COMS 4721: Machine Learning for Data Science Lecture 5, 1/31/2017

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

Model

Have vector $y \in \mathbb{R}^n$ and covariates matrix $X \in \mathbb{R}^{n \times d}$. The *i*th row of *y* and *X* correspond to the *i*th observation (y_i, x_i) .

In a Bayesian setting, we model this data as:

$$\begin{split} \mathbf{Likelihood}: \quad y \sim N(Xw, \sigma^2 I) \\ \mathbf{Prior}: \quad w \sim N(0, \lambda^{-1} I) \end{split}$$

The unknown model variable is $w \in \mathbb{R}^d$.

- ► The "likelihood model" says how well the observed data agrees with *w*.
- ► The "model prior" is our prior belief (or constraints) on *w*.

This is called Bayesian linear regression because we have defined a prior on the unknown parameter and will try to learn its posterior.

MAP solution

MAP inference returns the maximum of the log joint likelihood.

Joint Likelihood :
$$p(y, w|X) = p(y|w, X)p(w)$$

Using Bayes rule, we see that this point also maximizes the *posterior* of w.

$$w_{MAP} = \arg \max_{w} \ln p(w|y, X)$$

=
$$\arg \max_{w} \ln p(y|w, X) + \ln p(w) - \ln p(y|X)$$

=
$$\arg \max_{w} -\frac{1}{2\sigma^{2}}(y - Xw)^{T}(y - Xw) - \frac{\lambda}{2}w^{T}w + \text{const.}$$

We saw that this solution for w_{MAP} is the same as for ridge regression:

$$w_{\text{map}} = (\lambda \sigma^2 I + X^T X)^{-1} X^T y \quad \Leftrightarrow \quad w_{\text{rr}}$$

Point estimates

 w_{MAP} and w_{ML} are referred to as *point estimates* of the model parameters.

They find a specific value (point) of the vector *w* that maximizes an objective function — the posterior (MAP) or likelihood (ML).

- ML: Only considers the data model: p(y|w, X).
- ► **MAP**: Takes into account model prior: p(y, w|X) = p(y|w, X)p(w).

Bayesian inference

Bayesian inference goes one step further by characterizing uncertainty about the values in *w* using Bayes rule.

Posterior calculation

Since *w* is a continuous-valued random variable in \mathbb{R}^d , Bayes rule says that the *posterior* distribution of *w* given *y* and *X* is

$$p(w|y,X) = \frac{p(y|w,X)p(w)}{\int_{\mathbb{R}^d} p(y|w,X)p(w) \, dw}$$

That is, we get an updated distribution on *w* through the transition

prior
$$\rightarrow$$
 likelihood \rightarrow posterior

Quote: "The posterior of _____ is proportional to the likelihood times the prior."

Bayesian linear regression

In this case, we can update the posterior distribution p(w|y, X) analytically.

We work with the proportionality first:

$$p(w|y,X) \propto p(y|w,X)p(w)$$

$$\propto \left[e^{-\frac{1}{2\sigma^2}(y-Xw)^T(y-Xw)}\right] \left[e^{-\frac{\lambda}{2}w^Tw}\right]$$

$$\propto e^{-\frac{1}{2}\{w^T(\lambda I + \sigma^{-2}X^TX)w - 2\sigma^{-2}w^TX^Ty\}}$$

The \propto sign lets us multiply and divide this by anything *as long as it doesn't contain w*. We've done this twice above. Therefore the 2nd line \neq 3rd line.

We need to normalize:

$$p(w|y,X) \propto e^{-\frac{1}{2}\{w^T(\lambda I + \sigma^{-2}X^TX)w - 2\sigma^{-2}w^TX^Ty\}}$$

There are two key terms in the exponent:

$$\underbrace{\frac{w^{T}(\lambda I + \sigma^{-2}X^{T}X)w}_{\text{quadratic in }w} - \underbrace{2w^{T}X^{T}y/\sigma^{2}}_{\text{linear in }w}}_{\text{linear in }w}$$

We can conclude that p(w|y, X) is Gaussian. Why?

- 1. We can multiply and divide by anything not involving w.
- 2. A Gaussian has $(w \mu)^T \Sigma^{-1} (w \mu)$ in the exponent.
- 3. We can "complete the square" by adding terms not involving w.

