Model
Have vector $y \in \mathbb{R}^n$ and covariates matrix $X \in \mathbb{R}^{n \times d+1}$ (+1 for bias). We model it as:

Likelihood: $y \sim N(Xw, \sigma^2 I)$

Prior: $w \sim N(0, \lambda^{-1} I)$

The unknown vector is $w \in \mathbb{R}^{d+1}$.

- The “likelihood model” says how well the observed data agrees with w.
- The “prior model” is our prior belief (or constraints) on w.

In Bayesian linear regression, we interpret $y_i \in \mathbb{R}$ as response and $x_i \in \mathbb{R}^{d+1}$ as its features. The y_i's are independent, but we can combine using $\sigma^2 I$.
Maximum a posteriori inference

MAP inference returns the maximum of the log joint likelihood.

\[
\text{Joint Likelihood : } \quad p(y, w|X) = p(y|w, X)p(w)
\]

MAP solution

\[
\hat{w}_{\text{MAP}} = \arg \max_w \ln p(y|w, X) + \ln p(w)
\]

\[
= \arg \max_w -\frac{1}{2\sigma^2} (y - Xw)^T (y - Xw) - \frac{\lambda}{2} w^T w + \text{const.}
\]

Interestingly, the solution for \(\hat{w}_{\text{MAP}}\) is the same as for ridge regression:

\[
\hat{w}_{\text{MAP}} = (\lambda \sigma^2 I + X^T X)^{-1} X^T y \iff \hat{w}_{\text{RR}}
\]

We also saw that this is the point that maximizes the posterior of \(w\).
Point estimates

\(\hat{w}_{\text{MAP}} \) and \(\hat{w}_{\text{ML}} \) are referred to as *point estimates* of the model parameters.

They find a specific value (point) of the vector \(w \) that maximizes an objective function (MAP or ML).

- **ML**: Only consider data model (via likelihood).
- **MAP**: Takes into account prior model (via joint likelihood).

Bayesian inference

Bayesian inference goes one step further by characterizing uncertainty about the values in \(w \) using Bayes rule.
Bayes rule and linear regression

Posterior calculation

Since w is a continuous-valued random variable in \mathbb{R}^{d+1}, Bayes rule says that the posterior distribution of w given y, X is

$$p(w|y, X) = \frac{p(y|w, X)p(w)}{\int_{\mathbb{R}^{d+1}} p(y|w, X)p(w) \, dw}$$

That is, we get an updated distribution on w through the transition

prior \rightarrow likelihood (data) \rightarrow posterior

Quote: “The posterior of $___$ is proportional to the likelihood times the prior.”
Bayesian linear regression

In this case, we can update the posterior distribution $p(w|y, X)$ analytically.

We work with the proportionality first:

$$
p(w|y, X) \propto p(y|w, X)p(w)$$

$$\propto \left[e^{-\frac{1}{2\sigma^2} (y-Xw)^T(y-Xw)} \right] \left[e^{-\frac{1}{2} w^T w} \right]$$

$$\propto e^{-\frac{1}{2} \{ w^T (\lambda I + \sigma^{-2} X^T X) w - 2\sigma^{-2} w^T X^T y \}}$$

We can multiply and divide this by whatever we want to make it a probability distribution, *as long as it doesn’t involve* w.
We need to normalize:

\[p(w|y, X) \propto e^{-\frac{1}{2} \{w^T (\lambda I + \sigma^{-2} X^T X)w - 2\sigma^{-2} w^T X^T y\}} \]

There are two key terms in the exponent:

\[w^T (\lambda I + \sigma^{-2} X^T X)w - 2w^T X^T y/\sigma^2 \]

- quadratic in \(w \)
- linear in \(w \)

Since there is no \(w \) in front of \(\exp\{\} \), this tells us that \(p(w|y, X) \) is Gaussian.

