Model Selection
The model selection problem

We’ve seen how some model parameters need to be set in advance and discussed how this can be done using using cross-validation.

We referred to this as model selection. Another type of model selection problem is learning model order.

Model order: The complexity of a class of models

- Gaussian mixture model: How many Gaussians?
- Matrix factorization: What rank?
- Hidden Markov models: How many states?

In each of these problems, we can’t simply look at the log-likelihood because a more complex model can always fit the data better.
Model Order

We will discuss two methods for selecting an “appropriate” complexity of the model. This assumes a good model type was chosen to begin with.

(a) Inappropriate model order.

(b) Inappropriate model type.
Notation

We write \mathcal{L} for the log-likelihood of a parameter under a model $p(x|\theta)$:

$$
\begin{align*}
 x_i & \sim iid p(x|\theta) & \iff & & \mathcal{L} = \sum_{i=1}^{N} \log p(x_i|\theta)
\end{align*}
$$

The maximum likelihood solution is: $\theta_{ML} = \arg \max_{\theta} \mathcal{L}$.

Example: How many clusters? (wrong way)

The parameters θ could be those of a GMM. We could find θ_{ML} for 5, 10, 15, etc., clusters and pick the one with the largest \mathcal{L}.

Problem: Make the number of clusters equal to the number of data points. Set the mean equal to the point and the variance infinitesimally small.

This will fit the data perfectly, but characterize new data poorly (overfitting).
The general problem

- Models with more degrees of freedom are more prone to overfitting.
- The degrees of freedom is roughly the number of scalar parameters, K.
- By increasing K— a function of # clusters, rank, # states —the model can add more degrees of freedom.

Most common solutions

- **Stability**: Bootstrap sample the data, learn a model, calculate the likelihood on the original data set. Repeat and pick the best one.
- **Bayesian nonparametric methods**: Each possible value of K is assigned a prior probability. The posterior learns the best K.
- **Penalization approaches**: A penalty term makes adding parameters expensive. Must be overcome by a greater improvement in likelihood.
Penalizing model complexity

General form
Define a *penalty function* on the number of model parameters. Instead of maximizing \mathcal{L}, minimize $-\mathcal{L}$ and add the defined penalty.

The most popular penalties are:

- **Akaike information criterion (AIC):** $-\mathcal{L} + K$

- **Bayesian information criterion (BIC):** $-\mathcal{L} + \frac{1}{2}K \ln N$

When $\frac{1}{2} \ln N > 1$, BIC encourages a simpler model (happens when $N \geq 8$).

Example: For NMF with an $M \times N$ matrix and rank R factorization,

$$\text{AIC} \rightarrow (M + N)R, \quad \text{BIC} \rightarrow \frac{1}{2}(M + N)R \ln(MN)$$

Remember that the divergence penalty for NMF corresponds to the log-likelihood (\mathcal{L}) of a Poisson data generating distribution.
Example of AIC

Two models (let’s leave it abstract). BIC not shown, but would look similar.
Example: AIC vs BIC on HMM

<table>
<thead>
<tr>
<th>model</th>
<th>k</th>
<th>$-\log L$</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘1-state HM’</td>
<td>1</td>
<td>391.9189</td>
<td>785.8</td>
<td>788.5</td>
</tr>
<tr>
<td>2-state HM</td>
<td>4</td>
<td>342.3183</td>
<td>692.6</td>
<td>703.3</td>
</tr>
<tr>
<td>3-state HM</td>
<td>9</td>
<td>329.4603</td>
<td>676.9</td>
<td>701.0</td>
</tr>
<tr>
<td>4-state HM</td>
<td>16</td>
<td>327.8316</td>
<td>687.7</td>
<td>730.4</td>
</tr>
<tr>
<td>5-state HM</td>
<td>25</td>
<td>325.9000</td>
<td>701.8</td>
<td>768.6</td>
</tr>
<tr>
<td>6-state HM</td>
<td>36</td>
<td>324.2270</td>
<td>720.5</td>
<td>816.7</td>
</tr>
<tr>
<td>indep. mixture (2)</td>
<td>3</td>
<td>360.3690</td>
<td>726.7</td>
<td>734.8</td>
</tr>
<tr>
<td>indep. mixture (3)</td>
<td>5</td>
<td>356.8489</td>
<td>723.7</td>
<td>737.1</td>
</tr>
<tr>
<td>indep. mixture (4)</td>
<td>7</td>
<td>356.7337</td>
<td>727.5</td>
<td>746.2</td>
</tr>
</tbody>
</table>

Notice:

- Likelihood is always improving
- Cross model comparison: HMM preferable to GMM
- Only compare AIC and BIC minima, not their values.
DERIVATION OF BIC
Recall the two penalties:

- **Akaike information criterion (AIC):** \(- \mathcal{L} + K\)
- **Bayesian information criterion (BIC):** \(- \mathcal{L} + \frac{1}{2}K \ln N\)

Algorithmically, there is no extra work required:

1. Find the ML solution of the selected models and calculated \(\mathcal{L}\) as always.

2. Add the AIC or BIC penalty to get a “score” useful for picking a model.

Q: Where do these penalties come from? Currently they seem arbitrary.