BAYESIAN INFERENCE FOR LINEAR REGRESSION

Compare: In other words, a Gaussian looks like:

$$p(w|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(w^T \Sigma^{-1} w - 2w^T \Sigma^{-1} \mu + \mu^T \Sigma^{-1} \mu)}$$

and we've shown for some setting of Z that

$$p(w|y,X) = \frac{1}{Z} e^{-\frac{1}{2}(w^{T}(\lambda I + \sigma^{-2}X^{T}X)w - 2w^{T}X^{T}y/\sigma^{2})}$$

Conclude: What happens if in the above Gaussian we define:

$$\Sigma^{-1} = (\lambda I + \sigma^{-2} X^T X), \qquad \Sigma^{-1} \mu = X^T y / \sigma^2 ?$$

Using these specific values of μ and Σ we only need to set

$$Z = (2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}} \mathrm{e}^{\frac{1}{2}\mu^{T} \Sigma^{-1} \mu}$$

The posterior distribution

Therefore, the posterior distribution of *w* is:

$$p(w|y,X) = N(w|\mu,\Sigma),$$

$$\Sigma = (\lambda I + \sigma^{-2}X^{T}X)^{-1},$$

$$\mu = (\lambda \sigma^{2}I + X^{T}X)^{-1}X^{T}y \iff w_{MAP}$$

Things to notice:

- $\mu = w_{\text{MAP}}$ after a redefinition of the regularization parameter λ .
- Σ captures uncertainty about w, like Var $[w_{LS}]$ and Var $[w_{RR}]$ did before.
- ► However, now we have a full probability distribution on *w*.

Understanding w

We saw how we could calculate the variance of w_{LS} and w_{RR} . Now we have an entire distribution. Some questions we can ask are:

Q: Is $w_i > 0$ or $w_i < 0$? Can we confidently say $w_i \neq 0$? **A**: Use the marginal posterior distribution: $w_i \sim N(\mu_i, \Sigma_{ii})$.

Q: How do w_i and w_j relate?

A: Use their joint marginal posterior distribution:

$$\left[\begin{array}{c}w_i\\w_j\end{array}\right] \sim N\left(\left[\begin{array}{c}\mu_i\\\mu_j\end{array}\right], \left[\begin{array}{c}\Sigma_{ii} & \Sigma_{ij}\\\Sigma_{ji} & \Sigma_{jj}\end{array}\right]\right)$$

Predicting new data

The posterior p(w|y, X) is perhaps most useful for predicting new data.

PREDICTING NEW DATA

PREDICTING NEW DATA

Recall: For a new pair (x_0, y_0) with x_0 measured and y_0 unknown, we can predict y_0 using x_0 and the LS or RR (i.e., ML or MAP) solutions:

$$y_0 \approx x_0^T w_{\text{LS}}$$
 or $y_0 \approx x_0^T w_{\text{RR}}$

With Bayes rule, we can make a *probabilistic* statement about y_0 :

$$p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} p(y_0, w|x_0, y, X) \, dw$$

= $\int_{\mathbb{R}^d} p(y_0|w, x_0, y, X) \, p(w|x_0, y, X) \, dw$

Notice that conditional independence lets us write

$$p(y_0|w, x_0, y, X) = \underbrace{p(y_0|w, x_0)}_{likelihood}$$
 and $p(w|x_0, y, X) = \underbrace{p(w|y, X)}_{posterior}$

Predictive distribution (intuition)

This is called the *predictive distribution*:

$$p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} \underbrace{p(y_0|x_0, w)}_{likelihood} \underbrace{p(w|y, X)}_{posterior} dw$$

Intuitively:

- 1. Evaluate the likelihood of a value y_0 given x_0 for a particular *w*.
- 2. Weight that likelihood by our current belief about w given data (y, X).
- 3. Then sum (integrate) over all possible values of *w*.

PREDICTING NEW DATA

We know from the model and Bayes rule that

Model:
$$p(y_0|x_0, w) = N(y_0|x_0^T w, \sigma^2),$$

Bayes rule: $p(w|y, X) = N(w|\mu, \Sigma).$

With μ and Σ calculated on a previous slide.

The predictive distribution can be calculated exactly with these distributions. Again we get a Gaussian distribution:

$$p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2),$$

$$\mu_0 = x_0^T \mu,$$

$$\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0.$$

Notice that the expected value is the MAP prediction since $\mu_0 = x_0^T w_{\text{MAP}}$, but we now quantify our confidence in this prediction with the variance σ_0^2 .

Bayesian learning is naturally thought of as a sequential process. That is, the posterior after seeing some data becomes the prior for the next data.

Let y and X be "old data" and y_0 and x_0 be some "new data". By Bayes rule

 $p(w|y_0, x_0, y, X) \propto p(y_0|w, x_0)p(w|y, X).$

The posterior after (y, X) has become the prior for (y_0, x_0) .