1. We can multiply and divide by anything not involving \(w \).
2. A Gaussian has \((w - \mu)^T \Sigma^{-1} (w - \mu) \) in the exponent.
3. We can “complete the square” by adding terms not involving \(w \).
The posterior distribution

Therefore, the posterior distribution of \(w \) is:

\[
p(w|y, X) = N(w|\mu, \Sigma),
\]

\[
\Sigma = (\lambda I + \sigma^{-2}X^TX)^{-1},
\]

\[
\mu = (\lambda I + \sigma^{-2}X^TX)^{-1}X^Ty/\sigma^2,
\]

\[
= (\lambda \sigma^2 I + X^TX)^{-1}X^Ty \Leftarrow \hat{w}_{\text{MAP}}
\]

Things to notice:

- \(\mu = \hat{w}_{\text{MAP}} \) modulo the regularization parameter setting (\(\lambda' \leftarrow \lambda \sigma^2 \)).
- \(\Sigma \) captures uncertainty about \(w \) like Var[\(\hat{w}_{\text{LS}} \)] and Var[\(\hat{w}_{\text{RR}} \)] did before.
- But now we have a full probability distribution on \(w \).
USES OF THE POSTERIOR DISTRIBUTION

Understanding w
We saw how we could calculate the variance of \hat{w}_{LS} and \hat{w}_{RR}. Now we have an entire distribution. Some questions we can ask are:

Q: Is $w_i > 0$ or $w_i < 0$? Can we confidently say $w_i \neq 0$?
A: The marginal distribution is $w_i | y, X \sim N(\mu_i, \Sigma_{ii})$.

Q: How do w_i and w_j relate?
A: Look at posterior correlation $\Sigma_{ij} / \sqrt{\Sigma_{ii} \Sigma_{jj}}$.

Predicting new data
The posterior $p(w|y, X)$ is perhaps most useful for predicting new data.
PREDICTING new data
RECALL: For a new pair \((x_0, y_0)\) with \(x_0\) measured and \(y_0\) unknown, we can predict \(y_0\) using \(x_0\) and the LS or RR outputs: \(y_0 \approx x_0^T \hat{w}_{LS}\) or \(y_0 \approx x_0^T \hat{w}_{RR}\).

With Bayes rule, we can make a probabilistic statement about \(y_0\):

\[
p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} p(y_0|x_0, w) \ p(w|y, X) \ dw
\]

This is just a more complicated looking integral form of

\[
P(A) = \sum_b P(A, B = b) = \sum_b P(A|B = b)P(B = b).
\]

The extra \(X\) on the right of the conditioning bar doesn’t change this fact.
Predictive distribution (intuition)

According to our most recent distribution on w — $p(w|y, X)$ — we have an infinite possible number of values for w.

Using calculus we can “consider all of them” according to their posterior probability. This is called the *predictive distribution*:

$$
\text{Predictive distribution} : \quad p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} p(y_0|x_0, w) \ p(w|y, X) \ dw
$$

With this equation, we are integrating out all the uncertainty about w.
We know from the model and Bayes rule that

Model: \[p(y_0|x_0, w) = N(y_0|x_0^T w, \sigma^2), \]
Bayes rule: \[p(w|y, X) = N(\mu, \Sigma). \]

With \(\mu \) and \(\Sigma \) calculated on a previous slide.

The predictive distribution can be calculated analytically with these distributions. The results is again a Gaussian distribution:

\[p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2), \]
\[\mu_0 = x_0^T \mu, \]
\[\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0. \]

Notice that the expected value is the MAP prediction, \(x_0^T \hat{w}_{\text{MAP}} \), but we now quantify our confidence in this prediction with the variance \(\sigma_0^2 \).
Active learning
Bayesian methods are naturally thought of as sequential processes. That is, the posterior after some data becomes the prior for the next data.

Let y and X be “old data” and y_0 and x_0 be some “new data”. By Bayes rule

$$p(w|y_0, x_0, y, X) \propto p(y_0|w, x_0)p(w|y, X).$$

The posterior after (y, X) has become the prior for (y_0, x_0).

