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BOOSTING

Robert E. Schapire and Yoav Freund, Boosting: Foundations and Algorithms, MIT Press, 2012.
See this textbook for many more details. (I borrow some figures from that book.)



BAGGING CLASSIFIERS

Algorithm: Bagging binary classifiers

Given (x1,y1),. -+, (Xn,yn), x € X,y € {—1,+1}
» Forb=1,...,B

» Sample a bootstrap dataset B, of size n. For each entry in By, select (x;, ;)
with probability ﬁ Some (x;, y;) will repeat and some won’t appear in Bj.

» Learn a classifier f; using data in Bj,.

» Define the classification rule to be

Joag(x0) = sign (Zfb(%)) :

b=1

» With bagging, we observe that a committee of classifiers votes on a label.
» Each classifier is learned on a bootstrap sample from the data set.

» Learning a collection of classifiers is referred to as an ensemble method.



BOOSTING

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions,
despite the weak judgment of the individual members?

- Schapire & Freund, “Boosting: Foundations and Algorithms”

Boosting is another powerful method for ensemble learning. It is similar to
bagging in that a set of classifiers are combined to make a better one.

It works for any classifier, but a “weak” one that is easy to learn is usually
chosen. (weak = accuracy a little better than random guessing)

Short history

1984 : Leslie Valiant and Michael Kearns ask if “boosting” is possible.
1989 : Robert Schapire creates first boosting algorithm.

1990 : Yoav Freund creates an optimal boosting algorithm.

1995 : Freund and Schapire create AdaBoost (Adaptive Boosting),
the major boosting algorithm.



BAGGING VS BOOSTING (OVERVIEW)

Bootstrap sample — f3(x) Weighted sample — f3(X)
Bootstrap sample — fy(x) Weighted sample — f2(x)
Bootstrap sample — f;(x) Weighted sample — f1(x)

i

Training sample Training sample

Bagging Boosting



THE ADABOOST ALGORITHM (SAMPLING VERSION)
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Boosting



THE ADABOOST ALGORITHM (SAMPLING VERSION)

Algorithm: Boosting a binary classifier

Given (x1,¥1), .-+, (X0, n), x € X,y € {=1,+1},setw; (i) = L fori=1:n

T n

» Fortr=1,...,T
1. Sample a bootstrap dataset I3; of size n according to distribution w;.
Notice we pick (x;, yi) with probability w; (i) and not 1.

2. Learn a classifier f; using data in 13;.
3. Sete, =0 wi(i)1{yi # fi(xi)} and v =  In (1;5').

4. Scale Wi (i) = wi(i)e ) and set w1 (i) = D)

Zj warl(j) .

» Set the classification rule to be

fboost(XO) - Sign (Z[T:l atﬁ(x())) .

Comment: Description usually simplified to “learn classifier f; using distribution w,.”



BOOSTING A DECISION STUMP (EXAMPLE 1)

Original data

Uniform distribution, w,
Learn weak classifier

— Here: Use a decision stump




BOOSTING A DECISION STUMP (EXAMPLE 1)

: @ Round 1 classifier

Weighted error: ¢; = 0.3
Weight update: o = 0.42




BOOSTING A DECISION STUMP (EXAMPLE 1)

Weighted data

After round 1




BOOSTING A DECISION STUMP (EXAMPLE 1)

Round 2 classifier

Weighted error: ¢, = 0.21
Weight update: o, = 0.65




BOOSTING A DECISION STUMP (EXAMPLE 1)

Weighted data

After round 2




BOOSTING A DECISION STUMP (EXAMPLE 1)

Round 2 classifier

Weighted error: €3 = 0.14
Weight update: a3 = 0.92




BOOSTING A DECISION STUMP (EXAMPLE 1)

Classifier after three rounds

0.42 x +

0.65 X

0.92 x




BOOSTING A DECISION STUMP (EXAMPLE 2)
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BOOSTING
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Point = one dataset. Location = error rate w/ and w/o boosting. The boosted
version of the same classifier almost always produces better results.



BOOSTING
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(left) Boosting a bad classifier is often better than not boosting a good one.
(right) Boosting a good classifier is often better, but can take more time.



BOOSTING AND FEATURE MAPS

Q: What makes boosting work so well?

A: This is a well-studied question. We will present one analysis later, but
we can also give intuition by tying it in with what we’ve already learned.

The classification for a new x( from boosting is

fboost(XO) = Sign (Z atft(x0)> .

t=1

Define ¢(x) = [fi(x),...,fr(x)] T, where each f;(x) € {—1,+1}.
» We can think of ¢(x) as a high dimensional feature map of x.

» The vector & = [a, ..., ar| " corresponds to a hyperplane.
» So the classifier can be written fyus (Xo) = sign(¢(x) " ).

» Boosting learns the feature mapping and hyperplane simultaneously.



APPLICATION: FACE DETECTION



FACE DETECTION (VioLa & JONES, 2001)

Problem: Locate the faces in an image or video.

Processing: Divide image into patches of different scales, e.g., 24 x 24,
48 x 48, etc. Extract features from each patch.

