
COMS 4721: Machine Learning for Data Science

Lecture 13, 3/2/2017

Prof. John Paisley

Department of Electrical Engineering
& Data Science Institute

Columbia University

BOOSTING

Robert E. Schapire and Yoav Freund, Boosting: Foundations and Algorithms, MIT Press, 2012.
See this textbook for many more details. (I borrow some figures from that book.)

BAGGING CLASSIFIERS

Algorithm: Bagging binary classifiers

Given (x1, y1), . . . , (xn, yn), x ∈ X , y ∈ {−1,+1}
I For b = 1, . . . ,B

I Sample a bootstrap dataset Bb of size n. For each entry in Bb, select (xi, yi)
with probability 1

n . Some (xi, yi) will repeat and some won’t appear in Bb.
I Learn a classifier fb using data in Bb.

I Define the classification rule to be

fbag(x0) = sign

(
B∑

b=1

fb(x0)

)
.

I With bagging, we observe that a committee of classifiers votes on a label.
I Each classifier is learned on a bootstrap sample from the data set.
I Learning a collection of classifiers is referred to as an ensemble method.

BOOSTING

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions,
despite the weak judgment of the individual members?

- Schapire & Freund, “Boosting: Foundations and Algorithms”

Boosting is another powerful method for ensemble learning. It is similar to
bagging in that a set of classifiers are combined to make a better one.

It works for any classifier, but a “weak” one that is easy to learn is usually
chosen. (weak = accuracy a little better than random guessing)

Short history
1984 : Leslie Valiant and Michael Kearns ask if “boosting” is possible.
1989 : Robert Schapire creates first boosting algorithm.
1990 : Yoav Freund creates an optimal boosting algorithm.
1995 : Freund and Schapire create AdaBoost (Adaptive Boosting),

the major boosting algorithm.

BAGGING VS BOOSTING (OVERVIEW)

Training sample

Weighted sample

Weighted sample

Weighted sample

Training sample

Bootstrap sample

Bootstrap sample

Bootstrap sample f3(x)

f2(x)

f3(x)

f2(x)

f1(x) f1(x)

Bagging Boosting

THE ADABOOST ALGORITHM (SAMPLING VERSION)

Training sample

Weighted sample

Weighted sample

Weighted sample α3, f3(x)

α2, f2(x)

α1, f1(x)

Boosting

Sample and
classify B3

weighted
error ε1

Sample and
classify B2

Sample and
classify B1

weighted
error ε2

fboost(x0) = sign

(
T∑

t=1

αt ft(x0)

)

THE ADABOOST ALGORITHM (SAMPLING VERSION)

Algorithm: Boosting a binary classifier

Given (x1, y1), . . . , (xn, yn), x ∈ X , y ∈ {−1,+1}, set w1(i) = 1
n for i = 1 : n

I For t = 1, . . . ,T

1. Sample a bootstrap dataset Bt of size n according to distribution wt.
Notice we pick (xi, yi) with probability wt(i) and not 1

n .

2. Learn a classifier ft using data in Bt.

3. Set εt =
∑n

i=1 wt(i)1{yi 6= ft(xi)} and αt =
1
2 ln
(

1−εt
εt

)
.

4. Scale ŵt+1(i) = wt(i)e−αtyi ft(xi) and set wt+1(i) =
ŵt+1(i)∑

j ŵt+1(j)
.

I Set the classification rule to be

fboost(x0) = sign
(∑T

t=1 αt ft(x0)
)
.

Comment: Description usually simplified to “learn classifier ft using distribution wt.”

