The sequence \((s_1, s_2, \ldots)\) has the \textit{Markov property}, if

\[
p(s_t|s_{t-1}, \ldots, s_1) = p(s_t|s_{t-1}).
\]

Our first encounter with Markov models assumed a finite state space, meaning we can index states such that \(s \in \{1, \ldots, S\}\).

This allows us to represent the transition probabilities in a matrix,

\[
A_{ij} \iff p(s_t = j|s_{t-1} = i).
\]
The hidden Markov model extended this by assuming the sequence of states was a \textit{latent process} (i.e., it’s unobserved).

Associated with each s_t was an observation x_t, where $x_t \sim p(x|\theta_{s_t})$.

The state of the tth observation, s_t, indexes the parameter used to generate the observation, x_t. This allowed for a few distributions to generate the data.
In both cases, the *state space* was discrete and relatively small in number.

- For the Markov chain, we can view the states as moving between positions in \mathbb{R}^d.

- A continuous hidden Markov model might perturb the latent state of the Markov chain.

 - For example, each s_i can be modified by observation-specific noise, $x_i = s_i + \epsilon_i$.

 - But $s_{1:T}$ is still a *discrete* Markov chain.
Markov and hidden Markov models both assume a discrete state space.

For Markov models:
- The state could be a data point x_i (MC classifier)
- The state could be an object (ranking)
- The state could be a link (internet search engines)

For hidden Markov models we can simplify complex data:
- Sequences of discrete data (e.g., codebook indexes) may be generated from a small set of discrete distributions, which groups similar codes.
- Sequences of continuous data may come from a few distributions.

What if we model the states as continuous too?
Continuous Markov models extend the state space to a continuous domain. Instead of $s \in \{1, \ldots, S\}$, s can take any value in \mathbb{R}^d.

Again compare:

- Continuous HMM: The observation $x_i \sim p(x|\theta_{s_i})$ is continuous-valued, but the state space of s_i is discrete.
- Discrete-state Markov models: The states live in a discrete space.
- Continuous-state Markov models: The states live in a continuous space.

The simplest example is the process

$$s_t = s_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, aI).$$

Each successive state is a perturbed version of the current state.
The most basic continuous-state version of the hidden Markov model is called a *linear Gaussian Markov model* (among other names).

\[
\begin{align*}
 s_{t+1} &= C s_t + \epsilon_t, \\
 x_t &= D s_t + \varepsilon_t
\end{align*}
\]

- \(s_t \in \mathbb{R}^p \) is a continuous-state (hidden) Markov process
- \(x_t \in \mathbb{R}^d \) is a continuous-valued observation
- The noise \(\epsilon_t \sim N(0, aI) \) and \(\varepsilon_t \sim N(0, bI) \).

This is also referred to as the *Kalman filter*.
Difference from HMM: s_t and x_t are both from continuous distributions.

The linear Gaussian Markov model (and its variants) has many applications.

- Tracking objects such as faces or missiles.
- Automatic control systems
- Economics and finance (e.g., stock modeling)
- etc.
THE LEARNING PROBLEM

As with the hidden Markov model, we are given the sequence \((x_1, x_2, \ldots)\), where each \(x \in \mathbb{R}^d\). The goal is to learn state sequence \((s_1, s_2, \ldots)\).

All distributions are Gaussian,

\[
p(s_{t+1} = s \mid s_t) = N(Cs_t, aI), \quad p(x_t = x \mid s_t) = N(Ds_t, bI).
\]

Notice that, with the discrete HMM we wanted to learn \(\pi, A\) and \(B\), where

- \(\pi\) is the initial state distribution
- \(A\) is the transition matrix among the discrete set of states
- \(B\) contains the state-dependent distributions on discrete-valued data

The situation here is different.
THE LEARNING PROBLEM

No “B” to learn: In the linear Gaussian Markov model, each state is unique and so the distribution on x_t is different for each t.

No “A” to learn: In addition, each transition is to a new state, so each s_t has its own unique probability distribution.