Simple modifications can be made sequentially:

$$p(w|y_0, x_0, y, X) = N(w|\mu', \Sigma'),$$
$$\Sigma' = (\lambda I + \sigma^{-2}(x_0x_0^T + \sum_{i=1}^{n} x_ix_i^T))^{-1},$$
$$\mu' = (\lambda \sigma^2 I + (x_0x_0^T + \sum_{i=1}^{n} x_ix_i^T)^{-1}(x_0y_0 + \sum_{i=1}^{n} x_iy_i).$$
Learning w and making predictions for new y_0 is a two-step procedure:

- Form the predictive distribution $p(y_0|x_0, y, X)$.
- Update the posterior distribution $p(w|y, X, y_0, x_0)$.

Question: Can we learn $p(w|y, X)$ intelligently?

That is, if we’re in the situation where we can pick which y_i to measure with the knowledge of $D = \{x_1, \ldots, x_n\}$, can we come up with a good strategy?
ACTIVE LEARNING

An active learning strategy

Imagine we already have a measured set \((y, X)\) and posterior \(p(w|y, X)\). We can construct the predictive distribution for every remaining \(x_0 \in D\).

\[
p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2),
\]

\[
\mu_0 = x_0^T \mu,
\]

\[
\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0.
\]

For each \(x_0\), \(\sigma_0^2\) is how confident we are. This suggests the following:

1. Form the predictive distributions using the posterior \(p(w|y, X)\)
2. Pick the \(x_0 \in D\) for which \(\sigma_0^2\) is largest and measure \(y_0\)
3. Update the posterior \(p(w|y_0, x_0, y, X)\)
4. Return to \#1 using the updated posterior
ACTIVE LEARNING

Entropy (i.e., uncertainty) minimization

When devising a procedure such as this one, it’s useful to know what *objective function* is being optimized in the process.

We introduce the concept of the *entropy* of a distribution:

$$\mathcal{H}(p) = -\int p(x) \ln p(x) dx.$$

It’s a measure of the spread of the distribution. Larger values correspond to a more “uncertain” distribution.

The entropy of a multivariate Gaussian is

$$\mathcal{H}(N(w|\mu, \Sigma)) = \frac{d + 1}{2} \ln \left(2\pi e|\Sigma|\right).$$
ACTIVE LEARNING

The entropy of a Gaussian is a function of the covariance matrix only. With sequential Bayesian learning, the covariance transitions from

\[
\text{Prior : } (\lambda I + \sigma^{-2}X^TX)^{-1} \\
\downarrow \\
\text{Posterior : } (\lambda I + \sigma^{-2}(x_0x_0^T + X^TX))^{-1}
\]

We can show that the following two “rules” are equivalent:

1. Selecting \(x_0 \) with the largest variance for \(y_0 \).
2. Selecting the \(x_0 \) that reduces the posterior entropy the most.

We want to minimize \(H \) myopically, so this is called a “greedy algorithm”.
MODEL SELECTION
Selecting λ

We’ve discussed λ as a “nuisance” parameter that can impact performance.

To set it, we considered:

- The “degrees of freedom” (Lecture 3, last slide & ESL pg. 68)
- Cross-validation (Lecture 4)

Bayes rule gives a principled way to do this via evidence maximization:

$$p(w|y, X, \lambda) = \frac{p(y|w, X) p(w|\lambda)}{p(y|X, \lambda)}.$$

The “evidence” gives the likelihood of the data with w integrated out. It’s a measure of how good our model and parameter assumptions are.
Selecting \(\lambda \)

If we want to set \(\lambda \), we can do it by maximizing the evidence.

\[
\hat{\lambda} = \arg \max_{\lambda} \ln p(y|X, \lambda).
\]

We can show that the distribution of \(y \) is

\[
p(y|X, \lambda) = N(y|0, \sigma^2 I + \lambda^{-1} X^T X).
\]

This requires an algorithm to maximize over \(\lambda \).

We notice that this looks exactly like maximum likelihood, and it is:

Type-I ML: Maximize the likelihood over the “main parameter” \((w) \).

Type-II ML: Integrate out “main parameter” \((w) \) and maximize over the “hyperparameter” \((\lambda) \). Also called *empirical Bayes*.

The difference between Type I & II is mostly in their perspectives. Here, Type-I doesn’t have a prior on \(w \), and Type-II has an implied one.