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+

+
+

-
-

-

-

- Original data

Uniform distribution, w1
Learn weak classifier

Here: Use a decision stump

x1 > 1.7

ŷ = 1 ŷ = 3

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+

+
+

-
-

-

-

- Round 1 classifier

Weighted error: ε1 = 0.3
Weight update: α1 = 0.42

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+
+
+

-

-

-

-

- Weighted data

After round 1

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+
+
+

-

-

-

-

- Round 2 classifier

Weighted error: ε2 = 0.21
Weight update: α2 = 0.65

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+
+
+

-
-

-

-

- Weighted data

After round 2

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+
+
+

-
-

-

-

- Round 2 classifier

Weighted error: ε3 = 0.14
Weight update: α3 = 0.92

BOOSTING A DECISION STUMP (EXAMPLE 1)

+

+

+

+
+

-
-

-

-

-
Classifier after three rounds

+

+

0.42 x

0.65 x

0.92 x

BOOSTING A DECISION STUMP (EXAMPLE 2)

Example problem

Random guessing
50% error

Decision stump
45.8% error

Full decision tree
24.7% error

Boosted stump
5.8% error

BOOSTING

Point = one dataset. Location = error rate w/ and w/o boosting. The boosted
version of the same classifier almost always produces better results.

BOOSTING

(left) Boosting a bad classifier is often better than not boosting a good one.
(right) Boosting a good classifier is often better, but can take more time.

BOOSTING AND FEATURE MAPS

Q: What makes boosting work so well?

A: This is a well-studied question. We will present one analysis later, but
we can also give intuition by tying it in with what we’ve already learned.

The classification for a new x0 from boosting is

fboost(x0) = sign

(
T∑

t=1

αt ft(x0)

)
.

Define φ(x) = [f1(x), . . . , fT(x)]>, where each ft(x) ∈ {−1,+1}.
I We can think of φ(x) as a high dimensional feature map of x.

I The vector α = [α1, . . . , αT]
> corresponds to a hyperplane.

I So the classifier can be written fboost(x0) = sign(φ(x0)
>α).

I Boosting learns the feature mapping and hyperplane simultaneously.

APPLICATION: FACE DETECTION

FACE DETECTION (VIOLA & JONES, 2001)

Problem: Locate the faces in an image or video.

Processing: Divide image into patches of different scales, e.g., 24× 24,
48× 48, etc. Extract features from each patch.

Classify each patch as face or no face using a boosted decision stump. This
can be done in real-time, for example by your digital camera (at 15 fps).
144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

I One patch from a larger image. Mask it with many “feature extractors.”
I Each pattern gives one number, which is the sum of all pixels in black

region minus sum of pixels in white region (total of 45,000+ features).

FACE DETECTION (EXAMPLE RESULTS)

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection

ANALYSIS OF BOOSTING

ANALYSIS OF BOOSTING

Training error theorem
We can use analysis to make a statement about the accuracy of boosting on
the training data.

Theorem: Under the AdaBoost framework, if εt is the weighted error of
classifier ft, then for the classifier fboost(x0) = sign(

∑T
t=1 αtft(x0)),

training error =
1
n

n∑
i=1

1{yi 6= fboost(xi)} ≤ exp
(
− 2

T∑
t=1

(1
2 − εt)

2
)
.

Even if each εt is only a little better than random guessing, the sum over T
classifiers can lead to a large negative value in the exponent when T is large.

For example, if we set:
εt = 0.45, T = 1000 → training error ≤ 0.0067.

PROOF OF THEOREM

Setup
We break the proof into three steps. It is an application of the fact that

if a < b︸ ︷︷ ︸
Step 2

and b < c︸ ︷︷ ︸
Step 3

then a < c︸ ︷︷ ︸
conclusion

I Step 1 calculates the value of b.

I Steps 2 and 3 prove the two inequalities.

Also recall the following step from AdaBoost:

I Update ŵt+1(i) = wt(i)e−αtyi ft(xi).

I Normalize wt+1(i) =
ŵt+1(i)∑
j ŵt+1(j)

−→ Define Zt =
∑

j ŵt+1(j).

PROOF OF THEOREM (a ≤ b ≤ c)

Step 1
We first want to expand the equation of the weights to show that

wT+1(i) =
1
n

e−yi
∑T

t=1 αt ft(xi)∏T
t=1 Zt

:=
1
n

e−yi hT(xi)∏T
t=1 Zt

→ hT(x) :=
T∑

t=1

αt ft(xi)

Derivation of Step 1:

Notice the update rule: wt+1(i) =
1
Zt

wt(i)e−αtyi ft(xi)

Do the same expansion for wt(i) and continue until reaching w1(i) = 1
n ,

wT+1(i) = w1(i)
e−α1yi f1(xi)

Z1
× · · · × e−αT yi fT(xi)

ZT

The product
∏T

t=1 Zt is “b” above. We use this form of wT+1(i) in Step 2.

