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LLINEAR REGRESSION
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EXAMPLE: OLD FAITHFUL

One model for this

(wait time) = wq + (last duration) X w;

» wq and wy are to be learned.

» This is an example of linear regression.

Refresher

Waiting Time (min)

Current Eruption Time (min)

wy is the slope, wy is called the intercept, bias, shift, offset.



HIGHER DIMENSIONS

Two inputs

(output) =~ wo + (input 1) x wy + (input 2) x w,

With two inputs the intuition
is the same —

y =WwQ + X1W1 + X2w2



REGRESSION: PROBLEM DEFINITION

Data
Input: x € R (i.e., measurements, covariates, features, indepen. variables)
Output: y € R (i.e., response, dependent variable)

Goal
Find a function f : RY — R such that y ~ f(x; w) for the data pair (x, y).
Sf(x;w) is called a regression function. Its free parameters are w.

Definition of linear regression

A regression method is called linear if the prediction f is a linear function of
the unknown parameters w.



LEAST SQUARES LINEAR REGRESSION MODEL

Model

The linear regression model we focus on now has the form

d
yi =~ f(x,‘; W) =wy + Zx,jwj.
=1

Model learning

We have the set of training data (x1,y1) ... (x,,y,). We want to use this data
to learn a w such that y; & f(x;; w). But we first need an objective function to
tell us what a “good” value of w is.

Least squares

The least squares objective tells us to pick the w that minimizes the sum of
squared errors

Wy = arg mm g F(x;w))” = argmin L.
w



LEAST SQUARES IN PICTURES
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Observations

Vertical length is error.

The objective function L is the

sum of all the squared lengths.

wi, w) plus an

Find weights (

offset wy to minimize L.

(wo, w1, wy) defines this plane.

X1




EXAMPLE: EDUCATION, SENIORITY AND INCOME

2-dimensional problem %\

Input: (education, seniority) € R?.

Output: (income) € R

Model: (income) ~ wy + (education)w; + (seniority)w,
Question: Both wy, w, > 0. What does this tell us?

Answer: As education and/or seniority goes up, income tends to go up.

(Caveat: This is a statement about correlation, not causation.)



LEAST SQUARES LINEAR REGRESSION MODEL

Thus far

We have data pairs (x;, y;) of measurements x; € R? and a response y; € R.
We believe there is a linear relationship between x; and y;,

d
Yi=wo + E X w; + €
j=1
and we want to minimize the objective function

n

n
d
L= "= (y—wo— X xmw)’
i=1

i=1

with respect to (wo, wi, . .., Wg).

Can math notation make this easier to look at/work with?



NOTATION: VECTORS AND MATRICES

‘We think of data with d dimensions as a column vector:

Xi1 age

Xi2 height
Xi = : (e.g) = .

Xid income

A set of n vectors can be stacked into a matrix:

T
X11 ‘e X1d — X —
T
X21 N X2d — Xy —
X = . . =
T
Xnl Xnd — X, —

Assumptions for now:
» All features are treated as continuous-valued (x € R?)

» We have more observations than dimensions (d < n)



NOTATION: REGRESSION (AND CLASSIFICATION)

Usually, for linear regression (and classification) we include an intercept
term wy that doesn’t interact with any element in the vector x € R

It will be convenient to attach a 1 to the first dimension of each vector x;
(which we indicate by x; € R*t") and in the first column of the matrix X:

1
1 X1 ... X 1— X —
Xi1 Y
1 X21 . X2d 1 Xy
Xi = Xi2 ) X = . . = .
) 1 xu ... Xu 1 - x,{ —
Xid

We also now view w = [wo, wy, ..., wy]" asw € R+,



LEAST SQUARES IN VECTOR FORM

Original least squares objective function: £ =", (y; — wo — Z;lzl x;wj)?

Using vectors, this can now be written: £ =", (y; — x/ w)?

Least squares solution (vector version)
We can find w by setting,

Vul=0 = Z V(07 = 2wl xy; + wixixlfw) = 0.
i=1
Solving gives,

_izyixi + (zn:zxixir)w =0 = ws= (ixix,r)_l (zn:ym)
i—1 i—1 i—1

i=1



LEAST SQUARES IN MATRIX FORM

Least squares solution (matrix version)

Least squares in matrix form is even cleaner.

Start by organizing the y; in a column vector, y = [y1, ..., y,]’. Then

n

L= (i—xw)?=y—Xw|> = (y— Xw)"(y — Xw).
i=1

If we take the gradient with respect to w, we find that

VoL =2X"Xw—-2XTy=0 = ws=XX)"'xTy.



