Feature expansions
Feature expansions (also called basis expansions) are names given to a technique we’ve already discussed and made use of.

Problem: A linear model on the original feature space \(x \in \mathbb{R}^d \) doesn’t work.

Solution: Map the features to a higher dimensional space \(\phi(x) \in \mathbb{R}^D \), where \(D > d \), and do linear modeling there.

Examples

- For polynomial regression on \(\mathbb{R} \), we let \(\phi(x) = (x, x^2, \ldots, x^p) \).
- For jump discontinuities, \(\phi(x) = (x, 1 \{x < a\}) \).
High-dimensional maps can transform the data so output is linear in inputs.

Left: Original $x \in \mathbb{R}$ and response y.

Right: x mapped to \mathbb{R}^2 using $\phi(x) = (x, \cos x)^T$.
Mapping example for regression

Using the mapping $\phi(x) = (x, \cos x)^T$, learn the linear regression model

$$y \approx w_0 + \phi(x)^T w \approx w_0 + w_1 x + w_2 \cos x.$$

Left: Learn (w_0, w_1, w_2) to approximate data on the left with a plane.

Right: For each point x, map to $\phi(x)$ and predict y. Plot as a function of x.

Mapping Example for Classification

(e) Data for binary classification

(f) Same data mapped to higher dimension

High-dimensional maps can transform data so it becomes linearly separable.

Left: Original data in \mathbb{R}^2.

Right: Data mapped to \mathbb{R}^3 using $\phi(x) = (x_1^2, x_1x_2, x_2^2)^T$.
Mapping Example for Classification

Using the mapping $\phi(x) = (x_1^2, x_1x_2, x_2^2)^T$, learn a linear classifier

$$y = \text{sign}(w_0 + \phi(x)^T w) = \text{sign}(w_0 + w_1x_1^2 + w_2x_1x_2 + w_3x_2^2).$$

Left: Learn (w_0, w_1, w_2, w_3) to linearly separate classes with hyperplane.
Right: For each point x, map to $\phi(x)$ and classify. Color decision regions in \mathbb{R}^2.
What expansion should I use?

This is not obvious. The illustrations required knowledge about the data that we likely won’t have (especially if it’s in high dimensions).

One approach is to use the “kitchen sink”: If you can think of it, then use it. Select the useful features with an ℓ_1 penalty

$$w_{\ell_1} = \arg \min_w \sum_{i=1}^n f(y_i, \phi(x_i), w) + \lambda \|w\|_1.$$

We know that this will find a sparse subset of the dimensions of $\phi(x)$ to use.

Often we only need to work with dot products $\phi(x_i)^T \phi(x_j) \equiv K(x_i, x_j)$. This is called a kernel and can produce some interesting results.
KERNELS
Perceptron (Some Motivation)

Perceptron classifier

Let \(x_i \in \mathbb{R}^{d+1} \) and \(y_i \in \{-1, +1\} \) for \(i = 1, \ldots, n \) observations. We saw that the Perceptron constructs the hyperplane from data,

\[
w = \sum_{i \in \mathcal{M}} y_i x_i, \quad \text{(assume } \eta = 1 \text{ and } \mathcal{M} \text{ has no duplicates)}
\]

where \(\mathcal{M} \) is the sequentially constructed set of misclassified examples.

Predicting new data

We also discussed how we can predict the label \(y_0 \) for a new observation \(x_0 \):

\[
y_0 = \text{sign}(x_0^T w) = \text{sign} \left(\sum_{i \in \mathcal{M}} y_i x_0^T x_i \right)
\]

We’ve taken feature expansions for granted, but we can explicitly write it as

\[
y_0 = \text{sign}(\phi(x_0)^T w) = \text{sign} \left(\sum_{i \in \mathcal{M}} y_i \phi(x_0)^T \phi(x_i) \right)
\]

We can represent the decision using dot products between data points.
Kernel definition
A kernel $K(\cdot, \cdot) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a symmetric function defined as follows:

Definition: If for any n points $x_1, \ldots, x_n \in \mathbb{R}^d$, the $n \times n$ matrix K, where $K_{ij} = K(x_i, x_j)$, is positive semidefinite, then $K(\cdot, \cdot)$ is a “kernel.”

Intuitively, this means K satisfies the properties of a covariance matrix.

Mercer’s theorem
If the function $K(\cdot, \cdot)$ satisfies the above properties, then there exists a mapping $\phi : \mathbb{R}^d \to \mathbb{R}^D$ (D can equal ∞) such that

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j).$$

If we first define $\phi(\cdot)$ and then K, this is obvious. However, sometimes we first define $K(\cdot, \cdot)$ and avoid ever using $\phi(\cdot)$.