A: We will derive BIC next. AIC also has a theoretical motivation, but we will skip that derivation.
Imagine we have r candidate models, $\mathcal{M}_1, \ldots, \mathcal{M}_r$. For example, r HMMs with each with a different number of states.

We also have data $\mathcal{D} = \{x_1, \ldots, x_N\}$. We want the posterior on each \mathcal{M}.

$$p(\mathcal{M}_i | \mathcal{D}) = \frac{p(\mathcal{D} | \mathcal{M}_i)p(\mathcal{M}_i)}{\sum_j p(\mathcal{D} | \mathcal{M}_j)p(\mathcal{M}_j)}$$

If we assume a uniform prior distribution on models, then because the denominator doesn’t depend on a model, we pick

$$\mathcal{M} = \arg \max_{\mathcal{M}_i} \ln p(\mathcal{D} | \mathcal{M}_i)$$

We’re picking the model with the largest marginal likelihood. That is, we integrate out all parameters of, e.g., an “i”-state HMM. This is difficult.
DERIVING THE BIC

We will see how the BIC arises from approximating this term,

\[M = \arg \max_{M_i} \ln p(D|M_i) \approx \arg \max_{M_{i}} \ln p(D|\theta_{\text{ML}}, M_i) - \frac{1}{2} K \ln N \]

- The sign of the BIC is flipped here because we’re maximizing.
- Let’s drop the conditioning on \(M \) (in most places). Everything below is in the context of one of the candidate models.
- **Step 1**: Recognize that the difficulty is with the integral

\[\ln p(D|M_i) = \ln \int p(D|\theta)p(\theta)d\theta. \]

- **Step 2**: Approximate this integral using second-order Taylor expansion.
DERIVING THE BIC

1. We want to calculate:

\[
\ln p(D|\mathcal{M}) = \ln \int p(D|\theta)p(\theta)d\theta = \ln \int \exp\{\ln p(D|\theta)\}p(\theta)d\theta
\]

2. We use a second-order Taylor expansion at the point \(\theta_{\text{ML}}\):

\[
\ln p(D|\theta) \approx \ln p(D|\theta_{\text{ML}}) + (\theta - \theta_{\text{ML}})^T \nabla \ln p(D|\theta_{\text{ML}}) = 0
\]

\[
+ \frac{1}{2} (\theta - \theta_{\text{ML}})^T \nabla^2 \ln p(D|\theta_{\text{ML}})(\theta - \theta_{\text{ML}}) = -\mathcal{J}(\theta_{\text{ML}})
\]

3. Approximate \(p(\theta) \propto 1\) and plug this approximation back in:

\[
\ln p(D|\mathcal{M}) \approx \ln p(D|\theta_{\text{ML}}) + \ln \int \exp \left\{ -\frac{1}{2} (\theta - \theta_{\text{ML}})^T \mathcal{J}(\theta_{\text{ML}})(\theta - \theta_{\text{ML}}) \right\} d\theta
\]
Observation: The integral is the normalizing constant of a Gaussian,

$$
\int \exp \left\{ -\frac{1}{2} (\theta - \theta_{ML})^T J(\theta_{ML}) (\theta - \theta_{ML}) \right\} d\theta = \left(\frac{2\pi}{|J(\theta_{ML})|} \right)^{K/2}
$$

Remember the definition that:

$$
-J(\theta_{ML}) = \nabla^2 \ln p(D|\theta_{ML}) = N \sum_{i=1}^{N} \frac{1}{N} \nabla^2 \ln p(x_i|\theta_{ML})
$$

converges as N increases

4. Therefore we arrive at the BIC,

$$
\mathcal{M} \approx \arg \max_{\mathcal{M}_i} \ln p(D|\theta_{ML}) - \frac{1}{2} K \ln N + \text{something not growing with } N
$$

$O(1)$ term, so we ignore it
SOME NEXT STEPS
The International Conference on Machine Learning (ICML) is a major ML conference. Many of the session titles should look familiar:

- Bayesian Optimization and Gaussian Processes
- PCA and Subspace Models
- Supervised Learning
- Matrix Completion and Graphs
- Clustering and Nonparametrics
- Active Learning
- Clustering
- Boosting and Ensemble Methods
- Matrix Factorization I & II
- Kernel Methods I & II
- Topic models
- Time Series and Sequences
- etc.
Other sessions might not look so familiar:

- Reinforcement Learning I & II
- Bandits I & II
- Optimization I, II & III
- Bayesian nonparametrics I & II
- Online learning I & II
- Graphical Models I & II
- Neural Networks and Deep Learning I & II
- Metric Learning and Feature Selection
- etc.

Many of these topics are taught in advanced machine learning courses at Columbia in the CS, Statistics, IEOR and EE departments.