sigma_{s_t})$

We saw how the transition from GMM \rightarrow HMM involves using a Markov chain to index the distribution on clusters.
SOME FINAL MODEL COMPARISONS

Probabilistic PCA

- $s_t \sim N(0, Q)$
- $x_t | s_t \sim N(Ds_t, V)$

Linear Gaussian Markov model

- $s_t | s_{t-1} \sim N(Cs_{t-1}, Q)$
- $x_t | s_t \sim N(Ds_t, V)$

There is a similar relationship between probabilistic PCA and the Kalman filter. (Probabilistic PCA also learns D).
There are a variety of extensions to this framework. The equations in the corresponding algorithms would all look familiar given our discussion.

Extended Kalman filter: Nonlinear Kalman filters use nonlinear function of the state, \(h(s_t) \). The EKF approximates \(h(s_t) \approx h(z) + \nabla h(z)(s_t - z) \)

\[
s_{t+1} \mid s_t \sim N(Ds_t, Q), \quad x_t \mid s_t \sim N(h(s_t), V).
\]

Continuous time: Sometimes the time between observations varies. Let \(\Delta_t \) be the time between observation \(x_t \) and \(x_{t+1} \), then

\[
s_{t+1} \mid s_t \sim N(s_t, \Delta_t Q), \quad x_t \mid s_t \sim N(Ds_t, V).
\]

Adding control: In dynamic models, we can add control to the state using a vector \(u_t \) whose values we get to pick (e.g., thrusters).

\[
s_{t+1} \mid s_t \sim N(Cs_t + Gu_t, \Delta_t Q), \quad x_t \mid s_t \sim N(Ds_t, V).
\]