PROOF OF THEOREM (a ≤ b ≤ c)

Step 2
Next show the training error of f (T)

boost (boosting after T steps) is ≤
∏T

t=1 Zt.
Currently we know

wT+1(i) =
1
n

e−yi hT (xi)∏T
t=1 Zt

⇒ wT+1(i)
T∏

t=1

Zt =
1
n

e−yi hT (xi) & f (T)
boost(x) = sign(hT(x))

Derivation of Step 2:

Observe that 0 < ez1 and 1 < ez2 for any z1 < 0 < z2. Therefore

1
n

n∑
i=1

1{yi 6= f (T)
boost(xi)}︸ ︷︷ ︸

a

≤ 1
n

n∑
i=1

e−yi hT(xi)

=

n∑
i=1

wT+1(i)
T∏

t=1

Zt =

T∏
t=1

Zt︸ ︷︷ ︸
b

“a” is the training error – the quantity we care about.

PROOF OF THEOREM (a ≤ b ≤ c)

Step 3
The final step is to calculate an upper bound on Zt, and by extension

∏T
t=1 Zt.

Derivation of Step 3:

This step is slightly more involved. It also shows why αt :=
1
2 ln
(

1−εt
εt

)
.

Zt =

n∑
i=1

wt(i)e−αtyi ft(xi)

=
∑

i : yi=ft(xi)

e−αt wt(i) +
∑

i : yi 6=ft(xi)

eαt wt(i)

= e−αt(1− εt) + eαtεt

Remember we defined εt =
∑

i : yi 6=ft(xi)
wt(i), the probability of error for wt.

PROOF OF THEOREM (a ≤ b ≤ c)

Derivation of Step 3 (continued):
Remember from Step 2 that

training error =
1
n

n∑
i=1

1{yi 6= fboost(xi)} ≤
T∏

t=1

Zt .

and we just showed that Zt = e−αt(1− εt) + eαtεt.

We want the training error to be small, so we pick αt to minimize Zt.
Minimizing, we get the value of αt used by AdaBoost:

αt =
1
2

ln
(

1− εt

εt

)
.

Plugging this value back in gives Zt = 2
√
εt(1− εt).

PROOF OF THEOREM (a ≤ b ≤ c)

Derivation of Step 3 (continued):

Next, re-write Zt as

Zt = 2
√
εt(1− εt)

=

√
1− 4(

1
2
− εt)2

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

e-x

1 -x

Then, use the inequality 1− x ≤ e−x to conclude that

Zt =
(
1− 4(1

2 − εt)
2
) 1

2 ≤
(

e−4(1
2−εt)

2
) 1

2
= e−2(1

2−εt)
2
.

PROOF OF THEOREM

Concluding the right inequality (a ≤ b ≤ c)
Because both sides of Zt ≤ e−2(1

2−εt)
2

are positive, we can say that

T∏
t=1

Zt ≤
T∏

t=1

e−2(1
2−εt)

2
= e−2

∑T
t=1(

1
2−εt)

2
.

This concludes the “b ≤ c” portion of the proof.

Combining everything

training error =

a︷ ︸︸ ︷
1
n

n∑
i=1

1{yi 6= fboost(xi)} ≤

b︷ ︸︸ ︷
T∏

t=1

Zt ≤

c︷ ︸︸ ︷
e−2

∑T
t=1(

1
2−εt)

2
.

We set out to prove “a < c” and we did so by using “b” as a stepping-stone.

TRAINING VS TESTING ERROR

Q: Driving the training error to zero leads one to ask, does boosting overfit?

A: Sometimes, but very often it doesn’t!

C4.5 (tree) testing error

AdaBoost testing error

AdaBoost training error

Rounds of boosting

E
rr

o
r