Simple modifications can be made sequentially in this case:

$$p(w|y_0, x_0, y, X) = N(w|\mu, \Sigma),$$

$$\Sigma = (\lambda I + \sigma^{-2}(x_0 x_0^T + \sum_{i=1}^n x_i x_i^T))^{-1},$$

$$\mu = (\lambda \sigma^2 I + (x_0 x_0^T + \sum_{i=1}^n x_i x_i^T))^{-1}(x_0 y_0 + \sum_{i=1}^n x_i y_i).$$

Notice we could also have written

$$p(w|y_0, x_0, y, X) \propto p(y_0, y|w, X, x_0)p(w)$$

but often we want to use the sequential aspect of inference to help us learn.

Learning w and making predictions for new y_0 is a two-step procedure:

- Form the predictive distribution $p(y_0|x_0, y, X)$.
- Update the posterior distribution $p(w|y, X, y_0, x_0)$.

Question: Can we learn p(w|y, X) intelligently?

That is, if we're in the situation where we can pick which y_i to measure with knowledge of $\mathcal{D} = \{x_1, \ldots, x_n\}$, can we come up with a good strategy?

An "active learning" strategy

Imagine we already have a measured dataset (y, X) and posterior p(w|y, X). We can construct the predictive distribution for every remaining $x_0 \in D$.

$$p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2),$$

$$\mu_0 = x_0^T \mu,$$

$$\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0.$$

For each x_0 , σ_0^2 tells how confident we are. This suggests the following:

- 1. Form predictive distribution $p(y_0|x_0, y, X)$ for all unmeasured $x_0 \in \mathcal{D}$
- 2. Pick the x_0 for which σ_0^2 is largest and measure y_0
- 3. Update the posterior p(w|y, X) where $y \leftarrow (y, y_0)$ and $X \leftarrow (X, x_0)$
- 4. Return to #1 using the updated posterior

Entropy (i.e., uncertainty) minimization

When devising a procedure such as this one, it's useful to know what *objective function* is being optimized in the process.

We introduce the concept of the *entropy* of a distribution. Let p(z) be a continuous distribution, then its (differential) entropy is:

$$\mathcal{H}(p) = -\int p(z)\ln p(z)dz.$$

This is a measure of the spread of the distribution. More positive values correspond to a more "uncertain" distribution (larger variance).

The entropy of a multivariate Gaussian is

$$\mathcal{H}(N(w|\mu,\Sigma)) = \frac{1}{2} \ln \left((2\pi e)^d |\Sigma| \right).$$

The entropy of a Gaussian changes with its covariance matrix. With sequential Bayesian learning, the covariance transitions from

Prior :
$$(\lambda I + \sigma^{-2}X^TX)^{-1} \equiv \Sigma$$

 \Downarrow
Posterior : $(\lambda I + \sigma^{-2}(x_0x_0^T + X^TX))^{-1} \equiv (\Sigma^{-1} + \sigma^{-2}x_0x_0^T)^{-1}$

Using a "rank-one update" property of the determinant, we can show that the entropy of the prior \mathcal{H}_{prior} relates to the entropy of the posterior \mathcal{H}_{post} as:

$$\mathcal{H}_{\text{post}} = \mathcal{H}_{\text{prior}} - \frac{d}{2}\ln(1 + \sigma^{-2}x_0^T \Sigma x_0)$$

Therefore, the x_0 that minimizes \mathcal{H}_{post} also maximizes $\sigma^2 + x_0^T \Sigma x_0$. We are minimizing \mathcal{H} myopically, so this is called a "greedy algorithm".

MODEL SELECTION

We've discussed λ as a "nuisance" parameter that can impact performance.

Bayes rule gives a principled way to do this via evidence maximization:

$$p(w|y, X, \lambda) = \underbrace{p(y|w, X)}_{likelihood} \underbrace{p(w|\lambda)}_{prior} / \underbrace{p(y|X, \lambda)}_{evidence}.$$

The "evidence" gives the likelihood of the data with *w* integrated out. It's a measure of how good our model and parameter assumptions are.

Selecting λ

If we want to set λ , we can also do it by maximizing the evidence.¹

$$\hat{\lambda} = \arg \max_{\lambda} \ln p(y|X, \lambda).$$

We notice that this looks exactly like maximum likelihood, and it is:

Type-I ML: Maximize the likelihood over the "main parameter" (w).

Type-II ML: Integrate out "main parameter" (*w*) and maximize over the "hyperparameter" (λ). Also called *empirical Bayes*.

The difference is only in their perspective.

This approach requires us to solve this integral, but we often can't for more complex models. Cross-validation is an alternative that's always available.

¹We can show that the distribution of *y* is $p(y|X, \lambda) = N(y|0, \sigma^2 I + \lambda^{-1}XX^T)$. This would require an algorithm to maximize over λ . The key point here is the general technique.