The most popular kernel is the Gaussian kernel, also called the radial basis function (RBF),

\[K(x, x') = a \exp \left\{ -\frac{1}{b} \|x - x'\|^2 \right\}. \]

▶ This is a good, general-purpose kernel that usually works well.

▶ It takes into account proximity in \(\mathbb{R}^d \). Things close together in space have larger value (as defined by kernel width \(b \)).

In this case, the mapping \(\phi(x) \) that produces the RBF kernel is infinite dimensional (it’s a continuous function instead of a vector). Therefore

\[K(x, x') = \int \phi_t(x) \phi_t(x') \, dt. \]

▶ \(\phi_t(x) \) can be thought of as a function of \(t \) with parameter \(x \) that also has a Gaussian form.
Kernels

Another kernel

Map: \(\phi(x) = (1, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, x_1^2, \ldots, x_d^2, \ldots, \sqrt{2}x_i x_j, \ldots) \)

Kernel: \(\phi(x)^T \phi(x') = K(x, x') = (1 + x^T x')^2 \)

In fact, we can show \(K(x, x') = (1 + x^T x')^b \), for \(b > 0 \) is a kernel as well.

Kernel arithmetic

Certain functions of kernels can produce new kernels.

Let \(K_1 \) and \(K_2 \) be any two kernels, then constructing \(K \) in the following ways produces a new kernel (among many other ways):

\[
K(x, x') = K_1(x, x')K_2(x, x') \\
K(x, x') = K_1(x, x') + K_2(x, x') \\
K(x, x') = \exp\{K_1(x, x')\}
\]
Kernelized Perceptron

** Returning to the Perceptron
We write the feature-expanded decision as

\[y_0 = \text{sign} \left(\sum_{i \in M} y_i \phi(x_0)^T \phi(x_i) \right) = \text{sign} \left(\sum_{i \in M} y_i K(x_0, x_i) \right) \]

We can pick the kernel we want to use. Let’s pick the RBF (set \(a = 1 \)). Then

\[y_0 = \text{sign} \left(\sum_{i \in M} y_i e^{-\frac{1}{b} \|x_0 - x_i\|^2} \right) \]

Notice that we never actually need to calculate \(\phi(x) \).

What is this doing?
- Notice \(0 < K(x_0, x_i) \leq 1 \), with bigger values when \(x_0 \) is closer to \(x_i \).
- This is like a “soft voting” among the data picked by Perceptron.
Learning the kernelized Perceptron

Recall: Given a current vector \(w(t) = \sum_{i \in M_t} y_i x_i \), we update it as follows,

1. Find a new \(x' \) such that \(y' \neq \text{sign}(x'Tw(t)) \)
2. Add the index of \(x' \) to \(M \) and set \(w(t+1) = \sum_{i \in M_{t+1}} y_i x_i \)

Again we only need dot products, meaning these steps are equivalent to

1. Find a new \(x' \) such that \(y' \neq \text{sign}(\sum_{i \in M} y_i K(x', x_i)) \)
2. Add the index of \(x' \) to \(M \) but don’t bother calculating \(w(t+1) \)

The trick is to realize that we never need to work with \(\phi(x) \).

- We don’t need \(\phi(x) \) to do Step 1 above.
- We don’t need \(\phi(x) \) to classify new data (previous slide).
- We only ever need to calculate \(K(x, x') \) between two points.
Kernel k-NN

An extension

We can generalize kernelized Perceptron to soft k-NN with a simple change. Instead of summing over misclassified data \mathcal{M}, sum over all the data:

$$y_0 = \text{sign} \left(\sum_{i=1}^{n} y_i e^{-\frac{1}{b} \|x_0 - x_i\|^2} \right).$$

Next, notice the decision doesn’t change if we divide by a positive constant.

Let: $Z = \sum_{j=1}^{n} e^{-\frac{1}{b} \|x_0 - x_j\|^2}$

Construct: Vector $p(x_0)$, where $p_i(x_0) = \frac{1}{Z} e^{-\frac{1}{b} \|x_0 - x_i\|^2}$

Declare: $y_0 = \text{sign} \left(\sum_{i=1}^{n} y_i p_i(x_0) \right)$

- We let all data vote for the label based on a “confidence score” $p(x_0)$.
- Set b so that most $p_i(x_0) \approx 0$ to only focus on neighborhood around x_0.
Nadaraya-Watson model
The developments are almost limitless.