What we can learn are the two posterior distributions.

- $p(s_t| x_1, \ldots, x_T)$: A distribution on each latent state in the sequence
- $p(s_t| x_1, \ldots, x_t)$: A distribution on the current state given the past.

Learning this second distribution is called the filtering problem.

- Parallels “forward” step of the forward-backward algorithm (HMM).
- This distribution is simpler to learn and we will focus on it today.
- The first distribution requires an additional “backward” step.
The Kalman Filter

Goal: Learn the sequence of distributions \(p(s_t|x_1, \ldots, x_t) \) given a sequence of data \((x_1, x_2, \ldots) \) and the model

\[
s_{t+1}|s_t \sim N(Cs_t, aI), \quad x_t|s_t \sim N(Ds_t, bI).
\]

This is often used for tracking and is called a *Kalman filter*.

Setup: We can use Bayes rule to write

\[
p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) p(s_t|x_1, \ldots x_{t-1})
\]

and represent the prior as a marginal distribution

\[
p(s_t|x_1, \ldots, x_{t-1}) = \int p(s_t|s_{t-1}) p(s_{t-1}|x_1, \ldots, x_{t-1}) \, ds_{t-1}
\]
We’ve decomposed the problem into parts we do and don’t know (yet)

\[p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) \int p(s_t|s_{t-1}) p(s_{t-1}|x_1, \ldots, x_{t-1}) \, ds_{t-1} \]

Observations and considerations:

1. The left is the posterior on \(s_t \) and the right has the posterior on \(s_{t-1} \).
2. We want the integral to be in closed form and a known distribution.
3. We want the prior and likelihood terms to lead to a known posterior.
4. We want future calculations, e.g. for \(s_{t+1} \), to be easy.

We will see how choosing the Gaussian distribution makes this all work.
THE KALMAN FILTER: STEP 1

Calculate the marginal for prior distribution

Hypothesize (temporarily) that the unknown distribution is Gaussian,

\[p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) \int_{N(Ds_t,bI)} p(s_t|s_{t-1}) p(s_{t-1}|x_1, \ldots, x_{t-1}) \, ds_{t-1} \]

\[\int_{N(Cs_{t-1},aI)} N(s_t|C\mu, aI + C\Sigma C^T) ds_{t-1} = N(s_t|C\mu, aI + C\Sigma C^T) \]

A property of the Gaussian is that marginals are still Gaussian,

We know \(C \) and \(a \) (by design) and \(\mu \) and \(\Sigma \) (by hypothesis).
Calculate the posterior

We plug in the marginal distribution for the prior and see that

\[p(s_t|x_1, \ldots, x_t) \propto N(x_t|D s_t, bI) N(s_t|C \mu, aI + C \Sigma C^T). \]

Though the parameters look complicated, the posterior is just a Gaussian

\[p(s_t|x_1, \ldots, x_t) = N(s_t|\mu', \Sigma') \]

\[
\Sigma' = \left((aI + C \Sigma C^T)^{-1} + D^T D / b \right)^{-1}
\]

\[
\mu' = \Sigma' \left(D^T x_t / b + (aI + C \Sigma C^T)^{-1} C \mu \right)
\]

We can plug the relevant values into these two equations.
By making the assumption of a Gaussian in the prior,

\[
p(s_t|x_1, \ldots, x_t) \propto p(x_t|s_t) \int p(s_t|s_{t-1}) \ p(s_{t-1}|x_1, \ldots, x_{t-1}) \ ds_{t-1}
\]

we found that the posterior is also Gaussian with a new mean and covariance.

- Incrementing \(t \) by one, we see that the Gaussian posterior we’ve just calculated at time \(t \) fills the same role in the prior at time \(t + 1 \).