RECALL FROM LINEAR ALGEBRA

Recall: Matrix x vector (X'y =3>"" yx;)

] ] | |
X1 X2 ... X . =¥ X1 + X + -4y,
| | 1 | |

Recall: Matrix x matrix (X'X =", xx])

T
— X —

| 7| —a -
_ T T
X1 X2 ... X . = XX + XX,



LEAST SQUARES LINEAR REGRESSION: KEY EQUATIONS

Two notations for the key equation

n 1 n
Wi = (inxf) (Zy,-x,-) = W = (XTX)_IXTy.
i=1 i=1

Making Predictions

We use w5 to make predictions.
Given x,,,, the least squares prediction for y,, is

~ I
Yoew =~ X Wis

new



LEAST SQUARES SOLUTION

Potential issues
Calculating w;s = (X7X) !XTy assumes (X7X)~! exists.

When doesn’t it exist?
Answer: When X7X is not a full rank matrix.

When is X7X full rank?

Answer: When the n x (d + 1) matrix X has at least d + 1 linearly
independent rows. This means that any point in R¢*! can be reached by
a weighted combination of d + 1 rows of X.

Obviously if n < d + 1, we can’t do least squares. If (X7X)~! doesn’t exist,
there are an infinite number of possible solutions.

Takeaway: We want n > d (i.e., X is “tall and skinny”).



BROADENING LINEAR REGRESSION
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BROADENING LINEAR REGRESSION

y = wy+ wix




BROADENING LINEAR REGRESSION

y=wy+ wix + W2x2 + W3x3




POLYNOMIAL REGRESSION IN R

Recall: Definition of linear regression

A regression method is called linear if the prediction f is a linear function of
the unknown parameters w.

» Therefore, a function such as y = wg + wix + wox? s linear in w.
The LS solution is the same, only the preprocessing is different.

» E.g., Let (x;,y1) ... (x,,yn) be the data, x € R, y € R. For a pth-order
polynomial approximation, construct the matrix

1Lox o o A

1 x x% R
X:

1 x, x% e xb

» Then solve exactly as before: w;s = (X7X) !XTy,



POLYNOMIAL REGRESSION (MTH ORDER)
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POLYNOMIAL REGRESSION (MTH ORDER)
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POLYNOMIAL REGRESSION IN TWO DIMENSIONS

Example: 2nd and 3rd order polynomial regression in R?

The width of X grows as (order) x (dimensions) + 1.

. 2 2
2nd order: Vi = Wo + WiXip -+ WaXip + W3Xj] + Waxj

. 2 2 3 3
3rd order: Vi = Wo + WX -+ WaXip + W3Xj] + WaX; + Wsx;] + Wex

(a) 1storder (b) 3rd order



FURTHER EXTENSIONS

More generally, for x; € R+ least squares linear regression can be
performed on functions f(x;; w) of the form

yi & f(xi,w Zgr X)W,

For example,
2

gs(xi) x;;
gs(x) = logx;
gs(xi) = Ilx; <a)
gs(x) Iy < xi77)
As long as the function is linear in wy, . .., wg, we can construct the matrix

X by putting the transformed x; on row i, and solve w;s = (X7X)~!'XTy.

One caveat is that, as the number of functions increases, we need more data
to avoid overfitting.



GEOMETRY OF LEAST SQUARES REGRESSION

Thinking geometrically about least squares regression helps a lot.

» We want to minimize ||y — Xw||*>. Think of the vector y as a point in R".
We want to find w in order to get the product Xw close to y.

» If X; is the jth column of X, then Xw = Zj‘.j;rll w;X;.

» That is, we weight the columns in X by values in w to approximate y.

» The LS solutions returns w such that Xw is as close to y as possible in
the Euclidean sense (i.e., intuitive “direct-line” distance).



GEOMETRY OF LEAST SQUARES REGRESSION

argmin|ly — Xw|]>* = ws=X"X)"'xTy.
w

The columns of X define a d + 1-dimensional
subspace in the higher dimensional R”.

The closest point in that subspace is the
orthonormal projection of y into the column
space of X.

Right: y € R? and data x; € R.
X1 = [1, 1, 1]T andXz = [xl,xz,xﬂT

The approximation is § = Xw,s = X(X7X)~'XTy.



GEOMETRY OF LEAST SQUARES REGRESSION

@ yi~wo+xlwfori=1,...,n (b) y ~ Xw

There are some key difference between (a) and (b) worth highlighting as you
try to develop the corresponding intuitions.

(a) Can be shown for all 7, but only for x; € R? (not counting the added 1).

1 X1
(b) This corresponds to n = 3 and one-dimensional data: X = [ 1 x ] .
1 X3