Classify each patch as face or no face using a boosted decision stump. This
can be done in real-time, for example by your digital camera (at 15 fps).

—IILL g —

» One patch from a larger image. Mask it with many “feature extractors.”

» Each pattern gives one number, which is the sum of all pixels in black
region minus sum of pixels in white region (total of 45,000+ features).



FACE DETECTION (EXAMPLE RESULTS)




ANALYSIS OF BOOSTING



ANALYSIS OF BOOSTING

Training error theorem

We can use analysis to make a statement about the accuracy of boosting on
the training data.

Theorem: Under the AdaBoost framework, if ¢, is the weighted error of
classifier f;, then for the classifier fjp5 (x0) = sign(ZfT=l ayfi(x0)),

n T
1
training error = — E 1{yi # froost(xi)} < exp ( -2 E (% — e,)z).
n
i=1 =1

Even if each ¢, is only a little better than random guessing, the sum over T
classifiers can lead to a large negative value in the exponent when T is large.

For example, if we set:
¢ =045, T =1000 — training error < 0.0067.



PROOF OF THEOREM

Setup
We break the proof into three steps. It is an application of the fact that

if a<b and b<c then a<c
e ~—~— N~

Step 2 Step 3 conclusion

» Step 1 calculates the value of .

» Steps 2 and 3 prove the two inequalities.

Also recall the following step from AdaBoost:
» Update W, (i) = w,(i)e /it
» Normalize w;4(i) = (D) — Define Z, = 3 Wit1(j).

> Wi ()



PROOF OF THEOREM (a < b < ¢)

Step 1

We first want to expand the equation of the weights to show that

(i) len Ziohi(s) 1 gmvihr(x)
wri\t) = — T =T
Ht:I Z, n Hz:l Z

— hr(x) = Zatﬁ(xi)
=1

Derivation of Step 1:
1

= Zwl(i)eiaty’ﬁ(x})

Notice the update rule: w1 (i)

Do the same expansion for w, (i) and continue until reaching w; (i) = 1,

e—oyifi(xi) e—aryifr(xi)

WT+1(i):w1iT><~~>< Z

The product H,T=1 Z, is “b” above. We use this form of wr (i) in Step 2.



PROOF OF THEOREM (a < b < ¢)

Step 2

Next show the training error of fb(ng)sr (boosting after T steps) is < H,T:1 Z;.
Currently we know

1 e Vihr(xi) T = e g o .
w =—-——— =W i 7y = —e VitTln x) = sign(hr(x
= g < 011z =] S () = sign(ir (x))
Derivation of Step 2:

Observe that 0 < ¢* and 1 < €% for any z; < 0 < z. Therefore

IN

n
15 e Yl (x)
n -
i=1
n

T T
‘ = Y w0 ]z = [[z
i=1 =1 =1

1 n
=Y L # oo (@)}
i=1

~——
b

“a” is the training error — the quantity we care about.



PROOF OF THEOREM (a < b < ¢)

Step 3

The final step is to calculate an upper bound on Z;, and by extension H,TZI Z;.

Derivation of Step 3:

This step is slightly more involved. It also shows why «; := % In (ﬂ)

€
Zt — Zwt —auyifi(xi)
- Z e wii)+ Y e wili)

i yi=fi(x) i yif (xi)
= e Yl —¢)+eYe

Remember we defined €, = ;. | (. wi(i), the probability of error for w;.



PROOF OF THEOREM (a < b < ¢)

Derivation of Step 3 (continued):
Remember from Step 2 that

n T
1
training error = — E T{yi # froost(xi)} < H Z .
n
i=1 =1

and we just showed that Z, = e~ (1 — ¢,) + e%“¢,.

We want the training error to be small, so we pick o, to minimize Z;.
Minimizing, we get the value of a; used by AdaBoost:

« —lln i
T2 € '

Plugging this value back in gives Z, = 2+/¢,(1 — ).




PROOF OF THEOREM (a < b < ¢)

Derivation of Step 3 (continued): >
25
Next, re-write Z, as :
1
Zt = 2 6,(1 —6,) 0.2
-0.5
1 5 -1
= 1 —4(5 — &) 15 D S N

Then, use the inequality 1 — x < e~ to conclude that

1 1 ,
Zi=(1-4(h - e)?) < (entier) —em2timar,



PROOF OF THEOREM

Concluding the right inequality (a <b < ¢)
Because both sides of Z, < e—2G:—<)" are positive, we can say that

r T

t=1 =1

This concludes the “b < ¢” portion of the proof.

Combining everything
a b
~ c
—_—~

1 n T

training ervor = 3" 1{yi # froow(x)} < [[2 <2 E0G,

n
i=1 =1

We set out to prove “a < ¢” and we did so by using “b” as a stepping-stone.



TRAINING VS TESTING ERROR

Q: Driving the training error to zero leads one to ask, does boosting overfit?

A: Sometimes, but very often it doesn’t!

20 ¢
15 ¢ C4.5 (tree) testing error
S
i,
10 ¢
5 AdaBoost testing error
AdaBoost training error
0

10 100 1000
Rounds of boosting