- We therefore only need to define a Gaussian prior on the first state to keep this ball rolling, e.g.,

\[
p(s_0) \sim N(0, I).
\]

Once this is done, all downstream equations are in closed form.
Kalman filter: one final quantity

Making predictions

We know how to update the sequence of state posterior distributions

\[p(s_t | x_1, \ldots, x_t). \]

What about predicting \(x_{t+1} \)?

\[
p(x_{t+1} | x_1, \ldots, x_t) = \int p(x_{t+1} | s_{t+1}) p(s_{t+1} | x_1, \ldots, x_t) ds_{t+1}
\]

\[
= \int p(x_{t+1} | s_{t+1}) \int p(s_{t+1} | s_t) p(s_t | x_1, \ldots, x_t) ds_t ds_{t+1}
\]

Again, Gaussians are nice because these operations stay Gaussian.

This is a multivariate Gaussian that looks even more complicated than the last one, but is just a function of things we know (omitted).
The Kalman filtering algorithm can be run in real time.

0. Set the initial state distribution $p(s_0) = N(0, I)$

1. Prior to observing each new $x_t \in \mathbb{R}^d$ predict

 $$x_t \sim N(\mu^x_t, \Sigma^x_t)$$

 (using previously discussed marginalization)

2. After observing each new $x_t \in \mathbb{R}^d$ update

 $$p(s_t|x_1, \ldots, x_t) = N(\mu^s_t, \Sigma^s_t)$$

 (using equations on previous slide)
Learning state trajectory

Green: True trajectory
Blue: Observed trajectory
Red: State distribution

Intuitions about what this is doing,

- In the prior distribution notice that we add aI to the covariance,

$$p(s_t|x_1, \ldots, x_{t-1}) = N(s_t|C\mu, aI + C\Sigma C^T).$$

This allows the state s_t to “drift” away from s_{t-1}.

- In the posterior $p(s_t|x_1, \ldots, x_t)$, x_t “drags” the distribution towards x_t.

- This dragging is aided by the drift aI, but also constrained by prior.
Gaussian mixture model

- \(s_t \sim \text{Discrete}(\pi) \)
- \(x_t | s_t \sim N(\mu_{s_t}, \Sigma_{s_t}) \)

Continuous hidden Markov model

- \(s_t | s_{t-1} \sim \text{Discrete}(A_{s_{t-1}}) \)
- \(x_t | s_t \sim N(\mu_{s_t}, \Sigma_{s_t}) \)

We saw how the transition from GMM \(\rightarrow \) HMM involves using a Markov chain to index the distribution on clusters.
There is a similar relationship between probabilistic PCA and the Kalman filter. Aside from the Markov chain difference, probabilistic PCA learns W.

Probabilistic PCA

- $s_t \sim N(0, aI)$
- $x_t | s_t \sim N(Ws_t, bI)$

Linear Gaussian Markov model

- $s_t | s_{t-1} \sim N(Cs_{t-1}, aI)$
- $x_t | s_t \sim N(Ds_t, bI)$
There are a variety of extensions to this framework. The equations in the corresponding algorithms would all look familiar given our discussion.

Extended Kalman filter: The dynamics can involve non-linear functions. The EKF uses a Taylor expansion approximation to learn \(s_t \) easily.

\[
\begin{align*}
 s_{t+1} \mid s_t & \sim f(s_t, \Theta), \\
 x_t \mid s_t & \sim g(s_t, \Phi).
\end{align*}
\]

Continuous time: Sometimes the wall clock time between observations varies. Let \(\Delta_t \) be the time between observation \(x_t \) and \(x_{t+1} \), then

\[
\begin{align*}
 s_{t+1} \mid s_t & \sim N(s_t, a\Delta_t I), \\
 x_t \mid s_t & \sim N(Ds_t, bI).
\end{align*}
\]

Adding control: In dynamic models, we can add control to the state using a vector \(u_t \) whose values we get to pick (e.g., thrusters).

\[
\begin{align*}
 s_{t+1} \mid s_t & \sim N(Cs_t + Gu_t, a\Delta_t I), \\
 x_t \mid s_t & \sim N(Ds_t, bI).
\end{align*}
\]