Here’s a regression example almost identical to the kernelized k-NN:

Before: $y \in \{-1, +1\}$

Now: $y \in \mathbb{R}$

Using the RBF kernel, for a new (x_0, y_0) predict

$$y_0 = \sum_{i=1}^{n} y_i \frac{K(x_0, x_i)}{\sum_{j=1}^{n} K(x_0, x_j)}.$$

What is this doing?
We’re taking a locally weighted average of all y_i for which x_i is close to x_0 (as decided by the kernel width). *Gaussian processes* are another option. . .
GAUSSIAN PROCESSES
Kernelized Bayesian linear regression

Regression setup: For \(n \) observations, with response vector \(y \in \mathbb{R}^n \) and their feature matrix \(X \), we define the likelihood and prior

\[
y \sim N(Xw, \sigma^2 I), \quad w \sim N(0, \lambda^{-1} I).
\]

Marginalizing: What if we integrate out \(w \)? We can solve this,

\[
p(y|X) = \int p(y|X, w)p(w)dw = N(0, \sigma^2 I + \lambda^{-1}XX^T).
\]

Kernelization: Notice that \((XX^T)_{ij} = x_i^T x_j \). Replace each \(x \) with \(\phi(x) \) after which we can say \([\phi(X)\phi(X)^T]_{ij} = K(x_i, x_j) \). We can define \(K \) directly, so

\[
p(y|X) = \int p(y|X, w)p(w)dw = N(0, \sigma^2 I + \lambda^{-1}K).
\]

This is called a *Gaussian process*. We never use \(w \) or \(\phi(x) \), but just \(K(x_i, x_j) \).
Gaussian processes

Definition

- Let \(f(x) \in \mathbb{R} \) and \(x \in \mathbb{R}^d \).
- Define the *kernel* \(K(x, x') \) between two points \(x \) and \(x' \).
- Then \(f(x) \) is a *Gaussian process* and \(y(x) \) the noise-added process if for \(n \) observed pairs \((x_1, y_1), \ldots, (x_n, y_n) \), where \(x \in \mathcal{X} \) and \(y \in \mathbb{R} \),

\[
y | f \sim N(f, \sigma^2 I), \quad f \sim N(0, K) \quad \iff \quad y \sim N(0, \sigma^2 I + K)
\]

where \(y = (y_1, \ldots, y_n)^T \) and \(K \) is \(n \times n \) with \(K_{ij} = K(x_i, x_j) \).

Comments:

- We assume \(\lambda = 1 \) to reduce notation.
- Typical breakdown: \(f(x) \) is the GP and \(y(x) \) equals \(f(x) \) plus i.i.d. noise.
- The kernel is what keeps this from being “just a Gaussian.”
Above: A Gaussian process $f(x)$ generated using

$$K(x_i, x_j) = \exp \left\{ - \frac{\|x_i - x_j\|^2}{b} \right\}.$$

Right: The covariance of $f(x)$ defined by K.
Gaussian processes

Top: Unobserved underlying function,
Bottom: Noisy observed data sampled from this function
Bayesian linear regression

Imagine we have \(n \) observation pairs \(\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{N} \) and want to predict \(y_0 \) given \(x_0 \). Integrating out \(w \) and setting \(\lambda = 1 \), the joint distribution is

\[
\begin{bmatrix}
y_0 \\
y
\end{bmatrix} \sim \text{Normal} \left(0, \sigma^2 I + \begin{bmatrix} x_0^T x_0 & (Xx_0)^T \\ Xx_0 & XX^T \end{bmatrix} \right)
\]

We want to predict \(y_0 \) given \(\mathcal{D} \) and \(x_0 \). Calculations can show that

\[
y_0 | \mathcal{D}, x_0 \sim \text{Normal}(\mu_0, \sigma_0^2)
\]

\[
\mu_0 = (Xx_0)^T (\sigma^2 I + XX^T)^{-1} y
\]

\[
\sigma_0^2 = \sigma^2 + x_0^T x_0 - (Xx_0)^T (\sigma^2 I + XX^T)^{-1} (Xx_0)
\]

The since the infinite Gaussian process is only evaluated at a finite set of points, we can use this fact.
Predictive distribution of $y(x)$

Given measured data $\mathcal{D}_n = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, the distribution of $y(x)$ can be calculated at any new x to make predictions.

Let $K(x, \mathcal{D}_n) = [K(x, x_1), \ldots, K(x, x_n)]$ and K_n be the $n \times n$ kernel matrix restricted points in \mathcal{D}_n. Then we can show

$$y(x) | \mathcal{D}_n \sim N(\mu(x), \Sigma(x)),$$

$$\mu(x) = K(x, \mathcal{D}_n)(\sigma^2 I + K_n)^{-1}y,$$

$$\Sigma(x) = \sigma^2 + K(x, x) - K(x, \mathcal{D}_n)(\sigma^2 I + K_n)^{-1}K(x, \mathcal{D}_n)^T$$

For the posterior of $f(x)$ instead of $y(x)$, just remove σ^2.
What does the posterior distribution of $f(x)$ look like?

- We have data marked by an \times.
- These values pin down the function $f(x)$ nearby.
- We get a mean and variance for every possible x from a previous slide.
- The distribution on $y(x)$ adds variance σ^2 (*very* small above) point-wise.